
Context-free timed formalisms: Robust automata and linear
temporal logics ✩

Laura Bozzelli, Aniello Murano, Adriano Peron ∗

Department of Elect. Engineering and Information Technologies, University of Napoli “Federico II”, Italy

a b s t r a c t

Keywords:
Timed automata
Temporal logic
Metric temporal logic
Model checking

The paper focuses on automata and linear temporal logics for real-time pushdown reactive
systems bridging tractable formalisms specialized for expressing separately dense-time
real-time properties and context-free properties though preserving tractability. As for
automata, we introduce Event-Clock Nested Automata (ECNA), a formalism that combines
Event Clock Automata (ECA) and Visibly Pushdown Automata (VPA). ECNA enjoy the same
closure and decidability properties of ECA and VPA expressively extending any previous
attempt of combining ECA and VPA. As for temporal logics, we introduce two formalisms
for specifying quantitative timing context-free requirements: Event-Clock Nested Temporal
Logic (EC_NTL) and Nested Metric Temporal Logic (NMTL). EC_NTL is an extension of both
the logic CaRet and Event-Clock Temporal Logic having Exptime-complete satisfiability of
EC_NTL and visibly model-checking of Visibly Pushdown Timed Systems (VPTS) against
EC_NTL. NMTL is a context-free extension of standard Metric Temporal Logic (MTL) which
is in general undecidable having, though, a fragment expressively equivalent to EC_NTL
with Exptime-complete satisfiability and visibly model-checking of VPTS problems.

1. Introduction

Model checking is a well-established formal-method technique to automatically check for global correctness of reactive
systems [10,24,32]: the (potentially infinite) dynamic behavior of a system is described by a mathematical model and
checked against a behavioral constraint expressed by a suitable specification. In this setting, both automata theory over
infinite words and temporal logics provide fundamental (related) frameworks for the description of the dynamic behavior
of reactive systems. The focus of this paper is on the challenge of bridging formalisms specialized for expressing separately
dense-time real-time properties and context-free properties though ensuring decidability and tractability in the combined
setting.

In this framework, one should be able to specify real-time non-regular properties relevant for recursive real-time systems.
As an example, properties like:

• Local bounded-time responses such as “in the local computation of a procedure A, every request p is followed by a
response q within k time units”.

✩ The work by Adriano Peron and Aniello Murano has been supported by the GNCS project Formal methods for verification and synthesis of discrete and hybrid
systems.

* Corresponding author.
E-mail addresses: lr.bozzelli@gmail.com (L. Bozzelli), aniello.murano@unina.it (A. Murano), adrperon@unina.it (A. Peron).
1

https://doi.org/10.1016/j.ic.2020.104673
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2020.104673&domain=pdf
mailto:lr.bozzelli@gmail.com
mailto:aniello.murano@unina.it
mailto:adrperon@unina.it
https://doi.org/10.1016/j.ic.2020.104673

• Bounded-time total correctness requirements such as “if the pre-condition p holds when the procedure A is invoked,
then the procedure must return within k time units and q must hold upon return”.

• Real-time security properties which require the inspection of the call-stack such as “a module A should be invoked only
if module B belongs to the call stack and within k time units since the activation of module B”.

In this paper we shall study the problem first in the context of automata theory and, then, we exploit the obtained
results to investigate the problem in the related context of linear temporal logics.
The automata view. Automata theory over infinite words plays a crucial role in model checking: the set of possible (poten-
tially infinite) behaviors of the system and the set of admissible behaviors of the correctness specification can be modeled
as languages accepted by automata. The verification problem of checking that a system meets its specification then reduces
to testing language inclusion between two automata over infinite words.

In the last two decades, the analysis of infinite-state sequential systems through the model checking of pushdown au-
tomata (PDA) has received serious attention (e.g. see [28,36,17,18]). PDA represent an infinite-state formalism suitable to
model the control flow of typical sequential programs with nested and recursive procedure calls. Although the general prob-
lem of checking context-free properties of PDA is undecidable [28], algorithmic solutions have been proposed for interesting
subclasses of context-free requirements [3,7,8,23]. A well-known approach is that of Visibly Pushdown Automata (VPA) [7,8],
a subclass of PDA where the input symbols over a visibly pushdown alphabet control the admissible operations on the stack.
Precisely, the alphabet is partitioned into a set of calls, representing a procedure call and forcing a push stack-operation, a
set of returns, representing a procedure return and forcing a pop stack-operation, and a set of internal actions that cannot
access or modify the content of the stack. A call and the matching return (if any) along a given word denotes the exit
from this procedure (i.e., a pop stack-operation). VPA push onto the stack only when a call is read, pop the stack only at
returns, and do not use the stack on reading internal symbols. This restriction makes the class of resulting languages (Visibly
Pushdown Languages or VPL) very similar in tractability and robustness to that of regular languages [7,8]. In particular, VPL
are closed under Boolean operations, and language inclusion is Exptime-complete. VPA capture all regular properties, and,
additionally, can specify regular requirements over two kinds of non-regular patterns on input words: abstract paths and
caller paths. An abstract path captures the local computation within a procedure with the removal of subcomputations cor-
responding to nested procedure calls, while a caller path represents the call-stack content at a given position of the input.
The benefits of exploiting a visibly pushdown alphabet has been investigated also for multistack automata (e.g. [21,22]).

Recently, many works [1,11,12,16,25,26,35] have investigated real-time extensions of PDA by combining PDA with Timed
Automata (TA) [2], a model widely used to represent real-time systems. TA are finite automata augmented with a finite set
of real-valued clocks, which operate over words where each symbol is paired with a real-valued timestamp (timed words).
The clocks record the elapsed time among events, and while transitions are instantaneous, time can elapse in a control state.
All clocks progress at same speed and can be reset by transitions (thus, each clock keeps track of the elapsed time since
the last reset). Constraints on clocks are associated with transitions to restrict the behavior of the automaton. The empti-
ness problem for TA is decidable and Pspace complete [2]. However, since in TA, clocks can be reset non-deterministically
and independently of each other, the resulting class of timed languages is not closed under complement and, in particular,
language inclusion is undecidable [2]. As a consequence, the general verification problem (i.e., language inclusion) of for-
malisms combining unrestricted TA with robust subclasses of PDA such as VPA, i.e. Visibly Pushdown Timed Automata (VPTA),
is undecidable as well: checking language inclusion for VPTA is undecidable even in the restricted case of specifications
using at most one clock [26].

Event-clock automata (ECA) [5] are an interesting subclass of TA where the explicit reset of clocks is disallowed. In ECA,
clocks have a predefined association with the input alphabet symbols. Precisely, for each symbol a, there are two clocks:
the global recorder clock, recording the time elapsed since the last occurrence of a, and the global predictor clock, measuring
the time required for the next occurrence of a. Hence, the clock valuations are determined only by the input timed word
being independent of the automaton behavior. Such a restriction makes the resulting class of timed languages closed un-
der Boolean operations, and in particular, language inclusion is Pspace-complete [5]. Note that common real-time regular
requirements like bounded-response time can be naturally modeled by ECA. A robust subclass of VPTA, called Event-Clock
Visibly Pushdown Automata (ECVPA), has been proposed in [34], combining ECA with VPA. ECVPA are closed under Boolean
operations, and language inclusion is Exptime-complete. However, ECVPA do not take into account the nested hierarchical
structure induced by a timed word over a pushdown alphabet, namely, they do not provide any explicit mechanism to relate
the use of a stack with event clocks.

The idea of clocks used to measure procedures calls and returns is somehow related also to interrupt Timed Au-
tomata [14] (although the formalisms seems not to be immediately comparable). Moreover, non-regular (context-sensitive)
timed languages can be accepted also by parametric TA with only 2 clocks (only one of which is compared to a parame-
ter [9]) a formalism that enjoys some decidability results [13].

In this paper, we introduce an extension of ECVPA, called Event-Clock Nested Automata (ECNA) that, differently from
ECVPA, allows us to relate the use of event clocks and the use of the stack. To this end, we add for each input symbol
a, three additional event clocks: the abstract recorder clock (resp., abstract predictor clock), measuring the time elapsed since
the last occurrence (resp., the time for the next occurrence) of a along the maximal abstract path visiting the current
position; the caller clock, measuring the time elapsed since the last occurrence of a along the caller path from the current
position. In this way, ECNA allow us to specify the relevant real-time non-regular properties listed above. In general, we
2

show that ECNA are strictly more expressive than ECVPA and, as for ECVPA, the resulting class of languages is closed under
all Boolean operations. Moreover, language inclusion and visibly model-checking of VPTA against ECNA specifications are
decidable and Exptime-complete.
The temporal logic counterpart. Temporal logics provide a fundamental framework for the description of the dynamic
behavior of reactive systems. In this paper, we introduce two real-time linear temporal logics, called Event-Clock Nested Tem-
poral Logic (EC_NTL) and Nested Metric Temporal Logic (NMTL) for specifying quantitative timing context-free requirements in
a pointwise semantics setting (models of formulas are timed words).

The proposed logic EC_NTL is an extension of both EC_TL and CaRet by means of non-regular versions of the timed
modalities of EC_TL, which allows one to refer to abstract and caller paths. Event-Clock Temporal Logic (EC_TL) [33] is a
tractable real-time logical framework related to ECA. EC_TL extends LTL + past with timed temporal modalities, which
specify time constraints on the distances from the previous/next timestamp where a given subformula holds. Instead, CaRet
[3] is a context-free extension of LTL having VPA as automata-theoretic generalization. CaRet formulas are interpreted on
words over a visibly pushdown alphabet (as for VPA). CaRet allows the specification of LTL requirements over the non-regular
patterns induced by the visibly pushdown alphabet: abstract paths and caller paths.

In this paper we address expressiveness and complexity issues for the logic EC_NTL showing that satisfiability of EC_NTL
and visibly model-checking of VPTA against EC_NTL are decidable and Exptime-complete. The key step in the proposed de-
cision procedures is a translation of EC_NTL into ECNA accepting suitable encodings of the models of the given formula. The
second logic we introduce, called NMTL, is a context-free extension of standard Metric Temporal Logic (MTL). This extension
is obtained by adding to MTL timed versions of the caller and abstract temporal modalities of CaRet. In the considered
pointwise-semantics settings, it is well known that satisfiability of future MTL is undecidable when it is interpreted over
infinite timed words [30], but it is decidable over finite timed words [31]. We show that adding the future abstract timed
modalities to future MTL makes the satisfiability problem undecidable also over finite timed words. On the other hand, we
show that the fragment NMITL(0,∞) of NMTL (the NMTL counterpart of the well-known tractable fragment MITL(0,∞) [4] of
MTL) has the same expressiveness as the logic EC_NTL and the related satisfiability and visibly model-checking problems
are, consequently, Exptime-complete.

The paper is structured as follows. In Section 2 we introduce some preliminary notation. In Section 3 we introduce ECNA
proving their closure properties under Boolean operations and their expressiveness properties. In Section 4 we present
the decidability and complexity results (Exptime-completeness) of the decision problems (satisfiability and visibly model
checking) for ECNA. In Section 5 we introduce the logic EC_NTL and we prove that its satisfiability and visibly model
checking are Exptime-complete. In Section 6 we introduce the logic NMTL and we prove that future NMTL over finite timed
words is undecidable and that the fragment NMITL(0,∞) of NMTL has the same expressiveness as EC_NTL.

The paper combines and extends with complete proofs the content of the conference papers [20] and [19].

2. Preliminaries

In the following, N denotes the set of natural numbers and R+ the set of non-negative real numbers. Let w be a finite
or infinite word over some alphabet. By |w| we denote the length of w (we set |w| = ∞ if w is infinite). For all i, j ∈ N ,
with i ≤ j, wi is i-th letter of w , while w[i, j] is the finite subword wi · · · w j .

An infinite timed word w over a finite alphabet � is an infinite word w = (a0, τ0)(a1, τ1), . . . over � × R+ (intuitively,
τi is the time at which ai occurs) such that the sequence τ = τ0, τ1, . . . of timestamps satisfies: (1) τi ≤ τi+1 for all i ≥ 0
(monotonicity), and (2) for all t ∈R+ there is some i ≥ 0, such that τi ≥ t (divergence). The timed word w is also denoted
by the pair (σ , τ), where σ is the untimed word a0a1 . . . and τ is the sequence of timestamps. An ω-timed language over
� is a set of infinite timed words over �.

Pushdown alphabets, abstract paths, and caller paths A pushdown alphabet is a finite alphabet � = �call ∪ �ret ∪ �int which is
partitioned into a set �call of calls, a set �ret of returns, and a set �int of internal actions. The pushdown alphabet � induces a
nested hierarchical structure in a given word over � obtained by associating to each call the corresponding matching return
(if any) in a well-nested manner. Formally, the set of well-matched words is the set of finite words σw over � inductively
defined by the following grammar:

σw := ε
∣∣ a · σw

∣∣ c · σw · r · σw

where ε is the empty word, a ∈ �int , c ∈ �call , and r ∈ �ret .
Let us fix an infinite word σ over �. For a call position i ≥ 0, if there is j > i such that j is a return position of σ and

σ [i + 1, j − 1] is a well-matched word (note that j is uniquely determined if it exists), we say that j is the matching return
of i along σ . For a position i ≥ 0, the abstract successor of i along σ , denoted succ(a, σ , i), is defined as follows:

• If i is a call, then succ(a, σ , i) is the matching return of i, if such a matching return exists; otherwise, succ(a, σ , i) = �
(� denotes the undefined value).

• If i is not a call, then succ(a, σ , i) = i + 1 if i + 1 is not a return position, and succ(a, σ , i) = �, otherwise.

The caller of i along σ , denoted succ(c, σ , i), is instead defined as follows:
3

σp =
0
c

1
c

2
l

3
c

4
l

5
r

6
r

7
c

8
l

9
r

10
l

Fig. 1. An untimed word over a pushdown alphabet.

• if there exists the greatest call position jc < i such that either succ(a, σ , jc) = � or succ(a, σ , jc) > i, then succ(c, σ , i) =
jc ; otherwise, succ(c, σ , i) = �.

In the analysis of recursive programs, a maximal abstract path captures the local computation within a procedure removing
computation fragments corresponding to nested calls, while the caller path represents the call-stack content at a given
position of the input. Formally, a maximal abstract path (MAP) of σ is a maximal (finite or infinite) increasing sequence of
natural numbers ν = i0 < i1 < . . . such that i j = succ(a, σ , i j−1) for all 1 ≤ j < |ν|. Note that for every position i of σ , there
is exactly one MAP of σ visiting position i. For each i ≥ 0, the caller path of σ from position i is the maximal (finite) decreasing
sequence of natural numbers j0 > j1 . . . > jn such that j0 = i and jh+1 = succ(c, σ , jh) for all 0 ≤ h < n. The abstract path
ν is maximal (both in the past and in the future) if there is no abstract path of σ having ν as a proper subsequence. Note
that the positions of a MAP have the same caller (if any). Let w = (σ , τ) be an infinite timed word over � and i ≥ 0. We
denote by Pos(a, w, i) the set of positions visited by the MAP of σ associated with position i, and by Pos(c, w, i) the set of
positions visited by the caller path of σ from position i. In order to use a uniform notation, we write Pos(g, w, i) to mean
the full set N of positions.

Example 1. Let w = (σ , τ) be the timed word over the pushdown alphabet � with �call = {c}, �ret = {r}, and �int = {l}
such that the untimed word σ is σp · lω with σp the prefix of length 10 depicted in Fig. 1. Note that 0 is the unique
unmatched call position of σ : hence, the MAP visiting 0 consists of position 0 (i.e. Pos(a, w, 0) = {0}), since it corresponds
to a call devoid of matching return (succ(a, σ , 0) = �), and has no caller. The MAP visiting position 1 is the infinite se-
quence 1, 6, 7, 9, 10, 11, 12, 13 . . ., namely Pos(a, w, 1) = {1, 6, 7} ∪ {I : i ≥ 9} and Pos(c, w, 1) = {1, 0}. Analogously, we have
Pos(a, w, 2) = {2, 3, 5} and Pos(c, w, 2) = {2, 1, 0}; Pos(a, w, 4) = {4} and Pos(c, w, 4) = {4, 3, 1, 0}.

3. Event-clock nested automata

In this section, we define the formalism of Event-Clock Nested Automata (ECNA), which combines the use of event clocks
with visible operations on the stack. To this end, we augment the standard set of event clocks [5] with a set of abstract
event clocks and a set of caller event clocks whose values are determined by considering maximal abstract paths and caller
paths of the given word, respectively.

In the following, we fix a pushdown alphabet � = �call ∪ �ret ∪ �int . The set C� of event clocks associated with � is
given by C� := ⋃

b∈�{xg
b, y

g
b, x

a
b, y

a
b, x

c
b}. Thus, we associate with each symbol b ∈ �, five event clocks: the global recorder

clock xg
b (resp., the global predictor clock yg

b) recording the time elapsed since the last occurrence of b, if any, (resp., the time
required to the next occurrence of b if any); the abstract recorder clock xa

b (resp., the abstract predictor clock ya
b) recording

the time elapsed since the last occurrence of b, if any, (resp. the time required to the next occurrence of b) along the MAP
visiting the current position; and the caller (recorder) clock xc

b recording the time elapsed since the last occurrence of b if
any along the caller path from the current position.

Fixed the input word w , when the automaton reads the i-th position σi at time τi , the values of the clocks are uniquely
determined as follows.

Definition 1 (Input determinisitic clock valuations). A clock valuation over C� is a mapping val : C� 	→ R+ ∪ {�}, assigning to
each event clock a value in R+ ∪ {�} (� denotes the undefined value). Given an infinite timed word w = (σ , τ) over � and
a position i, the clock valuation valw

i over C� , specifying the values of the event clocks at position i along w , is defined as
follows for each b ∈ �, where dir ∈ {g, a, c} and dir′ ∈ {g, a}:

valw
i (xdir

b) =
⎧⎨
⎩

τi − τ j if ∃ j < i : b = σ j, j ∈ Pos(dir, w, i), and
∀k : (j < k < i and k ∈ Pos(dir, w, i)) ⇒ b �= σk

� otherwise;

valw
i (ydir′

b) =
⎧⎨
⎩

τ j − τi if ∃ j > i : b = σ j, j ∈ Pos(dir′, w, i), and
∀k : (i < k < j and k ∈ Pos(dir′, w, i)) ⇒ b �= σk

� otherwise.

Thus, at position i of the given word, the value of the global recorder clock xb is the time since the last occurrence of
symbol b if such an occurrence exists and it is undefined otherwise. Symmetrically, the value of the global predictor clock
4

Fig. 2. An example of ECNA.

yb is the time to wait for the next occurrence of b if such an occurrence exists and it is undefined otherwise. It is worth
noting that while the values of the global clocks are obtained by considering the full set of positions in w , the values of the
abstract clocks (resp., caller clocks) are defined with respect to the MAP visiting the current position (resp., with respect to
the caller path from the current position). Notice that the values of the abstract recorder clock xa

b and the abstract predictor
clock ya

b are not immediately defined in the timed word w as the global clocks but with respect to the MAP of w visiting
the current valuation position.

For C ⊆ C� and a clock valuation val over C� , val|C denotes the restriction of val to the set C . A clock constraint over
C is a conjunction of atomic formulas of the form z ∈ I , where z ∈ C , and I is either an interval in R+ with bounds in
N ∪ {∞}, or the singleton {�} (also denoted by [�, �]). For a clock valuation val and a clock constraint θ , val satisfies θ ,
written val |= θ , if for each conjunct z ∈ I of θ , val(z) ∈ I . We denote by 	(C) the set of clock constraints over C .

For technical convenience, we first introduce an extension of the known class of Visibly Pushdown Timed Automata (VPTA)
[16,26], called nested VPTA. Nested VPTA are simply VPTA augmented with event clocks. Therefore, transitions of nested
VPTA are constrained by a pair of disjoint finite sets of clocks: a finite set Cst of standard clocks and a disjoint set C ⊆ C�

of event clocks. As usual, a standard clock can be reset when a transition is taken; hence, its value at a position of an input
word depends in general on the behavior of the automaton and not only, as for event clocks, on the word.

The class of Event-Clock Nested Automata (ECNA) corresponds to the subclass of nested VPTA where the set of standard
clocks Cst is empty. A (standard) clock valuation over Cst is a mapping sval : Cst 	→R+ (note that the undefined value � is
not admitted). For t ∈R+ and a reset set Res ⊆ Cst , sval + t and sval[Res] denote the valuations over Cst defined as follows
for all z ∈ Cst : (sval + t)(z) = sval(z) + t , and sval[Res](z) = 0 if z ∈ Res and sval[Res](z) = sval(z) otherwise. For C ⊆ C� and
a valuation val over C , sval ∪ val denotes the valuation over Cst ∪ C defined in the obvious way.

Definition 2 (Nested VPTA). A Büchi nested VPTA over � = �call ∪ �int ∪ �ret is a tuple A = (�, Q , Q 0, D = C ∪ Cst ,
 ∪
{�}, �, F), where Q is a finite set of (control) states, Q 0 ⊆ Q is a set of initial states, C ⊆ C� is a set of event clocks, Cst is
a set of standard clocks disjoint with C� ,
 ∪ {�} is a finite stack alphabet, � /∈
 is the special stack bottom symbol, F ⊆ Q
is a set of accepting states, and �c ∪ �r ∪ �i is a transition relation, where:

• �c ⊆ Q × �call × 	(D) × 2Cst × Q ×
 is the set of push transitions;
• �r ⊆ Q × �ret × 	(D) × 2Cst × (
 ∪ {�}) × Q is the set of pop transitions;
• �i ⊆ Q × �int × 	(D) × 2Cst × Q is the set of internal transitions.

We now describe how a nested VPTA A behaves over an infinite timed word w . Assume that on reading the i-th position
of w , the current state of A is q, valw

i is the event-clock valuation associated with w and i, sval is the current valuation of
the standard clocks in Cst , and t = τi − τi−1 is the time elapsed from the last transition (where τ−1 = 0). If A reads a call
c ∈ �call , it chooses a push transition of the form (q, c, θ, Res, q′, γ) ∈ �c and pushes the symbol γ �= � onto the stack. If
A reads a return r ∈ �ret , it chooses a pop transition of the form (q, r, θ, Res, γ , q′) ∈ �r such that γ is the symbol on top
of the stack, and pops γ from the stack (if γ = �, then γ is read but not removed). Finally, on reading an internal action
a ∈ �int , A chooses an internal transition of the form (q, a, θ, Res, q′) ∈ �i , without any stack operation. In all the cases, the
constraint θ of the chosen transition must be fulfilled by the valuation (sval + t) ∪ (valw

i)|C , the control changes from q to
q′ , and all the standard clocks in Res are reset (i.e., the valuation of the standard clocks is updated to (sval + t)[Res]).

Example 2. In Fig. 2 we depict an ECNA over the pushdown alphabet � with �call = {c}, �ret = {r}, and �int = {l, s} (the
word of Fig. 1 paired with a sequence of timestamps could be an input for the automaton). The initial state is q0 and the
final state is q2. The symbol c can be interpreted as a procedure call, r as a return from a call, l as an internal activity during
the procedure execution and s an idling action. The transition from the initial state requires that the activity is idling within
10 units of time by exploiting the global predictor clock yg

s . (Notice that the state q2 can be reached with an non-empty stack
i.e. with possibly unmatched procedure calls.) The return transition taking from q1 to q2 requires, by using the abstract
recorder clock xa

c , that the time elapsed from the matching call and the return is at most 5 units of time. In particular, if
the word is well matched the constraint imposes that the overall computation takes at most 5 units of time. The abstract
recorder clock xa

c in the return transition looping on q1 requires that any returning procedure call (but the first one taking
from q0) returns within 5 time units. The caller clock xc

c in the internal transition looping on q1 requires that each internal
procedural activity is performed within 1 time unit from the activation of the procedure.
5

q0 q1

c, push(c)

a q2

a

c, push(c)
q3

r, pop(c)

a q4

b

r, pop(c)
q5

l

b, xa
a = 1

Fig. 3. Example of an abstract recording ECNA.

A configuration of A is a triple (q, β, sval), where q ∈ Q , β ∈
∗ · {�} is a stack content, and sval is a valuation
over Cst . A configuration features only the valuation of standard clocks since the valuation of event clocks determin-
istically depends on the input timed word. A run π of A over w = (σ , τ) is an infinite sequence of configurations
π = (q0, β0, sval0), (q1, β1, sval1), . . . such that q0 ∈ Q 0, β0 = �, sval0(z) = 0 for all z ∈ Cst (initialization requirement), and
the following holds for all i ≥ 0, where ti = τi − τi−1 (τ−1 = 0):

• Push: If σi ∈ �call , then for some (qi, σi, θ, Res, qi+1, γ) ∈ �c , βi+1 = γ · βi , svali+1 = (svali + ti)[Res], and (svali + ti) ∪
(valw

i)|C |= θ ;
• Pop: If σi ∈ �ret , then for some (qi, σi, θ, Res, γ , qi+1) ∈ �r , svali+1 = (svali + ti)[Res], (svali + ti) ∪ (valw

i)|C |= θ , and either
γ �= � and βi = γ · βi+1, or γ = βi = βi+1 = �;

• Internal: If σi ∈ �int , then for some (qi, σi, θ, Res, qi+1) ∈ �i , βi+1 = βi , svali+1 = (svali + ti)[Res], and (svali + ti) ∪
(valw

i)|C |= θ .

The run π is accepting if there are infinitely many positions i ≥ 0 such that qi ∈ F . The timed language LT (A) of A is the
set of infinite timed words w over � such that there is an accepting run of A on w . The greatest constant of A, denoted KA,
is the greatest natural number used as bound in some clock constraint of A. For technical convenience, we also consider
nested VPTA equipped with a generalized Büchi acceptance condition F consisting of a family of sets of accepting states. In
such a setting, a run π is accepting if for each Büchi component F ∈F , the run π visits infinitely often states in F .

A VPTA [26] corresponds to a nested VPTA whose set C of event clocks is empty. An ECNA is a nested VPTA whose
set Cst of standard clocks is empty. For ECNA, we can omit the reset component Res from the transition function and the
valuation component sval from each configuration (q, β, sval). Note that the class of Event-Clock Visibly Pushdown Automata
(ECVPA) [34] corresponds to the subclass of ECNA where abstract and caller event-clocks are disallowed. We also consider
three additional subclasses of ECNA: abstract predicting ECNA (AP_ECNA, for short) which do not use abstract recorder
clocks and caller clocks, abstract recording ECNA (AR_ECNA, for short) which do not use abstract predictor clocks and caller
clocks, and caller ECNA (C_ECNA, for short) which do not use abstract clocks. Note that these three subclasses of ECNA
subsume ECVPA.

Example 3. Let us consider the AR_ECNA in Fig. 3, where �call = {c}, �ret = {r}, and �int = {a, b, l}. The control part of
the transition relation ensures that for each accepted word, the MAP visiting the b-position associated with the transition
tr from q4 to q5 cannot visit the a-positions following the call positions. This implies that the abstract recorder constraint
xa

a = 1 associated with tr is fulfilled only if all the occurrences of calls c and returns r are matched. Hence, constraint
xa

a = 1 on transition tr ensures that the accepted language, denoted by Lrec
T , consists of all the timed words of the form

(σ , τ) · (lω, τ ′) such that σ is a well-matched word of the form a · cn · am · rn · bk with n, m, k > 0, and the time difference in
(σ , τ) between the first and last symbols is 1, i.e. τ|σ |−1 − τ0 = 1. The example shows that ECNA can express a meaningful
real-time property of recursive systems, namely the ability of bounding the time required to perform an internal activity
consisting of an unbounded number of returning recursive procedure calls (and returns). Similarly, it is easy to define an
AP_ECNA accepting the timed language, denoted by Lpred

T , consisting of all the timed words of the form (σ , τ) · (lω, τ ′) such
that σ is a well-matched word of the form ak · cn · bm · rn · b, with n, m, k > 0, and the time difference in (σ , τ) between the
first and last symbol is 1. Finally, we consider the timed language Lcaller

T , which can be defined by a C_ECNA, consisting of
the timed words of the form (c, t0) · (σ , τ) · (lω, τ ′) such that σ is a well-matched word of the form a · cn · am · rn · bk , with
n, m, k > 0, and the time difference in (c, t0) · (σ , τ) between the first and last symbols is 1.

Closure properties of Büchi ECNA In this section we prove that the class of languages accepted by Büchi ECNA is closed
under Boolean operations.

Proposition 1. The class of ω-timed languages accepted by Büchi ECNA is closed under union, intersection, and complementation.
In particular, given two Büchi ECNA A = (�, Q , Q 0, C,
 ∪ {�}, �, F) and A′ = (�, Q ′, Q ′

0, C
′,
′ ∪ {�}, �′, F ′) over �, one can

construct

• a Büchi ECNA accepting LT (A) ∪ LT (A′) with |Q | + |Q ′| states, |
| + |
′| + 1 stacks symbols, and greatest constant
max(KA, KA′);

• a Büchi ECNA accepting LT (A) ∩LT (A′) with 2|Q ||Q ′| states, |
||
′| + 1 stacks symbols, and greatest constant max(KA, KA′).
6

The proofs of closure under union and intersection follow a standard construction. As for union, we can assume that A
and A′ have disjoint sets of states and disjoint sets of stack alphabets. The automaton accepting LT (A) ∪ LT (A′) is then
(�, Q ∪ Q ′, Q 0 ∪ Q ′

0, C ∪ C ′,
 ∪
′ ∪ {�}, � ∪ �′, F ∪ F ′). As for intersection, one can consider the standard synchronous
product of automata with Büchi acceptance (we assume that the sets of clocks C and C ′ are disjoint). The automaton
accepting LT (A) ∩LT (A′) is then (�, Q × Q ′ × {1, 2}, Q 0 × Q ′

0 × {1}, C ∪ C ′,
 ×
′ ∪ {�}, �, F × Q ′ × {1}).
The set of push transitions �c has elements of the form ((q1, q2, b), σ , θ1 ∧ θ2, (q′

1, q
′
2, b

′), (γ1, γ2)) such that (q1, σ , θ1, q′
1,

γ1) ∈ �c and (q2, σ , θ2, q′
2, γ2) ∈ �′

c ; b′ = b if either b = 1 and q1 /∈ F or b = 2 and q2 /∈ F ′ , otherwise b′ �= b. The set of pop
transitions �r and internal transitions �i can be defined similarly.

It remains to prove the closure under language complementation. For this, we adopt the technique exploited in [34]
for the subclass of Büchi ECVPA. The result is obtained by exploiting the closure under complementation for Büchi VPA
([7,8]). A Büchi ECNA can be reduced to a Büchi VPA by a regionalization technique (an homomorphism from Büchi ECNA
to Büchi VPA called untimed homomorphism), complemented, and then reduced again to Büchi ECNA by means a converse
homomorphism (called timed homomorphism) mapping from Büchi VPA to Büchi ECNA. Note that a Büchi VPA is defined
as a Büchi ECNA though omitting the set of event clocks and the set of clock constraints from the transition function. The
notion of an (accepting) run of a Büchi VPA over an infinite word on � is similar to the notion of an (accepting) run of an
ECNA over an infinite timed word on �, though omitting the requirements about the clock constraints. In order to define
the untimed homomorphism we recall the preliminaries of the regionalization technique which encodes clocks and clock
constraints of ECNA in terms of regions.

Let us fix a Büchi ECNA A = (�, Q , Q 0, C,
 ∪ {�}, �, F) and let Const = {c0, . . . , ck} be the set of constants used in the
clock constraints of A ordered for increasing values, i.e. such that 0 ≤ c0 < c1 . . . < ck . We consider the following set Intv of
intervals over R+ ∪ {�}:

Intv := {[�,�], [0,0], (0, c0)} ∪
i=k−1⋃

i=0

{[ci, ci], (ci, ci+1)} ∪ {[ck, ck], (ck,∞)}.

A region g of A is a mapping g : C 	→ Intv assigning to each event clock in C ⊆ C� an interval in Intv. The mapping g induces
the clock constraint

∧
z∈C z ∈ g(z). We denote by [g] the set of valuations over C satisfying the clock constraint associated

with g, and by Reg the set of regions of A. For a clock constraint θ over C , let [θ] be the set of valuations over C satisfying
θ .

Remark 1. By construction, the following holds.

• The set Reg of regions represents a partition of the set of clock valuations over C , i.e.: (i) for all valuations val over C ,
there is a region g ∈ Reg such that val ∈ Reg, and (ii) for all regions g, g′ ∈ Reg, g �= g′ ⇒ [g] ∩ [g′] = ∅.

• For each clock constraint θ of A and region g ∈ Reg, either [g] ⊆ [θ] or [g] ∩ [θ] = ∅.

We associate with � = �call ∪ �ret ∪ �int and the set of regions Reg a pushdown alphabet � = � × Reg, called interval
pushdown alphabet, whose set of calls (resp. returns, internal actions) is �call × Reg (resp. �ret × Reg, �int × Reg). Elements
of � are pairs of the form (a, g), where a ∈ � and g is a region of A representing the associated constraint

∧
z∈C z ∈ g(z).

An infinite word λ = (a0, g0), (a1, g1), . . . over � induces in a natural way a set of infinite timed words over �, denoted
t w(λ), defined as follows: w = (σ , τ) ∈ tw(λ) iff σ = a0a1 . . . and for all i ≥ 0, valw

i ∈ [gi]. We extend the mapping t w to
ω-languages L over � in the obvious way: tw(L) := ⋃

λ∈L tw(λ). By means of the mapping tw, infinite words over � define
a partition of the set of infinite timed words over �.

Lemma 1. The following holds.

1. For each infinite timed word w = (σ , τ) over �, there is an infinite word λ over � of the form (σ0, g0)(σ1, g1) such that w ∈ tw(λ).
2. For all infinite words λ and λ′ over �, λ �= λ′ ⇒ tw(λ) ∩ tw(λ′) = ∅.

Proof. For Property 1, let w = (σ , τ) be an infinite timed word over �. By Remark 1, for all i ≥ 0, there is a region gi ∈ Reg
such that valw

i ∈ [gi]. Let λ = (σ0, g0)(σ1, g1) We have that w ∈ tw(λ), and the result follows.
For Property 2, let λ and λ′ be two distinct infinite words over λ. Let us assume that tw(λ) ∩ tw(λ′) �= ∅ and derive a

contradiction. Hence, by construction, λ = (a0, g0)(a1, g1) . . ., λ′ = (a0, g′
0)(a1, g′

1) . . ., and there is an infinite timed word w
over � of the form (a0, τ0)(a1, τ1) such that valw

i ∈ [gi] ∩ [g′
i] for all i ≥ 0. Since λ �= λ′ , there exists n ≥ 0 such that gn �= g′

n .
By Remark 1, [gn] ∩ [g′

n] = ∅ which is a contradiction since valw
n ∈ [gn] ∩ [g′

n]. �
We state now the correctness of reduction from Büchi ECNA to Büchi VPA.
7

Proposition 2 (Untimed homomorphism). Let A = (�, Q , Q 0, C,
 ∪ {�}, �, F) be a Büchi ECNA, and � be the interval pushdown
alphabet induced by A. Then, one can construct a Büchi VPA Untimed(A) over � of the form (�, Q , Q 0,
 ∪ {�}, �′, F) such that
tw(L(Untimed(A))) =LT (A).

Proof. The transition function �′ of Untimed(A) is defined as follows:

• Push: If (q, c, θ, q′, γ) is a push transition in �, then for each region g of A such that [g] ⊆ [θ], (q, (c, g), q′, γ) ∈ �′ .
• Pop: If (q, r, θ, γ , q′) is a pop transition in �, then for each region g of A such that [g] ⊆ [θ], (q, (r, g), γ , q′) ∈ �′ .
• Internal: If (q, a, θ, q′) is an internal transition in �, then for each region g of A such that [g] ⊆ [θ], (q, (a, g), q′) ∈ �′ .

The correctness of the construction easily follows from Remark 1 and Lemma 1(1). �
We state in the following the converse homomorphism from Büchi VPA to Büchi ECNA.

Proposition 3 (Timed homomorphism). Let A = (�, Q , Q 0,
 ∪ {�}, �, F) be a Büchi VPA over an interval pushdown alpha-
bet associated with � and a set C ⊆ C� of event clocks. Then, one can construct a Büchi ECNA Timed(A) over � of the form
(�, Q , Q 0, C,
 ∪ {�}, �′, F) such that LT (Timed(A)) = tw(L(A)).

Proof. Let g be a region and θg := ∧
z∈C z ∈ g(z). The transition function �′ of Timed(A) is defined as follows:

• Push: If (q, (c, g), q′, γ) ∈ � is a push transition, then (q, c, θg , q′, γ) ∈ �′;
• Pop: If (q, (r, g), γ , q′) ∈ � is a pop transition, then (q, r, θg , γ , q′) ∈ �′;
• Internal: If (q, (r, g), q′) ∈ � is an internal transition, then (q, r, θg , q′) ∈ �′ .

The correctness of the construction easily follows from Remark 1 and Lemma 1(1). �
The closure under complementations of ECNA follows now from Lemma 1, Propositions 2 and 3, and the known closure

properties of Büchi Visibly Pushdown Automata (VPA) [7,8].

Theorem 2 (Closure under complementation). Given a Büchi ECNA A over � with n states and set of constants Const, one can
construct in singly exponential time a Büchi ECNA A over � accepting the complement of LT (A) having 2O (n2) states and O (2O (n2) ·
|�call| · |Const|O (|�|)) stack symbols.

Proof. Let A be a Büchi ECNA over � with n states and set Const of integer constants, � be the interval pushdown alphabet
induced by A, and �c ⊆ � be the set of calls. By Proposition 2, we can construct a Büchi VPA Untimed(A) over � with n
states such that tw(L(Untimed(A))) = LT (A). By [7,8], starting from the Büchi VPA Untimed(A), one can construct in singly
exponential time a Büchi VPA Untimed(A) over � accepting �ω \ L(Untimed(A)) with 2O (n2) states and O (2O (n2) · |�c|)
stack symbols.
By applying Proposition 3 to the Büchi VPA Untimed(A), we can build in linear time a Büchi ECNA A over � with 2O (n2)

states and O (2O (n2) · |�c|) stack symbols such that LT (A) = tw(�ω \ L(Untimed(A))). Since LT (A) = tw(L(Untimed(A))),
by Lemma 1, A accepts all and only the infinite timed words over � which are not in LT (A). Moreover, we have |�c| =
O (|�call| · |Const|O (|�|)). �
Expressiveness results In this section we present the expressiveness results for ECNA. The overall picture is stated in Theo-
rem 4. We start showing that the three subclasses AR_ECNA, AP_ECNA, and C_ECNA of ECNA are mutually incomparable.
In fact, each of the timed languages Lrec

T , Lpred
T , and Lcaller

T considered in Example 3 and definable in AR_ECNA, AP_ECNA,
and C_ECNA, respectively, can be expressed only in one of these subclasses.

Lemma 3. The language Lrec
T (resp. Lpred

T , Lcaller
T) is not definable by Büchi ECNA without abstract recorder clocks (resp. abstract

predictor clocks, caller clocks). Moreover, the language Lrec
T ∪Lpred

T ∪Lcaller
T is not definable by Büchi AR_ECNA, Büchi AP_ECNA and

Büchi C_ECNA.

Proof. First, let us consider the timed language Lrec
T defined in Example 3 which consists of all the timed words of the form

(σ , τ) · (ıω, τ ′) such that σ is a well-matched word of the form a · c+ ·a+ · r+ · b+ and the time difference in (σ , τ) between
the first and last symbols is 1. Let v1 = (a, 0) · (c, 0.1) · (a, 0.1) · (r, 0.1) · (b, 0.1) · (b, 0.9) and v2 = (a, 0) · (c, 0.1) · (a, 0.1) ·
(r, 0.1) · (b, 0.1) · (b, 1) be two timed words over � of length 6. For each H ≥ 1, let w H

1 = v1 · (l, H + 2) · (l, H + 3) . . . and
w H

2 = v2 · (l, H + 2) · (l, H + 3) Let us denote by val1,H and val2,H the event-clock valuations over C� associated with w H
1

and w H
2 , respectively. By construction, for all positions i ≥ 0 and event-clock z ∈ C� such that z is not an abstract recorder

clock, the following holds:
8

• either (i) val1,H
i (z) = val2,H

i (z), or (ii) 0 < val1,H
i (z) < 1 and 0 < val2,H

i (z) < 1, or (iii) val1,H
i (z) > H and val2,H

i (z) > H .

Hence, clock constraints which do not use abstract recorder clocks and whose maximum constant is at most H cannot
distinguish the valuations val1,H and val2,H . It follows that for each ECNA A over � which does not use abstract recorder
clocks and has maximum constant H , w H

1 ∈ LT (A) iff w H
2 ∈ LT (A). On the other hand, by definition of the language Lrec

T ,
for each H ≥ 1, w H

2 ∈ Lrec
T and w H

1 /∈ Lrec
T . Hence, Lrec

T is not definable by Büchi ECNA which do not use abstract recorder
clocks.

Now, let us consider the timed language Lpred
T which consists of all the timed words of the form (σ , τ) · (lω, τ ′) such that

σ is a well-matched word of the form a+ · c+ ·b+ · r+ ·b and the time difference in (σ , τ) between the two extreme symbols
is 1. Let u1 = (a, 0) · (a, 0.1) · (c, 0.1) · (b, 0.1) · (r, 0.1) · (b, 0.9) and u2 = (a, 0) · (a, 0.1) · (c, 0.1) · (b, 0.1) · (r, 0.1) · (b, 1) be two
timed words over � of length 6. For each H ≥ 1, let rH

1 = u1 · (l, H + 2) · (l, H + 3) . . . and rH
2 = u2 · (l, H + 2) · (l, H + 3)

By reasoning as in the case of language Lrec
T , we have that for each ECNA A over � which does not use abstract predictor

clocks and has as maximum constant H , rH
1 ∈LT (A) iff rH

2 ∈LT (A). On the other hand, by definition of the language Lpred
T ,

for each H ≥ 1, rH
2 ∈ Lpred

T and rH
1 /∈ Lpred

T proving that Lpred
T is not definable by Büchi ECNA which do not use abstract

predictor clocks.
The proof for the language Lcaller

T is similar and omitted. Finally, by the above considerations, it follows that Lrec
T ∪Lpred

T ∪
Lcaller

T is not definable neither by an abstract-predicting Büchi ECNA nor by an abstract-recording Büchi ECNA nor by a
caller Büchi ECNA. �

As a consequence of Lemma 3, the classes AR_ECNA, AP_ECNA, and C_ECNA strictly include the class of ECVPA, are
strictly included in ECNA, and are pairwise incomparable.

As for ECNA, they are less expressive than Büchi VPTA. In fact, as will be shown in Theorem 5 of Section 4, Büchi ECNA
can be converted into equivalent Büchi VPTA showing the inclusion ECNA ⊆ VPTA. The inclusion is strict since Büchi VPTA
are not closed under complementation (see [26]) whereas Büchi ECNA are closed as proved in Theorem 2.

Finally, we can compare ECNA with ECVPA. In [15], an equally-expressive extension of ECVPA over finite timed words,
by means of a timed stack, is investigated. The Büchi version of such an extension can be trivially encoded in Büchi
AR_ECNA. Moreover, the proof of Lemma 3 can also be used to show that Büchi ECVPA with timed stack are less ex-
pressive than Büchi AR_ECNA, Büchi AP_ECNA, and Büchi C_ECNA.
The following summarizes the general picture of the expressiveness results.

Theorem 4. The classes AR_ECNA, AP_ECNA, and C_ECNA are mutually incomparable, and AP_ECNA ∪ AR_ECNA ∪ C_ECNA ⊂
ECNA. Moreover,

(1) ECVPA ⊂ AR_ECNA (2) ECVPA ⊂ AP_ECNA
(3) ECVPA ⊂ C_ECNA (4) ECNA ⊂ VPTA

Note that the expressiveness results above also hold for finite timed words.

4. Decision procedures for Büchi ECNA

In this section, we first investigate emptiness, universality, and language inclusion problems for Büchi ECNA. Then, we
consider the Visibly model-checking problem against Büchi ECNA, i.e., given a visibly pushdown timed system S over � (that is a
Büchi VPTA where all the states are accepting) and a Büchi ECNA A over �, the problem whether LT (S) ⊆ LT (A) holds.
We prove that the above mentioned problems are decidable and Exptime-complete. Notice that in this approach the model
is given by a Büchi VPTA, whereas the property to be checked is given by a Büchi ECNA. As proved in the previous Section 3,
ECNA are less expressive than VPTA but are closed under boolean operations. This allow us to reduce the inclusion problem
LT (S) ⊆ LT (A) to the emptiness problem of the intersection of the language LT (S) with the complement of LT (A) (i.e.
LT (S) ∩ LT (A)). The language LT (A) is accepted by a Büchi ECNA as proved in Theorem 2. The key intermediate result
for the reduction is an exponential-time translation of Büchi ECNA into language-equivalent generalized Büchi VPTA. By
exploiting such a translation we can intersect the Büchi VPTA for LT (S) with the Büchi VPTA obtained by translating the
Büchi ECNA for LT (A) to VPTA.

We start defining the translation from Büchi ECNA to Büchi VPTA. Since a VPTA is a nested VPTA with standard clocks
but devoid of event clocks, we shall show how the event clocks in the considered ECNA can be encoded in terms of standard
clocks with a single exponential blow-up. The transformation from a generalized Büchi nested VPTA A to a generalized Büchi
VPTA A′ is obtained by a sequence of transformation steps all preserving language equivalence. At each step, an event clock
is replaced by a set of fresh standard clocks. To remove global event clocks we borrow the technique from [5].

In the following we sketch the ideas for removing an abstract predictor clock ya
b with b ∈ � (the removal of abstract

recorder clocks and caller clocks can be dealt with similarly) reporting the details of the construction in the proof of
Theorem 5. Let us fix a generalized Büchi nested VPTA A and a clock ya

b belonging to the set of clocks C of A. Without loss
of generality, we assume that for each transition tr of A, there is exactly one atomic constraint ya ∈ I involving ya used
b b

9

as conjunct in the clock constraint of tr. If I �= {�}, then ya
b ∈ I is equivalent to a constraint of the form ya

b � � ∧ ya
b ≺ u,

where � ∈ {>, ≥}, ≺ ∈ {<, ≤}, � ∈N , and u ∈ N ∪ {∞}. We call ya
b � � (resp., ya

b ≺ u) a lower-bound (resp., upper-bound)
constraint. Note that if u = ∞, the constraint ya

b ≺ u is always fulfilled, but we include it to have a uniform notation.
We construct a generalized Büchi nested VPTA Aya

b
equivalent to A whose set of event clocks is C \ {ya

b}, and whose set
of standard clocks is Cst ∪ Cnew , where Cnew consists of the fresh standard clocks z�� (resp., z≺u), for each lower-bound
constraint ya

b � � (resp., upper-bound constraint ya
b ≺ u) of A involving ya

b .
The sketch of the translation follows. Consider a lower-bound constraint ya

b � �. Assume that a prediction ya
b � � is done

by A at position i of the input word for the first time. Then, the simulating automaton Aya
b

exploits the standard clock z��

to check that the prediction holds by resetting it at position i. Moreover, if i is not a call (resp., i is a call), Aya
b

carries
the obligation �� in its control state (resp., pushes the obligation �� onto the stack) in order to check that the constraint
z�� � � holds when the next b occurs at a position jcheck along the MAP ν visiting position i. We observe that:

• If a new prediction ya
b � � is done by A at a position j > i of ν strictly preceding jcheck , Aya

b
can rewrite the old

obligation by resetting the clock z�� at position j. This is safe since the fulfillment of the lower-bound prediction ya
b � �

at j guarantees that the prediction ya
b � � is fulfilled at i along ν .

• If a call position ic ≥ i occurs in ν before jcheck , the next position of ic in ν is the matching return ir of ic , and any MAP
visiting a position h ∈ [ic +1, ir −1] is finite and ends at a position k < ir . Thus, the clock z�� can be safely reset to check
the prediction ya

b � � raised in positions in [ic + 1, ir − 1] since this check ensures that z�� � � holds at position jcheck .

Thus, previous obligations on a constraint ya
b � � are always rewritten by more recent ones. At each position i, Aya

b
records

in its control state the lower-bound obligations for the current MAP ν (i.e., the MAP visiting the current position i). When-
ever a call ic occurs, the lower-bound obligations are pushed on the stack in order to be recovered at the matching return ir .
If ic + 1 is not a return (i.e., ir �= ic + 1), then Aya

b
moves to a control state having an empty set of lower-bound obligations

(position ic + 1 starts the MAP visiting ic + 1).
The treatment of an upper-bound constraint ya

b ≺ u is symmetric. Whenever a prediction ya
b ≺ u is done by A at a

position i, and the simulating automaton Aya
b

has no obligation on the constraint ya
b ≺ u, Aya

b
resets the standard clock z≺u .

If i is not a call (resp., i is a call) the fresh obligation (first,≺u) is recorded in the control state (resp., (first,≺u) is pushed
onto the stack). When, along the MAP ν visiting position i, the next b occurs at a position jcheck , the constraint z≺u ≺ u is
checked, and the obligation (first,≺u) is removed or confirmed (in the latter case, resetting the clock z≺u), depending on
whether the prediction ya

b ≺ u is asserted at position jcheck or not. We observe that:

• If a new prediction ya
b ≺ u occurs in a position j > i of ν strictly preceding jcheck , Aya

b
ignores it (the clock z≺u is not

reset at position j) since checking the prediction ya
b ≺ u at position i guarantees the prediction ya

b ≺ u at a position j > i
along ν .

• If a call position ic ≥ i occurs in ν before jcheck , then all the predictions ya
b ≺ u occurring in a MAP visiting a position

h ∈ [ic + 1, ir − 1], with ir ≤ jcheck being the matching-return of ic , can be safely ignored (i.e., z≺u is not reset in the MAP)
since they are subsumed by the prediction at position i.

Thus, for new obligations on an upper-bound constraint ya
b ≺ u, the clock z≺u is not reset. Whenever a call ic occurs, the

updated set O of upper-bound and lower-bound obligations is pushed onto the stack to be recovered at the matching return
ir of ic . Moreover, if ic + 1 is not a return (i.e., ir �= ic + 1), then Aya

b
moves to a control state where the set of lower-bound

obligations is empty and the set of upper-bound obligations is obtained from O by replacing each upper-bound obligation
(f ,≺u), for f ∈ {live, first}, with the live obligation (live,≺u). The latter asserted at the initial position ic + 1 of the MAP ν
visiting ic +1 (note that ν ends at ir −1) is used by Aya

b
to remember that the clock z≺u cannot be reset along ν . Intuitively,

live upper-bound obligations are propagated from the caller MAP to the called MAP. Note that fresh upper-bound obligations
(first, ≺u) always refer to predictions done along the current MAP and, differently from the live upper-bound obligations,
they can be removed when the next b occurs along the current MAP.

Extra technicalities are needed to ensure that the lower-bound obligations and fresh upper-bound obligations at the
current position are eventually checked, i.e., the current MAP eventually visits a b-position. A different treatment is required
for finite and infinite MAPs. If a MAP is finite, we can ensure the requirement in the transition function of Aya

b
by using

suitable guesses about the finiteness of the current MAP and whether the current position is the last position (if the MAP
is finite). Obviously, in this case a b-position must be visited (and the obligations checked) at least when the last position
is reached. For the infinity case we observe that at most one infinite MAP ν exists along a word. In this case, the b-liveness
requirement is checked by suitably exploiting the acceptance condition (a Büchi component of Aya

b
is devoted to that

purpose).
In more detail, at each position i, the automaton Aya

b
guesses whether i is the last position of the current MAP (i.e., the

MAP visiting i). For this, it keeps track in its control state of the guessed type (call, return, or internal symbol) of the next
input symbol. In particular, when i is a call, Aya

b
guesses whether the call i has a matching return. If the guess is “no”, Aya

b

pushes onto the stack a special symbol, say bad, and the guess is correct iff the symbol is never popped from the stack.
10

To discriminate positions belonging to finite MAPs from those belonging to the unique infinite MAP (if any), Aya
b

exploits
a special proposition p∞ whose Boolean value is carried in the control state. The intended meaning is that p∞ does not
hold at a position j of the input iff the MAP visiting j has a caller whose matching return exists. If the MAP ν is infinite,
then it visits only positions where p∞ holds. Moreover, each position i greater than the initial position i0 of ν is either a
ν-position, or a position where p∞ does not hold. If an infinite word has no infinite MAP, then p∞ holds at infinitely many
positions as well. The transition function of Aya

b
ensures that the Boolean value of p∞ is propagated consistently with the

guesses. Moreover, the guesses about the matched calls are correct iff p∞ is asserted infinitely often along a run (this can
be ensured by the acceptance condition by exploiting a Büchi component of Aya

b
).

Theorem 5 (Removal of event clocks from nested VPTA). Given a generalized Büchi nested VPTA A, one can construct in singly
exponential time a generalized Büchi VPTA A′ (not using event clocks) such that LT (A′) =LT (A) and KA′ = KA . Moreover, A′ has
n ·2O (p·|�|) states and m + O (p) clocks, where n is the number of A-states, m is the number of standard A-clocks, and p is the number
of event-clock atomic constraints used by A.

Proof. Let us fix a generalized Büchi nested VPTA A = (�, Q , Q 0, C ∪ Cst ,
 ∪ {�}, �, F). In the proof we focus on the
removal of an abstract predictor clock ya

b with b ∈ �, referring to Appendix A and Appendix B for the treatment of abstract
recorder clocks and caller clocks, respectively. We need some preliminary definitions.

An obligation set O (for the fixed abstract predictor clock ya
b and the fixed generalized Büchi nested VPTA A) is a set

consisting of lower-bound obligations �� and upper-bound obligations (f ,≺u), where f ∈ {live, first}, such that ya
b � � and

ya
b ≺ u are associated to interval constraints of A, and (f , ≺u), (f ′, ≺u) ∈ O implies f = f ′ . For an obligation set O , live(O)

is the obligation set consisting of the live upper-bound obligations of O .
Let us consider the expression �ab (actually a CaRet formula [3]) with the intended meaning that �ab holds at position

i ≥ 0 if the MAP visiting i also visits a position j ≥ i where b holds. A check set H is a subset of {call, ret, int, b, �ab, p∞}
such that H ∩ {call, ret, int} is a singleton. A check set is done by Aya

b
for keeping track of: (i) the guessed type (call, return,

or internal symbol) of the next input symbol, (ii) whether the next input symbol is b, (iii) whether p∞ holds at the current
position, and (iv) whether �ab holds at the current position.

Let Cnew be the set of standard clocks consisting of the fresh standard clocks z�� (resp., z≺u) for each lower-bound
constraint ya

b � � (resp., upper-bound constraint ya
b ≺ u) of A involving ya

b . For an input symbol a ∈ � and an obligation
set O , we denote by con(O , a) the constraint over the new set Cnew of standard clocks defined as: con(O , a) = � if either
O = ∅ or b �= a; otherwise, con(O , a) is obtained from O by adding for each obligation � � (resp., (f , ≺u)) in O , the
conjunct z�� � � (resp., z≺u ≺ u). The nested VPTA Aya

b
is given by

Aya
b
= (�, Q ′, Q ′

0, C \ {ya
b} ∪ Cst ∪ Cnew, (
 ×
′) ∪ {bad,�},�′,F ′).

The set Q ′ of states consists of triples of the form (q, O , H) such that q ∈ Q is a state of A, O is an obligation set, and H
is a check set, while the set Q ′

0 of initial states consists of states of the form (q0, ∅, H) such that q0 ∈ Q 0 (initially there are
no obligations). The stack alphabet is (
 ×
′) ∪ {bad, �}, where
′ is the set of pairs (O , H) such that O is an obligation
set and H is a check set.

We now define the transition function �′ . For this, we first define a predicate Abs over tuples of the form ((O , H), a, ya
b ∈

I, Res, (O ′, H ′)) where (O , H), (O ′, H ′) are pairs of obligation sets and check sets, a ∈ �, ya
b ∈ I is a constraint of A involving

ya
b , and Res ⊆ Cnew . Intuitively, O (resp., H) represents the obligation set (resp., check set) at the current position i of the

input, a is the input symbol associated with position i, ya
b ∈ I is the prediction about ya

b done by A at position i, Res is
the set of new standard clocks reset by Aya

b
on reading a, and O ′ (resp., H ′) represents the obligation set (resp., check

set) at the position j following i along the MAP visiting i (if i is a call, then j is the matching-return of i). Formally,
Abs((O , H), a, ya

b ∈ I, Res, (O ′, H ′)) iff the following holds:

1. (p∞ ∈ H iff p∞ ∈ H ′), a ∈ �call (resp., a ∈ �ret , resp. a ∈ �int) implies call ∈ H (resp., ret ∈ H , resp., int ∈ H);
2. �ab ∈ H iff (b = a or �ab ∈ H ′), and (�ab ∈ H ′ iff I �= {�});
3. If I = {�}, then O ′ = live(O), Res = ∅, and b �= a implies O = live(O). Otherwise, let ya

b ∈ I ≡ ya
b � � ∧ ya

b ≺ u. Let O ′′
be O if b �= a, and O ′′ = live(O) otherwise. Then, O ′ = O ′′ ∪ {��} ∪ {(f , ≺u)}, where f = live if (live, ≺u) ∈ O ′′ , and
f = first otherwise. Moreover, Res ⊆ {z��, z≺u}, z�� ∈ Res, and z≺u ∈ Res iff either ≺u does not appear in O , or b = a and
(first, ≺u) ∈ O .

Condition 1 requires that the Boolean value of proposition p∞ is invariant along the positions of a MAP, and the current
check set is consistent with the type (call, return, or internal symbol) of the current input symbol. Condition 2 provides
the abstract-local propagation rules of formula �ab. Finally, Condition 3 provides the rules for updating the obligations on
moving to the abstract next position along the current MAP and for resetting new clocks on reading the current input
symbol a. Note that if I = {�} and b �= a, then the current obligation set must contain only live upper-bound obligations. If,
instead, ya

b ∈ I is equivalent to ya
b � � ∧ ya

b ≺ u, then the clock z�� is reset, while the clock z≺u is reset iff either there is no
obligation (f , ≺u) in O , or b = a and the obligation (f , ≺u) is fresh, i.e., f = first.
11

The transition function �′ of Aya
b

is defined as follows. Recall that we assume that each clock constraint of A is of the
form θ ∧ ya

b ∈ I , where θ does not contain occurrences of ya
b .

Push transitions for each push transition q
a,θ∧ya

b∈I,Res,push(γ)−→ q′ of A, we have the push transitions

(q, O , H)
a,θ∧con(O ,a),Res∪Res′,push(γ ′)−→ (q′, O ′, H ′) such that b = a iff b ∈ H , and

1. Case γ ′ �= bad. Then, γ ′ = (γ , O ret, Hret) and Abs((O , H), a, ya
b ∈ I, Res′, (O ret, Hret)) holds. Moreover, if ret ∈ H ′ then

Hret = H ′ and O ′ = O ret; otherwise, p∞ /∈ H ′ and O ′ consists of the live obligations (live, ≺u) such that (f , ≺u) ∈ O ret
for some f ∈ {live, first}.

2. Case γ ′ = bad: call ∈ H , I = {�}, (�ab ∈ H iff b = a), p∞ ∈ H , p∞ ∈ H ′ , ret /∈ H ′ , O ′ = ∅, Res′ = ∅, and b �= a implies O = ∅.

Note that if b = a, the obligations in the current state are checked by the constraint on Cnew given by con(O , a) (recall that
if b �= a, then con(O , a) = �). The push transitions of point 1 consider the case where Aya

b
guesses that the current call

position ic has a matching return ir . In this case, the set of obligations and the check state for the next abstract position ir
along the current MAP are pushed on the stack in order to be recovered at the matching-return ir . Moreover, if Aya

b
guesses

that the next position ic + 1 is not ir (i.e., ret /∈ H ′), then all the upper-bound obligations in O ret are propagated as live
obligations at the next position ic + 1 (note that the MAP visiting ic + 1 starts at ic + 1, terminates at ir − 1, and does not
satisfy proposition p∞). The push transitions of point 2 consider instead the case where Aya

b
guesses that the current call

position ic has no matching return ir , i.e., ic is the last position of the current MAP. In this case, Aya
b

pushes the symbol
bad on the stack and the transition relation is consistently updated.

Internal transitions for each internal transition q
a,θ∧ya

b∈I,Res−→ q′ of A, we add the internal transitions

(q, O , H)
a,θ∧con(O ,a),Res∪Res′−→ (q′, O ′, H ′), where b = a iff b ∈ H , and

1. Case ret ∈ H ′: int ∈ H , I = {�}, Res′ = ∅, (�ab ∈ H iff b = a), and b �= a implies O = live(O);
2. Case ret /∈ H ′: Abs((O , H), a, ya

b ∈ I, Res′, (O ′, H ′)) holds.

In the former case, Aya
b

guesses that the current position i is the last one of the current MAP(ret ∈ H ′); in the later, the
current MAP visits the next non-return position i + 1. Note that if b = a, the obligations in the current state are checked by
the constraint con(O , a).

Pop transitions for each pop transition q
a,θ∧ya

b∈I,Res,pop(γ)−→ q′ ∈ �r , we have the pop transitions

(q, O , H)
a,θ∧con(O ,a),Res∪Res′,pop(γ ′)−→ (q′, O ′, H ′), where b = a iff b ∈ H , and

1. Case γ �= �: ret ∈ H and γ ′ = (γ , (O , H)); if ret /∈ H ′ , then Abs((O , H), a, ya
b ∈ I, Res′, (O ′, H ′)); otherwise, I = {�}, Res′ =

∅, (�ab ∈ H iff b = a), and b �= a implies O = live(O);
2. Case γ = �: ret ∈ H , O = ∅, γ ′ = �, p∞ ∈ H , and p∞ ∈ H ′; if ret /∈ H ′ , then Abs((O , H), a, ya

b ∈ I, Res′, (O ′, H ′)); other-
wise, I = {�}, Res′ = ∅, O ′ = ∅, and (�ab ∈ H iff b = a).

If γ �= �, then the current return position has a matched-call. Thus, Aya
b

pops from the stack γ together with an obligation
set and a check set, and verifies that the last two sets correspond to the ones associated with the current control state. If
γ = �, then the current position is also the initial position of the associated MAP. For an example see Fig. 4.

Finally, the generalized Büchi condition F ′ of Aya
b

is defined as follows. For each Büchi component F of A, Aya
b

has the
Büchi component consisting of the states (q, O , H) such that q ∈ F . Moreover, Aya

b
has an additional component consisting

of the states (q, O , H) such that p∞ ∈ H , and either �ab /∈ H or b ∈ H . Such a component ensures that the guesses about
the matched calls are correct (p∞ occurs infinitely often), and that the liveness requirement b of �ab is fulfilled whenever
�ab is asserted at a position of an infinite MAP. By construction, A and Aya

b
accept the same language. �

By closure properties and Theorem 5, we can state the main result of the Section.

Theorem 6. Emptiness, universality, and language inclusion for Büchi ECNA, and visibly model-checking against Büchi ECNA are
Exptime-complete.

Proof. For the upper bounds, first observe that by [16,1] the emptiness problem of generalized Büchi VPTA is Exptime-
complete and solvable in time O (n4 · 2O (m·log Km)), where n is the number of states, m is the number of clocks, and K is the
largest constant used in the clock constraints of the automaton (hence, the time complexity is polynomial in the number of
states). Now, given two Büchi ECNA A1 and A2 over �, checking whether LT (A1) ⊆LT (A2) reduces to check emptiness of
12

Fig. 4. A fragment of the VPTA Aya
b

(figure (b)) obtained from the removal of the abstract predicting clock ya
b from the ECNA A depicted on figure (a). The

initial fragment of Aya
b

shows a path starting with an internal transition, followed by two call transitions and a return.

the language LT (A1) ∩LT (A2). Similarly, given a Büchi VPTA S where all the states are accepting and a Büchi ECNA A over
the same pushdown alphabet �, model-checking S against A reduces to check emptiness of the language LT (S) ∩LT (A).
Since Büchi VPTA are polynomial-time closed under intersection and universality can be reduced in linear-time to language
inclusion, by the closure properties of Büchi ECNA (Proposition 1 and Theorem 2) and Theorem 5, membership in Exptime

for the considered problems directly follows. For the matching lower-bounds, the proof of Exptime-hardness for emptiness
of Büchi VPTA can be easily adapted to the class of Büchi ECNA. For the other problems, the result directly follows from
Exptime-hardness of the corresponding problems for Büchi VPA [7,8] which are subsumed by Büchi ECNA. �
5. The Event-Clock Nested Temporal Logic

In this section we study the linear temporal logic counterpart of ECNA. Similarly to the case of automata setting, we
define a linear temporal logic which compose real-time and context-free properties.

The logical framework related to the class of Event-Clock automata (ECA) is the so called Event-Clock Temporal Logic
(EC_TL) [33]. EC_TL is a decidable extension of standard LTL with past obtained by means of two indexed modal operators �I and �I , with I an interval, which express real-time constraints. The intuition is that �Iϕ holds true at a given position i
of a timed word w , if the timed elapsed to reach the least position j ≥ i of w where φ holds belongs to the interval I (and
symmetrically for the past modality �I). As for the class of VPA, a related logical framework is the temporal logic of nested
calls and returns CaRet [3]. It is a well-known context-free extension of LTL with past by means of non-regular variants
of the standard LTL temporal future operators next © and until U and the past operators previous © − and S. While the
standard operator are interpreted over words, the abstract version of this operators (i.e. ©a , Ua , © −a and Sa) are interpreted
over abstract paths (i.e. MAPs) allowing to express context free properties. A variant of the past operators also is interpreted
over call paths (i.e. © −c and Sc). The two sets of variants allow us to express context free properties.

In this section, we introduce an extension of both EC_TL and CaRet, called Event-Clock Nested Temporal Logic (EC_NTL)
able to specify non-regular context-free real-time properties. We assume to have a set P of atomic propositions containing
the special propositions call, ret, and int. The syntax of EC_NTL formulas ϕ is as follows:

ϕ := � ∣∣ p
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ
∣∣ ©dir ϕ

∣∣ ©−dir′ϕ
∣∣ ϕ Udirϕ

∣∣ ϕ Sdir′ϕ
∣∣ �dir

I ϕ
∣∣ �dir′

I ϕ

where p ∈ P , I is an interval in R+ with bounds in N ∪ {∞}, dir ∈ {g, a}, and dir′ ∈ {g, a, c}. The operators ©g , © −g , Ug ,
and Sg are the standard ‘next’, ‘previous’, ‘until’, and ‘since’ LTL modalities, respectively, ©a , © −a , Ua , and Sa are their non-
regular abstract versions, and © −c and Sc are the non-regular caller versions of the ‘previous’ and ‘since’ LTL modalities.
Intuitively, the abstract and caller modalities specify LTL requirements on the abstract and caller paths of the given timed
word over �P . Real-time constraints are specified by the indexed operators �g

I , �g
I , �a

I , �a
I , and �c

I . The formula �g
I ϕ

requires that the delay t before the next position where ϕ holds satisfies t ∈ I; symmetrically, �g
I ϕ constraints the previous

position where ϕ holds. The abstract versions �a
I ϕ and �a

I ϕ are similar, but the notions of next and previous position
where ϕ holds refer to the MAP visiting the current position. Analogously, for the caller version �c

I ϕ of �g
I ϕ , the notion of

previous position where ϕ holds refers to the caller path visiting the current position.
Full CaRet [3] corresponds to the fragment of EC_NTL obtained by disallowing the real-time operators, while the logic

EC_TL [33] is obtained from EC_NTL by disallowing the abstract and caller modalities. As pointed out in [33], the real-time
operators � and � generalize the semantics of event clock variables since they allow recursion, i.e., they can constraint
arbitrary formulas and not only atomic propositions. Accordingly, the non-recursive fragment of EC_NTL is obtained by
replacing the clauses �dir

I ϕ and �dir′
I ϕ in the syntax with the clauses �dir

I p and �dir′
I p, where p ∈ P . We use standard

shortcuts in EC_NTL: the formula �gψ stands for � Ug ψ (the standard LTL operator), and �gψ stands for ¬ �g ¬ψ (the
LTL always operator). For an EC_NTL formula ϕ , |ϕ| denotes the number of distinct subformulas of ϕ and Constϕ the set of
13

constants used as finite endpoints in the intervals associates with the real-time modalities. The size of ϕ is |ϕ| + k, where
k is the size of the binary encoding of the largest constant in Constϕ .

The set P induces a pushdown alphabet �P = �call ∪ �ret ∪ �int , where �call = {P ⊆ P | P ∩ {call, ret, int} = {call}},
�ret = {P ⊆P | P ∩{call, ret, int} = {ret}}, and �int = {P ⊆P | P ∩{call, ret, int} = {int}}. Given an EC_NTL formula ϕ , a timed
word w = (σ , τ) over �P and a position 0 ≤ i < |w|, the satisfaction relation (w, i) |= ϕ is inductively defined as follows
(we omit the clauses for the atomic propositions and Boolean connectives which are standard):

(w, i) |= ©dirϕ ⇔ there is j > i such that j = succ(dir,σ , i) and (w, j) |= ϕ

(w, i) |= ©−dir′ ϕ ⇔ there is j < i such that (w, j) |= ϕ and either (dir′ �= c and
i = succ(dir′,σ , j)), or (dir′ = c and j = succ(c,σ , i))

(w, i) |= ϕ1Udirϕ2 ⇔ there is j ≥ i such that j ∈ Pos(dir,σ , i), (w, j) |= ϕ2 and
(w,k) |= ϕ1 for all k ∈ [i, j − 1] ∩ Pos(dir,σ , i)

(w, i) |= ϕ1Sdir′ϕ2 ⇔ there is j ≤ i such that j ∈ Pos(dir′,σ , i), (w, j) |= ϕ2 and
(w,k) |= ϕ1 for all k ∈ [j + 1, i] ∩ Pos(dir′,σ , i)

(w, i) |= �dir
I ϕ ⇔ there is j > i s.t. j ∈ Pos(dir,σ , i), (w, j) |= ϕ, τ j − τi ∈ I,

and (w,k) �|= ϕ for all k ∈ [i + 1, j − 1] ∩ Pos(dir,σ , i)

(w, i) |= �dir′
I ϕ ⇔ there is j < i s.t. j ∈ Pos(dir′,σ , i), (w, j) |= ϕ, τi − τ j ∈ I,

and (w,k) �|= ϕ for all k ∈ [j + 1, i − 1] ∩ Pos(dir′,σ , i)

with dir ∈ {g, a}, and dir′ ∈ {g, a, c}. A timed word w satisfies a formula ϕ (we also say that w is a model of ϕ) if (w, 0) |= ϕ .
The timed language LT (ϕ) (resp. ω-timed language Lω

T (ϕ)) of ϕ is the set of finite (resp., infinite) timed words over �P
satisfying ϕ . As shown in Example 4, EC_NTL allows one to express in a natural way real-time LTL-like properties over
non-regular patterns capturing local computations of procedures or the stack content.

Example 4. We consider three relevant examples.

• Real-time total correctness: a bounded-time total correctness requirement for a procedure A specifies that if the pre-
condition p holds when the procedure A is invoked, then the procedure must return within k time units and q must
hold upon return. Such a requirement can be expressed by the following non-recursive formula, where proposition p A

characterizes calls to procedure A: �g
(
(call ∧ p ∧ p A) → (©aq ∧ �a

[0,k]ret)
)
.

• Local bounded-time response properties: the requirement that in the local computation (abstract path) of a procedure A,
every request p is followed by a response q within k time units can be expressed by the following non-recursive formula,
where c A denotes that the control is inside procedure A: �g

(
(p ∧ c A) → �a

[0,k]q
)
.

• Real-time properties over the stack content: the real-time security requirement that a procedure A is invoked only if proce-
dure B belongs to the call stack and within k time units since the activation of B can be expressed as follows (the calls
to procedure A and B are marked by proposition p A and pB , respectively): �g

(
(call ∧ p A) → �c

[0,k] pB
)
.

Expressiveness results. We now compare the expressive power of the formalisms EC_NTL, ECNA, and VPTA with respect to
the associated classes of (ω-)timed languages. It is known that ECA and the logic EC_TL are expressively incomparable [33].
This result trivially generalizes to ECNA and EC_NTL. In fact, to embed incomparability it suffices to consider (ω-)timed
languages over �P = �call ∪ �int ∪ �ret with �call = ∅ and �ret = ∅ (i.e. timed words consisting only of internal actions).
Any ECNA under this restricted alphabet is actually an ECA, and symmetrically the logic EC_NTL corresponds to EC_TL.
As a consequence, under this kind of alphabets ECNA and EC_NTL are incomparable, proving the incomparability of the
formalisms. Moreover, in Theorem 4 we have shown that ECNA are strictly less expressive than VPTA. In Section 5.1, we
show that EC_NTL is subsumed by VPTA (in particular, every EC_NTL formula can be translated into an equivalent VPTA).
The inclusion is strict since the logic EC_NTL is closed under complementation, while VPTA are not [26]. Hence, we can
state the following expressiveness results.

Theorem 7. Over finite (resp., infinite) timed words, EC_NTL and ECNA are expressively incomparable, and EC_NTL is strictly less
expressive than VPTA.

In addition, we consider the expressiveness of the novel timed temporal modalities �a
I , �a

I , and �c
I . We prove that these

modalities add expressive power.

Theorem 8. Let F be the fragment of EC_NTL obtained by disallowing the modalities �a
I , �c

I , and �a
I . Then, F is strictly less expres-

sive than EC_NTL.

Proof. We focus on the case of finite timed words (the case of infinite timed words is similar). Let P = {call, ret} and LT be
the timed language consisting of the finite timed words of the form (σ , τ) such that σ is a well-matched word of the form
14

{call}n · {ret}n for some n > 0, and there is a call position ic of σ such that τir − τic = 1, where ir is the matching-return of
ic in σ . LT can be easily expressed in EC_NTL. On the other hand, one can show that LT is not definable in F (a proof is
given in Appendix C).

5.1. Decision procedures for the logic EC_NTL

In this section we consider the following decision problems for the logic EC_NTL:

• Satisfiability: does a given EC_NTL formula have a finite (resp., infinite) model?
• Visibly model-checking: given a visibly pushdown timed system S over �P (that is a VPTA where all the states are accepting)

and an EC_NTL formula ϕ over P , does LT (S) ⊆LT (ϕ) (resp., Lω
T (S) ⊆Lω

T (ϕ)) hold?

As for satisfiability and visibly model-checking for EC_NTL, we follow an automata-theoretic approach which generalizes
both the automatic-theoretic approach of CaRet [3] and the one for EC_TL [33]. We focus on infinite timed words (the
case of finite timed words is similar). Given an EC_NTL formula ϕ over P , we construct in singly exponential time a
generalized Büchi ECNA Aϕ over an extension of the pushdown alphabet �P accepting suitable encodings of the infinite
models of ϕ . In this way, the problem of model checking a visibly pushdown timed system S against a property expressed by
an EC_NTL formula can be reduced to the problem of visibly model checking against Büchi ECNA investigated in Section 4
(see Theorem 6).

Fix an EC_NTL formula ϕ over P . For each infinite timed word w = (σ , τ) over �P we associate to w an infinite
timed word π = (σe, τ) over an extension of �P , called fair Hintikka sequence, where σe = A0 A1 . . ., and for all i ≥ 0,
Ai is an atom which, intuitively, describes a maximal set of subformulas of ϕ which hold at position i along w . The
notion of atom syntactically captures the semantics of the Boolean connectives and the local fixpoint characterization of
the variants of until (resp., since) modalities in terms of the corresponding variants of the next (resp., previous) modalities.
Additional requirements on the timed word π , which can be easily checked by the transition function of an ECNA, capture
the semantics of the variants of next and previous modalities, and the semantics of the real-time operators. Finally, the
global fairness requirement, which can be easily checked by a standard generalized Büchi acceptance condition, captures the
liveness requirements ψ2 in until subformulas of the form ψ1Ugψ2 (resp., ψ1Uaψ2) of ϕ . In particular, when an abstract
until formula ψ1Uaψ2 is asserted at position i along an infinite timed word w over �P and the MAP ν visiting position i
is infinite, we have to ensure that the liveness requirement ψ2 holds at some position j ≥ i of the MAP ν . To this end, we
use a special proposition p∞ which does not hold at a position i of w iff i has a caller whose matching return is defined.
We now proceed with the technical details. The closure Cl(ϕ) of ϕ is the smallest set containing:

• any proposition p ∈P ∪ {p∞}, formulas �, ©a�, © −a � and all the subformulas of ϕ;
• the formulas ©dir(ψ1Udirψ2) (resp., © −dir′ (ψ1Sdir′ψ2)) for all the subformulas ψ1Udirψ2 (resp., ψ1Sdir′ψ2) of ϕ , where

dir ∈ {g, a} (resp., dir′ ∈ {g, a, c});
• all the negations of the above formulas (we identify ¬¬ψ with ψ).

Note that ϕ ∈ Cl(ϕ) and |Cl(ϕ)| = O (|ϕ|). In the following, elements of Cl(ϕ) are seen as atomic propositions, and we
consider the pushdown alphabet �Cl(ϕ) induced by Cl(ϕ). In particular, for a timed word π over �Cl(ϕ) , we consider the
clock valuation valπi specifying the values of the event clocks xψ , yψ , xa

ψ , ya
ψ , and xc

ψ at position i along π , where ψ ∈ Cl(ϕ).
An atom A of ϕ is a subset of Cl(ϕ) satisfying the following constraints:

• A is a maximal subset of Cl(ϕ) which is propositionally consistent, i.e.:

– � ∈ A and for each ψ ∈ Cl(ϕ), ψ ∈ A iff ¬ψ /∈ A;
– for each ψ1 ∨ ψ2 ∈ Cl(ϕ), ψ1 ∨ ψ2 ∈ A iff {ψ1, ψ2} ∩ A �= ∅;
– A contains exactly one atomic proposition in {call, ret, int};

• for all dir ∈ {g, a} and ψ1Udirψ2 ∈ Cl(ϕ), either ψ2 ∈ A or {ψ1, ©dir(ψ1Udirψ2)} ⊆ A;
• for all dir′ ∈ {g, a, c} and ψ1Sdir′ψ2 ∈ Cl(ϕ), either ψ2 ∈ A or {ψ1, © −dir′ (ψ1Sdir′ψ2)} ⊆ A;
• if ©a� /∈ A, then for all ©aψ ∈ Cl(ϕ), ©aψ /∈ A;
• if © −a � /∈ A, then for all © −a ψ ∈ Cl(ϕ), © −a ψ /∈ A.

We introduce the notion of Hintikka sequence π which corresponds to an infinite timed word over �Cl(ϕ) satisfying
additional constraints. These constraints capture the semantics of the variants of next, previous, and real-time modalities,
and (partially) the intended meaning of proposition p∞ along the associated timed word over �P (the projection of π over
�P ×R+). For an atom A, let Caller(A) be the set of caller formulas © −c ψ in A. For atoms A and A′ , we define a predicate
Next(A, A′) which holds if the global next (resp., global previous) requirements in A (resp., A′) are the ones that hold in A′
(resp., A), i.e.: (i) for all ©gψ ∈ Cl(ϕ), ©gψ ∈ A iff ψ ∈ A′ , and (ii) for all © −g ψ ∈ Cl(ϕ), © −g ψ ∈ A′ iff ψ ∈ A.
Similarly, the predicate AbsNext(A, A′) holds if: (i) for all ©aψ ∈ Cl(ϕ), ©aψ ∈ A iff ψ ∈ A′ , and (ii) for all © −a ψ ∈ Cl(ϕ),
15

© −a ψ ∈ A′ iff ψ ∈ A, and additionally (iii) Caller(A) = Caller(A′). Note that for AbsNext(A, A′) to hold we also require that
the caller requirements in A and A′ coincide consistently with the fact that the positions of a MAP have the same caller (if
any).

Definition 3. An infinite timed word π = (σ , τ) over �Cl(ϕ) , where σ = A0 A1 . . ., is an Hintikka sequence of ϕ , if for all i ≥ 0,
Ai is a ϕ-atom and the following holds:

1. Initial consistency: for all dir ∈ {g, a, c} and © −dir ψ ∈ Cl(ϕ), ¬ ©−dirψ ∈ A0;
2. Global next and previous requirements: Next(Ai, Ai+1);
3. Abstract and caller requirements: we distinguish three cases

• call /∈ Ai and ret /∈ Ai+1: AbsNext(Ai, Ai+1), (p∞ ∈ Ai iff p∞ ∈ Ai+1);
• call /∈ Ai and ret ∈ Ai+1: ©a� /∈ Ai , and (© −a � ∈ Ai+1 iff the matching call of the return position i + 1 is defined);

Moreover, if © −a � /∈ Ai+1, then p∞ ∈ Ai ∩ Ai+1 and Caller(Ai+1) = ∅;
• call ∈ Ai : if succ(a, σ , i) = � then ©a� /∈ Ai and p∞ ∈ Ai ; otherwise

AbsNext(Ai, A j) and (p∞ ∈ Ai iff p∞ ∈ A j), where j = succ(a, σ , i). Moreover, if ret /∈ Ai+1, then Caller(Ai+1) =
{© −c ψ ∈ Cl(ϕ) | ψ ∈ Ai} and (©a� ∈ Ai iff p∞ /∈ Ai+1).

4. Real-time requirements:

• for all dir ∈ {g, a, c} and �dir
I ψ ∈ Cl(ϕ), �dir

I ψ ∈ Ai iff valπi (xdir
ψ) ∈ I;

• for all dir ∈ {g, a} and �dir
I ψ ∈ Cl(ϕ), �dir

I ψ ∈ Ai iff valπi (ydir
ψ) ∈ I .

In order to capture the liveness requirements of the global and abstract until subformulas of ϕ , and fully capture the
intended meaning of proposition p∞ , we consider the following additional global fairness constraint. An Hintikka sequence
π = (A0, t0)(A1, t1) of ϕ is fair if

• for infinitely many i ≥ 0, p∞ ∈ Ai ;
• for all ψ1Ugψ2 ∈ Cl(ϕ), there are infinitely many i ≥ 0 s.t. {ψ2, ¬(ψ1Ugψ2)} ∩ Ai �= ∅, and for all ψ1Uaψ2 ∈ Cl(ϕ), there

are infinitely many i ≥ 0 such that p∞ ∈ Ai and {ψ2, ¬(ψ1Uaψ2)} ∩ Ai �= ∅.

The Hintikka sequence π is initialized if ϕ ∈ A0. Note that according to the intended meaning of proposition p∞ , for
each infinite timed word w = (σ , τ) over �P , p∞ holds at infinitely many positions. Moreover, along σ , there is at a most
one infinite MAP ν , and for such a MAP ν and each position i greater than the starting position of ν , either i belongs to ν
and p∞ holds, or p∞ does not hold. Hence, the fairness requirement for an abstract until subformula ψ1Uaψ2 of ϕ ensures
that whenever ψ1Uaψ2 is asserted at some position i of ν , then ψ2 eventually holds at some position j ≥ i along ν . We
denote by Projϕ the mapping associating to each fair Hintikka sequence π = (A0, t0)(A1, t1) . . . of ϕ the infinite timed word
over �P Proj(π) = (A0 ∩P, t0)(A1 ∩P, t1)

The properties of fair Hintikka sequence of an EC_NTL formula expressed by Lemma 9 and Lemma 10 provide a charac-
terization of the infinite models of ϕ .

Lemma 9. Let π = (A0, t0)(A1, t1) be a fair Hintikka sequence of an EC_NTL formula ϕ and σ = A0 A1 Then, for all i ≥ 0, the
following holds:

1. p∞ /∈ Ai iff i has a caller whose matching return exists;
2. for all ψ ∈ Cl(ϕ) \ {p∞, ¬p∞}, ψ ∈ Ai iff (Projϕ(π), i) |= ψ .

Proof. Let π = (A0, t0)(A1, t1) be a fair Hintikka sequence of ϕ , σ = A0 A1 . . ., and P f be the set of positions i ≥ 0 such
that i has a caller in σ with existing matching return.
Proof of Property 1: let i ≥ 0 and ν be the MAP of σ visiting position i. We need to show that p∞ /∈ Ai iff i ∈ P f . By
Property 3 in Definition 3, either for all positions j visited by ν , p∞ ∈ A j , or for all positions j visited by ν , p∞ /∈ A j . We
distinguish the following cases:

1. ν is finite and leads to an unmatched call: hence, for all positions j visited by ν , j /∈ P f . Since π is an Hintikka sequence,
by Property 3 in Definition 3, ν visits only positions j where p∞ ∈ A j , and the result follows.

2. ν is finite and leads to a non-call position k such that k + 1 is a return position. If k + 1 has no matched call, then for all
positions j visited by ν , j /∈ P f . Moreover, by Property 3 in Definition 3, p∞ ∈ Ak ∩ Ak+1. Hence, ν visits only positions j
where p∞ ∈ A j , and the result follows. Now, assume that k + 1 has a matched call ic . This means that ν starts at ic + 1
and for all positions j visited by ν , j ∈ P f . By Property 3 in Definition 3, p∞ /∈ Aic+1. Hence, ν visits only positions j
where p∞ /∈ A j , and the result follows in this case as well.
16

3. ν is infinite: hence, for all positions j visited by ν , j /∈ P f . By definition of abstract path, ν is the unique infinite MAP of
σ , and there is k ≥ 0 such that for all m ≥ k, either m is visited by ν (hence, m /∈ P f), or m ∈ P f . By the previous case,
if m ∈ P f , then p∞ /∈ Am . Since π is fair, for infinitely many h ≥ 0, p∞ ∈ Ah . Thus, we deduce that for all positions j
visited by ν , p∞ ∈ A j , and the result follows.

Proof of Property 2: let i ≥ 0 and ψ ∈ Cl(ϕ) \ {p∞, ¬p∞}. We prove by induction on the structure of ψ that ψ ∈ Ai iff
(Projϕ(π), i) |= ψ . Here, we focus on the cases where the root (in the syntactic tree) modality of ψ is either Ua or �a

I . The
other cases are similar or simpler. The base case is trivial.

1. ψ = ψ1Uaψ2: first, assume that (Projϕ(π), i) |= ψ . Hence, there exists an infix of the MAP of σ visiting i of the form j0 <

j1 . . . < jn such that j0 = i, (Projϕ(π), jn) |= ψ2 and (Projϕ(π), jk) |= ψ1 for all 0 ≤ k < n. By the induction hypothesis,
ψ2 ∈ A jn and ψ1 ∈ A jk for all 0 ≤ k < n. Since π is an Hintikka sequence, by definition of atom and Property 3 in
Definition 3, it follows that ψ1Uaψ2 ∈ A jh for all 0 ≤ h ≤ n. Hence, being i = j0, we obtain that ψ ∈ Ai and the result
follows. Now assume that ψ ∈ Ai . We need to show that (Projϕ(π), i) |= ψ . Let ν be the MAP of σ visiting position i.
Assume that ν is infinite (the other case being simpler). Let ν i = j0 < j1 . . . be the suffix of ν starting from position i,
where j0 = i. Since π is an Hintikka sequence, by definition of atom and Property 3 in Definition 3, one of the following
holds:

• there is n ≥ 0 such that ψ2 ∈ A jn and ψ1 ∈ A jk for all 0 ≤ k < n. Since i = j0, from the induction hypothesis, we
obtain that (Projϕ(π), i) |= ψ proving the thesis.

• for all n ≥ 0, ψ ∈ A jn and ψ2 /∈ A jn : we show that this case cannot hold. Since the MAP ν is infinite, there is k ≥ 0
such that for all positions m ≥ k, m /∈ P f iff position m is visited by ν i . By Property 1, it follows that there is k ≥ 0
such that for all positions m ≥ k, p∞ ∈ Am iff position m is visited by ν i . Since π is fair, it holds that for infinitely
many m ≥ 0, p∞ ∈ Am and {ψ2, ¬(ψ1Uψ2)} ∩ Am �= ∅. Hence, for infinitely many n ≥ 0, either ψ /∈ A jn or ψ2 ∈ A jn ,
which is a contradiction.

2. ψ = �a
I θ : we have that (Projϕ(π), i) |= ψ if and only if there exists j > i such that j ∈ Pos(a, σ , i), (Projϕ(π), j) |= θ ,

t j − ti ∈ I , and for all k ∈ Pos(a, σ , i) such that i < k < j, (Projϕ(π), k) �|= θ if and only if (from the induction hypothesis)
there exists j > i such that j ∈ Pos(a, σ , i), θ ∈ A j , t j − ti ∈ I , and for all k ∈ Pos(a, σ , i) such that i < k < j, θ /∈ Ak if and
only if valπi (ya

θ) ∈ I if and only if (from Property 4 in Definition 3) �a
I θ ∈ Ai . �

Lemma 10. For all EC_NTL formulas ϕ , the mapping Projϕ is a bijection between the set of fair Hintikka sequences of ϕ and the set of
infinite timed words over �P .

Proof. First, we show that Projϕ is injective. Let π and π ′ two fair Hintikka sequences such that Projϕ(π) = Projϕ(π ′) =
(σ , τ). Hence, π = (A0, τ0)(A1, τ1) . . . and π ′ = (A′

0, τ0)(A′
1, τ1) By Lemma 9, for all i ≥ 0, Ai = A′

i . Hence, π = π ′ , and
the thesis holds.

It remains to show that Projϕ is surjective. Let w = (σ , τ) be an infinite timed word over �P . For each i ≥ 0, let Ai be
the subset of Cl(ϕ) defined as follows:

• for all ψ ∈ Cl(ϕ) \ {p∞, ¬p∞}, ψ ∈ Ai if (w, i) |= ψ , and ¬ψ ∈ Ai otherwise.
• p∞ /∈ Ai iff i has a caller whose matching return exists.

Let π = (A0, τ0)(A1, τ1) By construction, for all i ≥ 0, Ai ∩ P = σi . Thus, it suffices to show that π is a fair Hintikka
sequence of ϕ . By the semantics of EC_NTL, it easily follows that for all i ≥ 0, Ai is an atom of ϕ , and π satisfies Proper-
ties 1–3 in the definition of Hintikka sequence of ϕ (Definition 3). Now, let us consider Property 4 in Definition 3 concerning
the real-time formulas in Cl(ϕ). Let us focus on real-time formulas of the form �a

I ψ ∈ Cl(ϕ) (the other cases being similar).
We have that �a

I ψ ∈ Ai if and only if (by construction) (w, i) |= �a
I ψ if and only if (by the semantics of EC_NTL) there

exists j > i such that j ∈ Pos(a, σ , i), (w, j) |= ψ , t j − ti ∈ I , and for all k ∈ Pos(a, σ , i) such that i < k < j, (w, k) �|= ψ if and
only if (by construction) there exists j > i such that j ∈ Pos(a, σ , i), ψ ∈ A j , t j − ti ∈ I , and for all k ∈ Pos(a, σ , i) such that
i < k < j, ψ /∈ Ak if and only if (by definition of valπi) valπi (ya

ψ) ∈ I . Hence, Property 4 of Definition 3 holds, and π is an
Hintikka sequence of ϕ .

We show now that π is fair. By construction and EC_NTL semantics, the fulfillment of the fairness constraint about the
global until modalities easily follows from standard arguments. Now, let consider the non-local constraint on the proposition
p∞ . We need to show that for infinitely many i ≥ 0, p∞ ∈ Ai . Since for an infinite word over a pushdown alphabet, either
there is an infinite MAP, or there are an infinite number of unmatched call positions, or there are an infinite number of
unmatched return positions, by construction, the result trivially follows. We consider now the fairness requirements on the
abstract until modalities. Let ψ1Uaψ2 ∈ Cl(ϕ). We need to show that there are infinitely many i ≥ 0 such that p∞ ∈ Ai and
{ψ2, ¬(ψ1Uψ2)} ∩ Ai �= ∅. By the above observation, one of the following holds:
17

• either the set H of unmatched call positions in σ is infinite, or the set K of unmatched return positions in σ is infinite:
let us consider the second case (the first one being similar). By construction, for all i ∈ K , p∞ ∈ Ai . Moreover, if (w, i) |=
ψ1Uaψ2, then (w, j) |= ψ2 for some position j ≥ i along the MAP associated with position i. Since p∞ ∈ Ai , p∞ ∈ A j as
well. Hence, by construction, the result follows.

• σ has an infinite MAP ν . By construction, for all positions i visited by ν , p∞ ∈ Ai . Thus, by the semantics of the abstract
until modalities, it follows that there are infinitely many positions j along ν such that {ψ2, ¬(ψ1Uψ2)} ∩ A j �= ∅, and the
result follows. �
The final step is to show that the notion of initialized fair Hintikka sequence can be easily captured by a generalized

Büchi ECNA. To this end we construct a generalized Büchi ECNA Aϕ over �Cl(ϕ) accepting the set of initialized fair Hintikka
sequences of ϕ . The set of Aϕ states is the set of atoms of ϕ , and a state A0 is initial if ϕ ∈ A0 and A0 satisfies Property 1
(initial consistency) in Definition 3. In the transition function, we require that the input symbol coincides with the source
state in such a way that in a run, the sequence of control states corresponds to the untimed part of the input. Moreover,
by the transition function, the automaton checks that the input word is an Hintikka sequence. In particular, for the abstract
next and abstract previous requirements (Property 3 in Definition 3), whenever the input symbol A is a call, the automaton
pushes on the stack the atom A. In such a way, on reading the matching return Ar (if any) of the call A, the automaton pops
A from the stack and can locally check that AbsNext(A, Ar) holds. In order to ensure the real-time requirements (Property 4
in Definition 3), Aϕ uses the recorder clocks and predictor clocks. Finally, the generalized Büchi acceptance condition is
exploited for checking that the input initialized Hintikka sequence is fair.

Theorem 11. Given an EC_NTL formula ϕ , one can construct in singly exponential time a generalized Büchi ECNA Aϕ having 2O (|ϕ|)
states, 2O (|ϕ|) stack symbols, set of constants Constϕ , and O (|ϕ|) clocks. If ϕ is non-recursive, then Aϕ accepts the infinite models of
ϕ; otherwise, Aϕ accepts the set of initialized fair Hintikka sequences of ϕ .

Proof. Fix an EC_NTL formula ϕ . For each atom A of ϕ , we denote by 	A the set of clock constraints θ such that the set
of atomic constraints of θ has the form

⋃
�dir

I ψ∈A

{xdir
ψ ∈ I} ∪

⋃
¬�dir

I ψ∈A

{xdir
ψ ∈ Î} ∪

⋃
�dir

I ψ∈A

{ydir
ψ ∈ I} ∪

⋃
¬�dir

I ψ∈A

{ydir
ψ ∈ Î}

where ̂I is either {�} or a maximal interval over R+ disjunct from I . The generalized Büchi ECNA Aϕ over �Cl(ϕ) accepting
the set of initialized fair Hintikka sequences of ϕ is Aϕ = (�Cl(ϕ), Q , Q 0, Cϕ, Q ∪ {⊥}, �, F), where Q is the set of atoms
of ϕ , Cϕ is the set of event clocks associated with Cl(ϕ) and

• A0 ∈ Q 0 iff ϕ ∈ A0 and for all © −dir ψ ∈ Cl(ϕ), ¬ ©−dirψ ∈ A0 with dir ∈ {g, a, c}.
• F = {F∞} ∪ {Fψ1Uψ2 | ψ1Uψ2 ∈ Cl(ϕ)} ∪ {Fψ1Uaψ2 | ψ1Uaψ2 ∈ Cl(ϕ)}, where

– F∞ consists of the atoms A such that p∞ ∈ A;
– for all ψ1Uψ2 ∈ Cl(ϕ), Fψ1Uψ2 consists of the atoms A s.t. {ψ2, ¬(ψ1Uψ2)} ∩ A �= ∅;
– for all ψ1Uaψ2 ∈ Cl(ϕ), Fψ1Uaψ2 consists of the atoms A such that p∞ ∈ A and {ψ2, ¬(ψ1Uaψ2)} ∩ A �= ∅.

The transition function � = �c ∪ �r ∪ �i is as follows:

• Call transitions: �c consists of transitions of the form (Ac, Ac, θ, A′, Ac) such that θ ∈ 	Ac , call ∈ Ac , Next(Ac, A′), and
(p∞ ∈ Ac if ©a� /∈ Ac). Moreover, if ret /∈ A′ , then Caller(A′) = {© −c ψ ∈ Cl(ϕ) | ψ ∈ Ac} and (©a� ∈ Ac iff p∞ /∈ A′).

• Pop transitions: �r consists of transitions of the form (Ar , Ar, θ, A⊥
c , A′) such that θ ∈ 	Ar , ret ∈ Ar , and Next(Ar, A′).

Moreover, we require:

– if ret /∈ A′ , then AbsNext(Ar, A′) and (p∞ ∈ Ar iff p∞ ∈ A′);
– if ret ∈ A′ , then ©a� /∈ Ar ; if © −a � /∈ A′ , then p∞ ∈ Ar ∩ A′ , and Caller(A′) = ∅;
– if A⊥

c = ⊥, then © −a � /∈ Ar ; otherwise, AbsNext(A⊥
c , Ar) and (p∞ ∈ A⊥

c iff p∞ ∈ Ar) (note that in this case, since
� ∈ A⊥

c , © −a � ∈ Ar).

• Internal transitions: �i consists of transitions of the form (Ai, Ai, θ, A′) s.t. θ ∈ 	Ai , int ∈ Ai , and Next(Ai, A′). Moreover
we require:

– if ret /∈ A′ , then AbsNext(Ai, A′) and (p∞ ∈ Ai iff p∞ ∈ A′);
– if ret ∈ A′ , then ©a� /∈ Ai ; if © −a � /∈ A′ , then p∞ ∈ Ai ∩ A′ , and Caller(A′) = ∅.
18

The conditions on the set of initial states reflect the initialization requirement and Property 1 in Definition 3, while
the transition function reflects the requirements associated with Properties 2–4 of Definition 3. Finally, the generalized
Büchi condition corresponds to the fairness requirement. The unique non-obvious feature is the requirement in Property 3
of Definition 3 that along an Hintikka sequence (A0, t0)(A1, t1) . . ., for all call positions i ≥ 0, ©a� ∈ Ai iff the matching
return of i along π is defined. To prove the claim that this requirement is fulfilled by the timed words accepted by Aϕ we
reason by contradiction. Assume that there is an accepting run of Aϕ over an infinite timed word π = (A0, t0)(A1, t1) . . .
such that Ai is an atom for all i ≥ 0 and for some call position ic , one of the following holds: either the matching return
of ic is defined and ©a� /∈ Aic , or ic is an unmatched call and ©a� ∈ Aic . Let us first examine the first case. Let ir be
the matching return of ic along π . The transition function of Aϕ ensures that AbsNext(Aic , Air). Hence, since � ∈ Air , it
holds that ©a� ∈ Aic , which is a contradiction. Thus, the first case cannot hold. Now, let us consider the second case. Since
©a� ∈ Aic and ic is an unmatched call, the transition function ensures that ¬p∞ ∈ A j for all j > ic . On the other hand, the
first component F∞ of the generalized Büchi acceptance condition guarantees that for infinitely many i, p∞ ∈ Ai . Thus, we
have a contradiction and the claim is proved.

Hence, Aϕ accepts the set of initialized fair Hintikka sequences of ϕ . Note that Aϕ has 2O (|ϕ|) states and stack symbols,
set of constants Constϕ , and O (|ϕ|) event clocks.

If ϕ is non-recursive, then the effective clocks are only associated with propositions in P . Thus, by projecting the input
symbols of the transition function of Aϕ over P , by Proposition 10, we obtain a generalized Büchi ECNA accepting the
infinite models of ϕ . �

Finally, we can state the main result of this section.

Theorem 12. Given an EC_NTL formula ϕ over �P , one can construct in singly exponential time a VPTA, with 2O (|ϕ|3) states and
stack symbols, O (|ϕ|) clocks, and set of constants Constϕ , which accepts LT (ϕ) (resp., Lω

T (ϕ)). Moreover, satisfiability and visibly
model-checking for EC_NTL over finite (resp., infinite) timed words are Exptime-complete.

Proof. We focus on the case of infinite timed words. Fix an EC_NTL formula ϕ over �P . By Theorem 11, one can construct
a generalized Büchi ECNA Aϕ over �Cl(ϕ) having 2O (|ϕ|) states and stack symbols, set of constants Constϕ , and accepting
the set of initialized fair Hintikka sequences of ϕ . By Theorem 5, one can construct a generalized Büchi VPTA A′

ϕ over
�Cl(ϕ) accepting Lω

T (Aϕ), having 2O (|ϕ|2·k) states and stack symbols, O (k) clocks, and set of constants Constϕ , where k is
the number of atomic constraints used by Aϕ . Note that k = O (|ϕ|). Thus, by projecting the input symbols of the transition
function of A′

ϕ over P , we obtain a (generalized Büchi) VPTA satisfying the first part of Theorem 12.
For the upper bounds of the second part of Theorem 12, observe that by [16,1] the emptiness problem of generalized

Büchi VPTA is solvable in time O (n4 · 2O (m·log Km)), where n is the number of states, m is the number of clocks, and K is the
largest constant used in the clock constraints of the automaton (hence, the time complexity is polynomial in the number
of states). Now, given a Büchi VPTA S over �P where all the states are accepting and an EC_NTL formula ϕ over �P ,
model-checking S against ϕ reduces to check emptiness of the language Lω

T (S) ∩Lω
T (A′¬ϕ), where A′¬ϕ is the generalized

Büchi VPTA associated with ¬ϕ . Thus, since Büchi VPTA are polynomial-time closed under intersection, the membership in
Exptime for satisfiability and visibly model-checking of EC_NTL follows. The matching lower bounds directly follow from
Exptime-completeness of satisfiability and visibly model-checking for the logic CaRet [3] which is subsumed by EC_NTL. �
6. Nested metric temporal logic (NMTL)

Metric temporal logic (MTL) [27] is a well-known timed linear-time temporal logic which extends LTL with time con-
straints on until modalities. In this section, we introduce an extension of MTL with past, we call nested MTL (NMTL, for
short), by means of timed versions of CaRet modalities. For the given set P of atomic propositions containing the special
propositions call, ret, and int, the syntax of nested NMTL formulas ϕ is as follows:

ϕ := � ∣∣ p
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ
∣∣ ϕ Û

dir
I ϕ

∣∣ ϕ Ŝ
dir′
I ϕ

where p ∈P , I is an interval in R+ with endpoints in N ∪ {∞}, dir ∈ {g, a} and dir′ ∈ {g, a, c}. The operators Ûg
I and Ŝg

I are
the standard timed until and timed since MTL modalities, respectively, Ûa

I and Ŝa
I are their non-regular abstract versions, and

Ŝ
c
I is the non-regular caller version of Ŝg

I . MTL with past corresponds to the fragment of NMTL obtained by disallowing the
timed abstract and caller modalities, while standard MTL or future MTL is the fragment of MTL with past where the global
timed since modalities are disallowed.

Given an NMTL formula ϕ , a timed word w = (σ , τ) over �P and a position 0 ≤ i < |w|, the satisfaction relation
(w, i) |= ϕ is defined as follows (we omit the clauses for the atomic propositions and Boolean connectives):
19

(w, i) |= ϕ1Û
dir
I ϕ2 ⇔ there is j > i s.t. j ∈ Pos(dir,σ , i), (w, j) |= ϕ2, τ j − τi ∈ I,

and (w,k) |= ϕ1 for all k ∈ [i + 1, j − 1] ∩ Pos(dir,σ , i)

(w, i) |= ϕ1Ŝ
dir′
I ϕ2 ⇔ there is j < i s.t. j ∈ Pos(dir′,σ , i), (w, j) |= ϕ2, τi − τ j ∈ I,

and (w,k) |= ϕ1 for all k ∈ [j + 1, i − 1] ∩ Pos(dir′,σ , i).

In the following, we use some derived operators:

• for dir ∈ {g, a}, ̂�dir
I ϕ := � ̂Udir

I ϕ and �̂dir
I ϕ := ¬�̂dir

I ¬ϕ;

• for dir ∈ {g, a, c}, �̂−dir
I ϕ := � ̂Sdir

I ϕ and �̂dir
I ϕ := ¬�̂−dir

I ¬ϕ .

Let I(0,∞) be the set of nonsingular intervals J in R+ with endpoints in N ∪ {∞} such that either J is unbounded, or
J is left-closed with left endpoint 0. Such intervals can be replaced by expressions of the form ∼ c for some c ∈ N and
∼ ∈ {<, ≤, >, ≥}. For a generic interval I with left endpoint cL ∈ N and right endpoint cR ∈ N ∪ {∞}, we denote by L(I)
the unbounded interval having cL as left endpoint and such that cL ∈ L(I) iff cL ∈ I , and by R(I) the left-closed interval
having as endpoints 0 and cR and such that cR ∈ R(I) iff cR ∈ I . Note that L(I), R(I) ∈ I(0,∞) . We focus on the following
two fragments of NMTL:

• NMITL(0,∞): obtained by allowing only intervals in I(0,∞);
• Future NMTL: obtained by disallowing the variants of timed since modalities.

Example 5. We express the real-time LTL-like properties proposed in Example 4. Note that all the formulas are NMITL(0,∞)

formulas.

• Real-time total correctness. If the pre-condition p holds when the procedure A is invoked, then the procedure must return
within k time units and q must hold upon return (p A marks calls to procedure A): �̂g

[0,∞]
(
(call∧ p ∧ p A) → (¬� ̂Ua

[0,k] q ∧
ret)

)
.

• Local bounded-time response properties. In the local computation of a procedure A, every request p is followed by a re-
sponse q within k time units (c A denotes that the control is inside procedure A): �̂g

[0,∞]
(
(p ∧ c A) → �̂a

[0,k] q
)
.

• Real-time properties over the stack content. A procedure A is invoked only if procedure B belongs to the call stack and within
k time units since the activation of B (the calls to A and B are marked by p A and pB , respectively): �̂g

[0,∞]
(
(call ∧ p A) →

�̂−c
[0,k] pB

)
.

It is known that for the considered pointwise semantics, MITL(0,∞) [4] (the fragment of MTL allowing only intervals in
I(0,∞)) and EC_TL are equally expressive [33]. In the following, we show that the result generalizes to the nested extensions
of MITL(0,∞) and EC_TL.

Moreover, it is well-known that satisfiability of MTL with past is undecidable [6,30]. Undecidability already holds for
future MTL interpreted over infinite timed words [30]. However, over finite timed words, satisfiability of future MTL instead
is decidable [31]. In Subsection 6.1, we show that the addition of the future abstract timed modalities to future MTL makes
the satisfiability problem undecidable also over finite timed words.

Given two formulas ϕ1 and ϕ2 in NMTL + EC_NTL (i.e., the extension of NMTL with the temporal modalities of EC_NTL),
ϕ1 and ϕ2 are globally equivalent, denoted ϕ1 ≡ ϕ2, if for each timed word w over �P and 0 ≤ i < |w|, (w, i) |= ϕ1 iff
(w, i) |= ϕ2. We first show that EC_NTL is subsumed by NMITL(0,∞) . For this, we consider the following global equivalences,
which easily follow from the semantics of EC_NTL and NMITL(0,∞)and allow the expression of the temporal modalities of
EC_NTL in terms of the temporal modalities of NMITL(0,∞) .

Proposition 4. For all formulas ϕ1 and ϕ2 in NMTL + EC_NTL, the following holds, for dir ∈ {g, a}, dir′ ∈ {g, a, c}, and ∼ ∈ {<, ≤, >,

≥}:

• ©dirϕ1 ≡ ⊥ ̂Udir
≥0 ϕ1 and © −dir′ ϕ1 ≡ ⊥ ̂Sdir′

≥0 ϕ1;

• ϕ1Udirϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ (ϕ1Û
dir
≥0ϕ2)) and ϕ1Sdir′ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ (ϕ1Ŝ

dir′
≥0 ϕ2));

• �dir∼cϕ1 ≡ ¬ϕ1Û
dir
∼c ϕ1 and �dir′∼c ϕ1 ≡ ¬ϕ1Ŝ

dir′
∼c ϕ1;

• �dir
I ϕ1 ≡ �dir

L(I)ϕ1 ∧ �dir
R(I)ϕ1 and �dir′

I ϕ1 ≡ �dir′
L(I)ϕ1 ∧ �dir′

R(I)ϕ1 .

On the opposite side, for the expressibility of NMITL(0,∞) into EC_NTL, we consider the following global equivalences
which allow us to express the temporal modalities of NMITL(0,∞) in terms of the temporal modalities of EC_NTL.

Proposition 5. For all formulas ϕ1 and ϕ2 in NMTL + EC_NTL, the following holds, where c ∈ N , dir ∈ {g, a}, dir′ ∈ {g, a, c},
≺∈ {<,≤}, �∈ {>, ≥}, ≥−1 is <, and >−1 is ≤:
20

1. ϕ1Û
dir
≺cϕ2 ≡ ©dir(ϕ1Udirϕ2) ∧ �dir≺cϕ2;

2. ϕ1Ŝ
dir′
≺c ϕ2 ≡ © −dir′ (ϕ1Sdir′ϕ2) ∧ �dir′≺c ϕ2;

3. ϕ1Û
dir
�cϕ2 ≡ �̂dir

�−1c
(ϕ1 ∧ ©dir(ϕ1Udirϕ2)) ∧ ©dir(ϕ1Udirϕ2);

4. ϕ1Ŝ
dir′
�c ϕ2 ≡ �̂dir′

�−1c(ϕ1 ∧ © −dir′ (ϕ1Sdir′ϕ2)) ∧ © −dir′ (ϕ1Sdir′ϕ2).

Proof. The global equivalences in items 1 and 2 easily follow from the semantics of NMITL(0,∞) and EC_NTL. Now, let us
consider items 3 and 4. We focus on the abstract until modalities and assume that � is > (the other cases being similar).
Let w = (σ , τ) be a timed word over �P and 0 ≤ i < |w|. We need to show that (w, i) |= ϕ1Û

a
>cϕ2 ⇔ (w, i) |= θ , where

θ = �̂a≤c(ϕ1 ∧ ©a(ϕ1Uaϕ2)) ∧ ©a(ϕ1Uaϕ2). We consider the left implication ⇐ (the right implication ⇒ being simpler).
Assume that (w, i) |= θ . Let P≤c be the set of positions j ∈ Pos(σ , a, i) such that j > i and τ j − τi ≤ c. There are two cases:

• P≤c is empty: since (w, i) |= ©a(ϕ1Uaϕ2), there is j ∈ Pos(σ , a, i) such that j > i, (w, j) |= ϕ2 and (w, h) |= ϕ1 for all
h ∈ Pos(σ , a, i) ∩ [i + 1, j − 1]. Since P≤c = ∅, we have that τ j − τi > c. Hence, (w, i) |= ϕ1Û

a
>cϕ2.

• P≤c is not empty: let j be the greatest position of P≤c (note that such a position exists). Since (w, i) |= �̂a≤c(ϕ1 ∧
©a(ϕ1Uaϕ2)), we have that (w, h) |= ϕ1 for all h ∈ Pos(σ , a, i) ∩ [i + 1, j] and there exists � > j such that � ∈ Pos(σ , a, i),
(w, �) |= ϕ2 and (w, k) |= ϕ1 for all h ∈ Pos(σ , a, i) ∩ [j + 1, � − 1]. Since � /∈ P≤c , we have that τ� − τi > c. It follows that
(w, i) |= ϕ1Û

a
>cϕ2, proving the assertion. �

Propositions 4 and 5 provide linear-time translations from EC_NTL into NMITL(0,∞) , and vice versa, which preserve
global equivalence. Therefore, as a corollary of Theorem 12, we can fix the complexity of decision problems for NMITL(0,∞) .

Theorem 13. EC_NTL and NMITL(0,∞) are expressively equivalent. Satisfiability and visibly model-checking for NMITL(0,∞) over
finite (resp., infinite) timed words are Exptime-complete.

6.1. Undecidability of future NMTL over finite timed words

Finally, in this section we show that future abstract timed modalities add expressiveness to future MTL over finite words
leading to the undecidability of the satisfiability problem.

Theorem 14. Satisfiability of future NMTL over finite timed words is undecidable.

We prove undecidability by a reduction from the halting problem for Minsky 2-counter machines [29]. We recall that
a Minsky 2-counter machine M which is a tuple M = (μ, Inst, �init, �halt), where μ is a finite set of labels (or program
counters), �init, �halt ∈ μ, and Inst is a mapping assigning to each label � ∈ μ \ {�halt} an instruction for either

• increment: ch := ch + 1; goto �r , or
• decrement: if ch > 0 then ch := ch − 1; goto �s else goto �t

where h ∈ {1, 2}, �s �= �t , and �r, �s, �t ∈ μ.
The machine M induces a transition relation −→ over configurations of the form (�, n1, n2), where � is a label of an

instruction to be executed and n1, n2 ∈ N represent current values of counters c1 and c2, respectively. A computation of
M is a finite sequence C1 . . . Ck of configurations such that Ci −→ Ci+1 for all i ∈ [1, k − 1]. The machine M halts if there
is a computation starting at (�init, 0, 0) and leading to configuration (�halt, n1, n2) for some n1, n2 ∈N . The halting problem
is to decide whether a given machine M halts. The problem is undecidable [29]. We adopt the following notation, for
� ∈ μ \ {�halt}:

• if Inst(�) is an increment instruction of the form ch := ch + 1; goto �r , we define c(�) := ch and succ(�) := �r ;
• if Inst(�) is a decrement instruction of the form if ch > 0 then ch := ch − 1; goto �r else goto �s , we define

c(�) := ch , dec(�) := �r , and zero(�) := �s .

We encode the computations of M by using finite words over the pushdown alphabet �P , where P = μ ∪ {c1, c2} ∪
{call, ret, int}. For a finite word σ = a1 . . .an over μ ∪ {c1, c2}, we denote by σ R the reverse of σ , and by (call, σ)

(resp., (ret, σ)) the finite word over �P given by {a1, call} . . . {an, call} (resp., {a1, ret} . . . {an, ret}). We associate to each
M-configuration (�, n1, n2) two distinct encodings: the call-code which is the finite word over �P given by (call, �cn1

1 cn2
2),

and the ret-code which is given by (ret, (�cn1
1 cn2

2)R) intuitively corresponding to the matched-return version of the call-
code. A computation π of M is then represented by the well-matched word (call, σπ) · (ret, (σπ)R), where σπ is obtained
by concatenating the call-codes of the individual configurations along π . An example of encoding for configurations and
computations is given in Fig. 5.
21

Fig. 5. The encoding of a computation of a Minsky 2-counter machine: (a) the untimed word encoding a computation; (b) the timing constraints of encoding
(timestamps are omitted, � is the time distance); (c) the matching of the call encoding and reverse encoding of the configuration change for the execution
of an increment instruction � : c1 := c1 +1; goto �′ . A future MTL formula checks that n′ ≥ n +1 and m ≥ m′ on the call encoding and a future MTL formula
checks that n′ ≤ n + 1 and m ≤ m′ on the ret encoding.

Formally, let Lhalt be the set of finite words over �P of the form (call, σ) · (ret, σ R) (well-matching requirement) such
that the call part (call, σ) satisfies:

• Consecution: (call, σ) is a sequence of call-codes, and for each pair (C, C ′) of adjacent call-codes, with C preceding C ′ ,
the associated M-configurations, say (�, n1, n2) and (�′, n′

1, n
′
2), satisfy: � �= �halt and

– if Inst(�) is an increment instruction and c(�) = ch , then �′ = succ(�) and n′
h > 0; if instead Inst(�) is a decrement

instruction and c(�) = ch , then either �′ = zero(�) and nh = n′
h = 0, or �′ = dec(�) and nh > 0.

• Initialization: σ has a prefix of the form �init · � for some � ∈ μ.
• Halting: �halt occurs along σ .
• For each pair (C, C ′) of adjacent call-codes in (call, σ), with C preceding C ′ and s.t. C ′ is not halting, the associated

M-configurations, say (�, n1, n2) and (�′, n′
1, n

′
2), satisfy (for technical convenience, we do not require that the counters

in a configuration having as successor an halting configuration are correctly updated):

– Increment requirement: if Inst(�) is an increment instruction and c(�) = ch , then n′
h = nh + 1 and n′

3−h = n3−h;
– Decrement requirement: if Inst(�) is a decrement instruction and c(�) = ch , then n′

3−h = n3−h: moreover, if �′ = dec(�),
then n′

h = nh − 1.

Evidently, M halts iff Lhalt �= ∅. We construct in polynomial time a future NMTL formula ϕM over P such that the set of
untimed components σ in the finite timed words (σ , τ) satisfying ϕM is exactly Lhalt proving the assertion of Theorem 14.
In the construction of ϕM , we exploit the future LTL modalities and the abstract next modality ©a which can be expressed
in future NMTL. The formula ϕM is ϕM := ϕWM ∧ϕLTL ∧ϕTime where ϕWM , ϕLTL and ϕTime are defined as follows. The formula
ϕWM is a future CaRet formula ensuring the well-matching requirement:

ϕWM := call ∧ ©a(¬ ©g �) ∧ �g¬int ∧ ¬ �g (ret ∧ �gcall)

The conjunct ϕLTL is a standard future LTL formula ensuring the consecution, initialization, and halting requirements. The
definition of ϕLTL is straightforward and we omit the details of the construction. Finally, we illustrate the construction of
the conjunct ϕTime which is a future MTL formula enforcing the increment and decrement requirements by means of time
constraints. Let w be a finite timed word over �P . By formulas ϕWM and ϕLTL , we can assume that the untimed part
of w has the form (call, σ) · (ret, σ R) and that the call part (call, σ) satisfies the consecution, initialization, and halting
requirements. The formula ϕTime ensures the following additional requirements:

• Strict time monotonicity: the time distance between distinct positions is always greater than zero. This can be expressed
by the formula �g(¬�̂g

[0,0]�).
• 1-Time distance between adjacent labels: the time distance between the μ-positions of two adjacent call-codes (resp., ret-

codes) is 1. This can be expressed as follows:∧
t∈{call,ret}

�g
(
[t ∧

∨
�∈μ

� ∧ �̂g(t ∧
∨
�∈μ

�)] → �̂g
[1,1](t ∧

∨
�∈μ

�)
)
.

• Increment and decrement requirements: fix a call-code C along the call part immediately followed by some non-halting
call-code C ′ . Let (�, n1, n2) (resp., (�′, n′ , n′)) be the configuration encoded by C (resp., C ′), and c(�) = ch (for some
1 2

22

h = 1, 2). Note that � �= �halt . First, assume that Inst(�) is an increment instruction. We need to enforce that n′
h = nh + 1

and n′
3−h = n3−h . For this, we first require that

(*) for every call-code C with label �, every c3−h-position has a future call c3−h-position at (time) distance 1, and every
ch-position has a future call ch-position j at distance 1 such that j + 1 is still a call ch-position.

By the strict time monotonicity and the 1-Time distance between adjacent labels, requirement (*) ensures that n′
h ≥

nh + 1 and n′
3−h ≥ n3−h . To guarantee that n′

h ≤ nh + 1 and n′
3−h ≤ n3−h , we crucially exploit the return part (ret, σ R)

corresponding to the reverse of the call part (call, σ). In particular, along the return part, the reverse of C ′ is immediately
followed by the reverse of C . Thus, we additionally require that

(**) for every non-first ret-code R which is immediately followed by a ret-code with label �, each c3−h-position has a
future c3−h-position at distance 1, and each non-first ch-position of R has a future ch-position at distance 1.

Requirements (*) and (**) can be expressed by the following two formulas.

�g
(
(call ∧ �) → �̂g

[0,1][(c3−h → �̂g
[1,1]c3−h) ∧ (ch → �̂g

[1,1](ch ∧ ©gch))]
)

∧
�′∈μ

�g
(
(ret ∧ �′ ∧ �̂g

[2,2]�) −→ �̂g
[0,1]

([c3−h → �̂g
[1,1]c3−h] ∧ [(ch ∧ ©gch) → ©g�̂g

[1,1]ch]
))

Now, assume that Inst(�) is a decrement instruction. We need to enforce that n′
3−h = n3−h , and whenever �′ = dec(�),

then n′
h = nh − 1. This can be ensured by requirements similar to Requirements (*) and (**), and we omit the details.

This concludes the proof of Theorem 14.

7. Conclusions

In this paper we have introduced and studied ECNA, a robust subclass of VPTA allowing the expression of meaning-
ful non-regular timed properties of recursive systems. We proved that ECNA extends the expressivity of other subclass of
robusts VPTA though preserving the same complexity cost. The closure under Boolean operations, and the decidability of
languages inclusion and visibly model-checking makes ECNA amenable to specification and verification purposes. For this
reason we have investigated the possibility of introducing real-time context-free features also in the context of linear-time
temporal logics. In particular we have introduced two timed linear-time temporal logics for specifying real-time context-free
requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (EC_NTL) and Nested Metric Temporal
Logic (NMTL). We have shown that while EC_NTL, which is the natural counterpart of ECNA, is decidable and tractable,
NMTL is undecidable even for its future fragment interpreted over finite timed words. Moreover, we have established that
the MITL(0,∞)-like fragment NMITL(0,∞) of NMTL is decidable and tractable. As future research, we shall investigate decid-
ability and complexity issues for the more general fragment of NMTL obtained by disallowing singular intervals. Such a
fragment represents the NMTL counterpart of Metric Interval Temporal Logic (MITL), a decidable (and Expspace-complete)
fragment of MTL [4] which is strictly more expressive than MITL(0,∞) [33].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Removal of abstract recorder clocks in nested VPTA

Theorem 1 (Removal of abstract recorder clocks). Given a generalized Büchi nested VPTA A with set of event clocks C and an abstract
recorder clock xa

b ∈ C , one can construct in singly exponential time a generalized Büchi nested VPTA Axa
b

with set of event clocks

C \ {xa
b} such that LT (Axa

b
) = LT (A) and KAxa

b
= KA . Moreover, Axa

b
has O (n · 2O (p)) states and m + O (p) clocks, where n is the

number of A-states, m is the number of standard A-clocks, and p is the number of event-clock atomic constraints on xa
b used by A.

In the following, we provide the proof of Theorem 1. Fix a generalized Büchi nested VPTA A = (�, Q , Q 0, C ∪ Cst ,
 ∪
{�}, �, F) such that xa

b ∈ C . We can assume that for each transition δ of A, there is exactly one atomic constraint xa
b ∈ I on

xa
b used as conjunct in the clock constraint of δ. We construct a generalized Büchi nested VPTA Axa

b
equivalent to A whose

set of event clocks is C \ {xa
b}, and whose set of standard clocks is Cst ∪ Cnew , where Cnew consists of the fresh standard

clocks z�� (resp., z≺u) for each lower-bound constraint xa � � (resp., upper-bound constraint xa ≺ u) of A involving xa .
b b b

23

We first explain the basic ideas of the translation. Note that a global recorder clock xg
b can be trivially converted in a

standard clock by resetting it whenever b occurs along the input word. This approach is not correct for the abstract recorder
clock xa

b , since along a MAP ν , there may be consecutive positions ic and ir such that ic is a call with matching return ir ,
and b may occur along positions in [ic + 1, ir − 1] which are associated with MAP distinct from ν . Thus, as in the case of
the abstract predictor clock ya

b , we replace xa
b with the set Cnew of fresh standard clocks defined above. For a given infinite

word σ over �, a MAP ν of σ and a position i of ν , we denote by infixb(ν, i) the infix of ν defined as follows: if there
exists the smallest b-position j > i visited by ν , then infixb(ν, i) is the infix of ν between the next position of i along ν and
the position j; otherwise, infixb(ν, i) is the suffix of ν starting from the next position of i along ν (note that in this case
infixb(ν, i) is empty if i is the last position of ν). The main idea of the construction is that when b occurs at the current
position i of the input word, the simulating automaton Axa

b
guesses the set of lower-bound and upper-bound constraints

on xa
b which will be used by A along the portion infixb(ν, i) of the current MAP.

First, let us consider lower-bound constraints xa
b � �. Assume that b occurs at position i of the input word for the first

time and that i is not the last position of the current MAP ν (hence, infixb(ν, i) is not empty). Then, Axa
b

guesses the set of
lower-bound constraints xa

b � � which will be used by A along infixb(ν, i). For each of such guessed constraints xa
b � �, the

associated new clock z�� is reset; moreover, if i is not a call (resp., i is a call), Axa
b

carries the obligation �� in its control
state (resp., pushes the obligation �� onto the stack). On visiting the positions j in infixb(ν, i), Axa

b
checks that the guess is

correct by verifying that for the current lower-bound constraint xa
b � �′ used by A, ��′ is in the current set of obligations,

and constraint z��′ � �′ holds. Moreover, at position j, Axa
b

guesses whether the constraint xa
b � �′ will be again used along

infixb(ν, i), or not. In the first case, the obligation ��′ is kept, otherwise, it is discarded. The crucial observation is that:
If a call ic ≥ i occurs along ν before the last position (if any) of infixb(ν, i), we know that the next position of ic along ν

is the matching return ir of ic , ir is visited by infixb(ν, i), and all the MAP visiting positions h ∈ [ic + 1, ir − 1] are finite and
terminate at positions k < ir . Thus, the fulfillment of a lower-bound constraint xa

b � � asserted at a position of such MAP
always implies the fulfillment of the same constraint when asserted at a position j ≥ ir of infixb(ν, i). Thus, at the time of
a guess (i.e., when a b occurs) along a MAP visiting positions in [ic + 1, ir − 1], the clocks z�� associated with the guessed
lower-bound constraints xa

b � � can be safely reset.
At each position i, Axa

b
keeps track in its control state of the lower-bound obligations for the part infixb(ν, i) of the

current MAP ν . Whenever a call ic occurs, the guessed lower-bound obligations for the matching return ir of ic are pushed
on the stack in order to be recovered at position ir . Moreover, if ic + 1 is not a return (i.e., ir �= ic + 1), then Axa

b
moves to a

control state where the set of lower-bound obligations is empty (consistently with the fact that ic + 1 is the initial position
of the MAP visiting ic + 1).

The case for upper-bound constraints xa
b ≺ u is symmetric. Whenever b occurs at a position i of the input word which

is not the last position of the current MAP ν and Axa
b

guesses that the constraint xa
b ≺ u will be used by A along the infix

infixb(ν, i), then, assuming that no obligation is currently associated to the constraint xa
b ≺ u, Axa

b
resets the standard clock

z≺u and carries the fresh obligation (first,≺u) in its control state (resp., pushes the obligation (first,≺u) onto the stack) if i
is not a call (resp., i is a call). When at a position j of the infix infixb(ν, i), A uses the constraint xa

b ≺ u, Axa
b

checks that
(first, ≺u) is in the current set of obligations, and that the constraint z≺u ≺ u holds. The obligation (first,≺u) is removed
or confirmed, depending on whether Axa

b
guesses that xa

b ≺ u will be again used by A along infixb(ν, i) or not. Assume
now that a call position ic ≥ i occurs along ν before the last position (if any) of infixb(ν, i), and let ir be the matching
return of ic . The important observation is that the fulfillment of an upper-bound constraint xa

b ≺ u asserted at a position
j ≥ ir of infixb(ν, i) always implies the fulfillment of the same constraint when asserted at a position h of a MAP ν ′ visiting
positions in [ic + 1, ir − 1] such that h is preceded along ν ′ by a position where b occurs. Thus, if the constraint xa

b ≺ u is
guessed to hold at a position j ≥ ir of infixb(ν, i), for the guesses on the constraint xa

b ≺ u done by Axa
b

along the positions in
[ic +1, ir −1], the clock z≺u is not reset at the times of the guesses (i.e., when b occurs along the positions in [ic +1, ir −1]).

Whenever a call ic occurs, the updated set O of upper-bound and lower-bounds obligations is pushed onto the stack in
order to be recovered at the matching return ir of ic . Moreover, if ic + 1 is not a return (i.e., ir �= ic + 1), then Axa

b
moves

to a control state where, while the set of lower-bound obligations is empty, the set of upper-bound obligations is obtained
from O by replacing each upper-bound obligation (f ,≺u), where f ∈ {live, first} with the live obligation (live,≺u). A live
obligation (live,≺u) asserted at the initial position ic + 1 of the MAP ν visiting ic + 1 (note that ν terminates at position
ir − 1) is used by Axa

b
to remind that the clock z≺u cannot be reset along ν when b occurs. Intuitively, live upper-bound

obligations are propagated from the caller MAP to the called MAP. Note that fresh upper-bound obligations (first, ≺u) always
refer to guesses done along the current MAP and differently from the live upper-bound obligations, may be removed, when
along the current MAP, they are checked.

There are other technical issues to be handled. As for the construction associated to the automaton Aya
b

for an abstract
predictor clock ya

b , the automaton Axa
b

uses the special proposition p∞ , and keeps track in its control state of the guessed
type (call, return, or internal symbol) of the next input symbol in order to check whether the current input position is the
last one of the current MAP. Moreover, we have to ensure that the lower-bound obligations �� (resp., the fresh upper-bound
obligations (first, ≺u)) at the current position i are eventually checked, i.e., for the current MAP ν , infixb(ν, i) eventually
visits a position j where the constraint xa

b � � (resp., xa
b ≺ u) is used. For this, Axa

b
keeps track in its control state of the

guessed interval constraint xa ∈ I used by A on reading the next input symbol, and whether the guessed next input symbol
b

24

is b. Moreover, for each lower-bound obligation �� (resp., fresh upper-bound obligations (first, ≺u)), Axa
b

exploits a Büchi
component ensuring that along an infinite MAP ν , either there are infinitely many occurrences of b-positions, or there are
infinitely many occurrences of positions where an interval constraint xa

b ∈ I consistent with xa
b � � (resp., xa

b ≺ u) is used, or
there are infinitely many positions in ν where the set of obligations does not contain �� (resp., (first, ≺u)).

We now provide the formal definition of Axa
b
. To this end, we need additional notation. An obligation set O (for the

fixed recorder event xa
b) is a set consisting of lower-bound obligations �� and upper-bound obligations (f ,≺u), where

f ∈ {live, first}, such that xa
b � � and xa

b ≺ u are associated to interval constraints xa
b ∈ I of A, and (f , ≺u), (f ′, ≺u) ∈ O

implies f = f ′ . For an obligation set O , live(O) consists of the live upper-bound obligations of O . Given an obligation set O
and an interval constraint xa

b ∈ I of A, we say that xa
b ∈ I is consistent with O if one of the following holds:

• I = {�} and O = live(O);
• xa

b ∈ I ≡ xa
b � � ∧ xa

b ≺ u, �� ∈ O and (f , ≺u) ∈ O for some f ∈ {first, live}.

Let 	(xa
b) be the set of interval constraints of the form xa

b ∈ I used by A. A check set H is a subset of {call, ret, int, p∞, b} ∪
	(xa

b) such that H ∩ {call, ret, int} and H ∩ 	(xa
b) are singletons. We say that H and an obligation set O are consistent if the

unique interval constraint in H is consistent with O . For an interval constraint xa
b ∈ I used by A, let con(I) be the constraint

over Cnew defined as follows: con(I) = � if I = {�}, and con(I) = z�� � � ∧ z≺u ≺ u if xa
b ∈ I ≡ xa

b � � ∧ xa
b ≺ u. The nested

VPTA Axa
b

is given by

Axa
b
= (�, Q ′, Q ′

0, C \ {xa
b} ∪ Cst ∪ Cnew, (
 ×
′) ∪ {bad,�},�′,F ′)

where the set Q ′ of states consists of triples of the form (q, O , H) such that q is a state of A, O is an obligation set, H
is a check set, and H and O are consistent. The set Q ′

0 of initial states consists of states of the form (q0, ∅, H) such that
q0 ∈ Q 0 (initially there are no obligations). Note that for an initial state (q0, ∅, H), (xa

b ∈ {�}) ∈ H (H and the obligation set
∅ are consistent). The stack alphabet is (
 ×
′) ∪ {bad, �}, where
′ is the set of pairs (O , H) such that O is an obligation
set, H is a check set, and H and O are consistent.

We now define the transition function �′ . To this end, we first define a predicate AbsP over tuples of the form
((O , H), a, xa

b ∈ I, Res, (O ′, H ′)) where (O , H), (O ′, H ′) are pairs of obligation sets and check sets, a ∈ �, xa
b ∈ I is a con-

straint of A, and Res ⊆ Cnew . Intuitively, O (resp., H) represents the obligation set (resp., check set) at the current position
i of the input, a is the input symbol associated with position i, xa

b ∈ I is the constraint on xa
b used by A at position i,

Res is the set of new standard clocks reset by Axa
b

on reading a, and O ′ (resp., H ′) represents the obligation set (resp.,
check set) at the position j following i along the MAP visiting i (if i is a call, then j is the matching-return of i). Formally,
AbsP((O , H), a, xa

b ∈ I, Res, (O ′, H ′)) is true iff the following holds:

1. (p∞ ∈ H iff p∞ ∈ H ′), a ∈ �call (resp., a ∈ �ret , resp. a ∈ �int) implies call ∈ H (resp., ret ∈ H , resp., int ∈ H);
2. (xa

b ∈ I) ∈ H , and H and O are consistent (resp., H ′ and O ′ are consistent);
3. Case b = a: b ∈ H , (xa

b ∈ {�}) /∈ H ′ and Res is a subset of Cnew such that z≺u ∈ Res implies (live, ≺u) /∈ O . Moreover,
O ′ = live(O) ∪ O ′′ , where O ′′ is obtained from Res by adding for each clock z�� ∈ Res (resp., z≺u ∈ Res), the obligation ��

(resp., the fresh obligation (first, ≺u));
4. Case b �= a: b /∈ H , Res = ∅. If I = {�}, then O ′ = O = live(O) and (xa

b ∈ {�}) ∈ H ′ . Otherwise, let xa
b ∈ I ≡ xa

b � � ∧ xa
b ≺

u. Then, (xa
b /∈ {�}) ∈ H ′ , and O ′ is any obligation set obtained from O by optionally removing the obligation �� (by

Condition 2, �� ∈ O), and/or by optionally removing the obligation (first, ≺u) if (first, ≺u) ∈ O .

Condition 1 requires that the Boolean value of proposition p∞ is invariant along the positions of a MAP, and the current
check set is consistent with the type (call, return, or internal symbol) of the current input symbol. Condition 2 requires that
the current check set is consistent with the constraint xa

b ∈ I currently used by A. Conditions 3 and 4 provide the rules for
updating the obligations on moving to the abstract next position along the current MAP and for resetting new clocks on
reading the current input symbol a. Note that if I = {�} and b �= a, then the current obligation set must contain only live
upper-bound obligations, and (xa

b ∈ {�}) ∈ H ′ .
Given a state (q, O , H) of Axa

b
, we say that (q, O , H) is terminal if the following holds: if xa

b ∈ I is the unique constraint
associated with the check set H and xa

b ∈ I ≡ xa
b � � ∧ xa

b ≺ u, then O \ {��, (first, ≺u)} = live(O). Intuitively, terminal states
are associated with input positions i such that i is the last position of the related MAP.
The transition function �′ of Axa

b
is defined as follows. Recall that we can assume that each clock constraint of A is of the

form θ ∧ xa
b ∈ I , where θ does not contain occurrences of xa

b .

Push transitions: for each push transition q
a,θ∧xa

b∈I,Res,push(γ)−→ q′ of A, we have the push transitions

(q, O , H)
a,θ∧con(I),Res∪Res′,push(γ ′)−→ (q′, O ′, H ′) such that b ∈ H iff a = b, and

1. Case γ ′ �= bad. Then, γ ′ = (γ , O ret, Hret) and
25

• AbsP((O , H), a, xa
b ∈ I, Res′, (O ret, Hret)). Moreover, if ret ∈ H ′ then Hret = H ′ and O ′ = O ret; otherwise, p∞ /∈ H ′ and

O ′ consists of the live obligations (live, ≺u) such that (f , ≺u) ∈ O ret for some f ∈ {live, first}.

2. Case γ ′ = bad: call ∈ H , (xa
b ∈ I) ∈ H , state (q, O , H) is terminal, p∞ ∈ H , p∞ ∈ H ′ , ret /∈ H ′ , O ′ = ∅, and Res′ = ∅.

Note that if I �= {�}, then the constraint xa
b ∈ I is checked by the constraint con(I) (recall that if I = {�}, then con(I) = �).

The push transitions of point 1 consider the case where Axa
b

guesses that the current call position ic has a matching return
ir . The set of obligations and the check state for the next abstract position ir along the current MAP are pushed on the stack
for recovering at the matching-return ir . Moreover, if Axa

b
guesses that the next position ic + 1 is not ir (i.e., ret /∈ H ′), then

all the upper-bound obligations in O ret are propagated as live obligations at the next position ic + 1 (note that the MAP
visiting ic + 1 starts at ic + 1, terminates at ir − 1, and does not satisfy proposition p∞). The push transitions of point 2
consider the case where Axa

b
guesses that the current call position ic has no matching return ir , i.e., ic is the last position

of the current MAP. In this case, Axa
b

pushes the symbol bad on the stack and the transition relation is consistently updated.

Internal transitions: for each internal transition q
a,θ∧xa

b∈I,Res−→ q′ of A, we add the internal transitions

(q, O , H)
a,θ∧con(I),Res∪Res′−→ (q′, O ′, H ′) such that b ∈ H iff a = b, and

1. Case ret ∈ H ′: int ∈ H , (xa
b ∈ I) ∈ H , state (q, O , H) is terminal, and Res′ = ∅.

2. Case ret /∈ H ′: AbsP((O , H), a, xa
b ∈ I, Res′, (O ′, H ′)).

In the former case, Axa
b

guesses that the current internal position i is the last one of the current MAP (ret ∈ H ′); in the later,
the MAP visits the next non-return position i + 1.

Pop transitions: for each pop transition q
a,θ∧xa

b∈I,Res,pop(γ)−→ q′ ∈ �r , we have the pop transitions

(q, O , H)
a,θ∧con(I),Res∪Res′,pop(γ ′)−→ (q′, O ′, H ′) such that b ∈ H iff a = b, and

1. Case γ �= �: ret ∈ H , γ ′ = (γ , (O , H)), and (xa
b ∈ I) ∈ H . If ret /∈ H ′ , then AbsP((O , H), a, xa

b ∈ I, Res′, (O ′, H ′)); otherwise,
(q, O , H) is a terminal state and Res′ = ∅.

2. Case γ = �: ret ∈ H , I = {�}, γ ′ = �, p∞ ∈ H , p∞ ∈ H ′ , and O = ∅. If ret /∈ H ′ , then AbsP((O , H), a, xa
b ∈ I, Res′, (O ′, H ′));

otherwise, Res′ = ∅ and O ′ = ∅.

If γ �= �, then the current return position has a matched-call. Otherwise, the current position is also the initial position of
the associated MAP.

Finally, the generalized Büchi condition F ′ of Axa
b

is defined as follows. For each Büchi component F of A, Axa
b

has the
Büchi component consisting of the states (q, O , H) such that q ∈ F . Moreover, Axa

b
has an additional component consisting

of the states (q, O , H) such that p∞ ∈ H . Such a component ensures that the guesses about the matched calls are correct.
Finally, for each lower-bound constraint xa

b � � (resp., upper-bound constraint xa
b ≺ u) of A, Axa

b
has a Büchi component

consisting of the states (q, O , H) such that

• p∞ ∈ H , and either b ∈ H , or the unique constraint in H is equivalent to xa
b � � ∧ xa

b ≺ u′ for some upper-bound u′ , or
�� /∈ O ;

• (resp., p∞ ∈ H , and either b ∈ H , or the unique constraint in H is equivalent to xa
b � �′ ∧ xa

b ≺ u for some lower-bound �′ ,
or (first, ≺u) /∈ O).

The Büchi component above ensures that along an infinite MAP ν , either there are infinitely many occurrences of b-positions,
or there are infinitely many occurrences of positions where a constraint xa

b ∈ I consistent with xa
b � � (resp., xa

b ≺ u) is used,
or there are infinitely many positions in ν where the set of obligations does not contain �� (resp., (first, ≺u)).

Appendix B. Removal of caller event-clocks in nested VPTA

Theorem 2 (Removal of caller event-clocks). Given a generalized Büchi nested VPTA A with set of event clocks C and a caller event-
clock xc

b ∈ C , one can construct in singly exponential time a generalized Büchi nested VPTA Axc
b

with set of event clocks C \ {xc
b} such

that LT (Axc
b
) = LT (A) and KAxc

b
= KA . Moreover, Axc

b
has O (n · 2O (p)) states and m + O (p) clocks, where n is the number of

A-states, m is the number of standard A-clocks, and p is the number of event-clock atomic constraints on xc
b used by A.

Fix a generalized Büchi nested VPTA A = (�, Q , Q 0, C ∪ Cst ,
 ∪ {�}, �, F) such that xc
b ∈ C . We construct a generalized

Büchi nested VPTA Axc equivalent to A whose set of event clocks is C \ {xc}, and whose set of standard clocks is Cst ∪ Cnew ,

b b

26

where Cnew consists of the fresh standard clocks z�� (resp., z≺u) for each lower-bound constraint xc
b � � (resp., upper-bound

constraint xc
b ≺ u) of A involving xc

b . Since a caller path from a position j consists only of call positions except position j (if
j /∈ �call), we assume that b ∈ �call (the case where b /∈ �call is straightforward).

The main idea of the construction is that whenever b occurs at a call position ic of the input word, the simulating
automaton Axc

b
guesses the set of lower-bound and upper-bound constraints on xc

b that will be used by A along the MAP ν

having ic as caller. Note that such a MAP is empty if ic + 1 is a return, and starts at position ic + 1 otherwise.
First, let us consider lower-bound constraints xc

b � �. Assume that b occurs at a call position ic of the input word and
ic + 1 is not a return. Let ν be the MAP starting at position ic + 1. Then, Axc

b
guesses the set of lower-bound constraints

xc
b � � that will be used by A along ν . For each of such guessed constraints xc

b � �, Axc
b

resets the associated new clock
z�� , and moves to the next position by carrying in the control state the new set of lower-bound obligations ��. On visiting
the positions j of ν , Axc

b
checks that the guess is correct by verifying that for the current lower-bound constraint xc

b � �′
used by A, ��′ is in the current set of obligations, and constraint z��′ � �′ holds. Moreover, at position j, Axc

b
guesses

whether the constraint xc
b � �′ will be again used along ν , or not. In the first case, the obligation ��′ is kept, otherwise, it

is discarded. If a new call nc occurs along ν before the last position of ν , then all the caller paths starting from the positions
h ∈ [nc + 1, nr − 1], where nr is the matching return of nc (i.e., nr is the position following nc along ν), visit positions ic and
nc (nc > ic). Thus, the fulfillment of a lower-bound constraint xc

b � � asserted at a position h ∈ [nc + 1, nr − 1] always implies
the fulfillment of the same constraint when asserted at a position j ≥ ir of ν . Therefore, if b occurs at the new call-position
nc , the clocks z�� associated with the guessed lower-bound constraints xc

b � � used by A along the MAP having nc as caller
(such a MAP starts at position nc + 1 and leads to position nr − 1) can be safely reset.
Overall, at each position i, Axc

b
keeps track in its control state whether the caller path from i visits a b-position preceding

i, or not. In the first case, Axc
b

also keeps track in its control state of the set of obligations associated with the guessed
lower-bound constraints on xc

b which will be used by A in the suffix of the current MAP from position i. In the second
case, there are no obligations. Whenever a matched call ic ≥ i occurs along ν , the guessed lower-bound obligations (if any)
for the matching return ir of ic are pushed on the stack in order to be recovered at position ir . Moreover, if ic + 1 is not
a return (i.e., ir �= ic + 1), and either we are in the first case or ic is a b-position, then Axc

b
guesses the set L of lower-

bound constraints which will be used by A in the finite MAP starting at position ic + 1, and moves to the next position by
carrying in its control state the obligations associated with L. Additionally, if ic is a b-position, then for each xc

b � � ∈ L, the
associated new clock z�� is reset.

The situation for upper-bound constraints xc
b ≺ u is dual. In this case, as in the proof of Theorem 1, we distinguish

between fresh upper-bound obligations (first,≺u) and live upper-bound obligations (live,≺u). Fresh upper-bound obligations
(first, ≺u) always refer to guesses done along the current MAP and differently from the live upper-bound obligations, may
be removed, when along the current MAP, they are checked. Live upper-bound obligations (live,≺u) are propagated from
the caller MAP to the called MAP. They are used by Axc

b
to remember that at a matched b-call position ic along the current

MAP with matching return ir > ic + 1, if the upper-bound constraint xc
b ≺ u is guessed to be used by A along the finite

MAP ν ′ having as caller ic (ν ′ starts at ic + 1 and ends at ir − 1), and the guessed set of obligations for the matching
return ir already contains an obligation (f ,≺u), then the clock z≺u must not be reset. This is safe since the fulfillment of
an upper-bound constraint xc

b ≺ u asserted at a position j ≥ ir along ν always implies the fulfillment of the same constraint
when asserted at a position h of the MAP ν ′ .

The formal definition of Axc
b

is similar to that of the nested VPTA Axa
b

exploited in the proof of Theorem 1. Thus, here,
we omit the details of the construction.

Appendix C. Proof of Theorem 8

We focus on the case of finite timed words (the case of infinite timed words is similar). Let F be the fragment of
EC_NTL obtained by disallowing the timed non-regular modalities �a

I , �c
I , and �a

I . Theorem 8 (for finite timed words)
directly follows from the following result.

Proposition 6. Let P = {call, ret} and LT be the timed language consisting of the finite timed words of the form (σ , τ) such that σ is
a well-matched word of the form {call}n · {ret}n for some n > 0, and there is a call position ic of σ such that τir − τic = 1, where ir is
the matching-return of ic in σ . Then, LT can be expressed in EC_NTL but not in F .

Proof. The language LT is definable by the following EC_NTL formula

call ∧ ©a(¬ ©g �) ∧ �g¬int ∧ ¬ �g (ret ∧ �gcall) ∧ �g(call ∧ �a[1,1] �)

We show that no formula in F can capture the language LT . For a formula ϕ of F , let d(ϕ) be the nesting depth of the
unary temporal modalities in ϕ . For all H ≥ 1, let w H

good and w H
bad be the well-matched timed words over �P of length

4H + 2 and 4H , respectively, defined as

• w H = ({call}, 1) . . . ({call}, 2H+1) · ({ret}, 1 + 1) . . . ({ret}, 1 + 2H+1);
good 2H+1 2H+1 2H+1 2H+1

27

• w H
bad is obtained from w H

good by removing the call-position H and its matching-return position 3H + 1.

By construction, position H of w H
good is the unique call-position ic of w H

good such that the time distance between the
matching-return of ic and ic is exactly 1. Hence, for all H ≥ 1, w H

good ∈ LT and w H
bad /∈ LT . We prove that for all H ≥ 1 and

formula ϕ in F such that d(ϕ) < H , w H
good is a model of ϕ iff w H

bad is a model of ϕ . Hence, LT is not expressible in F and
the result follows. For this, we first prove the following claim.

Claim 1: Let H ≥ 1, 0 ≤ k ≤ H , and ϕ ∈F with d(ϕ) ≤ H − k. Then, the following holds:

1. for all i, j ∈ [H − k, H + k], (w H
good, i) |= ϕ iff (w H

good, j) |= ϕ;

2. for all i, j ∈ [3H + 1 − k, 3H + 1 + k], (w H
good, i) |= ϕ iff (w H

good, j) |= ϕ .

Proof of Claim 1: Let H ≥ 1, 0 ≤ k ≤ H , and ϕ ∈ F with d(ϕ) ≤ H − k. We prove the implication (w H
good, i) |= ϕ →

(w H
good, j) |= ϕ in Properties 1 and 2 (the converse implication being similar). The proof is by induction on the structure of

the formula and the nesting depth d(ϕ). By construction, for all � ∈ [H − k, H + k] (resp., � ∈ [3H + 1 − k, 3H + 1 + k]), �
is a call position (resp., return position) of w H

good . Hence, the base case holds, while the cases where the root modality of
ϕ is a Boolean connective directly follow from the induction hypothesis. For the other cases, we focus on Property 1 (Prop-
erty 2 being similar). Thus, let i, j ∈ [H − k, H + k]. For a call-position � ∈ [0, 2H] in w H

good , let ret(�) be the matching-return
position. Note that ret(�) = 4H + 1 − �. Since ϕ ∈F , we consider the following cases:

• ϕ = ϕ1Ug ϕ2. Assume that (w H
good, i) |= ϕ . Hence, there is � ∈ [i, 4H + 1] such that (w H

good, �) |= ϕ2 and (w H
good, �

′) |= ϕ1

for all �′ ∈ [i, � − 1]. We distinguish two cases:

– � > j. By the induction hypothesis, either � = i and (w H
good, j) |= ϕ2, or � > i and for all positions p between i and j,

(w H
good, p) |= ϕ1. It follows that (w H

good, j) |= ϕ .

– � ≤ j. Hence, � ∈ [i, j]. By the induction hypothesis, (w H
good, j) |= ϕ2, and the result follows.

• ϕ = ϕ1Sg ϕ2: this case is similar to the previous one.
• ϕ = ϕ1Ua ϕ2. Assume that (w H

good, i) |= ϕ . Since position i is a call, by construction, either (w H
good, i) |= ϕ2, or (w H

good, i) |=
ϕ1 and (w H

good, ret(i)) |= ϕ2. Since ret(i), ret(j) ∈ [3H + 1 − k, 3H + 1 + k], by the induction hypothesis on Properties 1

and 2, either (w H
good, j) |= ϕ2, or (w H

good, j) |= ϕ1 and (w H
good, ret(j)) |= ϕ2. Hence, (w H

good, j) |= ϕ .
• ϕ = ϕ1Sa ϕ2: this case is similar to the previous one.
• ϕ = ϕ1Sc ϕ2: since i ∈ [H −k, H +k], by construction, (w H

good, i) |= ϕ1Sc ϕ2 iff (w H
good, i) |= ϕ1Sg ϕ2, and the result follows

from the case for modality Sg .
• ϕ = ©g ϕ1. Let (w H

good, i) |= ϕ . Hence, (w H
good, i + 1) |= ϕ1. Since d(ϕ) ≥ 1 and d(ϕ) ≤ H − k, we have that k + 1 ≤ H ,

d(ϕ1) ≤ H − (k + 1), and i + 1, j + 1 ∈ [H − (k + 1), H + (k + 1)]. Thus, by induction hypothesis on d(ϕ1), (w H
good, j) |= ϕ .

• ϕ = © −g ϕ1: this case is similar to the previous one.
• ϕ = ©a ϕ1: let (w H

good, i) |= ϕ . Since position i is a call, by construction, (w H
good, ret(i)) |= ϕ1. Since ret(i), ret(j) ∈ [3H +

1 − k, 3H + 1 + k], by the induction hypothesis on Property 2, it follows that (w H
good, ret(j)) |= ϕ1. Hence, (w H

good, j) |= ϕ .
• ϕ = © −a ϕ1: this case is similar to the previous one.
• ϕ = © −c ϕ1: since i ∈ [H −k, H +k], by construction, (w H

good, i) |= © −c ϕ1 iff (w H
good, i) |= © −g ϕ1, and the result follows from

the case for modality © −g .
• ϕ = �g

I ϕ1: for all positions � ∈ [0, 4H + 1], let τ� be the timestamp of w H
good at position �. Moreover, if � ∈ [0, 2H], let

m(�) := 2H + 1 + �. By construction, τm(�) − τ� = 1. Assume that (w H
good, i) |= ϕ . Hence, there is � ∈ [i + 1, 4H + 1] such

that (w H
good, �) |= ϕ1, τ� − τi ∈ I and (w H

good, �
′) �|= ϕ1 for all �′ ∈ [i + 1, � − 1]. By construction, one of the following cases

occurs:

– τ� − τi = 1: by construction, � = m(i). Hence, � ∈ [3H + 1 − k, 3H + 1 + k]. We show that this case cannot occur.
Since d(ϕ) ≥ 1 and d(ϕ) ≤ H − k, we have that k + 1 ≤ H , d(ϕ1) ≤ H − (k + 1), and �, � − 1 ∈ [3H + 1 − (k + 1), 3H +
1 + (k + 1)]. Thus, by the induction hypothesis on d(ϕ1), (w H

good, �) |= ϕ1 iff (w H
good, � − 1) |= ϕ1. By hypothesis,

(w H
good, �) |= ϕ1 and (w H

good, � − 1) �|= ϕ1, a contradiction.

– 1 < τ� − τi < 2: hence, � > m(i) > i and (w H
good, m(i)) �|= ϕ1. Since, m(i) ∈ [3H + 1 − k, 3H + 1 + k], by the induction

hypothesis, it follows that � > 3H + 1 + k ≥ m(j) which entails that 1 < τ� − τ j < 2. It follows that τ� − τ j ∈ I , and
28

by the induction hypothesis on d(ϕ1), we easily obtain that for all the positions p between i and j, (w H
good, p) �|= ϕ1.

It follows that (w H
good, j) |= �g

I ϕ1.
– 0 < τ� − τi < 1 and � is a return-position: hence, i < � < m(i). By the induction hypothesis on d(ϕ1), we deduce

that � /∈ [3H + 1 − k, 3H + 1 + k] (otherwise, (w H
good, � − 1) |= ϕ1). It follows that j < � < m(j) which entails that

0 < τ� − τ j < 1. Hence, τ� − τ j ∈ I , and by induction hypothesis on d(ϕ1), (w H
good, j) |= �g

I ϕ1 holds.
– 0 < τ� − τi < 1 and � is a call-position: if � ∈ [H − (k + 1), H + (k + 1)], then by the induction hypothesis on d(ϕ1),

we have that (w H
good, j + 1) |= ϕ1, and since 0 < τ j+1 − τ j < 1, we obtain that (w H

good, j) |= �g
I ϕ1. On the other hand,

if � > H + (k + 1), by the induction hypothesis, we deduce that for all positions p between i and j, (w H
good, p) �|= ϕ1.

Thus, since by construction 0 < τ� − τ j < 1, we conclude that (w H
good, j) |= �g

I ϕ1.

• ϕ = �g
I ϕ1: this case is similar to the previous one (proving Claim 1). �

Let H ≥ 1. For each position i of w H
bad (note that i ∈ [0, 4H − 1]), we denote by H(i) the associated position in w H

good , i.e.
the unique position j of w H

good such that w H
bad(i) = w H

good(j). By Claim 1, we deduce the following Claim 2. Since H(0) = 0,
Claim 2 entails the result, i.e. for all H ≥ 1 and formulas ϕ in F such that d(ϕ) < H , (w H

good, 0) |= ϕ iff (w H
bad, 0) |= ϕ .

Claim 2: Let H ≥ 1 and ϕ ∈F with d(ϕ) < H . Then, for all i ∈ [0, 4H − 1], (w H
bad, i) |= ϕ iff (w H

good, H(i)) |= ϕ

Proof of Claim 2: Let H ≥ 1 and ϕ ∈ F with d(ϕ) < H . We prove by structural induction on ϕ that for all i ∈ [0, 4H − 1],
(w H

bad, i) |= ϕ iff (w H
good, H(i)) |= ϕ . By construction, for all i ∈ [0, 4H − 1], w H

bad(i) = w H
good(H(i)). Hence, the base case holds,

while the cases where the root modality of ϕ is a Boolean connective directly follow from the induction hypothesis. Since
ϕ ∈F , it remains to consider the following cases:

• ϕ = ϕ1Ug ϕ2. Assume that (w H
good, H(i)) |= ϕ . Hence, there is � ∈ [H(i), 4H + 1] such that (w H

good, �) |= ϕ2 and

(w H
good, �

′) |= ϕ1 for all �′ ∈ [H(i), � − 1]. Assume that � �= H(p) for all positions p of w H
bad (the other case being simpler).

Hence, � ∈ {H, 3H + 1}. Let ℘ ∈ [0, 4H − 1] such that H(℘) = � − 1. Since d(ϕ) < H , by Claim 1, (w H
good, � − 1) |= ϕ2. Thus,

since i ≤ ℘ and H(p) ∈ [H(i), H(℘) − 1] for all p ∈ [i, ℘ − 1], by the induction hypothesis, it follows that (w H
bad, i) |= ϕ .

The converse implication (w H
bad, i) |= ϕ ⇒ (w H

good, H(i)) |= ϕ is similar.
• ϕ = ϕ1Sg ϕ2: this case is similar to the previous one.
• ϕ = ϕ1Ua ϕ2 or ϕ = ϕ1Sa ϕ2. By construction, for all i ∈ [0, 4H − 1], the MAP of w H

bad visiting position i consists of the
positions i and mt(i), where mt(i) is the matching-return of i if i is a call, and the matching-call of i otherwise. Moreover,
the MAP of w H

good visiting position H(i) consists of the positions H(i) and H(mt(i)). Hence, the result for the abstract
until and since modalities, directly follows from the induction hypothesis.

• ϕ = ϕ1Sc ϕ2: let i ∈ [0, 4H −1]. By construction, (w H
bad, i) |= ϕ1Sc ϕ2 iff either (i) i is a call and (w H

bad, i) |= ϕ1Sg ϕ2, or (ii)
i is a return, and either (w H

bad, i) |= ϕ2, or (w H
bad, ic) |= ϕ1Sg ϕ2, where ic is the caller of i. Hence, the case for modality

Sc easily reduces to the case of modality Sg .
• ϕ = ©g ϕ1. Assume that (w H

good, H(i)) |= ϕ . Hence, H(i) < 4H + 1 and (w H
good, H(i) + 1) |= ϕ1. By construction, either

H(i) + 1 = H(i + 1), or H(i) + 1 ∈ {H, 3H + 1} and H(i + 1) = (H(i) + 1) + 1. In the first case, by the induction hypothesis,
we obtain that (w H

good, i +1) |= ϕ1. In the second case, by applying Claim 1, we deduce that (w H
good, H(i) +2) |= ϕ1, hence,

by the induction hypothesis, (w H
good, i + 1) |= ϕ1 holds as well. The converse implication (w H

bad, i) |= ϕ ⇒ (w H
good, H(i)) |=

ϕ is similar.
• ϕ = © −g ϕ1: this case is similar to the previous one.
• ϕ = ©a ϕ1 or ϕ = © −a ϕ1: similar to the case of the abstract until and since modalities.
• ϕ = © −c ϕ1: let i ∈ [0, 4H − 1]. By construction, (w H

bad, i) |= © −c ϕ1 iff either (i) i is a call and (w H
bad, i) |= © −g ϕ1, or (ii) i is

a return and (w H
bad, ic) |= © −g ϕ1, where ic is the matched-call of i. Hence, the case for modality © −c reduces to the case

of modality © −g .
• ϕ = �g

I ϕ1: for all positions � of w H
good (resp., w H

bad), let τ good
� (resp., τ bad

�) be the timestamp of w H
good (resp., w H

bad) at
position �. Let i ∈ [0, 4H − 1]. We prove the implication (w H

good, H(i)) |= ϕ ⇒ (w H
bad, i) |= ϕ (the converse implication

being similar). Let (w H
good, H(i)) |= ϕ . Hence, there is � ∈ [H(i) + 1, 4H + 1] such that (w H

good, �) |= ϕ1, τ good
� − τ

good
H(i) ∈ I

and (w H
good, �

′) �|= ϕ1 for all �′ ∈ [H(i) + 1, � − 1]. We have two cases:

– � > H(i) + 1: by hypothesis, (w H
good, � − 1) �|= ϕ1 and (w H

good, �) |= ϕ1. We first show that � = H(j) for some j ∈
[0, 4H − 1]. We assume the contrary and derive a contradiction. Hence, � ∈ {H, 3H + 1}. Since d(ϕ) < H , by Claim 1,
we deduce that (w H

good, � − 1) |= ϕ1, a contradiction. Hence, � = H(j) for some j ∈ [0, 4H − 1]. By construction,

τ
good − τ

good = τ bad − τ bad . Thus, by the induction hypothesis, we obtain that (w H , i) |= ϕ , and the result follows.
H(j) H(i) j i bad

29

– � = H(i) + 1. Hence, by construction, 0 < τ
good
� − τ

good
H(i) < 1. If H(i) + 1 = H(i + 1), then being 0 < τ bad

i+1 − τ bad
i < 1, the

result directly follows from the induction hypothesis. Otherwise, � ∈ {H, 3H + 1} and H(i + 1) = � + 1. By applying
Claim 1 and the induction hypothesis, we obtain that (w H

bad, i +1) |= ϕ1. Moreover, by construction, 0 < τ bad
i+1 −τ bad

i <

1. Hence, the result follows.

• ϕ = �g
I ϕ1: this case is similar to the previous one. �

References

[1] P.A. Abdulla, M.F. Atig, J. Stenman, Dense-timed pushdown automata, in: Proc. 27th LICS, IEEE Computer Society, 2012, pp. 35–44.
[2] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[3] R. Alur, K. Etessami, P. Madhusudan, A temporal logic of nested calls and returns, in: Proc. 10th TACAS, in: LNCS, vol. 2988, Springer, 2004, pp. 467–481.
[4] R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, J. ACM 43 (1) (1996) 116–146.
[5] R. Alur, L. Fix, T.A. Henzinger, Event-clock automata: a determinizable class of timed automata, Theor. Comput. Sci. 211 (1–2) (1999) 253–273.
[6] R. Alur, T.A. Henzinger, Real-time logics: complexity and expressiveness, Inf. Comput. 104 (1) (1993) 35–77.
[7] R. Alur, P. Madhusudan, Visibly pushdown languages, in: Proc. 36th STOC, ACM, 2004, pp. 202–211.
[8] R. Alur, P. Madhusudan, Adding nesting structure to words, J. ACM 56 (3) (2009) 16:1–16:43.
[9] É. André, D. Lime, O.H. Roux, On the expressiveness of parametric timed automata, in: Formal Modeling and Analysis of Timed Systems - 14th

International Conference, FORMATS 2016, Quebec, QC, Canada, August 24-26, 2016, Proceedings, 2016, pp. 19–34.
[10] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.
[11] M. Benerecetti, S. Minopoli, A. Peron, Analysis of timed recursive state machines, in: TIME 2010 - 17th International Symposium on Temporal Repre-

sentation and Reasoning, Paris, France, 6-8 September 2010, 2010, pp. 61–68.
[12] M. Benerecetti, A. Peron, Timed recursive state machines: expressiveness and complexity, Theor. Comput. Sci. 625 (2016) 85–124.
[13] N. Benes, P. Bezdek, K.G. Larsen, J. Srba, Language emptiness of continuous-time parametric timed automata, in: Automata, Languages, and Program-

ming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, 2015, pp. 69–81.
[14] B. Bérard, S. Haddad, A. Jovanovic, D. Lime, Interrupt timed automata with auxiliary clocks and parameters, Fundam. Inform. 143 (3–4) (2016) 235–259.
[15] D. Bhave, V. Dave, S.N. Krishna, R. Phawade, A. Trivedi, A logical characterization for dense-time visibly pushdown automata, in: Proc. 10th LATA, in:

LNCS, vol. 9618, Springer, 2016, pp. 89–101.
[16] A. Bouajjani, R. Echahed, R. Robbana, On the automatic verification of systems with continuous variables and unbounded discrete data structures, in:

Hybrid Systems II, in: LNCS, vol. 999, Springer, 1994, pp. 64–85.
[17] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown automata: application to model-checking, in: CONCUR’97, 1997, pp. 135–150.
[18] L. Bozzelli, A. Murano, A. Peron, Pushdown module checking, Form. Methods Syst. Des. 36 (1) (2010) 65–95.
[19] L. Bozzelli, A. Murano, A. Peron, Timed context-free temporal logics, in: Proceedings Ninth International Symposium on Games, Automata, Logics, and

Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th September 2018, 2018, pp. 235–249.
[20] L. Bozzelli, A. Peron, A. Murano, Event-clock nested automata, in: Proc. 12th LATA, in: LNCS, vol. 10792, Springer, 2018, pp. 80–92.
[21] D. Carotenuto, A. Murano, A. Peron, 2-Visibly pushdown automata, in: Developments in Language Theory, 11th International Conference, DLT 2007,

Turku, Finland, July 3-6, 2007, Proceedings, 2007, pp. 132–144.
[22] D. Carotenuto, A. Murano, A. Peron, Ordered multi-stack visibly pushdown automata, Theor. Comput. Sci. 656 (2016) 1–26.
[23] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. Henzinger, J. Palsberg, Stack size analysis for interrupt-driven programs, in: Proc. 10th SAS, in: LNCS,

vol. 2694, Springer, 2003, pp. 109–126.
[24] E. Clarke, E. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: LP’81, in: LNCS, vol. 131, 1981,

pp. 52–71.
[25] L. Clemente, S. Lasota, Timed pushdown automata revisited, in: Proc. 30th LICS, IEEE Computer Society, 2015, pp. 738–749.
[26] M. Emmi, R. Majumdar, Decision problems for the verification of real-time software, in: Proc. 9th HSCC, in: LNCS, vol. 3927, 2006, pp. 200–211.
[27] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Syst. 2 (4) (1990) 255–299.
[28] O. Kupferman, N. Piterman, M.Y. Vardi, Pushdown specifications, in: Proc. 9th LPAR, in: LNCS, vol. 2514, Springer, 2002, pp. 262–277.
[29] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, 1967.
[30] J. Ouaknine, J. Worrell, On metric temporal logic and faulty Turing machines, in: Proc. 9th FOSSACS, in: LNCS, vol. 3921, Springer, 2006, pp. 217–230.
[31] J. Ouaknine, J. Worrell, On the decidability and complexity of metric temporal logic over finite words, Log. Methods Comput. Sci. 3 (1) (2007).
[32] J. Queille, J. Sifakis, Specification and verification of concurrent programs in Cesar, in: SP’81, in: LNCS, vol. 137, Springer, 1981, pp. 337–351.
[33] J. Raskin, P. Schobbens, The logic of event clocks - decidability, complexity and expressiveness, J. Autom. Lang. Comb. 4 (3) (1999) 247–286.
[34] N.V. Tang, M. Ogawa, Event-clock visibly pushdown automata, in: Proc. 35th SOFSEM, in: LNCS, vol. 5404, Springer, 2009, pp. 558–569.
[35] A. Trivedi, D. Wojtczak, Recursive timed automata, in: Proc. 8th ATVA, in: LNCS, vol. 6252, Springer, 2010, pp. 306–324.
[36] I. Walukiewicz, Pushdown processes: games and model checking, in: CAV’96, 1996, pp. 62–74.
30

http://refhub.elsevier.com/S0890-5401(20)30166-8/bibF7684476EABB92ABD01DF7FF2EA8979As1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib37F4F92A982D06D8E40B29B769E45F6Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibE6CEE9D524D3BC56B6C2B3D7D3159902s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib25DF221F3FA921E0A7D010126764A242s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib4F917BF8326D2431003D0C7183A6C5CEs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibA45D7AE1742E9275A15A6464030E4F54s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib95E7A13C39F5D64021F363690551D4D0s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib7B862041583E3E9D1D009A809972D9D0s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib0F33A32832FA0213D25DD004044E2E00s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib0F33A32832FA0213D25DD004044E2E00s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib2C928F9CCAFAF47EA202B22987CAEE08s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibBBA5D387E22FAE3D32A40B2F9431A3B7s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibBBA5D387E22FAE3D32A40B2F9431A3B7s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibAD68740D338A69BC1C4012C59034F70Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib2560FA66B39F6E0FF008AA4D5BC523D8s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib2560FA66B39F6E0FF008AA4D5BC523D8s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib2C1765A2C44E27739BE6808C8BE6D0D8s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib076FBF24DF6C9B0316FE7D58246E1E2Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib076FBF24DF6C9B0316FE7D58246E1E2Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib7C4436238BD1850C236EB36A2FC7CBFEs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib7C4436238BD1850C236EB36A2FC7CBFEs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib1E8EB5B668BE7DEACA010568D406BCF5s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib611042048AE8A1CFBD7B1B9A74099A39s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibFF2633A10F8EE6AADD86CF7FE161411Bs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibFF2633A10F8EE6AADD86CF7FE161411Bs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibAF19300E4EA863420DAB317EEE1A1B3Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib892D57DB9A4454D8A47DC8833819B70Ds1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib892D57DB9A4454D8A47DC8833819B70Ds1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib532EA0A7817ACA1EFC28103724D894C9s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibD4C754227DD9AA593B2E2542C58DD096s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibD4C754227DD9AA593B2E2542C58DD096s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibC6908E711619223268C0FED6CC3BB974s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibC6908E711619223268C0FED6CC3BB974s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibE8115EA75016B7345DD35D1C3756B811s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibAD6C485068E319567E4D94FCE27EAEFCs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibB08800EFA35973DECE8D0A6D86C069BCs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib3407A4FC801DBE5492B17470CBB8716Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibA638302E2930E9B44B168A2A06012BDBs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibE3DCE39803CD5AA002F5C4F11DCBB61Es1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib3CC86CAFD75092FF7F1F0416470EC7ADs1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib3E049B2EA08975D456BFF78D40BEE774s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibD2AAF763032705C5D1ABC8CF83400834s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibF77DACBC0BC1DA924704FAE740C77BD9s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bibDB4242E1DE32B5B463E369885671FAE1s1
http://refhub.elsevier.com/S0890-5401(20)30166-8/bib94C027456E51B7C7814F02FBF49938C9s1

	Context-free timed formalisms: Robust automata and linear temporal logics
	1 Introduction
	2 Preliminaries
	3 Event-clock nested automata
	4 Decision procedures for Büchi ECNA
	5 The Event-Clock Nested Temporal Logic
	5.1 Decision procedures for the logic EC_NTL

	6 Nested metric temporal logic (NMTL)
	6.1 Undecidability of future NMTL over finite timed words

	7 Conclusions
	Declaration of competing interest
	Appendix A Removal of abstract recorder clocks in nested VPTA
	Appendix B Removal of caller event-clocks in nested VPTA
	Appendix C Proof of Theorem 8
	References

