
ar
X

iv
:1

70
2.

04
59

7v
1

 [
cs

.F
L

]
 1

5
Fe

b
20

17

Weighted Operator Precedence Languages

Manfred Droste1, Stefan Dück1⋆, Dino Mandrioli2, and Matteo Pradella2,3

1 Institute of Computer Science, Leipzig University, D-04109 Leipzig, Germany
{droste,dueck}@informatik.uni-leipzig.de

2 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di
Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

{dino.mandrioli,matteo.pradella}@polimi.it
3 IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy

Abstract. In the last years renewed investigation of operator prece-
dence languages (OPL) led to discover important properties thereof: OPL
are closed with respect to all major operations, are characterized, besides
the original grammar family, in terms of an automata family and an
MSO logic; furthermore they significantly generalize the well-known visi-
bly pushdown languages (VPL). In another area of research, quantitative
models of systems are also greatly in demand. In this paper, we lay the
foundation to marry these two research fields. We introduce weighted
operator precedence automata and show how they are both strict ex-
tensions of OPA and weighted visibly pushdown automata. We prove a
Nivat-like result which shows that quantitative OPL can be described
by unweighted OPA and very particular weighted OPA. In a Büchi-like
theorem, we show that weighted OPA are expressively equivalent to a
weighted MSO-logic for OPL.

Keywords: quantitative automata, operator precedence languages, VPL, quan-
titative logic

1 Introduction

In the long history of formal languages the family of regular languages (RL),
those that are recognized by finite state machines (FSM) or are generated by
regular grammars, has always played a major role: thanks to its simplicity and
naturalness it enjoys properties that are only partially extended to larger families.
Among the many positive results that have been achieved for RL (e.g., expres-
siveness, decidability, minimization, ...), those of main interest in this paper are
the following:

• RLs have been characterized in terms of various mathematical logics. The
pioneering papers are due to Büchi, Elgot, and Trakhtenbrot [7,22,37] who in-
dependently developed a monadic second order (MSO) logic defining exactly

⋆ supported by Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg 1763
(QuantLA).

http://arxiv.org/abs/1702.04597v1

2 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

the RL family. This work too has been followed by many further results; in
particular those that exploited weaker but simpler logics such as first-order,
propositional, and temporal ones which culminated in the breakthrough of
model checking to support automatic verification [31,23,8].

• Weighted RLs have been introduced by Schützenberger in his pioneering
paper [35]: by assigning a weight in a suitable algebra to each language word,
we may specify several attributes of the word, e.g., relevance, probability,
etc. Much research then followed and extended the original Schützenberger’s
work in various directions, cf. the books [4,21,26,34,14].

Unfortunately, all families with greater expressive power than RL –typically
context-free languages (CFL), which are the most widely used family in practical
applications– pay a price in terms of properties and, consequently, of possible
tools supporting their automatic analysis. For instance, for CFL, the containment
problem is undecidable and they are not closed under complement.

What was not possible for general CFL, however, has been possible for impor-
tant subclasses of this family, which together we call structured CFL. Informally,
with this term we denote those CFLs where the syntactic tree-structure of their
words is immediately “visible” in the words themselves. A first historical exam-
ple of such families is that of parenthesis languages, introduced by McNaughton
in another seminal paper [30], which are generated by grammars whose right
hand sides are enclosed within pairs of parentheses; not surprisingly an equiva-
lent formalism of parenthesis grammars was soon defined, namely tree-automata
which generalize the basics of FSM to tree-like structures instead of linear strings
[36]. Among the many variations and generalizations of parenthesis languages
the recent family of input-driven languages (IDL) [32,6], alias visibly pushdown
languages (VPL) [2], have received much attention in recent literature. For most
of these structured CFL, including in particular IDL, all of the algebraic proper-
ties of RL still hold [2]. One of the most noticeable results of this research field
has been a characterization of IDL/VPL in terms of a MSO logic that is a fairly
natural extension of the original Büchi’s one for RL [27,2].

This fact has suggested to extend the investigation of weighted RL to various
cases of structured languages. The result of such a fertile approach is a rich
collection of weighted logics, first studied by Droste and Gastin [12], associated
with weighted tree automata [19] and weighted VPAs the automata recognizing
VPLs, also called weighted NWAs [29,11].

In an originally unrelated way operator precedence languages (OPL) have
been defined and studied in two phases temporally separated by four decades.
In his seminal work [24] Floyd was inspired by the precedence of multiplicative
operations over additive ones in the execution of arithmetic expressions and
extended such a relation to the whole input alphabet in such a way that it could
drive a deterministic parsing algorithm that builds the syntax tree of any word
that reflects the word’s semantics; Fig. 1 and Section 2 give an intuition of how
an OP grammar generates arithmetic expressions and assigns them a natural
structure. After a few further studies [10], OPL’s theoretical investigation has

Weighted Operator Precedence Languages 3

been abandoned due to the advent of LR grammars which, unlike OPL grammars,
generate all deterministic CFL.

OPL, however, enjoy a distinguishing property which we can intuitively de-
scribe as ”OPL are input driven but not visible”. They can be claimed as input-
driven since the parsing actions on their words –whether to push or to pop their
stack– depend exclusively on the input alphabet and on the relation defined
thereon, but their structure is not visible in their words: e.g, they can include
unparenthesized arithmetic expressions where the precedence of multiplicative
operators over additive ones is explicit in the syntax trees but hidden in their
frontiers (see Fig. 1). Furthermore, unlike other structured CFL, OPL include
deterministic CFL that are not real-time [28].

This remark suggested to resume their investigation systematically at the
light of the recent technological advances and related challenges. Such a renewed
investigation led to prove their closure under all major language operations [9]
and to characterize them, besides the original Floyd’s grammars, in terms of an
appropriate class of pushdown automata (OPA) and in terms of a MSO logic
which is a fairly natural but not trivial extension of the previous ones defined
to characterize RL and VPL [28]. Thus, OPL enjoy the same nice properties
of RL and many structured CFL but considerably extend their applicability by
breaking the barrier of visibility and real-time push-down recognition.

In this paper we put together the two above research fields, namely we in-
troduce weighted OPL and show that they are able to model system behaviors
that cannot be specified by means of less powerful weighted formalisms such as
weighted VPL. For instance, one might be interested in the behavior of a system
which handles calls and returns but is subject to some emergency interrupts.
Then it is important to evaluate how critically the occurrences of interrupts af-
fect the normal system behavior, e.g., by counting the number of pending calls
that have been preempted by an interrupt. As another example consider a sys-
tem logging all hierarchical calls and returns over words where this structural
information is hidden. Depending on changing exterior factors like energy level,
such a system could decide to log the above information in a selective way.

Our main contributions in this paper are the following.

• The model of weighted OPA, which have semiring weights at their transitions,
significantly increases the descriptive power of previous weighted extensions
of VPA, and has desired closure and robustness properties.

• For arbitrary semirings, there is a relevant difference in the expressive power
of the model depending on whether it permits assigning weights to pop transi-
tions or not. For commutative semirings, however, weights on pop transitions
do not increase the expressive power of the automata. The difference in de-
scriptive power between weighted OPA with arbitrary weights and without
weights at pop transitions is due to the fact that OPL may be non-real-time
and therefore OPA may execute several pop moves without advancing their
reading heads.

• An extension of the classical result of Nivat [33] to weighted OPL. This
robustness result shows that the behaviors of weighted OPA without weights

4 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

at pop transitions are exactly those that can be constructed from weighted
OPA with only one state, intersected with OPL, and applying projections
which preserve the structural information.

• A weighted MSO logic and, for arbitrary semirings, a Büchi-Elgot-Trakhtenbrot-
Theorem proving its expressive equivalence to weighted OPAwithout weights
at pop transitions. As a corollary, for commutative semirings this weighted
logic is equivalent to weighted OPA including weights at pop transitions.

2 Preliminaries

We start with an example to provide an intuition of the idea by which R. Floyd
made the hidden precedences between symbols occurring in a grammar explicit
in parse trees [24]: consider arithmetic expressions with two operators, an addi-
tive one and a multiplicative one that takes precedence over the other one, in
the sense that, during the interpretation of the expression, multiplications must
be executed before sums. Parentheses are used to force different precedence hi-
erarchies. Figure 1 (left) presents a grammar and (center) the derivation tree of
the expression n+ n× (n+ n); all nonterminals are axioms.

Notice that the structure of the syntax tree (uniquely) corresponding to the
input expression reflects the precedence order which drives computing the value
attributed to the expression. This structure, however, is not immediately visi-
ble in the expression; if we used a parenthesis grammar, it would produce the
string (n + (n× (n + n))) instead of the previous one, and the structure of the
corresponding tree would be immediately visible. For this reason we say that
such grammars “hide” the structure associated with a sentence, whereas paren-
thesis grammars and other input-driven ones make the structure explicit in the
sentences they generate.

E → E + T | T
T → T × F | F
F → n | (E)

E

E

T

F

n

+ T

T

F

n

× F

(E

E

T

F

n

+ T

F

n

)

+ × () n

+ ⋗ ⋖ ⋖ ⋗ ⋖

× ⋗ ⋗ ⋖ ⋗ ⋖

(⋖ ⋖ ⋖
.
= ⋖

) ⋗ ⋗ ⋗

n ⋗ ⋗ ⋗

Fig. 1. A grammar generating arithmetic expressions (left), an example derivation tree
(center), and the precedence matrix (right).

Weighted Operator Precedence Languages 5

To model this hierarchical structure and make it accessible, we introduce
the chain relation y. This new relation can be compared with the nesting or
matching relation of [2], as it also is a non-crossing relation, going always for-
ward and originating from additional information on the alphabet. However, it
also features significant differences: Instead of adding unary information to sym-
bols, which partition the alphabet into three disjoint parts (calls, internals, and
returns), we add a binary relation for every pair of symbols denoting their prece-
dence relation. Therefore, in contrast to the nesting relation, the same symbol
can be either call or return depending on its context. Furthermore, the same
position can be part of multiple chain relations.

More precisely, we define an OP alphabet as a pair (Σ,M), where Σ is an
alphabet and M , the operator precedence matrix (OPM) is a |Σ ∪ {#}|2 array
describing for each ordered pair of symbols at most one (operator precedence)
relation, that is, every entry of M is either ⋖ (yields precedence),

.
= (equal in

precedence, ⋗ (takes precedence), or empty (no relation).
We use the symbol # to mark the beginning and the end of a word and let

always be #⋖a and a⋗# for all a ∈ Σ. As an example, Figure 1 (right) depicts
the OPM of the grammar reported on its left, omitting the standard relations
for #.

Let w = (a1...an) ∈ Σ+ be a word. We say a0 = an+1 = # and define a
new relation y on the set of all positions of #w#, inductively, as follows. Let
i, j ∈ {0, 1, ..., n+ 1}, i < j. Then, we write i y j if there exists a sequence of
positions k1...km such that i = k1 < ... < km = j, ak1

⋖ ak2

.
= ...

.
= akm−1

⋗ akm
,

and either ks + 1 = ks+1 or ks y ks+1 for each s ∈ {1, ...,m− 1}. In particular,
iy j holds if ai ⋖ ai+1

.
= ...

.
= aj−1 ⋗ aj .

We say w is compatible with M if for #w# we have 0 y n+1. In particular,
this forces Maiaj

6= ∅ for all i + 1 = j and for all i y j. We denote by (Σ,M)+

the set of all non-empty words over Σ which are compatible with M . For a
complete OPM M , i.e. one without empty entries, this is Σ+.

We recall the definition of an operator precedence automaton from [28].

Definition 1. A (nondeterministic) operator precedence automaton (OPA) A
over an OP alphabet (Σ,M) is a tupleA = (Q, I, F, δ), where δ = (δshift, δpush, δpop),
consisting of

– Q, a finite set of states,
– I ⊆ Q, the set of initial states,
– F ⊆ Q, a set of final states, and
– the transition relations δshift, δpush ⊆ Q×Σ ×Q, and δpop ⊆ Q×Q×Q.

Let Γ = Σ×Q. A configuration of A is a triple C = 〈Π, q, w#〉, where Π ∈ ⊥Γ ∗

represents a stack, q ∈ Q the current state, and w the remaining input to read.
A run of A on w = a1...an is a finite sequence of configurations C0 ⊢ ... ⊢ Cm

such that every transition Ci ⊢ Ci+1 has one of the following forms, where a is
the topmost alphabet symbol of Π and b is the next symbol of the input to read:

push move : 〈Π, q, bx〉 ⊢ 〈Π[b, q], r, x〉 if a⋖ b and (q, b, r) ∈ δpush,
shift move : 〈Π[a, p], q, bx〉 ⊢ 〈Π[b, p], r, x〉 if a

.
= b and (q, b, r) ∈ δshift,

pop move : 〈Π[a, p], q, bx〉 ⊢ 〈Π, r, bx〉 if a⋗ b and (q, p, r) ∈ δpop.

6 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

An accepting run of A on w is a run from 〈⊥, qI , w#〉 to 〈⊥, qF ,#〉, where qI ∈ I
and qF ∈ F . The language accepted by A, denoted L(A), consists of all words
over (Σ,M)+ which have an accepting run on A. We say that L ⊆ (Σ,M)+ is an
OPL if L is accepted by an OPA over (Σ,M). As proven by [28], the deterministic
variant of an OPA, using a single initial state instead of I and transition functions
instead of relations, is equally expressive to nondeterministic OPA.

An example automaton is depicted in Figure 2: with the OPM of Figure 1
(right), it accepts the same language as the grammar of Figure 1 (left).

0 1

2 3

n

(

0, 1+,×

n
(

0, 1, 2, 3+,×

)

Fig. 2. Automaton for the language of the grammar of Figure 1. Shift, push and pop
transitions are denoted by dashed, normal and double arrows, respectively.

Definition 2. The logic MSO(Σ,M), short MSO, is defined as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

where a ∈ Σ∪{#}, x, y are first-order variables; andX is a second order variable.

We define the natural semantics for this (unweighted) logic as in [28]. The relation
y refers to the chain relation introduced above.

Theorem 3 ([28]). A language L over (Σ,M) is an OPL iff it is MSO-definable.

3 Weighted OPA and Their Connection to Weighted

VPA

In this section, we introduce a weighted extension of operator precedence au-
tomata. We show that weighted OPL include weighted VPL and give examples
showing how these weighted automata can express behaviors which were not
expressible before. Let K = (K,+, ·, 0, 1) be a semiring, i.e., (K,+, 0) is a com-
mutative monoid, (K, ·, 1) is a monoid, (x+y)·z = x·z+y·z, x·(y+z) = x·y+x·z,
and 0 · x = x · 0 = 0 for all x, y, z ∈ K. K is called commutative if (K, ·, 1) is
commutative.

Weighted Operator Precedence Languages 7

Important examples of commutative semirings cover the Boolean semiring
B = ({0, 1},∨,∧, 0, 1), the semiring of the natural numbers N = (N,+, ·, 0, 1),
or the tropical semirings Rmax = (R ∪ {−∞},max,+,−∞, 0) and Rmin = (R ∪
{∞},min,+,∞, 0). Non-commutative semirings are given by n×n-matrices over
semirings K with matrix addition and multiplication as usual (n ≥ 2), or the
semiring (P(Σ∗),∪, ·, ∅, {ε}) of languages over Σ.

Definition 4. A weighted OPA (wOPA) A over an OP alphabet (Σ,M) and
a semiring K is a tuple A = (Q, I, F, δ,wt), where wt = (wtshift,wtpush,wtpop),
consisting of

– an OPA A′ = (Q, I, F, δ) over (Σ,M) and
– the weight functions wtop : δop → K, op ∈ {shift, push, pop}.

We call a wOPA restricted, denoted by rwOPA, if wtpop ≡ 1, i.e. wtpop(q, p, r) = 1
for each (q, p, r) ∈ δpop.

A configuration of a wOPA is a tuple C = 〈Π, q, w#, k〉, where (Π, q, w#) is a
configuration of the OPA A′ and k ∈ K. A run of A is a again a sequence of
configurations C0 ⊢ C1 . . . ⊢ Cm satisfying the previous conditions and, addition-
ally, the weight of a configuration is updated by multiplying with the weight of
the encountered transition, as follows. As before, we denote with a the topmost
symbol of Π and with b the next symbol of the input to read:

〈Π, q, bx, k〉 ⊢ 〈Π[b, q], r, x, k · wtpush(q, b, r)〉 if a⋖ b and (q, b, r) ∈ δpush,
〈Π[a, p], q, bx, k〉 ⊢ 〈Π[b, p], r, x, k · wtshift(q, b, r)〉 if a

.
= b and (q, b, r) ∈ δshift,

〈Π[a, p], q, bx, k〉 ⊢ 〈Π, r, bx, k · wtpop(q, p, r)〉 if a⋗ b and (q, p, r) ∈ δpop.

We call a run ρ accepting if it goes from 〈⊥, qI , 1, w#〉 to 〈⊥, qF , k,#〉, where
qI ∈ I and qF ∈ F . For such an accepting run, the weight of ρ is defined as
wt(ρ) = k. We denote by acc(A, w) the set of all accepting runs of A on w.

Finally, the behavior of A is a function JAK : (Σ,M)+ → K, defined as

JAK(w) =
∑

ρ∈acc(A,w)

wt(ρ) .

Every function S : (Σ,M)+ → K is called an OP-series (short: series, also
weighted language). A wOPA A recognizes or accepts a series S if JAK = S. A
series S is called regular or a wOPL if there exists an wOPA A accepting it. S
is strictly regular or an rwOPL if there exists an rwOPA A accepting it.

Example 5. Let us resume, in a simplified version, an example presented in [28]
(Example 8) which exploits the ability of OPA to pop many items from the stack
without advancing the input head: in this way we can model a system that man-
ages calls and returns in a traditional LIFO policy but discards all pending calls
if an interrupt occurs4. The weighted automaton of Figure 3 attaches weights to

4 A similar motivation inspired the recent extension of VPL as colored nested words
by [1].

8 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

the OPA’s transitions in such a way that the final weight of a string is 1 only
if no pending call is discarded by any interrupt; otherwise, the more calls are
discarded the lower the “quality” of the input as measured by its weight.

More precisely, we define Σ = {call, ret, int} and the precedence matrixM as
a subset of the matrix of Example 8 of [28], i.e., call⋖ call, call

.
= ret, call⋗ int,

int⋖ int, int⋗ call, and ret⋗ a for all a ∈ Σ.
By adopting the same graphical notation as in [28] pushes are normal ar-

rows, shifts are dashed, pops are double arrows; weights are given in brack-
ets at transitions. Let #pcall(w) be the number of pending calls of w, i.e.,

q0

call(1
2
) ret(2)

q0(1)

int(1)

Fig. 3. The weighted OPA Apenalty penalizing unmatched calls

calls which are never answered by a return. Then the behavior of the automa-
ton Apenalty over (Σ,M) and the semiring (N,+, ·, 0, 1) given in Figure 3 is
JApenaltyK(w) = (12)

#pcall(w).
The example can be easily enriched by following the same path outlined in

[28]: we could add symbols specifying the serving of an interrupt, add different
types of calls and interrupts with different priorities and more sophisticated
policies (e.g., lower level interrupts disable new calls but do not discard them,
whereas higher level interrupts reset the whole system, etc.)

Example 6. The wOPA of Figure 3 is “rooted” in a deterministic OPA; thus
the semiring of weights is exploited in a fairly trivial way since only the · op-
eration is used. The automaton Apolicy given in Figure 4, instead, formalizes a
more complex system where the penalties for unmatched calls may change non-
deterministically within intervals delimited by the special symbol $. Precisely,
the symbols $ mark intervals during which sequences of calls, returns, and inter-
rupts occur; “normally” unmatched calls are not penalized, but there is a special,
nondeterministically chosen interval during which they are penalized; the global
weight assigned to an input sequence is the maximum over all nondeterministic
runs that are possible when recognizing the sequence.

Here, the alphabet is Σ = {call, ret, int, $}, and the OPM M , with a ⋖ $
and $ ⋗ a, for all a ∈ Σ is a natural extension of the OPM of Example 5. As
semiring, we take Rmax = (R∪{−∞},max,+,−∞, 0). Then, JApolicyK(w) equals
the maximal number of pending calls between two consecutive $. Again, Apolicy

can be easily modified/enriched to formalize several variations of its policy: e.g.,

Weighted Operator Precedence Languages 9

q0 q1 q2

$(0), int(0), call(0)
ret(0)

q0(0)

$(0)

call(1)

ret(−1)

int(0)

q0(0), q1(0)

$(0)

$(0), call(0)
ret(0)

int(0)

q0(0), q1(0), q2(0)

Fig. 4. The weighted OPA Apolicy penalizing unmatched calls nondeterministically

different policies could be associated with different intervals, different weights
could be assigned to different types of calls and/or interrupts, different policies
could also be defined by choosing different semirings, etc.

Note that both automata, Apenalty and Apolicy, do not use the weight assignment
for pops.

Example 7. The next automaton Alog, depicted in Figure 5 chooses non-deter-
ministically between logging everything and logging only ‘important’ informa-
tion, e.g., only interrupts (this could be a system dependent on energy, WiFi,
...). Notice that, unlike the previous examples, in this case assigning nontrivial
weights to pop transitions is crucial.

Let Σ = {call, ret, int}, and defineM as for Apenalty. We employ the semiring
(FinΣ′ ,∪, ◦, ∅, {ε}) of all finite languages over Σ′ = {c, r, p, i}. Then, JAlogK(w)
yields all possible logs on w.

q0 q1

call(c)
int(i) ret(r)

q0(p)

call(ε)

call(ε)

call(ε)
int(i) ret(ε)

q0(ε), q1(ε)

Fig. 5. The wOPA Alog nondeterministically writes logs at different levels of detail.

As hinted at by our last example, the following proposition shows that in general,
wOPA are more expressive than rwOPA.

Proposition 8. There exists an OP alphabet (Σ,M) and a semiring K such
that there exists a weighted language S which is regular but not strictly regular.

10 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Proof. Let Σ = {c, r}, c ⋖ c, and c
.
= r. Consider the semiring Fin{a,b} of all

finite languages over {a, b} together with union and concatenation. Let n ∈ N

and S : (Σ,M)+ → Fin{a,b} be the following series

S(w) =

{

{anban} , if w = cnr
∅ , otherwise

.

Then, we can define a wOPA which only reads cnr, assigns the weight {a} to
every push and pop, and the weight {b} to the one shift, and therefore accepts
S, as in Figure 6.

q0 q1

c({a})

r({b})

q1({a})

Fig. 6. The wOPA recognizing S(cnr) = {anban} and S(w) = 0, otherwise.

Now, we show with a pumping argument that there exists no rwOPA which
recognizes S. Assume there is an rwOPA A with JAK = S. Note that for all
n ∈ N, the structure of cnr is fixed as c⋖ c⋖ ...⋖ c

.
= r. Let ρ be an accepting

run of A on cnr with wt(ρ) = {anban}. Then, the transitions of ρ consist of n
pushes, followed by a shift, followed by n pops and can be written as

q0
c

−→ q1
c

−→ ...
c

−→ qn−1
c

−→ qn
r

99K qn+1
qn−1

=⇒ qn+2
qn−2

=⇒ ...
q1
=⇒ q2n

q0
=⇒ q2n+1 .

Both the number of states and the amount of pairs of states are bound. If n is
sufficiently large, there exists two pop transitions pop(q, p, r) and pop(q′, p′, r′)
in this sequence such that q = q′ and p = p′. This means that we have a loop in
the pop transitions going from state q to q′ = q. Furthermore, the corresponding
push to the first transition of this loop was invoked when the automaton was
in state p′, while the corresponding push to the last pop was invoked in state p.
Since p = p′, we also have a loop at the corresponding pushes. Then, the run
where we skip both loops in the pops and in the pushes is an accepting run for
cn−kr, for some k ∈ N \ {0}.

Since the weight of all pops is trivial, the weight of the pop-loop is ε. If the
weight of the push-loop is also ε, then we have an accepting run for cn−kr of
weight {anban}, a contradiction. If the weight of the push-loop is not trivial,
then by a simple case distinction it has to be either {ai} for some i ∈ N \ {0} or
it has to contain the b. In the first case, the run without both loops has weight
{an−iban} or {anban−i}, in the second case it has weight {aj}, for some j ∈ N.
All these runs are not of the form an−kban−k, a contradiction. ⊓⊔

We notice that using the same arguments, we can show that also no weighted
nested word automata as defined in [29,18] can recognize this series. Even stronger,

Weighted Operator Precedence Languages 11

we can prove that restricted weighted OPLs are a generalization of weighted
VPLs in the following sense. We shortly recall the important definitions. Let
Σ = Σcall ⊔ Σint ⊔ Σret be a visibly pushdown alphabet. A VPA is a pushdown
automata which uses a push and pop transitions whenever it reads a call or
return symbol, respectively.

In [9], it was shown that using the complete OPM of Fig. 7, for every VPA,
there exists an equivalent operator precedence grammar which in turn can be
transformed into an equivalent OPA.

Σcall Σret Σint

Σcall ⋖
.
= ⋖

Σret ⋗ ⋗ ⋗

Σint ⋗ ⋗ ⋗

Fig. 7. OPM for VPL

In [29] and [18] weighted extensions of VPA were introduced (in the form
of weighted nested word automata wNWA). These add semiring weights at every
transition again depending on the information what symbols are calls, internals,
or returns. Note that every nested word has a representation as a word over a
visibly pushdown alphabet Σ and therefore can be seen as a compatible word of
(Σ,M)+, where M is the OPM of Fig. 7, i.e., we can interpret the behavior of a
wNWA as an OP-series (Σ,M)+ → K.

Theorem 9. Let K be a semiring, Σ be a visibly pushdown alphabet, and M be
the OPM of Fig. 7. Then for every wNWA A defined as in [18], there exists an
rwOPA B with JAK(w) = JBK(w) for all w ∈ (Σ,M)+.

We give an intuition for this result as follows. Note that although sharing some
similarities, pushes, shifts, and pops are not the same thing as calls, internals,
and returns. Indeed, a return of a (w)NWA reads and ’consumes’ a symbol, while
a pop of an (rw)OPA just pops the stack and leaves the next symbol untouched.

After studying Figure 7, this leads to the important observation that every
symbol of Σret and therefore every return transition of an NWA is simulated not
by a pop, but by a shift transition of an OPA (in the unweighted and weighted
case).

We give a short demonstrating example: Let Σint = {a}, Σcall = {〈c}, Σret =
{r〉}, w = a〈car〉. Then every run of an NWA for this word looks like

q0
a

−−−−−−→ q1
〈c
−−→ q2

a
−−−−−−→ q3

r〉
−−−−−−→ q4 .

Every run of an OPA (using the OPM of Fig. 7) looks as follows:

q0
a

−→ q′1 ⇒ q1
〈c
−→ q2

a
−→ q′3 ⇒ q3

r〉
99K q′4 ⇒ q4 ,

12 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

where the return was substituted (by the OPM, not by a choice of ours) by a
shift followed by a pop.

It follows that we can simulate a weighted call by a weighted push, a weighted
internal by a weighted push together with a pop and a weighted return by a
weighted shift together with a pop. Therefore, we may indeed omit weights at
pop transitions.

Proof (of Theorem 9). Given a weighted NWA A = (Q, I, F, (δcall, δint, δret),
(wtcall,wtint,wtret)) over Σ and K, we construct an rwOPA B = (Q′, I ′, F ′,
(δpush, δshift, δpop), (wt

′
push,wt

′
shift,wt

′
pop)) over (Σ,M) and K. We set Q′ = Q ∪

(Q ×Q), I ′ = I, and F ′ = F . We define the relations δpush, δshift, δpop, and the
functions wt′push, wt

′
shift, and wt′pop as follows.

We let δpush contain all triples (q, a, r) with (q, a, r) ∈ δcall, and all triples
(q, a, (q, r)) with (q, a, r) ∈ δint. We set wt′push(q, a, r) = wtcall(q, a, r) and wt′push(q, a, (q, r)) =
wtint(q, a, r). Moreover, we let δshift contain all triples (q, a, (p, r)) with (q, p, a, r) ∈
δret and set wt′shift(q, a, (p, r)) = wtret(q, p, a, r). Furthermore, we let δpop con-
tain all triples ((q, r), q, r) with (q, a, r) ∈ δint, and all triples ((p, r), p, r) with
(q, p, a, r) ∈ δret, and set wt′pop((q, r), q, r) = wt′pop((p, r), p, r) = 1.

Then, a run analysis of A and B shows that JBK = JAK. ⊓⊔

Together with the result that OPA are strictly more expressive than VPAs
[9], this gives a complete picture of the expressive power of these three classes
of weighted languages:

wVPL (rwOPL (wOPL .

The following result shows that for commutative semirings the second part of
this hierarchy collapses, i.e. restricted rwOPA are equally expressive as wOPA
(and therefore can be seen as a kind of normal form in this case).

Theorem 10. Let K be a commutative semiring and (Σ,M) an OP alphabet.
Let A be a wOPA. Then, there exists an rwOPA B with JAK = JBK.

Proof. Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K. Note that for
every pop transition of a wOPA, there exists exactly one push transition. We
construct an rwOPA B over the state set Q′ = Q × Q × Q and with the same
behavior as A with the following idea in mind. In the first state component B
simulates A. In the second and third state component of Q′ the automaton B
preemptively guesses the states q and r of the pop transition (q, p, r) of A which
corresponds to the next push transition following after this configuration. This
enables us to transfer the weight from the pop transition to the correct push
transition.

The detailed construction of B = (Q′, I ′, F ′, δ′,wt′) over (Σ,M) and K is the
following. If Q = ∅, then JAK ≡ 0 is trivially strictly regular. If Q is nonempty,
let q ∈ Q be a fixed state. Then, we set Q′ = Q×Q×Q, I ′ = {(q1, q2, q3) | q1 ∈

Weighted Operator Precedence Languages 13

I, q2, q3 ∈ Q}, F ′ = {(q1, q, q) | q1 ∈ F}, and

δ′push = {((q1, q2, q3), a, (r1, r2, r3)) | (q1, a, r1) ∈ δpush and (q2, q1, q3) ∈ δpop}

δ′shift = {((q1, q2, q3), a, (r1, q2, q3)) | (q1, a, r1) ∈ δshift}

δ′pop = {((q1, q2, q3), (p1, q1, r1), (r1, q2, q3)) | (q1, p1, r1) ∈ δpop} .

Here, every push of B controls that the previously guessed q2 and q3 can be used
by a pop transition of A going from q2 to q3 with q1 on top of the stack. Every
pop controls that the symbols on top of the stack are exactly the ones used at
this pop. Since the second and third state component are guessed for the next
push, they are passed on whenever we read a shift or pop. The second and third
component pushed at the first position of a word are guessed by an initial state.
At the last push, which therefore has no following push and will propagate the
second and third component to the end of the run, the automaton B has to guess
the distinguished state used in the final states.

Therefore, B has exactly one accepting run (of the same length) for every
accepting run of A, and vice versa. Finally, we define the transition weights as
follows.

wt′push((q1, q2, q3), a, (r1, r2, r3)) = wtpush(q1, a, r1) · wtpop(q2, q1, q3)

wt′shift((q1, q2, q3), a, (r1, r2, r3)) = wtshift(q1, a, r1)

wt′pop ≡ 1 .

Then, the runs of A simulated by B have exactly the same weights but in a
different ordering. Since K is commutative, it follows that JAK = JBK. ⊓⊔

In the following, we study closure properties of weighted OPA and restricted
weighted OPA. As usual, we extend the operation + and · to series S, T :
(Σ,M)+ → K by means of pointwise definitions as follows:

(S + T)(w) = S(w) + T (w) for each w ∈ (Σ,M)+

(S ⊙ T)(w) = S(w) · T (w) for each w ∈ (Σ,M)+ .

Proposition 11. The sum of two regular (resp. strictly regular) series over
(Σ,M)+ is again regular (resp. strictly regular).

Proof. We use a standard disjoint union of two (r)wOPA accepting the given
series to obtain a (r)wOPA for the sum as follows.

Let A = (Q, I, F, δ,wt) and B = (Q′, I ′, F ′, δ′,wt′) be two wOPA over (Σ,M)
and K. We construct a wOPA C = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ,M) and K by
defining Q′′ = Q⊔Q′, I ′′ = I ∪ I, F ′′ = F ∪F ′, δ′′ = δ ∪ δ′. The weight function
is defined by

wt′′(t) =

{

wt(t) , if t ∈ δ
wt′(t) , if t ∈ δ′

.

Then, JCK = JAK + JBK. Furthermore, if A and B are restricted, i.e. wt ≡ 1 and
wt′ ≡ 1, it follow that wt′′ ≡ 1, and therefore C is also restricted. ⊓⊔

14 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Proposition 12. Let S : (Σ,M)+ → K be a regular (resp. strictly regular) se-

ries and L ⊆ (Σ,M)+ an OPL. Then, the series (S∩L)(w) =

{

S(w) , if w ∈ L
0 , otherwise

}

is regular (resp. strictly regular). Furthermore, if K is commutative, then the
product of two regular (resp. strictly regular) series over (Σ,M)+ is again regu-
lar (resp. strictly regular).

Proof. We use a product construction of automata.

Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K with JAK = S and
let B = (Q′, q′0, F

′, δ′) be a deterministic OPA over (Σ,M) with L(B) = L. We
construct a wOPA C = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ,M) and K, with JCK = (S∩

L)(w) =

{

S(w) , if w ∈ L
0 , otherwise

}

, as follows. We define Q′′ = Q×Q′, I ′′ = I×{q′0},

F ′′ = F × F ′, and

δ′′push = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δpush and δ′push(q
′, a) = r′} ,

δ′′shift = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δshift and δ
′
shift(q

′, a) = r′} ,

δ′′pop = {((q, q′), (p, p′), (r, r′)) | (q, p, r) ∈ δpop and δ′pop(q
′, p′) = r′} .

Then the weights of C are defined as

wt′′push((q, q
′), a, (r, r′)) = wtpush(q, a, r) ,

wt′′shift((q, q
′), a, (r, r′)) = wtshift(q, a, r) ,

wt′′pop((q, q
′), (p, p′), (r, r′)) = wtpop(q, p, r) .

Note that given a word w, the automata A, B, and C have to use pushes, shifts,
and pops at the same positions. Hence, every accepting run of C on w defines
exactly one accepting run of B and exactly one accepting run of A on w with
matching weights, and vice versa. We obtain

JCK(w) =
∑

ρ∈acc(C,w)

wt(ρ)

=
∑

ρ, such that
ρ↾Q∈acc(A,w)
ρ↾Q′∈acc(B,w)

wt(ρ)

=

{∑

ρ∈acc(A,w)wt(ρ) , if the run of B on w is accepting

0 , otherwise

= (S ∩ L)(w) .

It follows that, JCK = S ∩ L.

For the second part of the proposition, let A = (Q, I, F, δ,wt) and B =
(Q′, I ′, F ′, δ′,wt′) be two wOPA. We construct a wOPA P as P = (Q ×Q′, I ×

Weighted Operator Precedence Languages 15

I ′, F × F ′, δP ,wtP) where δP = (δPpush, δ
P
shift, δ

P
pop) and set

δPpush = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δpush and (q′, a, r′) ∈ δ′push} ,

δPshift = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δshift and (q′, a, r′) ∈ δ′shift} ,

δPpop = {((q, q′), (p, p′), (r, r′)) | (q, p, r) ∈ δpop and (q′, p′, r′) ∈ δ′pop} ,

and

wtPpush((q, q
′), a, (r, r′)) = wt′push(q, a, r) · wt

′′
push(q

′, a, r′) ,

wtPshift((q, q
′), a, (r, r′)) = wt′shift(q, a, r) · wt

′′
shift(q

′, a, r′) ,

wtPpop((q, q
′), (p, p′), (r, r′)) = wt′pop(q, p, r) · wt

′′
pop(q

′, p′, r′) .

It follows that JPK = JAK⊙ JBK. Furthermore, if A and B are restricted, then so
is P . ⊓⊔

Next, we show that regular series are closed under projections which preserve
the OPM. For two OP alphabets (Σ,M), (Γ,M ′) and a mapping h : Σ → Γ , we
write h : (Σ,M) → (Γ,M ′) and say h is OPM-preserving if for all ⊙ ∈ {⋖,

.
=,⋗},

we have a⊙ b if and only if h(a)⊙ h(b). We can extend such an h to a function
h : (Σ,M)+ → (Γ,M ′)+ as follows. Given a word w = (a1a2...an) ∈ (Σ,M)+,
we define h(w) = h(a1a2...an) = h(a1)h(a2)...h(an). Let S : (Σ,M)+ → K be a
series. Then, we define h(S) : (Γ,M ′)+ → K for each v ∈ (Γ,M ′)+ by

h(S)(v) =
∑

w∈(Σ,M)+

h(w)=v

S(w) . (1)

Proposition 13. Let K be a semiring, S : (Σ,M)+ → K regular (resp. strictly
regular), and h : Σ → Γ an OPM-preserving projection. Then, h(S) : (Γ,M ′)+ →
K is regular (resp. strictly regular).

Proof. We follow an idea of [20] and its application in [18] and [11]. Let A =
(Q, I, F, δ,wt) be a wOPA over (Σ,M) and K with JAK = S. The main idea
is to remember the last symbol read in the next state to distinguish different
runs of A which would otherwise coincide in B. We construct the wOPA B =
(Q′, I ′, F ′, δ′,wt′) over (Σ,M) and K as follows. We set Q′ = Q×Σ, I ′ = I×{a0}
for some fixed a0 ∈ Σ, and F ′ = F × Σ. We define the transition relations
δ′ = (δ′push, δ

′
shift, δ

′
pop) for every b ∈ Γ and (q, a), (q′, a′), (q′′, a′′) ∈ Q′, as

δ′push = {((q, a), b, (q′, a′)) | (q, a′, q′) ∈ δpush and b = h(a′)} ,

δ′shift = {((q, a), b, (q′, a′)) | (q, a′, q′) ∈ δshift and b = h(a′)} ,

δ′pop = {((q, a), (q′, a′), (q′′, a)) | (q, q′, q′′) ∈ δpop} .

16 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Then, the weight functions are defined by

wt′push((q, a), h(a
′), (q′, a′)) = wtpush(q, a

′, q′) ,

wt′shift((q, a), h(a
′), (q′, a′)) = wtshift(q, a

′, q′) ,

wt′pop((q, a), (q
′, a′), (q′′, a′′)) = wtpop(q, q

′, q′′) .

Analogously to [18] and [11], this implies that for every run ρ of A on w, there
exists exactly one run ρ′ of B on v with h(w) = v and wt(ρ)=wt(ρ′). One
difference to previous works is that a pop of a wOPA is not consuming the
symbol. Therefore, we have to make sure to not change the symbol, which we
are currently remembering while processing a pop.

It follows that JA′K(v) = h(JAK)(v), so h(S) = JA′K is regular. Furthermore,
if A is restricted, then so is B. ⊓⊔

4 A Nivat Theorem

In this section, we establish a connection between weighted OPLs and strictly
regular series. We show that strictly regular series are exactly those series which
can be derived from a restricted weighted OPA with only one state, intersected
with an unweighted OPL, and using an OPM-preserving projection of the alpha-
bet.

Let h : Σ′ → Σ be a map between two alphabets. Given an OP alphabet
(Σ,M), we define h−1(M) by setting h−1(M)a′b′ =Mh(a′)h(b′) for all a

′, b′ ∈ Σ′.
As h is OPM-preserving, for every series S : (Σ,M)+ → K, we get a series
h(S) : (Σ′, h−1(M))+ → K, using the sum over all pre-images as in formula (1).

Let N (Σ,M,K) comprise all series S : (Σ,M)+ → K for which there exist
an alphabet Σ′, a map h : Σ′ → Σ, and a one-state rwOPA B over (Σ′, h−1(M))
and K and an OPL L over (Σ′, h−1(M)) such that S = h(JBK ∩ L).

Now, we show that every strictly regular series can be decomposed into the
above introduced fragments.

Proposition 14. Let S : (Σ,M)+ → K be a series. If S is strictly regular, then
S is in N (A,B,K).

Proof. We follow some ideas of [15] and [17].

Let A = (Q, I, F, δ,wt) be a rwOPA over (Σ,M) and K with JAK = S. We
set Σ′ = Q×Σ ×Q as the extended alphabet. The intuition is that Σ′ consists
of the push and the shift transitions of A. Let h be the projection of Σ′ to Σ
and let M ′ = h−1(M).

Let L ⊆ (Σ′,M ′)+ be the language consisting of all words w′ over the ex-
tended alphabet such that h(w′) has an accepting run on A which uses at every
position the push, resp. the shift transition defined by the symbol of Σ′ at this
position.

Weighted Operator Precedence Languages 17

We construct the unweighted OPA A′ = (Q′, I ′, F ′, δ′) over (Σ′,M ′), accept-
ing L, as follows. We set Q′ = Q, I ′ = I, F ′ = F , and define δ′ as follows

δ′push = { (q, (q, a, p), p) | (q, a, p) ∈ δpush } ,

δ′shift = { (q, (q, a, p), p) | (q, a, p) ∈ δshift } ,

δ′pop = δpop .

Hence, A′ has an accepting run on a word w′ ∈ (Σ′,M ′)+ if and only if A has
an accepting run on h(w′), using the push and shift transitions defined by w′.

We construct the one-state rwOPA B = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ′,M ′)
and K as follows. Set Q′′ = I ′′ = F ′′ = {q}, δ′′push = δ′′shift = {(q, a′, q) | a′ ∈ Σ′},
δ′′pop = {(q, q, q)}, wt′′push(q, a

′, q) = wtpush(a
′), wt′′shift(q, a

′, q) = wtshift(a
′), for

all a′ ∈ Σ′, and wt′′pop(q, q, q) = 1.
Let ρ be a run of w = a1...an ∈ (Σ,M)+ on A and ρ′ a run of w′ = a′1...a

′
n ∈

(Σ′,M ′)+ on B. We denote with wtA(ρ, w, i), resp. wtB(ρ
′, w′, i), the weight of

the push or shift transition used by the run ρ, resp. ρ′, at position i. Since A and

B are restricted, for all their runs ρ, ρ′, we have wt(ρ) =
∏|w|

i=1 wtA(ρ, w, i), resp.

wt(ρ′) =
∏|w′|

i=1 wtB(ρ
′, w′, i). Furthermore, following its definition, the rwOPA B

has exactly one run ρ for every word w′ ∈ (Σ′,M ′) and for all h(w′) = w and
for all i ∈ {1...n}, we have wtB(ρ

′, w′, i) = wtA(ρ, w, i). It follows that

h(JBK ∩ L)(w) =
∑

w′∈(Σ′,M ′)+

h(w′)=w

(JBK ∩ L)(w′)

=
∑

w′∈L(A′)
h(w′)=w

JBK(w′)

=
∑

ρ∈acc(A,w)

|w|
∏

i=1

wtA(ρ, w, i)

=
∑

ρ∈acc(A,w)

wt(ρ)

= JAK(w) = S(w) .

Hence, S = h(JBK ∩ L), thus S ∈ N (Σ,M,K). ⊓⊔

Using this proposition and closure properties of series, we get the following Nivat-
Theorem for weighted operator precedence automata.

Theorem 15. Let K be a semiring and S : (Σ,M)+ → K be a series. Then S
is strictly regular if and only if S ∈ N (Σ,M,K).

Proof. The “only if”-part of is immediate by Proposition 14.
For the converse, let Σ′ be an alphabet, h : Σ′ → Σ, L ⊆ (Σ′, h−1(M))+ be

an OPL, B a one-state rwOPA, and S = h(JBK∩L). Then Proposition 12 shows
that JBK ∩ L is strictly regular. Now, Proposition 13 yields the result. ⊓⊔

18 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

5 Weighted MSO-Logic for OPL

We use modified ideas from Droste and Gastin [12], also incorporating the distinc-
tion into an unweighted (boolean) and a weighted part by Bollig and Gastin [5].

Definition 16. We define the weighted logic MSO(K, (Σ,M)), short MSO(K),
as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

ϕ ::= β | k | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕

x ϕ |
⊕

X ϕ |
∏

x ϕ

where k ∈ K; x, y are first-order variables; and X is a second order variable.

We call β boolean and ϕ weighted formulas. Let w ∈ (Σ,M)+ and ϕ ∈ MSO(K).
Following classical approaches for logics , we denote with [w] = {1, ..., |w|} the
set of all positions of w. Let free(ϕ) be the set of all free variables in ϕ, and let V
be a finite set of variables containing free(ϕ). A (V , w)-assignment σ is a function
assigning to every first-order variable of V an element of [w] and to every second
order variable a subset of [w]. We define σ[x→ i] as the (V ∪{x}, w)-assignment
mapping x to i and equaling σ everywhere else. The assignment σ[X → I] is
defined analogously.

Consider the extended alphabet ΣV = Σ × {0, 1}V together with its natural
OPM MV defined such that for all (a, s), (b, t) ∈ ΣV and all ⊙ ∈ {⋖,

.
=,⋗}, we

have (a, s)⊙ (b, t) if and only if a⊙b. We represent the word w together with the
assignment σ as a word (w, σ) over (ΣV ,MV) such that 1 denotes every position
where x resp. X holds. A word over ΣV is called valid, if every first-order variable
is assigned to exactly one position. Being valid is a regular property which can
be checked by an OPA.

We define the semantics of ϕ ∈ MSO(K) as a function JϕKV : (ΣV ,M)+ → K
inductively for all valid (w, σ) ∈ (ΣV ,M)+, as seen in Fig. 8. For not valid (w, σ),
we set JϕKV (w, σ) = 0. We write JϕK for JϕKfree(ϕ).

JβKV(w, σ) =

{

1 , if (w, σ) |= β

0 , otherwise
JkKV(w, σ) = k for all k ∈ K

Jϕ⊕ ψKV(w, σ) = JϕKV(w, σ) + JψKV(w, σ)
Jϕ⊗ ψKV(w, σ) = JϕKV(w, σ)⊙ JψKV(w, σ)
J
⊕

x
ϕKV(w, σ) =

∑

i∈|w|

JϕKV∪{x}(w, σ[x→ i])

J
⊕

X
ϕKV(w, σ) =

∑

I⊆|w|

JϕKV∪{X}(w, σ[X → I])

J
∏

x
ϕKV(w, σ) =

∏

i∈|w|

JϕKV∪{x}(w, σ[x→ i])

Fig. 8. Semantics

We write JϕK for JϕKfree(ϕ), so JϕK : (Σfree(ϕ),M)+ → K. If ϕ contains no
free variables, ϕ is a sentence and JϕK : (Σ,M)+ → K.

Weighted Operator Precedence Languages 19

Example 17. Let us go back to the automaton Apolicy depicted in Figure 4. The
following boolean formula β defines three subsets of string positions, X0, X1, X2,
representing, respectively, the string portions where unmatched calls are not
penalized, namely X0, X2, and the portion where they are, namely X1.

β = x ∈ X0 ↔ ∃y∃z(y > x ∧ z > x ∧ Lab$(y) ∧ Lab$(z))

∧ x ∈ X1 ↔ ∃y∃z

(

y ≤ x ≤ z ∧ Lab$(y) ∧ Lab$(z)
∧(x 6= y ∧ x 6= z → ¬Lab$(x))

)

∧ x ∈ X2 ↔ ∃y∃z(y < x ∧ z < x ∧ Lab$(y) ∧ Lab$(z)) .

Weight assignment is formalized by

ϕ0,2 = ¬((x ∈ X0 ∨ x ∈ X2) ∧ (Labcall(x) ∨ Labret(x) ∨ Labint(x))) ⊕ 0 ,

which assigns weight 0 to calls, returns, and ints outside portion X1; and

ϕ1 = (¬(x ∈ X1 ∧ Labcall(x)) ⊕ 1)

⊗ (¬(x ∈ X1 ∧ Labret(x)) ⊕−1)

⊗ (¬(x ∈ X1 ∧ Labint(x))⊕ 0)

⊗ (¬Lab$(x) ⊕ 0) ,

which assigns weights 1,−1, 0 to calls, returns, and ints, respectively, within
portion X1.

Then, the formula ψ =
∏

x(β ⊗ ϕ0,2 ⊗ ϕ1) defines the weight assigned by
Apolicy to an input string through a single nondeterministic run and finally χ =
⊕

X0

⊕

X1

⊕

X2
ψ defines the global weight of every string in an equivalent way

as the one defined by Apolicy.

Lemma 18. Let ϕ ∈ MSO(K) and let V be a finite set of variables with free(ϕ) ⊆
V. Then, JϕKV (w, σ) = JϕK(w, σ↾free(ϕ)) for each valid (w, σ) ∈ (ΣV ,M)+. Fur-
thermore, JϕK is regular (resp. strictly regular) iff JϕKV is regular (resp. strictly
regular).

Proof. This is shown by means of Proposition 13 analogously to Proposition 3.3
of [12]. ⊓⊔

As shown by [12] in the case of words, the full weighted logic is strictly
more powerful than weighted automata. A similar example also applies here.
Therefore, in the following, we restrict our logic in an appropriate way. The main
idea for this is to allow only functions with finitely many different values (step
functions) after a product quantification. Furthermore, in the non-commutative
case, we either also restrict the application of ⊗ to step functions or we enforce
all occurring weights (constants) of ϕ⊗ θ to commute.

Definition 19. The set of almost boolean formulas is the smallest set of all
formulas of MSO(K) containing all constants k ∈ K and all boolean formulas
which is closed under ⊕ and ⊗.

20 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

The following propositions show that almost boolean formulas are describing
precisely a certain form of rwOPA’s behaviors, which we call OPL step functions.
We adapt ideas from [16].

Definition 20. For k ∈ K and a language L ⊆ (Σ,M)+, we define 1L :
(Σ,M)+ → K, the characteristic series of L, i.e. 1L(w) = 1 if w ∈ L, and
k1L(w) = 0 otherwise. We denote by k1L : (Σ,M)+ → K the characteristic
series of L multiplied by k, i.e. k1L(w) = k if w ∈ L, and k1L(w) = 0 otherwise.

A series S is called an OPL step function, if it has a representation

S =

n
∑

i=1

ki1Li
,

where Li are OPL forming a partition of (Σ,M)+ and ki ∈ K for each i ∈
{1, ..., n}; so JϕK(w) = ki iff w ∈ Li, for each i ∈ {1, ..., n}.

Lemma 21. The set of all OPL step functions is closed under + and ⊙.

Proof. Let S =
∑k

i=1 ki1Li
and S′ =

∑ℓ
j=1 k

′
j1L′

j
be OPL step functions. Then

the following holds

S + S′ =

k
∑

i=1

ℓ
∑

j=1

(di + d′j)1Li∩L′

j
,

S ⊙ S′ =
k

∑

i=1

ℓ
∑

j=1

(di · d
′
j)1Li∩L′

j
.

Since (Li ∩ L′
j) are also OPL and form a partition of (Σ,M)+, it follows that

S + S′ and S ⊙ S′ are also OPL step functions. ⊓⊔

Proposition 22. (a) For every almost boolean formula ϕ, JϕK is an OPL step
function.

(b) If S is an OPL step function, then there exists an almost boolean formula ϕ
such that S = JϕK.

Proof. (a) We show the first statement by structural induction on ϕ. If ϕ is
boolean, then JϕK = 1L(ϕ), were L(ϕ) and L(¬ϕ) are OPL due to Theorem 3.
Therefore, JϕK = 1K1L(ϕ) + 0K1L(¬ϕ) is an OPL step function. If ϕ = k, k ∈ K,
then JkK = k1(Σ,M)+ is an OPL step function. Let V = free(ϕ1) ∪ free(ϕ2). By
lifting Lemma 18 to OPL step functions as in [17] and by Lemma 21, we see that
Jϕ1 ⊕ ϕ2K = Jϕ1KV + Jϕ2KV and Jϕ1 ⊗ ϕ2K = Jϕ1KV ⊙ Jϕ2KV are also OPL step
functions.

(b) Given an OPL step function JϕK =
∑n

i=1 ki1Li
, we use Theorem 3 to

get ϕi with JϕiK = 1Li
. Then, the second statement follows from setting ϕ =

∨n
i (ki ∧ ϕi) and the fact that the OPL (Li)1≤i≤n form a partition of (Σ,M)+.

⊓⊔

Proposition 23. Let S be an OPL step function. Then S is strictly regular.

Weighted Operator Precedence Languages 21

Proof. Let n ∈ N, (Li)1≤i≤n be OPL forming a partition of (Σ,M)+ and ki ∈ K

for each i ∈ {1, ..., n} such that

S =
n
∑

i=1

ki1Li
.

Its easy to construct a 2 state rwOPA recognizing the constant series JkiK which
assigns the weight ki to every word. Hence, ki1Li

= JkiK ∩ Li is strictly regular
by Proposition 12. Therefore, by Proposition 11, S is strictly regular. ⊓⊔

Definition 24. Let ϕ ∈ MSO(K). We denote by const(ϕ) all weights of K

occurring in ϕ and we call ϕ ⊗-restricted if for all subformulas ψ⊗ θ of ϕ either
ψ is almost boolean or const(ψ) and const(θ) commute elementwise. We call ϕ
∏

-restricted if for all subformulas
∏

x ψ of ϕ, ψ is almost boolean. We call ϕ
restricted if it is both ⊗- and

∏

-restricted.

In Example 17, the formula β is boolean, the formulas φ are almost boolean, and
ψ and χ are restricted. Notice that ψ and χ would be restricted even if K were
not commutative.

For use in Section 6, we note:

Proposition 25. Let S : (Σ,M)+ → K be a regular (resp. strictly regular)
series and k ∈ K. Then JkK ⊙ S is regular (resp. strictly regular).

Proof. Let A = (Q, I, F, δ,wt) be an (r)wOPA such that JAK = S. Then we
construct an rwOPA B = (Q′, I ′, F, δ′,wt′) as follows.

We set Q ∪ I ′ and I ′ = {q′I | qI ∈ I}. The new transition relations δ′ and
weight functions wt′ consists of all transitions of A with their respective weights
and the following additional transitions: For every push transition (qI , a, q) of
δpush, we add a push transition (q′I , a, q) to δ′push with wt′push(q

′
I , a, q) = k ·

wtpush(qI , a, q).
Note that every run of an (w)OPA has to start with a push transition. There-

fore, the two automata have the same respective runs, but B is exactly once in
a state q′I ∈ I. This together with the weight assignment ensures that B uses
the same weights as A except at the very first transition of every run which is
multiplied by k from the left. In particular, we do not change the weight of any
pop transition. It follows that JBK = JkK⊙S. Also, if A is restricted, so is B. ⊓⊔

6 Characterization of Regular Series

Lemma 26 (Closure under weighted disjunction). Let ϕ and ψ be two
formulas of MSO(K) such that JϕK and JψK are regular (resp. strictly regular).
Then, Jϕ⊕ ψK is regular (resp. strictly regular).

Proof. We put V = free(ϕ) ∪ free(ψ). Then, Jϕ ⊕ ψK = JϕKV + JψKV is regular
(resp. strictly regular) by Lemma 18 and Proposition 11. ⊓⊔

22 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Proposition 27 (Closure under restricted weighted conjunction). Let
ψ⊗ θ be a subformula of a ⊗-restricted formula ϕ of MSO(K) such that JψK and
JθK are regular (resp. strictly regular). Then, Jψ ⊗ θK is regular (resp. strictly
regular).

Proof. Since ϕ is ⊗-restricted, either ψ is almost boolean or the constants of
both formulas commute.

Case 1: Let us assume ψ is almost boolean. Then, we can write JψK as OPL
step function, i.e., JψK =

∑n
i=1 ki1Li

, where Li are OPL. So, the series Jψ ⊗ θK
equals a sum of series of the form (Jki⊗θK∩Li). Then, by Proposition 25, Jki⊗θK
is a regular (resp. strictly regular) series. Therefore, (Jki ⊗ θK ∩ Li) is regular
(resp. strictly regular) by Proposition 12. Hence, Jψ ⊗ θK is (strictly) regular by
Proposition 11.

Case 2: Let us assume that the constants of ψ and θ commute. Then, the
second part of Proposition 12 yields the claim. ⊓⊔

Lemma 28 (Closure under
∑

x,
∑

X). Let ϕ be a formula of MSO(K) such
that JϕK is regular (resp. strictly regular). Then, J

∑

x ϕK and J
∑

X ϕK are regular
(resp. strictly regular).

Proof (Compare [12]). Let X ∈ {x,X} and V = free(
∑

X ϕ). We define π :
(ΣV∪{X},M)+ → (ΣV ,M)+ by π(w, σ) = (w, σ↾V) for any (w, σ) ∈ (ΣV∪{X},M)+.
Then, for (w, γ) ∈ (ΣV ,M)+, the following holds

J
∑

XϕK(w, γ) =
∑

I⊆{1,...,|w|}

JϕKV∪{X}(w, γ[X → I])

=
∑

(w,σ)∈π−1(w,γ)

JϕKV∪{X}(w, σ)

= π(JϕKV∪{X})(w, γ) .

Analogously, we show that J
∑

x ϕK(w, γ) = π(JϕKV∪{x})(w, γ) for all (w, γ) ∈
(ΣV ,M)+. By Lemma 18, JϕKV∪{X} is regular because free(ϕ) ⊆ V ∪{X}. Then,
J
∑

X ϕK is regular by Proposition 13. ⊓⊔

Proposition 29 (Closure under restricted
∏

x). Let ϕ be an almost boolean
formula of MSO(K). Then, J

∏

x ϕK is strictly regular.

Proof. We use ideas of [12] and the extensions in [18] and [11] with the following
intuition.

In the first part, we write JϕK as OPL step function and encode the informa-
tion to which language (w, σ[x → i]) belongs in a specially extended language L̃.
Then we construct an MSO-formula for this language. Therefore, by Theorem
3, we get a deterministic OPA recognizing L̃. In the second part, we add the
weights ki to this automaton and return to our original alphabet.

More detailed, let ϕ ∈ MSO(K, (Σ,M)). We define V = free(
∏

x.ϕ) and
W = free(ϕ) ∪ {x}. We consider the extended alphabets ΣV and ΣW together
with their natural OPMs MV and MW . By Proposition 22 and lifting Lemma

Weighted Operator Precedence Languages 23

18 to OPL step functions, JϕK is an OPL step function. Let JϕK =
∑m

j=1 kj1Lj

where Lj is an OPL over (ΣW ,MW) for all j ∈ {1, ...,m} and (Lj) is a partition
of (ΣW ,MW)+. By the semantics of the product quantifier, we get

J
∏

xϕK(w, σ) =
∏

i∈[w]

(JϕKW (w, σ[x→ i]))

=
∏

i∈[w]

(kg(i)),

where g(i) =







1 , if (w, σ[x → i]) ∈ L1

...
m , if (w, σ[x → i]) ∈ Lm

, for all i ∈ [w] . (2)

Now, in the first part, we encode the information to which language (w, σ[x → i])
belongs in a specially extended language L̃ and construct an MSO-formula for
this language. We define the extended alphabet Σ̃ = Σ × {1, ..., n}, together
with its natural OPM M̃ which only refers to Σ, so:

(Σ̃V , M̃V)
+ = {(w, g, σ) | (w, σ) ∈ (ΣV ,MV) and g ∈ {1, ...,m}[w]} .

We define the languages L̃, L̃j, L̃
′
j ⊆ (Σ̃V , M̃V)

+ as follows:

L̃ =

{

(w, g, σ)

∣

∣

∣

∣

∣

(w, σ) ∈ (Σ̃V , M̃V)
+ is valid and

for all i ∈ [w], j ∈ {1, ...,m} : g(i) = j ⇒ (w, σ[x → i]) ∈ Lj

}

,

L̃j =

{

(w, g, σ)

∣

∣

∣

∣

∣

(w, σ) ∈ (Σ̃V , M̃V)
+ is valid and

for all i ∈ [w] : g(i) = j ⇒ (w, σ[x→ i]) ∈ Lj

}

,

L̃′
j = { (w, g, σ) | for all i ∈ [w] : g(i) = j ⇒ (w, σ[x → i]) ∈ Lj } .

Then, L̃ =
⋂m

j=1 L̃j . Hence, in order to show that L̃ is an OPL, it suffices to

show that each L̃j is an OPL. By a standard procedure, compare [12], we obtain

a formula ϕ̃j ∈ MSO(Σ̃V , M̃V) with L(ϕ̃j) = L̃′
j . Therefore, by Theorem 3, L̃′

j is

an OPL. It is straightforward to define an OPA accepting ÑV , the language of
all valid words. By closure under intersection, L̃j = L̃′

j ∩ ÑV is also an OPL and

so is L̃. Hence, there exists a deterministic OPA Ã = (Σ, q0, F, δ̃) recognizing L̃.
In the second part, we add weights to Ã as follows. We construct the wOPA

A = (Q, I, F, δ,wt) over (ΣV ,MV) and K by adding to every transition of Ã
with g(i) = j the weight kj .

That is, we keep the states, the initial state, and the accepting states, and
for δ = (δpush, δshift, δpop) and all q, q′, p ∈ Q and (a, j, s) ∈ Σ̃V , we define

δpush/shift(q, (a, s), q
′) =

{

kj , if (q, (a, j, s), q
′) ∈ δ̃push/shift

0 , otherwise
.

Since Ã is deterministic, for every (w, g, σ) ∈ L̃, there exists exactly one accepted
run r̃ of Ã. On the other hand, for every (w, g, σ) /∈ L̃, there is no accepted run

24 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

of Ã. Since (Lj) is a partition of (ΣW ,MW)+, for every (w, σ) ∈ (ΣV ,MV),

there exists exactly one g with (w, g, σ) ∈ L̃. Thus, every (w, σ) ∈ (ΣV ,MV) has
exactly one run r of A determined by the run r̃ of (w, g, σ) of Ã. We denote
with wtA(r, (w, σ), i) the weight used by the run r on (w, σ) over A at position
i, which is always the weight of the push or shift transition used at this position.
Then by definition of A and L̃, the following holds for all i ∈ [w]

g(i) = j ⇒ wtA(r, (w, σ), i) = kj ∧ (w, σ[x → i]) ∈ Lj .

By formula (2), we obtain

JϕKW (w, σ[x → i]) = kj = wtA(r, (w, σ), i) .

Hence, for the behavior of the automaton A the following holds

JAK(w, σ) =
∑

r′∈acc(A,w)

wt(r′)

=

|w|
∏

i=1

wtA(r, (w, σ), i)

=

|w|
∏

i=1

JϕKW (w, σ[x → i])

= J
∏

x ϕK(w, σ) .

Thus, A recognizes J
∏

x ϕK. ⊓⊔

The following proposition is a summary of the previous results.

Proposition 30. For every restricted MSO(K)-sentence ϕ, there exists an rwOPA
A with JAK = JϕK.

Proof. We use structural induction on ϕ. If ϕ is an almost boolean formula, then
by Proposition 22 JϕK is an OPL step function. By Proposition 23 every OPL
step function is strictly regular.

Closure under ⊕ is dealt with by Lemma 26, closure under ⊗ by Proposition
27. The sum quantifications

∑

x and
∑

X are dealt with by Lemma 28. Since
ϕ is restricted, we know that for every subformula

⊗

x ψ, the formula ψ is an
almost boolean formula. Therefore, we can apply Proposition 29 to maintain
recognizability of our formula in this case.

The next proposition shows that the converse also holds.

Proposition 31. For every rwOPA A, there exists a restrictedMSO(K)-sentence
ϕ with JAK = JϕK. If K is commutative, then for every wOPA A, there exists a
restricted MSO(K)-sentence ϕ with JAK = JϕK.

Weighted Operator Precedence Languages 25

Proof. The rationale adopted to build formula ϕ from A integrates the approach
followed in [12,18] with the one of [28] On the one hand we need second order
variables suitable to “carry” weights; on the other hand, unlike previous non-
OP cases which are managed through real-time automata, an OPA can perform
several transitions while remaining in the same position. Thus, we introduce the
following second order variables: Xpush

p,a,q represents the set of positions where A

performs a push move from state p, reading symbol a and reaching state q; Xshift
p,a,q

has the same meaning as Xpush
p,a,q for a shift operation; Xpop

p,q,r represents the set
of positions of the symbol that is on top of the stack when A performs a pop
transition from state p, with q on top of the stack, reaching r.

◦ X
pop
3,1,3

◦ X
pop
3,1,3

◦ X
pop
3,0,3

◦ X
pop
3,3,3

◦ X
pop
1,0,1 ◦ X

pop
1,0,1 ◦ X

pop
3,2,3 ◦ X

pop
3,2,3

X
push
0,n,1 X

push
1,+,0 X

push
0,n,1 X

push
1,×,0 X

push
0,(,2 X

push
2,n,3 X

push
3,+,2 X

push
2,n,3 Xshift

3,),3

n + n × (n + n)

0 1 2 3 4 5 6 7 8 9 10

Fig. 9. The string of Figure 1 with the second order variables evidenced for the au-
tomaton of Figure 2. The symbol ◦ marks the positions of the symbols that precede
the push corresponding to the bound pop transition.

Let V consist of all Xpush
p,a,q, X

shift
p,a,q, and Xpop

p,q,r such that a ∈ Σ, p, q, r ∈ Q
and (p, a, q) ∈ δpush resp. δshift, resp. (p, q, r) ∈ δpop. Since Σ and Q are finite,
there is an enumeration X̄ = (X1, .., Xm) of all variables of V . We denote by
X̄push, X̄shift, and X̄pop enumerations over only the respective set of second
order variables.

We use the following usual abbreviations for unweighted formulas of MSO:

(β ∧ ϕ) = ¬(¬β ∨ ¬ϕ),

(β → ϕ) = (¬β ∨ ϕ),

(β ↔ ϕ) = (β → ϕ) ∧ (ϕ→ β),

(∀x.ϕ) = ¬(∃x.¬ϕ),

(y = x) = (x ≤ y) ∧ (y ≤ x),

(y = x+ 1) = (x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z),

min(x) = ∀y.(x ≤ y),

max(x) = ∀y.(y ≤ x),

26 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Additionally, we use the shortcuts Tree(x, z, v, y), Nexti(x, y),Qi(x, y), and Treep,q(x, z, v, y),
originally defined in [28], reported and adapted here for convenience:

x ◦ y :=
∨

a,b∈Σ,Ma,b=◦

Laba(x) ∧ Labb(y), for ◦ ∈ {⋖,
.
=,⋗}

Tree(x, z, v, y) := xy y ∧





(x + 1 = z ∨ xy z) ∧ ¬∃t(z < t < y ∧ xy t)
∧

(v + 1 = y ∨ v y y) ∧ ¬∃t(x < t < v ∧ ty y)





In other words, Tree holds among the four positions (x, z, v, y) iff, at the time
when a pop transition is executed: x (resp. y) is the rightmost leaf at the left
(resp. the leftmost at the right) of the subtree whose scanning (and construction
if used as a parser) is completed by the OPA through the current transition;
z and y are the leftmost and rightmost terminal characters of the right hand
side of the grammar production that is reduced by the pop transition of the
OPA [28]. For instance, with reference to Figures 1 and 9, Tree(5, 7, 7, 9) and
Tree(4, 5, 9, 10) hold.

Succq(x, y) := (x + 1 = y) ∧
∨

p∈Q,a∈Σ

(x ∈ Xpush
p,a,q ∨ x ∈ Xshift

p,a,q ∨min(x))

I.e., y is the position adjacent to x, Laba(y) and, while reading a, the OPA
reaches state q, either through a push or through a shift move.

Nextr(x, y) := ∃z∃v.



Tree(x, z, v, y) ∧
∨

p,q∈Q

v ∈ Xpop
p,q,r





I.e., Nextr(x, y) holds when a pop move reduces a subtree enclosed between
positions x and y reaching state r.

Qi(x, y) := Succi(x, y) ∨Nexti(x, y)

Finally,

Treei,j(x, z, v, y) := Tree(x, z, v, y) ∧Qi(v, y) ∧Qj(x, z)

refines the predicate Tree by making explicit that i and j are, respectively, the
current state and the state on top of the stack when the pop move is executed.

We now define the unweighted formula ψ to characterize all accepted runs

ψ = Partition(X̄push, X̄shift) ∧ Unique(X̄pop) ∧ InitF inal

∧ Transpush ∧ Transshift ∧ Transpop .

Here, the subformula Partition will enforce the push and shift sets to be (to-
gether) a partition of all positions. InitF inal controls the initial and the ac-
ceptance condition and Transop the transitions of the run together with the

Weighted Operator Precedence Languages 27

labels.

Partition(X1, ..., Xn) = ∀x.
n
∨

i=1

[

(x ∈ Xi) ∧
∧

i6=j

¬(x ∈ Xj)
]

,

Unique(Xpop
1 , .., Xpop

n) = ∀x.
∧

i6=j

¬(x ∈ Xpop
i ∧ x ∈ Xpop

j) ,

InitF inal = ∃x∃y∃x′∃y′.
[

min(x) ∧max(y) ∧ x+ 1 = x′ ∧ y′ + 1 = y

∧
∨

i∈I, q∈Q
a∈Σ

x′ ∈ Xpush
i,a,q

∧
∨

f∈F, q∈Q
a∈Σ

(y′ ∈ Xpush
q,a,f ∨ y′ ∈ Xshift

q,a,f)

∧
∨

f∈F

(Nextf (x, y) ∧
∧

j 6=f

¬Nextj(x, y))
]

,

T ranspush = ∀x.
∧

p,q∈Q,a∈Σ

(

x ∈ Xpush
p,a,q →

[

Laba(x) ∧ ∃z.(z ⋖ x ∧Qp(z, x))
])

Transshift = ∀x.
∧

p,q∈Q,a∈Σ

(

x ∈ Xshift
p,a,q →

[

Laba(x) ∧ ∃z.(z
.
= x ∧Qp(z, x))

])

.

I.e., if x ∈ Xpush
p,a,q (resp. Xshift) the formula holds in a run where, reading charac-

ter a in position x, the automaton performs a push (resp. a shift) reaching state
q from p; this may occur when z ⋖ x (resp., z

.
= x) is immediately adjacent to

x or after a subtree between positions z and x has been built. Notice that the
converse too of the above implications holds, due to the fact that the whole set
of string positions is partitioned into the two disjoint sets Xpush, Xshift.

Transpop = ∀v.
∧

p,q∈Q

([

∨

r∈Q

v ∈ Xpop
p,q,r

]

↔
[

∃x∃y∃z.(Treep,q(x, z, v, y))
])

Thus, with arguments similar to [28] it can be shown that the sentences
satisfying ψ are exactly those recognized by the unweighted OPA subjacent to
A.

For an unweighted formula β and two weights k1 and k2, we define the fol-
lowing shortcut for an almost boolean weighted formula:

IFβ THEN k1 ELSEk2 = (β ⊗ k1)⊕ (¬β ⊗ k2) .

Now, we add weights to ψ by defining the following restricted weighted formula

θ = ψ ⊗
∏

x ⊗
p,q∈Q

(

⊗
a∈Σ

(IFx ∈ Xpush
p,a,q THENwtpush(p, a, q) ELSE1)

⊗ ⊗
a∈Σ

(IFx ∈ Xshift
p,a,q THENwtshift(p, a, q) ELSE1)

⊗ ⊗
r∈Q

(IFx ∈ Xpop
p,q,r THENwtpop(p, q, r) ELSE 1)

)

.

28 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Here, the second part of θ multiplies up all weights of the encountered transitions.
This is the crucial part where we either need that K is commutative or all pop
weights are trivial because the product quantifier of θ assigns the pop weight
at a different position than the occurrence of the respective pop transition in
the automaton. Using only one product quantifier (weighted universal quantifier)
this is unavoidable, since the number of pops at a given position is only bounded
by the word length.

Since the subformulas x ∈ X
()
() ⊗ wt(...) of θ are almost boolean, the sub-

formula
∏

x(...) of θ is
∏

-restricted. Furthermore, ψ is boolean and so θ is
⊗-restricted. Thus, θ is a restricted formula.

Finally, we define

ϕ =
⊕

X1

⊕

X2
...
⊕

Xm
θ .

This implies JϕK(w) = JAK(w), for all w ∈ (Σ,M)+. Therefore, ϕ is our required
sentence with JAK = JϕK. ⊓⊔

The following theorem summarizes the main results of this section.

Theorem 32. Let K be a semiring and S : (Σ,M)+ → K a series.

1. The following are equivalent:

(i) S = JAK for some restricted wOPA.
(ii) S = JϕK for some restricted sentence ϕ of MSO(K).

2. Let K be commutative. Then, the following are equivalent:

(i) S = JAK for some wOPA.
(ii) S = JϕK for some restricted sentence ϕ of MSO(K).

Theorem 32 documents a further step in the path of generalizing a series of re-
sults beyond the barrier of regular and structured –or visible– CFLs. Up to a few
years ago, major properties of regular languages, such as closure w.r.t. all main
language operations, decidability results, logic characterization, and, in this case,
weighted language versions, could be extended to several classes of structured
CFLs, among which the VPL one certainly obtained much attention. OPLs fur-
ther generalize the above results not only in terms of strict inclusion, but mainly
because they are not visible, in the sense explained in the introduction, nor are
they necessarily real-time: this allows them to cover important applications that
could not be adequately modeled through more restricted classes.

Theorem 32 also shows that the typical logical characterization of weighted
languages does not generalize in the same way to the whole class wOPL: for
non-rwOPL we need the extra hypothesis that K be commutative. This is due
to the fact that pop transitions are applied in the reverse order than that of
positions to which they refer (position v in formula Transpop). Notice, however,
that rwOPL do not forbid unbounded pop sequences; thus, they too include
languages that are neither real-time nor visible. This remark naturally raises
new intriguing questions which we will briefly address in the conclusion.

Weighted Operator Precedence Languages 29

7 Conclusion

We introduced and investigated weighted operator precedence automata and a
corresponding weighted MSO logic. In our main results we show, for any semiring,
that wOPA without pop weights and a restricted weighted MSO logic have the
same expressive power; furthermore, these behaviors can also be described as
homomorphic images of the behaviors of particularly simple wOPA reduced to
arbitrary unweighted OPA. If the semiring is commutative, these results apply
also to wOPA with arbitrary pop weights.

This raises the problems to find, for arbitrary semirings and for wOPA with
pop weights, both an expressively equivalent weighted MSO logic and a Nivat-
type result. In [19], very similar problems arose for weighted automata on un-
ranked trees and weighted MSO logic. In [13], the authors showed that with an-
other definition of the behavior of weighted unranked tree automata, an equiv-
alence result for the restricted weighted MSO logic could be derived. Is there
another definition of the behavior of wOPA (with pop weights) making them
expressively equivalent to our restricted weighted MSO logic?

In [28], operator precedence languages of infinite words were investigated and
shown to be practically important. Therefore, the problem arises to develop a
theory of wOPA on infinite words. In order to define their infinitary quantitative
behaviors, one could try to use valuation monoids as in [16].

Finally, a new investigation field can be opened by exploiting the natural
suitability of OPL towards parallel elaboration [3]. Computing weights, in fact,
can be seen as a special case of semantic elaboration which can be performed
hand-in-hand with parsing. In this case too, we can expect different challenges
depending on whether the weight semiring is commutative or not and/or weights
are attached to pop transitions too, which would be the natural way to follow
the traditional semantic evaluation through synthesized attributes [25].

References

1. Alur, R., Fisman, D.: Colored nested words. In: Dediu, A.H., Janousek, J., Mart́ın-
Vide, C., Truthe, B. (eds.) Language and Automata Theory and Applications,
LATA 2016. LNCS, vol. 9618, pp. 143–155. Springer (2016)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16:1–
16:43 (2009)

3. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Panella, F., Pradella, M.: Parallel
parsing made practical. Sci. Comput. Program. 112(3), 195–226 (2015)

4. Berstel, J., Reutenauer, C.: Rational Series and Their Languages, EATCS Mono-
graphs in Theoretical Computer Science, vol. 12. Springer (1988)

5. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka,
D. (eds.) Developments in Language Theory, DLT 2009. LNCS, vol. 5583, pp. 18–
38. Springer (2009)

6. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Proceedings of the Symposium on Fundamentals of Computation Theory.
LNCS, vol. 158, pp. 40–51. Springer (1983)

30 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

8. Choffrut, C., Malcher, A., Mereghetti, C., Palano, B.: First-order logics: some
characterizations and closure properties. Acta Inf. 49(4), 225–248 (2012)

9. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci. 78(6), 1837–1867 (2012)

10. Crespi-Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator
precedence languages. Information and Control 37(2), 115–133 (1978)

11. Droste, M., Dück, S.: Weighted automata and logics for infinite nested words. Inf.
Comput. (2016), http://dx.doi.org/10.1016/j.ic.2016.06.010

12. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69–86 (2007), extended abstract in ICALP 2005

13. Droste, M., Heusel, D., Vogler, H.: Weighted unranked tree automata over tree
valuation monoids and their characterization by weighted logics. In: Maletti, A.
(ed.) Conference Algebraic Informatics CAI 2015. LNCS, vol. 9270, pp. 90–102.
Springer (2015)

14. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science, Springer (2009)

15. Droste, M., Kuske, D.: Weighted automata. In: Pin, J.E. (ed.) Handbook: “Au-
tomata: from Mathematics to Applications”. Europ. Mathematical Soc. (to ap-
pear)

16. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 44–59 (2012)

17. Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata
and weighted relative distance logic. In: International Colloquium on Automata,
Languages, and Programming, ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182.
Springer (2014)

18. Droste, M., Pibaljommee, B.: Weighted nested word automata and logics over
strong bimonoids. Int. J. Found. Comput. Sci. 25(5), 641–666 (2014)

19. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Com-
put. Sci. 366(3), 228–247 (2006)

20. Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theor. Comput. Sci. 418, 14–36 (2012)

21. Eilenberg, S.: Automata, Languages, and Machines, Pure and Applied Mathemat-
ics, vol. 59-A. Academic Press (1974)

22. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–52 (1961)

23. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B, pp. 995–1072. MIT Press (1990)

24. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333
(1963)

25. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2), 127–145 (1968)

26. Kuich, W., Salomaa, A.: Semirings, Automata, Languages, EATCS Monographs
in Theoretical Computer Science, vol. 6. Springer (1986)

27. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In:
Pacholski, L., Tiuryn, J. (eds.) Computer Science Logic, Selected Papers. LNCS,
vol. 933, pp. 205–216. Springer (1994)

28. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence languages:
Their automata-theoretic and logic characterization. SIAM J. Comput. 44(4), 1026–
1088 (2015)

http://dx.doi.org/10.1016/j.ic.2016.06.010

Weighted Operator Precedence Languages 31

29. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science 6(1) (2010), selected papers of ICALP 2008

30. McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967)
31. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, USA

(1971)
32. Mehlhorn, K.: Pebbling mountain ranges and its application of DCFL-recognition.

In: Automata, Languages and Programming, ICALP 1980. LNCS, vol. 85, pp. 422–
435 (1980)

33. Nivat, M.: Transductions des langages de Chomsky. Ann. de l’Inst. Fourier 18,
339–455 (1968)

34. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science, Springer (1978)

35. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2-
3), 245–270 (1961)

36. Thatcher, J.: Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory. Journ. of Comp. and Syst.Sc. 1, 317–322
(1967)

37. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSR 140, 326–329 (1961)

	Weighted Automata and Logics for Operator Precedence Languages

