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Abstract

We investigate exploration algorithms for autonomous mobile robots evolving in uniform
ring-shaped networks. Different from the usual Look-Compute-Move (LCM) model, we consider
two characteristics: myopia and luminosity. Myopia means each robot has a limited visibility.
We consider the weakest assumption for myopia: each robot can only observe its neighboring
nodes. Luminosity means each robot maintains a non-volatile visible light. We consider the
weakest assumption for luminosity: each robot can use only two colors for its light. The main
interest of this paper is to clarify the impact of luminosity on exploration with myopic robots.

As a main contribution, we prove that 1) in the fully synchronous model, two and three robots
are necessary and sufficient to achieve perpetual and terminating exploration, respectively, and
2) in the semi-synchronous and asynchronous models, three and four robots are necessary and
sufficient to achieve perpetual and terminating exploration, respectively. These results clarify the
power of lights for myopic robots since, without lights, five robots are necessary and sufficient to
achieve terminating exploration in the fully synchronous model, and no terminating exploration
algorithm exists in the semi-synchronous and asynchronous models.

We also show that, in the fully synchronous model (resp., the semi-synchronous and asyn-
chronous models), the proposed perpetual exploration algorithm is universal, that is, the algo-
rithm solves perpetual exploration from any solvable initial configuration with two (resp., three)
robots and two colors. On the other hand, we show that, in the fully synchronous model (resp.,
the semi-synchronous and asynchronous models), no universal algorithm exists for terminating
exploration, that is, no algorithm may solve terminating exploration from any solvable initial
configuration with three (resp., four) robots and two colors.
Keywords: autonomous mobile robots, deterministic exploration, discrete environments, lim-
ited visibility, visible light
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1 Introduction

1.1 Background and Motivation

Studies about cooperation of autonomous mobile robots have attracted a lot of attention recently
in the field of Distributed Computing. The main goal of those works is to characterize the minimum
capabilities of robots that permit to achieve a given task. Since the pioneering work of Suzuki and
Yamashita [24], many results have been published in their Look-Compute-Move (LCM) model. In
the LCM model, each robot repeats executing cycles of look, compute, and move phases. At the
beginning of each cycle, the robot observes positions of other robots (look phase). According to its
observation, the robot computes whether it moves somewhere or stays idle (compute phase). If the
robot decides to move, it moves to the target position by the end of the cycle (move phase). To
consider minimum capabilities, most studies assume that robots are identical (i.e., robots execute
the same algorithm and cannot be distinguished), oblivious (i.e., robots have no memory of their
past actions), and silent (i.e., robots cannot communicate with other robots explicitly). Indeed,
communication among robots is done only in an implicit way by observing positions of other robots
and moving to a new position. Previous works considered problem solvability of LCM robots in
continuous environments (aka two- or three-dimensional Euclidean space) [17, 18, 24, 25], while
others considered discrete environments (aka graph networks) [4, 6, 16, 22, 23].

In this paper, we focus on robots evolving in graph networks. The most fundamental tasks
in graph networks are gathering and exploration. The goal of gathering is to make all robots
meet at a non-predetermined single node. Gathering has been studied for rings [4, 6, 22, 23],
grids and trees [5]. Two types of exploration tasks have been well studied: perpetual exploration
requires robots to visit nodes so that every node is visited infinitely many times by a robot, and
terminating exploration requires robots to terminate after every node is visited by a robot at
least once. For example, perpetual exploration has been studied for rings [1] and grids [2], and
terminating exploration has been studied for rings [14, 16], trees [15], grids [12], tori [13], and
arbitrary networks [3].

All aforementioned works in graph networks make the assumption that each robot observes all
other robots in the networks. That is, each robot has a sensor that can obtain a global snapshot.
However, this powerful ability somewhat contradicts the principle of very weak mobile entities.
For this reason, recent studies consider the more realistic case of myopic robots [8, 10, 19, 20].
A myopic robot has limited visibility, i.e., it can see nodes (and robots on them) only within a
certain fixed distance φ. Datta et al. studied terminating exploration of rings for φ = 1 [8] and
φ = 2, 3 [9]. Guilbault and Pelc studied gathering in bipartite graphs with φ = 1 [19], and infinite
lines with φ > 1 [20]. Not surprisingly, in the weakest setting, i.e., φ = 1, robots can only achieve
few tasks. It is shown [8] that, when φ = 1 holds, five robots are necessary and sufficient to
achieve terminating exploration in the fully synchronous (FSYNC) model. On the other hand,
no terminating exploration algorithm exists in the semi-synchronous (SSYNC) and asynchronous
(ASYNC) models. Also, gathering [19] is possible when φ = 1 only if robots initially form a star.

Since most results for myopic robots with φ = 1 are negative, a natural question is which
additional assumptions can improve task solvability. In this paper, we focus on a non-volatile visible
light [7] as an additional assumption. A robot endowed with such a light is called a luminous robot.
Each luminous robot is equipped with a light device that can emit a constant number of colors to
other robots, a single color at a time. The light color is non-volatile, so it can be used as a constant-
space memory. For non-myopic luminous robots, the power of lights is well understood [7, 11, 21].
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Table 1: Ring exploration with myopic robots.
#robots

Reference Exploration Synchrony φ #colors necessary sufficient

[8] terminating FSYNC 1 1 5 5

[8] terminating SSYNC & ASYNC 1 1 impossible

[10] terminating SSYNC & ASYNC 2 1 5 7

[10] terminating SSYNC & ASYNC 3 1 5 5

This paper perpetual FSYNC 1 2 2 2

This paper terminating FSYNC 1 2 3 3

This paper perpetual SSYNC & ASYNC 1 2 3 3

This paper terminating SSYNC & ASYNC 1 2 4 4

For example, if each robot has a five colors light, the difference between the asynchronous model
and the semi-synchronous model disappears [7]. However, to the best of our knowledge, the impact
of lights on myopic robots has not been studied yet.

1.2 Our Contributions

We focus on ring exploration and the impact of lights on myopic robots with φ = 1. We consider the
weakest assumption for lights: each robot can use only two colors for its light. Table 1 summarizes
our contributions and related works. Note that robots with no light are equivalent to robots with
a single color light.

As a main contribution, we prove that (i) in the fully synchronous model, two and three robots
are necessary and sufficient to achieve perpetual and terminating exploration, respectively, and
(ii) in the semi-synchronous and asynchronous models, three and four robots are necessary and
sufficient to achieve perpetual and terminating exploration, respectively. These results clarify the
power of lights for myopic robots since, without lights, five robots are necessary and sufficient to
achieve terminating exploration in the fully synchronous model, and no terminating exploration
algorithm exists in the semi-synchronous and asynchronous models. Interestingly, even if robots
can observe nodes up to distance three (i.e., φ = 3), five robots are required to achieve terminating
exploration without light. This means that there exist some tasks that myopic luminous robots
with small visibility can achieve, but that non-luminous robots with larger visibility cannot.

Similarly to previous works for myopic robots, all algorithms proposed in this paper assume
some specific initial configurations because most configurations are not solvable. For example,
when myopic robots are deployed so that no robot can observe other robots, they cannot achieve
exploration. However, our perpetual exploration algorithms achieve the best possible property, that
is, they are universal. This means that, in the fully synchronous model (resp., the semi-synchronous
and asynchronous models), the proposed algorithm solves perpetual exploration from any solvable
initial configuration with two (resp., three) robots and two colors. As for terminating exploration,
we show that no universal algorithm exists. That is, in the fully synchronous model (resp., the
semi-synchronous and asynchronous models), no algorithm may solve terminating exploration from
any solvable initial configuration with three (resp., four) robots and two colors.

Due to space limitation, we omit some of proofs. The omitted proofs are given in the appendix.
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2 Preliminaries

2.1 System model

The system consists of n nodes and k mobile robots. The nodes v0, v1, . . . , vn−1 form an undirected
and unoriented ring-shaped graph, where a link exists between vi and vi+1, for i < n, and between
vn−1 and v0. For simplicity we consider mathematical operations on node indices as operations
modulo n. Neither nodes nor links have identifiers or labels, and consequently robots cannot
distinguish nodes and links. Robots do not know n, the size of the ring. Robots occupy some nodes
of the ring. The distance between two nodes is the number of links in a shortest path between the
nodes. The distance between two robots a and b is the distance between two nodes occupied by a
and b. Two robots a and b are neighbors if the distance between a and b is one. A set S of robots
is connected if the induced subgraph of nodes occupied by the robots in S is connected; otherwise,
S is disconnected.

Robots we consider have the following characteristics and capabilities. Robots are identical,
that is, robots execute the same deterministic algorithm and cannot be distinguished based on
their appearance (in particular, their do not have unique identifiers). Robots are luminous, that
is, each robot has a light (or state) that is visible to itself and other robots. A robot can choose
the color of its lights from a discrete set Col. When the set Col is finite, we denote by κ the
number of available colors (i.e., κ = |Col|). Robots have no other persistent memory and cannot
remember the history of past actions. Robots cannot communicate with other robots explicitly,
however they can communicate implicitly by observing positions and colors of other robots (for
collecting information), and by changing their color and moving (for sending information). Each
robot r can observe positions and colors of robots within a fixed distance φ (φ > 0) from its current
position. Since robots are identical, they share the same φ. If φ =∞, robots can observe all other
robots in the ring. If φ = 1, robots are myopic, that is, they can only observe robots that are
located at neighboring nodes.

Each robot executes an algorithm by repeating three-phases cycles: Look, Compute, and Move
(L-C-M). During the Look phase, the robot observes positions and colors of robots within distance
φ. During the Compute phase, the robot computes its next color and movement according to
the observation in the Look phase. The robot may change its color at the end of the Compute
phase. If the robot decides to move, it moves to a neighboring node during the Move phase. To
model asynchrony of executions, we introduce the notion of scheduler that decides when each robot
executes phases. When the scheduler makes robot r execute some phase, we say the scheduler ac-
tivates the phase of r or simply activates r. We consider three types of synchronicity: the FSYNC
(full-synchronous) model, the SSYNC (semi-synchronous) model, and the ASYNC (asynchronous)
model. In the FSYNC model, the scheduler executes full cycles of all robots synchronously and
concurrently. In the SSYNC model, the scheduler selects a non-empty subset of robots and exe-
cutes full cycles of the selected robots synchronously and concurrently. In the ASYNC model, the
scheduler executes cycles of robots asynchronously. Note that in the ASYNC model, a robot r can
move based on an outdated view observed previously by r. Throughout the paper we assume that
the scheduler is fair, that is, each robot is activated infinitely often. We consider the scheduler as
an adversary. That is, we assume that the scheduler is omniscient (it knows robot positions, colors,
algorithms, etc.), and tries to activate robots in such a way that they fail executing the task.

In the sequel, Mi(t) denotes the multiset of colors of robots located in node vi at instant
t. If vi is not occupied by any robot at t, then Mi(t) = ∅ holds, and vi is free at instant t.
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Then, vi is a tower at instant t if |Mi(t)| ≥ 2. A configuration C(t) of the system at instant t
is defined as C(t) = (M0(t),M1(t), . . . ,Mn−1(t)). If t is clear from the context, we simply write
C = (M0,M1, . . . ,Mn−1). If there exists an index x such that Mx+i = Mx−i holds for any i,
or if Mx+i = Mx−(i+1) holds for any i (i.e., there exists at least one axis of symmetry in the
configuration), configuration C is called symmetric.

When a robot observes its environment, it gets a view up to distance φ. Consider a robot r
on node vi; then, r obtains two views: the forward view and the backward view. The forward
and backward views of r are defined as Vf = (cr,Mi−φ, . . . ,Mi−1,Mi,Mi+1, . . . ,Mi+φ), and Vb =
(cr,Mi+φ, . . . ,Mi+1,Mi,Mi−1, . . . ,Mi−φ), respectively, where cr denotes r’s color. Since we assume
unoriented rings (where robots may not share the same notion of left and right), each robot cannot
distinguish its forward view from its backward view. If the forward view and the backward view
of r are identical, then r’s view is symmetric. In this case, r cannot distinguish between the two
directions when it moves, and the scheduler decides which direction r moves to. If r observes no
other robot in its view, r is isolated.

2.2 Algorithm, execution, and problem

An algorithm is described as a set of rules. Each rule is represented in the following manner
< Label >:< Guard >::< Action >. The guard < Guard > is a possible view obtained by a robot.
If a forward or backward view of robot r matches a guard in an algorithm, we say r is enabled. We
also say the corresponding rule < Label > is enabled. If a robot is enabled, the robot may change
its color and move based on the corresponding action < Action > during the Compute and Move
phases.

For an infinite sequence of configurations E = C0, C1, . . . , Ct, . . ., we say E is an execution from
initial configuration C0 if, for every instant t, Ct+1 is obtained from Ct after some robots execute
phases. We say Ci is the i-th configuration of execution E.

A problem P is defined as a set of executions: An execution E solves problem P if E ∈ P
holds. An algorithm A solves problem P from initial configuration C0 if any execution from initial
configuration C0 solves problem P. We simply say an algorithm A solves problem P if there exists
an initial configuration C0 such that A solves P from C0. For configuration C and problem P, C
is solvable for P if there exists an algorithm (specific to C) that solves P from initial configuration
C. Let Cs(P) be a set of all configurations solvable for P. We say algorithm A is universal with
respect to problem P if A solves P from any initial configuration in Cs(P).

2.3 Exploration problems

In this paper, we consider perpetual exploration problem and terminating exploration problem in
case of φ = 1.

Definition 1 (Perpetual exploration problem) Perpetual exploration is defined as a set of ex-
ecutions E such that every node is infinitely many times visited by some robot in E.

Definition 2 (Terminating exploration problem) Terminating exploration is defined as a set
of executions E such that 1) every node is visited by at least one robot in E and 2) there exists a
suffix of E such that no robots are enabled.
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2.4 Descriptions

Let C = (M0, . . . ,Mn−1) be a configuration. We say C ′ = (M ′0, . . . ,M
′
n′−1) is a sub-configuration of

C if there exists x such that Mx+i = M ′i holds for any i (0 ≤ i ≤ n′−1). In this case, we say n′ is the
length of sub-configuration C ′. We sometimes describe a sub-configuration C ′ = (M ′0, . . . ,M

′
n′−1)

by listing all colors in M ′i as the i-th column. That is, when M ′i = {ci1, . . . , ci|M ′i |} holds for each i

(0 ≤ i ≤ n′ − 1), we describe C ′ as follows:

c01
c02
...

c0|M ′0|

c11
c12
...

c1|M ′1|

· · ·

cn
′−1

1

cn
′−1

2
...

cn
′−1
|M ′

n′−1
|

When M ′i = ∅ holds, we write ∅ as the i-th column. If h free nodes exist successively, we sometimes
write ∅h instead of writing h columns with ∅. For simplicity, when C ′ is a sub-configuration of C
and all robots appear in C ′, we use C ′ instead of C to represent configuration C. We also use this
description to represent views of robots.

Throughout the paper, we consider the case of φ = 1. We describe a rule in an algorithm in
the following manner:

Rrule :

c−1,1
c−1,2

...
c−1,m−1

c0,1
c0,2

...
(c0,m0)

c1,1
c1,2

...
c1,m1

:: cnew,Movement

Notation Rrule is a label of the rule. The middle part represents a guard. This represents a view
V = (c0,m0 ,M−1,M0,M1), where Mi = {ci,1, . . . , ci,mi} holds for i ∈ {−1, 0, 1}. Intuitively, each
column represents colors of robots on a single node and a color within parentheses represents its
current color. If a forward or backward view of robot r is equal to V , r is enabled. In this case, r
can execute an action represented by cnew,Movement. Notation cnew represents a new color of the
robot, and Movement represents the movement. Notation Movement can be ⊥,←,→, or← ∨ →:
1) ⊥ implies a robot does not move, 2) ← (resp., →) implies a robot moves toward the node such
that a set of robot colors is M−1 (resp., M1), and 3) ← ∨ → implies a robot moves toward one
of two directions (the scheduler decides the direction). When the view V described in a guard is
symmetric, Movement should be either ⊥ or ← ∨ →. As an example, consider the following rule.

Rex : ∅
G

(W) G
:: G,→

Robot r is enabled by Rex if 1) the color of r is W, 2) the current node is occupied by two robots
with colors G and W, 3) one neighboring node is occupied by no robot, and 4) another neighboring
node is occupied by a robot with color G. If r is enabled by Rex, r changes its color to G and moves
toward the node occupied by a robot with color G.
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Algorithm 1 Fully-Synchronous Perpetual Exploration for k = 2

Initial configurations
GW and WG

Rules
0GW : ∅ (G) W :: G,←
0WG : ∅ (W) G :: W,→

W

W

G

W

Figure 1: An example of an independent territory set. Notations W and G represent robots with
colors W and G, respectively.

3 Full-synchronous Robots

3.1 A universal perpetual exploration algorithm for two robots with two colors

In this subsection, we provide a perpetual exploration algorithm for two robots with two colors.
Note that, since one robot cannot achieve perpetual exploration clearly because the direction of its
movement is decided by the scheduler, two robots are necessary to achieve perpetual exploration.
A set of colors is Col = {G,W}. The algorithm is given in Algorithm 1. In the initial configuration,
two robots with colors G and W stay at neighboring nodes. In this algorithm, the robot with color
G moves against the other robot, and the robot with color W moves toward the other robot. This
implies two robots move in the same direction. Since they move synchronously, the views of the two
robots are not changed. Hence, the two robots continue to move and achieve perpetual exploration.
Clearly we have the following theorem.

Theorem 3 In case of φ = 1 and k = 2, Algorithm 1 solves perpetual exploration from initial
configurations GW and WG for n ≥ 2 in the FSYNC model.

In the following, we show that other initial configurations are unsolvable for n ≥ 6. This
implies Algorithm 1 is universal with respect to perpetual exploration for n ≥ 6 in case of φ = 1
and k = 2. To prove the impossibilities, we first prove Lemma 4. This lemma will be used for many
impossibility proofs not only in the FSYNC model but also in the SSYNC and ASYNC models.
For configuration C, we define Vr(C) as a set of nodes occupied by at least one robot. We say a set
of two neighboring nodes T = {vi, vi+1} is a territory of robots on node v if v ∈ T holds. We say a
territory set T is independent if, for every pair of territories T1, T2 ∈ T , the distance between any
node in T1 and any node in T2 is at least two (See Fig. 1).

Lemma 4 Consider a configuration C such that no two nodes in Vr(C) are neighbors and, for
every node v ∈ Vr(C), robots on v have the same color. If there exists a territory set T such that T
is independent and every node in Vr(C) belongs to some territory in T , robots on v ∈ Vr(C) cannot
go out of their territory in T after configuration C in the FSYNC, SSYNC, and ASYNC models.
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Proof: Assume that such a territory set T exists. We prove the lemma by induction. At
configuration C, every robot stays at its territory. Consider configuration C ′ such that every robot
stays at its territory. Since no two nodes in different territories share the same neighbor, each
robot observes no robots on its neighbor nodes. This means the view of the robot is symmetric
and consequently the scheduler can decide the direction of its movement. In addition, all robots on
a single node have the same color, they make the same behaviors if the scheduler activates them
at the same time. Hence, each robot moves to another node in its territory if it decides to move.
That is, every robot stays at its territory again. Therefore, the lemma holds. 2

Now we go back to the FSYNC model, and prove that initial configurations other than GW and
WG are unsolvable.

Lemma 5 Assume n ≥ 6. Let C be a configuration such that two robots are disconnected. In this
case, C is unsolvable.

Proof: Let d be the distance between two robots in C. Without loss of generality, we assume
that two robots r1 and r2 occupy nodes v0 and vd at C, respectively. We define territories T1 and
T2 as follows: If d = 2 holds, we define T1 = {v0, vn−1} and T2 = {vd, vd+1}, and if d > 2 holds, we
define T1 = {v0, v1} and T2 = {vd, vd+1}. Since T = {T1, T2} is independent, two robots visit only
nodes in T1 ∪ T2 from Lemma 4. Therefore, they cannot achieve perpetual exploration. 2

Lemma 6 Assume n ≥ 6. Configurations GG and WW are unsolvable.

Proof: Since two robots have the same view, they move in a symmetric manner. If each
robot moves toward the other robot, the robots just swap their positions. Hence, to achieve
exploration, eventually each robot moves against the other robot. After the movement, the distance
between them is three. Similarly to Lemma 5, robots cannot achieve perpetual exploration from
the configuration. 2

From Theorem 3 and Lemmas 5 and 6, a set of solvable configurations is Cs = {GW,WG}.
Therefore, we have the following theorem.

Theorem 7 In case of φ = 1, k = 2, and Col = {G,W}, Algorithm 1 is universal with respect to
perpetual exploration for n ≥ 6 in the FSYNC model.

3.2 Impossibility of terminating exploration with two robots

In this subsection, we prove that no algorithm solves terminating exploration for k = 2.

Theorem 8 In case of φ = 1 and k = 2, no algorithm solves terminating exploration in the FSYNC
model. This holds even if robots can use an infinite number of colors.

Proof: Assume that such algorithm A exists. Consider an execution E = C0, C1, . . . of A in a
n1-node ring R1 (n1 ≥ 6). Let t be the minimum instant such that two robots terminate or become
disconnected at Ct. Next, for some n2 > 2(t + 1), let us consider an execution E′ = C ′0, C

′
1, . . . of

A in a n2-node ring R2. Clearly, as long as two robots keep connected, they do not recognize the
difference between R1 and R2. Hence, in E′, two robots move similarly to E until C ′t. If two robots

8



Algorithm 2 Fully-Synchronous Terminating Exploration for k = 3

Initial configurations
WWW, GWW, WWG, and GWG

Rules
0GW : ∅ (G) W :: G,←
0WG : ∅ (W) G :: W,→
0WW : ∅ (W) W :: G,⊥
GWW : G (W) W :: W,←
GWG : G (W) G :: W,← ∨ →

terminate at C ′t, they have visited at most 2(t+ 1) nodes and thus they do not achieve exploration.
If two robots become disconnected at C ′t, we can define an independent territory set at C ′t. From
Lemma 4, two robots cannot visit the remaining nodes and thus they cannot achieve exploration.
This is a contradiction. 2

3.3 A terminating exploration algorithm for three robots with two colors

In this subsection, we give a terminating exploration algorithm for three robots with two colors in
case of n ≥ 3. A set of colors is Col = {G,W}. The algorithm is given in Algorithm 2.

Executions of Algorithm 2 for n ≥ 5 are given in Fig. 2. We consider three robots r1, r2, and
r3. In the figure, Wi (resp., Gi) represents robot ri with color W (resp., G). Arrows represent
that indicated robots are enabled. At configuration WWW, r1 and r3 are enabled by rule 0WW
(Fig. 2(a)) and change their colors to G. At configuration GWG (Fig. 2(b)), robots r1 and r2 (i.e., a
pair of robots GW) and r3 (i.e., another robot G) move to the opposite directions by rules 0GW and
GWG. Note that, since the view of r2 is symmetric at configuration GWG, the scheduler decides the
direction of r2. This implies that the next configuration is GW∅∅G (Fig. 2(c)) or G∅∅WG. However,
since the two configurations are symmetric to each other, robots move in the same manner after the
configuration. At configuration GWW (Fig. 2(d)), robots r1 and r2 move to the opposite direction
of r3 by rules 0GW and GWW, and then the configuration becomes one in Fig. 2(e). Note that, since
configuration WWG is symmetric to GWW, robots move in the same manner from configuration
WWG. After configurations in Fig. 2(c)(e), robots r1 and r2 continue to move to the same direction
by rules 0GW and 0WG. After r1 and r2 explore the ring, they reach r3 (Fig. 2(f)). After robot r2
moves, they terminate at a configuration in Fig. 2(g).

We can easily verify that Algorithm 2 works for n = 3 or n = 4. Hence we have the following
theorem.

Theorem 9 In case of φ = 1 and k = 3, Algorithm 2 solves terminating exploration from initial
configurations WWW, GWW, WWG, and GWG for n ≥ 3 in the FSYNC model.

Note that we can construct another algorithm by swapping the roles of colors G and W in Algo-
rithm 2. Clearly this algorithm solves terminating exploration from configurations such that colors
G and W are swapped from solvable configurations for Algorithm 2. This implies configurations
GGG, WGG, GGW, and WGW are also solvable. Hence, we have the following lemma.

Lemma 10 If k = 3 holds and a set of colors is {G,W}, configurations WWW, WWG, WGW,
WGG, GWW, GWG, GGW, and GGG are solvable for terminating exploration in the FSYNC model.

9



W" W# W$ G" W# G$

G" W# W$

G" W# G$

G" W# G$

G$ G" W# G$
W#
G"

......

(a) (b) (c)

(d) (e)

(f) (g)

Figure 2: Executions of Algorithm 2

We also prove that there exists no universal algorithm with respect to terminating exploration
for three robots with two colors. This validates the assumption that Algorithm 2 starts from some
designated initial configuration.

Theorem 11 In case of φ = 1, k = 3, and κ = 2, no universal algorithm exists with respect to
terminating exploration in the FSYNC model.

Proof: (Sketch) To prove the lemma by contradiction, we assume universal algorithm A exists.
We first prove that, by A, the distance between some pair of two robots becomes at least five in
some large ring. Intuitively this holds because, if the three robots always stay within distance four,
they cannot distinguish small rings and large rings, and terminate without exploration in large
rings.

When the distance becomes at least five, some two robots should be connected. Otherwise, we
can define an independent territory set and exploration is impossible from Lemma 4. Intuitively
the two connected robots should explore the ring because another robot cannot go out of its
territory. This implies the two robots should form sub-configuration GW. In addition, since one
of the two robots should move toward another robot to explore the ring, A should include rule
0WGX : ∅(W)G :: X,→ or 0GWX : ∅(G)W :: X,→ for some X ∈ Col.

Assume A includes rule 0WGX (we can prove another case similarly). Consider a solvable
configuration WGW. From this configuration, two robots with color W move toward G at the
same time by rule 0WGX. This implies two robots with the same color make a tower in the next
configuration. After the configuration, since the two robots move in the same manner, three robots
behave as if there were only two robots. Similarly to Theorem 8, we can prove that they cannot
achieve terminating exploration. This is a contradiction because A cannot achieve terminating
exploration from a solvable initial configuration. 2

4 Semi-synchronous and Asynchronous Robots

4.1 Impossibility of perpetual exploration with two robots

In this subsection, we prove that two robots are not sufficient to achieve perpetual exploration in
the SSYNC model. Clearly this impossibility result holds in the ASYNC model.
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Algorithm 3 Asynchronous Perpetual Exploration for k = 3

Initial configurations

WWG, WGG, GWW, GGW,
W

G
W

,
G
W W

,
G
W
G

, and
W
G G

.

Rules
0GW : ∅ (G) W :: G,→

0TW : ∅
G

(W) W
:: G,→

0TG : ∅
W
(G) G

:: W,←

0WG : ∅ (W) G :: W,→

Theorem 12 In case of φ = 1 and k = 2, no algorithm solves perpetual exploration in the SSYNC
model. This holds even if robots can use an infinite number of colors.

Proof: Assume that such algorithm A exists for n ≥ 6. First consider the case that initially
two robots r1 and r2 are connected. Clearly some robot ri (i ∈ {1, 2}) eventually moves against
another robot. At that time, we assume that the scheduler activates only ri. Since another robot
does not move, the two robots become disconnected.

From the above fact, two robots are initially disconnected or eventually become disconnected.
Let us consider the configuration such that two robots are disconnected. In this case, we can define
an independent territory set, and thus robots cannot achieve exploration from Lemma 4. This is a
contradiction. 2

4.2 A universal perpetual exploration algorithm for three robots with two col-
ors

In this subsection, we give a universal perpetual exploration algorithm for three robots with two
colors in the SSYNC and ASYNC models. We first give a perpetual exploration algorithm by three
robots with two colors in the ASYNC model, and after that we prove the algorithm is universal
in the SSYNC and ASYNC models. A set of colors is Col = {G,W}. The algorithm is given in
Algorithm 3.

Executions of Algorithm 3 for n ≥ 4 are given in Fig. 3. Let us consider configuration WWG,
and assume that r1, r2, and r3 compose the configuration in this order (Fig. 3(a)). Here only
r3 is enabled with rule 0GW, and r3 moves toward r2. In a configuration in Fig. 3(b), only r2
is enabled with rule 0TW. If r2 is activated, r2 changes its color to G and moves toward r1
(Fig. 3(c)). Note that, in the ASYNC model, after r2 changes its color, some robots may observe
the intermediate configuration before r2 moves toward r1. However, since no rule matches the
intermediate configuration, robots do not move based on the configuration. After r2 moves from
Fig. 3(c) by rule 0TG, the sub-configuration becomes WWG (Fig. 3(e)) but the robots change their
positions from Fig. 3(a) to Fig. 3(e). Similarly, robots repeat the behavior from Fig. 3(a) to Fig. 3(e),
and they achieve perpetual exploration. From configuration WGG in Fig. 3(d), r1 moves by rule
0WG and becomes a configuration in Fig. 3(c). After that, they move similarly to the case from a
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Figure 3: Executions of Algorithm 3

configuration in Fig. 3(a). These executions include configurations

WWG,WGG,
W

G
W
, and

W
G G

,

and consequently from these configurations robots can achieve perpetual exploration. Since re-
maining configurations

GWW,GGW,
G
W W

, and
G
W
G

are symmetric to the above configurations, robots can also achieve perpetual exploration from the
configurations. Therefore, we have the following theorem.

Theorem 13 In case of φ = 1 and k = 3, Algorithm 3 solves perpetual exploration from initial
configurations

WWG,WGG,GWW,GGW,
W

G
W
,
G
W W

,
G
W
G
, and

W
G G

for n ≥ 3 in the ASYNC model.

We can also show that other initial configurations are unsolvable for n ≥ 9 in the SSYNC model.
This implies Algorithm 3 is universal with respect to perpetual exploration for n ≥ 9 in the SSYNC
and ASYNC models.

Theorem 14 In case of φ = 1, k = 3, and Col = {G,W}, Algorithm 3 is universal with respect to
perpetual exploration for n ≥ 9 in the SSYNC and ASYNC models.

4.3 Impossibility of terminating exploration with three robots

In this subsection, we prove that three robots are not sufficient to achieve terminating exploration
in the SSYNC model. Clearly this impossibility result holds in the ASYNC model.

Theorem 15 In case of φ = 1 and k = 3, no algorithm solves terminating exploration in the
SSYNC model. This holds even if robots can use an infinite number of colors.

Proof: For contradiction, assume that such algorithm A exists. Consider an execution E =
C0, C1, . . . of A in a n1-node ring R1 (n1 ≥ 9). Let t be the minimum instant such that three robots
terminate or become disconnected at Ct. Next, for n2 = 4(t + 1), let us consider an execution
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Algorithm 4 Asynchronous Terminating Exploration for k = 4

Initial configurations
WWGG, WWWG, WWGW, GGWW, GWWW, WGWW.

Rules
0GW : ∅ (G) W :: G,→

GGW : G (G) W :: G,→

0TW : ∅
G

(W) W
:: G,→

GTW :
G

G
(W) W

:: G,→

0TG : ∅
W
(G) G

:: W,←

0WG : ∅ (W) G :: W,→

E′ = C ′0, C
′
1, . . . of A in a n2-node ring R2 such that the scheduler activates robots similarly to E.

Clearly, as long as three robots keep connected, they do not recognize the difference between R1 and
R2. Hence, in E′, three robots move similarly to E until C ′t. Note that, since robots have visited
at most 3(t + 1) until C ′t, they must explore the remaining t + 1 nodes. If three robots terminate
at C ′t, they do not achieve exploration. If three robots become disconnected at C ′t, robots cannot
achieve exploration from the proof of Theorem 14. 2

4.4 A terminating exploration algorithm for four robots with two colors

In this subsection, we give a terminating exploration algorithm for four robots with two colors in
case of n ≥ 4. A set of colors is Col = {G,W}. The algorithm is given in Algorithm 4. Note
that rules 0GW, 0TW, 0TG are identical to Algorithm 3. Hence, once three robots construct
sub-configurations

Cpe =

{
WWG,

W
G
W
,
W
G G

}
,

they explore the ring similarly to Algorithm 3.
Executions of Algorithm 4 for n ≥ 5 are given in Fig. 4. At configuration WWGG (Fig. 4(a))

only r3 can move by rule GGW, and the configuration becomes one in Fig. 4(b) after it moves. Since
r1, r2, and r3 form a sub-configuration in Cpe, they explore the ring. Since r4 does not move, three
robots eventually join r4 from the opposite direction (Fig. 4(c)).

Figure 5 shows executions after a configuration in Fig. 4(c). In this figure, we reassign indices
to robots: r1, r2, r3, and r4 form sub-configuration GWWG in this order. Since r1 and r4 are
enabled, robots can make several behaviors depending on activation by the scheduler. Notation
LC-i (resp., M-i) means the scheduler activates Look and Compute phases (resp., Move phase)
of ri. Although the scheduler can activate Look and Compute phases separately, we combine the
two phases because a Look phase does not change a configuration. At configuration GWWG, the
scheduler can activate r1 and r4 to change the configuration. If the scheduler activates exactly one
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Figure 5: A termination execution of Algorithm 4

robot, we only show the case of r1 because the case of r4 is symmetric to r1. An arrow below a
robot means that the robot decides to move to the direction. In every execution from configuration
GWWG, robots eventually terminate. That is, Algorithm 4 solves terminating exploration from
initial configuration WWGG.

We consider other initial configurations WWWG and WWGW in Fig. 6. From initial configu-
ration WWWG (Fig. 6(a)), robots eventually form configuration WWGG (Fig. 6(e)) and thus they
can solve terminating exploration. From initial configuration WWGW (Fig. 6(f)), robots form a
configuration in Fig. 6(g) and the configuration is the same as in Fig. 6(b). Hence, they can solve
terminating exploration.

Since configurations GGWW, GWWW, and WGWW are symmetric to WWGG, WWWG, and
WWGW, respectively, we have the following theorem.

Theorem 16 In case of φ = 1 and k = 4, Algorithm 4 solves terminating exploration from initial
configurations WWGG, WWWG, WWGW, GGWW, GWWW, and WGWW for n ≥ 5 in the ASYNC
model.

Note that we can construct another algorithm by swapping the roles of colors G and W in Algo-
rithm 4. Clearly this algorithm solves terminating exploration from configurations such that colors
G and W are swapped from solvable configurations for Algorithm 4. This implies configurations
GGGW, GGWG, WGGG, and GWGG are also solvable. Hence, we have the following lemma.

Lemma 17 If k = 4 holds and a set of colors is {G,W}, configurations WWGG, WWWG, WWGW,
GGWW, GWWW, WGWW, GGGW, GGWG, WGGG, and GWGG are solvable for terminating explo-
ration in the ASYNC model.
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Figure 6: Executions from WWWG and WWGW of Algorithm 4

We also prove that there exists no universal algorithm with respect to terminating exploration
for four robots with two colors. This validates the assumption that Algorithm 4 starts from some
designated initial configuration.

Theorem 18 In case of φ = 1, k = 4, and κ = 2, no universal algorithm exists with respect to
terminating exploration in the SSYNC and ASYNC models.

Proof: (Sketch) Similarly to Theorem 11, we can show that the distance between some pair of
robots become large and some three robots must explore the ring. At that time, we also show that
the three robots always form a sub-configuration in

Cexp =

{
WGG,GGW,GWW,WWG,

W
G
W
,
G
W W

,
G
W
G
,
W
G G

}
.

Note that this is a set of solvable configurations for perpetual exploration. Since a universal
algorithm makes the three robots explore the ring by changing their sub-configuration from one in
Cexp to another in Cexp, we can show that the algorithm should include some set of rules. Lastly,
we prove the set of rules makes some solvable initial configuration unsolvable. 2

5 Conclusions

In this paper, we investigated the possibility of exploration algorithms for myopic luminous robots
evolving in uniform ring-shaped networks. Considering weakest possible assumptions for myopia
and luminosity, we proved that: (i) in the fully synchronous model, two and three robots are nec-
essary and sufficient to achieve perpetual and terminating exploration, respectively, and ii) in the
semi-synchronous and asynchronous models, three and four robots are necessary and sufficient to
achieve perpetual and terminating exploration, respectively. These tight results characterize the
power of lights for myopic robots since, without lights, five robots are necessary and sufficient to
achieve terminating exploration in the fully synchronous model, and no terminating exploration
algorithm exists in the semi-synchronous and asynchronous models. We also showed that our per-
petual exploration algorithms are universal, and that no universal algorithm exists for terminating
exploration.
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This paper leaves open many issues with respect to problem solvability for myopic luminous
robots. In case of non-myopic luminous robots, the difference between the semi-synchronous model
and the asynchronous model disappears. Does this difference still hold for myopic luminous robots?
If visibility φ is large, robots may be able to use distance to neighboring robots to store information
instead of lights. Now, is there some relation between tasks achieved by myopic luminous robots
with a large number of colors, and tasks achieved by non-luminous robots with large visibility? Is
there a tradeoff between the visibility distance and the number of colors? It is also interesting to
consider other tasks and topologies with myopic luminous robots.
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A Proof of Theorem 11

To prove Theorem 11 by contradiction, we assume universal algorithm A exists. We assume Col =
{G,W}. We consider a ring with n > 4 ·103 nodes and an execution E = C0, C1, . . . of A in the ring.
Note that, since three robots can visit at most three new nodes in each configuration, E includes
at least n/3 > (4/3) · 103 configurations.

The outline of the proof is as follow. We first prove that three robots eventually become
disconnected (Lemma 19), and at that time two robots compose a sub-configuration GW (Lemma
21). Then, we prove that some rule is necessary to make the two robots explore the ring (Lemma
22), however the rule makes a solvable configuration unsolvable (Lemma 23).

Lemma 19 The distance between some pair of two robots becomes at least five before the 103-th
configuration of execution E.

Proof: For contradiction, assume that the distance between any pair of robots is at most
four until 103-th configuration of E. For each configuration Ci (0 ≤ i ≤ 103), we define C ′i as a
sub-configuration of Ci such that C ′i contains five nodes (i.e., the length of C ′i is five), every robot
occupies one of the five nodes, and some robot occupies the first node of C ′i. Since each robot has
one of two colors and occupies one of five nodes, the number of such sub-configurations is at most
103. Hence, for some t and u (t < u ≤ 103), sub-configurations C ′t and C ′u are identical. In the
following, we consider two cases.

The first case is that the five nodes contained in C ′t and C ′u are identical. This implies config-
urations Ct and Cu are identical. Since A is deterministic, robots repeat the behavior from Ct to
Cu after Cu. Since robots can visit at most 3 · 103 nodes before configuration Ct, they cannot visit
remaining nodes after Cu. Thus robots cannot complete exploration.

The second case is that the five nodes contained in C ′t and C ′u are not identical. This means
robots change their position from Ct to Cu. However, since no robots exist out of the five nodes,
the behaviors of robots depend only on the sub-configuration. Hence, robots repeat the behaviors
from Ct to Cu after Cu. This implies robots continue to explore the ring, and thus they cannot
terminate.

For both cases, robots cannot achieve terminating exploration. This is a contradiction. 2

From Lemma 19, the distance between some pair of two robots becomes at least five before
the 103-th configuration. Let t1 be the smallest instant such that the distance between some pair
of two robots is at least five at Ct1 . Clearly t1 ≤ 103 holds. Since three robots can visit at most
3(t1 + 1) nodes before Ct1 , at least 103 − 3 unexplored nodes exist at Ct1 . The next two lemmas
show that, to explore the unexplored nodes, robots have to construct a specific sub-configuration.

Lemma 20 If a tower exists at configuration Ct1, robots break the tower before they visit three
unexplored nodes.

Proof: Assume that a tower exists at configuration Ct1 . Since the number of robots is three
and the distance between some pair of robots is at least five at Ct1 , the tower includes two robots
and the views of the robots are symmetric. The view of a robot not in the tower is also symmetric.
Hence, we can define their territories similarly to Lemma 4. This implies robots do not go out of
their territories before they break the tower. Therefore, the lemma holds. 2
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Let t2 be the smallest instant such that the distance between some pair of two robots is at least
five and no tower exists at Ct2 . Since at least 103−3 unexplored nodes exist at Ct1 , at least 103−7
unexplored nodes exist at Ct2 from Lemma 20.

Lemma 21 Configuration Ct2 includes sub-configuration GW∅iX or WG∅iX for some i ≥ 3 and
X ∈ Col (or sub-configuration symmetric to one of them).

Proof: For contradiction, assume that Ct2 does not include such sub-configurations. Since the
distance between some pair of two robots is at least five and no tower exists, Ct2 includes either 1)
sub-configuration Y ∅iZ∅jX for some i+ j ≥ 3 and X,Y, Z ∈ Col, 2) sub-configuration Y Y ∅iX for
some i ≥ 3 and X,Y ∈ Col, or 3) sub-configuration symmetric to Case 1 or 2.

In Case 1, we can define an independent territory set. This implies robots cannot visit remaining
unexplored nodes from Lemma 4. Thus, they cannot achieve exploration.

Let us consider Case 2. We assume robots r1 and r2 have color Y and r3 has color X at
Ct2 . Since the scheduler can make r3 move forward and backward, r1 and r2 should move to
achieve exploration. Since the view of r1 is identical (symmetric) to the view of r2, r1 and r2 make
symmetric behaviors. If r1 moves toward r2, r1 and r2 swap their positions and visit no unexplored
nodes. If r1 moves against r2, its sub-configuration becomes Y ′∅∅Y ′∅jX ′ for some j ∈ {i−2, i−1, i}
and X ′, Y ′ ∈ Col. Here Y ′ is a new color of r1 and r2, and j and X ′ depend on the behavior of
r3. For any case, this sub-configuration reduces to Case 1. This implies robots cannot achieve
exploration.

We consider Case 3 similarly to Cases 1 and 2. For every case, robots cannot achieve exploration.
This is a contradiction. 2

From Lemma 21, at configuration Ct2 , two robots with colors G and W are away from the other
robot. Since the remaining isolated robot cannot explore by itself, two robots with colors G and W
explore the remaining part of the ring. The following lemma proves that A includes some rules to
realize this behavior.

Lemma 22 We consider the following rules:

• 0WGX : ∅(W)G :: X,→ (for some X ∈ Col)

• 0GWX : ∅(G)W :: X,→ (for some X ∈ Col)

Algorithm A includes a rule 0WGX or 0GWX

Proof: For contradiction, assume that A includes neither 0WGX nor 0GWX. From Lemma 21,
at configuration Ct2 , two robots with colors G and W are away from the other robot and compose
sub-configuration GW or WG. Since sub-configurations GW and WG are symmetric, we consider
only sub-configuration GW. To complete exploration, the two robots must explore the remaining
part of the ring.

Since A includes neither 0WGX nor 0GWX, a robot in a sub-configuration GW does not move
toward another robot in GW. We consider three cases about the movement of robots in GW:

1. One or both of robots in GW move against the other robots in GW. In this case, these two
robots become isolated. At this configuration, we can define an independent territory set,
and thus robots cannot achieve exploration from Lemma 4.
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2. Both robots in GW change their colors and do not move. In this case, robots just swap their
colors and thus the views of them are not changed. This implies robots repeatedly change
their colors and never move. Therefore, robots cannot achieve exploration.

3. One robot in GW changes its color. That is, two robots in GW at Ct2 compose sub-
configuration WW or GG at Ct2+1. Recall that, from Lemma 21, sub-configurations of Ct2
include GW∅iX or WG∅iX for some i ≥ 3 and X ∈ Col. This implies sub-configurations of
Ct2+1 include Y Y ∅jX ′ for some j ∈ {i, i+ 1} and some X ′, Y ∈ Col. Here X ′ and j depend
on the behavior of a robot with color X at Ct2 . As proved in Case 2 of Lemma 21, from
sub-configuration Y Y ∅jX ′, robots cannot achieve exploration.

For every case, robots cannot achieve exploration. This is a contradiction. 2

From Lemma 22, A includes a rule 0WGX or 0GWX. The following lemma shows, if A includes
rule 0WGX or 0GWX, A cannot solve terminating exploration from some solvable configuration.

Lemma 23 1) If A includes rule 0WGX, A cannot solve terminating exploration from configura-
tion WGW. 2) If A includes rule 0GWX, A cannot solve terminating exploration from configuration
GWG.

Proof: Without loss of generality, we consider only statement 1 (Statement 2 is obtained
by swapping the roles of two colors). Assume that, initially, robots r1, r2, and r3 construct a
configuration WGW in this order. Since A includes rule 0WGX, the next configuration includes a
sub-configuration

Y
X
X

or
X
X
Y

for some X,Y ∈ Col. That is, r1 and r3 assign X to its color, move based on rule 0WGX, and
makes a tower, and r2 assigns Y to its color and moves (or stays) based on some rule. Note that
r1 and r3 stay at the same node with the same color. This implies, since the views of r1 and r3
are identical, they move together after this configuration. Similarly to Lemma 19, the distance
between two agents becomes at least five. In this configuration, since r1 and r3 move together, one
node is occupied by r1 and r3 with the same color, and another node is occupied by r2. Since we
can define an independent territory set, robots cannot achieve exploration from Lemma 4. That is,
A cannot solve terminating exploration from configuration WGW. 2

From Lemmas 22 and 23, A cannot solve terminating exploration from configuration WGW or
GWG. However, from Lemma 10, configurations WGW and GWG are solvable. This contradicts to
the assumption that A is universal. Therefore, Theorem 11 holds.

B Proof of Theorem 14

To prove Theorem 14, we show that initial configurations other than ones in Theorem 13 are
unsolvable for n ≥ 9 in the SSYNC model. First we prove the following simple lemma.

Lemma 24 Consider a configuration C such that, for some node vi, vi is occupied by at least one
robot, all robots on vi have the same color, and vi−1 and vi+1 are occupied by no robot. After
configuration C, the following statements hold.
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(1) If no robots appear in vi−2 and vi+1, robots on vi cannot visit nodes other than vi−1 and vi.

(2) If no robots appear in vi+2 and vi−1, robots on vi cannot visit nodes other than vi+1 and vi.

Proof: We prove only statement (1) because we can similarly prove statement (2). Since robots
on vi have the same color, they have the same view. Consequently, if the scheduler repeatedly
activates them at the same time, they continue to make the same behaviors. In addition, since
the views of robots on vi are symmetric, the scheduler decides the directions of their movements.
Consequently, robots on vi move to vi−1 if they decide to move. From statement (1), no robots exist
on vi−2 and vi, and hence the views of the robots are the same as in the previous configuration.
By repeating such behaviors, the robots can visit only vi−1 and vi. Therefore, the lemma holds. 2

In the following, we show that initial configurations other than ones in Theorem 13 are unsolv-
able.

Lemma 25 Assume n ≥ 6. Let C be a configuration such that two or three robots with the same
color stay at a single node. In this case, C is unsolvable in the SSYNC model.

Proof: We consider three cases 1) three robots with the same color stay at a single node, 2)
two robots with the same color stay at a single node and the distance to another robot is at least
two, 3) two robots with the same color stay at a single node and the distance to another robot is
one, and 4) three robots stay at a single node but one robot has a different color from other two
robots. In Cases 1 and 2, robots cannot achieve exploration from Lemma 4.

To consider Cases 3 and 4, assume that r1 and r2 have the same color and stay at node v, and
r3 stays at v or a neighbor of v. We consider the scheduler that repeats 1) activation of r1 and r2
and 2) activation of r3. Since r1 and r2 have the same view, they make the same behavior. If r1
and r2 join the node with r3 and they have the same color as r3, this reduces to Case 1. If such a
situation never happens, to achieve exploration, eventually r1 and r2 move against r3, or r3 moves
against r1 and r2. Both cases reduce to Case 2. Therefore, the lemma holds. 2

Lemma 26 Assume n ≥ 9. Let C be a configuration such that the longest distance between two
robots is at least four. In this case, C is unsolvable in the SSYNC model.

Proof: We consider three robots r1, r2, and r3. If the distance between any pair of robots is
at least three at C, robots cannot achieve exploration from Lemma 4. To consider the remaining
cases, without loss of generality, we assume that the distance between r1 and r2 is at most two at
C. We assume that r1 occupies v0 and r2 occupies v0, v1, or v2 at C. Let vd be the node occupied
by r3 at C. Since the distance between some pair of two robots is at least four, we assume d ≥ 4
and d ≤ n− 4 hold without loss of generality.

In the following, we consider the scheduler that activates one robot at each instant. We prove
that, under this scheduler, robots cannot achieve exploration from every possible configuration.
More concretely, we prove that r1 and r2 always stay at v−1 (i.e., vn−1), v0, v1, or v2. This implies,
since no robots appear in vd−1 and vd+2, r3 cannot visit nodes other than vd and vd+1 from Lemma
24. Therefore, robots cannot achieve exploration.

First consider the case that r2 occupies v2 at C. In this case, the view of every robot is
symmetric. Consequently, if a robot moves, its direction is decided by the scheduler. This implies
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r1 cannot move because, if r1 moves, it moves to v−1 (i.e., vn−1), and from Lemma 4, robots cannot
achieve exploration. If r2 moves, it moves to v1 and this reduces the next case.

Next, consider the case that r2 occupies v1 at C. We consider two sub-cases.

• Case that r1 can move. If r1 moves to v−1, robots cannot achieve exploration from Lemma
4. Assume that r1 moves to v1, and let C ′ be the resultant configuration. Then the views
of r1 and r2 become symmetric at C ′. This implies, if they move, the directions of their
movements are decided by the schedule. Hence, if r1 or r2 moves, it moves to v0. This makes
the configuration go back to C (possibly, r1 and r2 are swapped). If neither r1 nor r2 moves
at C ′, clearly robots cannot achieve exploration.

• Case that r2 can move. If r2 moves to v2, this reduces to the case that r2 occupied v2. Assume
that r2 moves to v0, and let C ′ be the resultant configuration. Then the views of r1 and r2
become symmetric at C ′. This implies, if they move, the directions of their movements are
decided by the schedule. Hence, if r1 or r2 moves, it moves to v1. This makes the configuration
go back to C (possibly, r1 and r2 are swapped). If neither r1 nor r2 moves at C ′, clearly robots
cannot achieve exploration.

Next, consider the case that r2 occupies v0 at C. In this case, the views of r1 and r2 are
symmetric, and hence, if they move, the directions of their movements are decided by the scheduler.
If r1 or r2 moves, it moves to v1. This reduces to the case that r1 and r2 occupy nodes v0 and v1
at C. If neither r1 nor r2 moves, clearly robots cannot achieve exploration.

From the above discussion, r1 and r2 always stay at v−1, v0, v1, or v2. Therefore robots cannot
achieve exploration, and consequently the lemma holds. 2

Lemma 27 Assume n ≥ 9. Let C be a configuration such that the longest distance between two
robots is three. In this case, C is unsolvable in the SSYNC model.

Proof: Consider three robots r1, r2, and r3. Without loss of generality, we assume that, at C,
robots r1 and r3 occupy v0 and v3, respectively, and r2 occupies v0 or v1.

First, we claim that r3 never moves as long as nodes v2 and v4 are free. Otherwise, by activating
r3 several times after C, the scheduler can make r3 move. Since the view of r3 is symmetric, the
direction of the movement is also decided by the scheduler. Hence r3 moves to v4 and the resultant
configuration is unsolvable from Lemma 26. Therefore, the above claim holds.

Consider the case that r2 occupies v0 at C. Since r3 cannot move, r1 or r2 should move. Since
the views of r1 and r2 are symmetric, the directions of their movements are decided by the scheduler.
Hence, r1 or r2 moves to v−1, and the resultant configuration is unsolvable from Lemma 26.

Consider the case that r2 occupies v1 at C. Since r3 cannot move, r1 or r2 should move. We
consider the following three sub-cases.

• If r1 moves to v−1, the resultant configuration is unsolvable from Lemma 26.

• If r1 moves to v1 (resp., if r2 moves to v0), r1 and r2 occupy v1 (resp., v0) at the resultant
configuration C ′. Since r3 cannot move at C ′, r1 or r2 should move after C ′. Since views of r1
and r2 are symmetric, the directions of their movements are decided by the scheduler. Hence,
r1 or r2 moves to v0 (resp., v1), and this makes the configuration go back to C (possibly, r1
and r2 are swapped).
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• If r2 moves to v2, r1, r2, and r3 occupies v0, v2, v3, respectively. Since we do not consider
colors here, the resultant configuration is symmetric to C considered in the current case (i.e.,
r1, r2, and r3 occupies v0, v1, v3).

For all sub-cases, the scheduler can make the configuration unsolvable or move robots infinitely
among nodes v0, v1, v2, and v3. Hence, robots cannot achieve exploration in this case. 2

Lemma 28 Assume n ≥ 9. Let C be a configuration such that the longest distance between two
robots is two and two robots occupy a single node. In this case, C is unsolvable in the SSYNC
model.

Proof: We consider three robots r1, r2, and r3. Without loss of generality, we assume that r1
and r2 occupy v1 and r3 occupies v3. Since views of all robots are symmetric, the directions of their
movements are decided by the scheduler. Hence, if r1 or r2 moves, it moves to v0, and if r3 moves,
it moves to v4. For both cases, the longest distance between two robots becomes three. Therefore,
robots cannot achieve exploration from Lemma 27. 2

Lemma 29 Assume n ≥ 9. Let C be a configuration XYX for some X ∈ Col and Y ∈ Col. In
this case, C is unsolvable in the SSYNC model.

Proof: Without loss of generality, we assume that robots r1, r2, and r3 have colors X, Y , and
X and occupy v1, v2, and v3, respectively. We consider the scheduler that repeats the following
activation: Activate r1 and r3 at the same time, and then activate r2.

First consider the case that r1 and r3 move. Since r1 and r3 have the same views, they make
symmetric behaviors. If r1 and r3 move to v2, r1 and r3 occupy v2 and they have the same color.
Hence, the resultant configuration is unsolvable from Lemma 25. If r1 and r3 move to v0 and v4,
respectively, the distance between r1 and r3 becomes four. Hence, the configuration is unsolvable
from Lemma 26.

Next consider the case that r2 moves. In this case, r2 joins r1 or r3 and makes a tower. The
resultant configuration is unsolvable from Lemma 28. 2

From Lemmas 26 and 27, the longest distance between two robots is at most two. Three robots
must be connected from Lemma 28, and they must not form a symmetric configuration from Lemma
29. In addition, robots with the same color must not occupy a single node from Lemma 25. This
implies all configurations other than initial configurations described in Theorem 13 are unsolvable.
Clearly, if configuration C is unsolvable in the FSYNC model, C is also unsolvable in the ASYNC
model. Therefore, we have Theorem 14.

C Proof of Theorem 18

To prove Theorem 18, we show the following lemma.

Lemma 30 Assume that φ = 1, k = 4, and Col = {G,W}. We define a set of configurations Csol
as follows:

Csol = {WWGG,WWWG,WWGW,GGWW,GWWW,

WGWW,GGGW,GGWG,WGGG,GWGG}.
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In the SSYNC model, no algorithm exists that solves terminating exploration from any initial con-
figuration in Csol.

From Lemma 17, Csol is a subset of solvable initial configurations in the SSYNC and ASYNC
models. Hence, universal algorithms for the SSYNC model must solve terminating exploration
from any initial configuration in Csol in the SSYNC model. In addition, universal algorithms for
the ASYNC model must also solve terminating exploration from any initial configuration in Csol in
the SSYNC model. However, Lemma 30 implies no such algorithms exist. This implies no universal
algorithm exists in the SSYNC and ASYNC model. Therefore, we have Theorem 18.

In the rest of this section, we prove Lemma 30 by contradiction. Assume that there exists
an algorithm A that solves terminating exploration from any initial configuration in Csol in the
SSYNC model. Let d1 = 103 + 1, d2 = 3d1, and d3 = (2d2)

4. We consider a ring with n > 5d3
nodes and an execution E = C0, C1, . . . of A in the ring. Here we assume that, in each instant,
the scheduler activates at least one robot that changes its position or its color unless A terminates.
That is, Ci 6= Ci+1 holds for every i ≤ t, where t is the instant such that A terminates in Ct. Note
that, since four robots can visit at most four new nodes in each configuration, E includes at least
n/4 > (5/4)d3 configurations.

The outline of the proof is as follows. In Lemmas 31 and 32, we give unsolvable configurations.
Then, we prove that the distance between some pair of two robots becomes at least d2 (Lemma
33). We also prove that, in Lemmas 35 and 36, that some three robots must explore the ring by
always forming a sub-configuration in

Cexp =

{
WGG,GGW,GWW,WWG,

W
G
W
,
G
W W

,
G
W
G
,
W
G G

}
.

Note that these sub-configurations are identical to ones used in the perpetual exploration algorithm
in Section 4. The above fact limits a possible set of rules used in algorithm A. Lastly, we prove
that, for every possible set of rules, the set of rules makes some configuration in Csol unsolvable
(Lemmas 38 and 39). This contradicts to the assumption that A solves terminating exploration
from any initial configuration in Csol.

First, we give examples of unsolvable configurations.

Lemma 31 Let C be a configuration that contains a sub-configuration in

Csym =

{
WGGW,GWWG,WWWW,GGGG,

W
W

W
W
,
G
G
G
G
,
W
G

W
G

}
.

In this case, C is unsolvable.

Proof: Note that configurations in Csym are symmetric and the axis of symmetry goes through a
link between robots. We consider the scheduler that always activates two symmetric robots. Clearly,
all robots keep their symmetry. Hence, to explore the ring, one or two robots must continue to move
in one direction (and other one or two robots move in another direction). However, as shown in
Lemma 24 and Theorem 12, one or two robots cannot continue to move in one direction. Therefore,
robots cannot achieve exploration from configurations in Csym. 2

Lemma 32 Let C be a configuration such that two robots with the same color occupy a single node.
In this case, C is unsolvable.
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Proof: Let r1 and r2 be robots that have the same color and occupy a single node. We consider
the scheduler that always activates r1 and r2 at the same time. Clearly, since r1 and r2 have the
same view, they make the same behaviors. This means r1 and r2 move as if they were a single
robot. Therefore, similarly to Theorem 15, robots cannot achieve exploration from configuration
C. 2

Next, we consider an execution E of algorithm A, and prove that the distance between some
pair of two robots becomes large in E.

Lemma 33 The distance between some pair of two robots becomes at least d2 before the d3 = (2d2)
4-

th configuration of execution E.

Proof: For contradiction, assume that the distance between any pair of robots is at most
d2 − 1 until d3-th configuration of E. For each configuration Ci (0 ≤ i ≤ d3), we define C ′i as a
sub-configuration of Ci such that C ′i contains d2 nodes (i.e., the length of C ′i is d2), every robot
occupies one of the d2 nodes, and some robot occupies the first node of C ′i. Since each robot has
one of two colors and occupies one of d2 nodes, the number of such sub-configurations is at most d3.
Hence, for some t and u (t < u ≤ d3), sub-configurations C ′t and C ′u are identical. In the following,
we consider two cases.

The first case is that the d2 nodes contained in C ′t and C ′u are identical. This implies config-
urations Ct and Cu are identical. Since A is deterministic, robots repeat the behavior from Ct to
Cu after Cu. Since robots can visit at most 4d3 nodes before configuration Ct, they cannot visit
remaining nodes after Cu. Thus robots cannot complete exploration.

The second case is that the d2 nodes contained in C ′t and C ′u are not identical. This means
robots change their positions from Ct to Cu. However, since no robots exist out of the d2 nodes,
the behaviors of robots depend only on the sub-configuration. Hence, robots repeat the behaviors
from Ct to Cu after Cu. This implies that robots continue to explore the ring, and thus they cannot
terminate.

For both cases, robots cannot achieve terminating exploration. This is a contradiction. 2

From Lemma 33, the distance between some pair of two robots becomes at least d2 before the
d3-th configuration. Let t1 be the smallest instant such that the distance between some pair of two
robots is at least d2 at Ct1 . Clearly t1 ≤ d3 holds. Since four robots can visit at most 4(t1 + 1)
nodes before configuration Ct1 , at least d3 − 4 unexplored nodes exist at Ct1 . Next, we consider
instant t2 = t1 + d1. Since robots can visit at most 4d1 nodes during configurations Ct1 to Ct2 , at
least d3 − 4− 4d1 unexplored nodes exist at Ct2 .

In Lemmas 34 to 36, we show that there exist three robots that explore the network by forming
a sub-configuration in Cexp from Ct1 to Ct2 .

Lemma 34 Let C be a configuration in {Ct1 , Ct1+1, . . . , Ct2}. At configuration C, there exist three
robots such that the distance among them is at most four.

Proof: Recall that the distance between some pair of two robots is at least d2 at configuration
Ct1 . Since the distance between two robots decreases by at most two after one cycle, the distance
between some pair of two robots is at least d2−2d1 ≥ d1. We consider four robots r1, r2, r3, and r4.
Let d ≥ d1 be the longest distance between two robots. Without loss of generality, we assume the
distance between r1 and r4 is d, r1 occupies v0, and r4 occupies vd at C. We can also assume that
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r2 and r3 occupy vi and vj (0 ≤ i ≤ j ≤ d), respectively, and i ≤ d − j holds. For contradiction,
we assume j > 4.

Consider the case that i = 2 or i = 3 holds. Since j > 4 and j ≤ d− 2 holds, we can define an
independent territory set {{v−1, v0}, {v2, v3}, {vj , vj+1}, {vd, vd+1}}. From Lemma 4, robots cannot
explore the ring.

Consider the case that i = 0 or i = 1 holds, that is, r1 and r2 are connected. First, we show
that r1 and r2 continue to occupy nodes in {vh| − 2 ≤ h ≤ 3} as long as no robot appears on v−3
or v4. In the case of i = 0, if r1 or r2 moves, it moves v1 because the direction of its movement is
decided by the scheduler. This reduces to the case of i = 1. Let us consider the case of i = 1. If
r1 moves to v1 or r2 moves to v0, they make a tower. In this case, after r1 or r2 moves again, the
configuration goes back to the previous one (possibly, r1 and r2 are swapped). Hence, we assume
that eventually r1 moves to v−1 or r2 moves to v2. If r1 moves to v−1, we can define territories
{v−2, v−1} for r1 and {v1, v2} for r2. Similarly, if r2 moves to v2, we can define territories {v−1, v0}
for r1 and {v2, v3} for r2. Hence, as long as no robot appears on v−3 or v4, r1 and r2 continue to
occupy nodes in {vh|−2 ≤ h ≤ 3}. Let us consider r3 and r4 in this case. If r3 and r4 are connected
at C, we can show the same proposition as r1 and r2. That is, as long as no robot appears on vd−4
or vd+3, r3 and r4 continue to occupy nodes in {vh′ |d − 3 ≤ h′ ≤ d + 2}. Therefore, in this case,
the four robots cannot achieve exploration. If r3 and r4 are not connected at C, we can define
territories for r3 and r4 such that r3 and r4 do not go out of their territories. Hence, robots cannot
achieve exploration.

Now we consider the remaining case i > 3. Clearly r1 continues to occupy v0 or v−1 as long as
no robot appears on v−2 or v1, and r4 continues to occupy vd or vd+1 as long as no robot appears on
vd−1 or vd+2. First consider the case that r2 and r3 are connected. As described above, r1 and r4
cannot go out of their current and neighboring nodes as long as r2 or r3 moves toward them. This
implies r2 or r3 must move toward r1 or r4 to achieve exploration. Here we assume the scheduler
activates either r2 or r3 at the same time. This implies r2 or r3 moves against another robot, and
the distance between r2 and r3 becomes two. At this configuration, we can define an independent
territory set and thus robots cannot achieve exploration from Lemma 4. Next consider the case
that r2 and r3 are disconnected. In this case, we can similarly define an independent territory set
and thus, from Lemma 4, robots cannot achieve exploration.

For all cases, robots cannot explore the ring. Hence, j ≤ 4 holds. That is, the distance among
robots r1, r2, and r3 is at most four. 2

From Lemma 34, for each configuration C in {Ct1 , Ct1+1, . . . , Ct2}, there exist three robots such
that the distance among them is at most four. Note that, since the distance from one of the three
robots to another robot is at least d1, a set of three robots within distance four does not change
from Ct1 to Ct2 . In the following, we define r1, r2, and r3 as three robots that stay within distance
four from Ct1 to Ct2 . Let r4 be another robot. In the following lemma, we show that r1, r2, and r3
execute a perpetual exploration algorithm from Ct1 to Ct2 .

Lemma 35 Consider configuration C∗ such that r1, r2, and r3 stay on the same node with the
same color as configuration Ct1 and r4 does not exist. Then, from configuration C∗, robots r1, r2,
and r3 achieve a perpetual exploration.

Proof: First we consider configurations from Ct1 to Ct2 . From Lemma 34, three robots r1, r2,
and r3 always stay within distance four. Hence, for each configuration Ci for t1 ≤ i ≤ t2, we can
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define C ′i as a sub-configuration of Ci such that C ′i contains five nodes (i.e., the length of C ′i is
five), each of r1, r2, and r3 occupies one of the five nodes, and some robot occupies the first node of
C ′i. Since each robot has one of two colors and occupies one of five nodes, the number of such sub-
configurations is at most 103 < d1. Hence, for some g and h (t1 ≤ g < h ≤ t2), sub-configurations
C ′g and C ′h are identical. We consider two cases.

The first case is that the five nodes contained in C ′g and C ′h are identical. This implies that
r1, r2, and r3 do not change their positions and colors in Cg and Ch. Hence, unless r1, r2, or r3
observes r4, they repeat the behavior from Cg to Ch after Ch and consequently continue to visit the
same nodes. On the other hand, r4 is far from the three robots and cannot go out of its territory
(i.e., its current and neighboring nodes). This implies that r1, r2, and r3 do not observe r4, and
thus they cannot visit the remaining unexplored nodes.

Let us consider another case, that is, the five nodes contained in C ′g and C ′h are different. This
implies r1, r2, and r3 change their positions from Cg to Ch, that is, they move forward or backward
in the ring. Clearly, the three robots do not observe r4 from Ct1 to Ch. This implies that, if r4
does not exist, they repeat the behavior from Cg to Ch and continue to explore the ring. That is,
they can achieve a perpetual exploration. Therefore, the lemma holds. 2

Lemma 36 From Ct1 to Ct2, robots r1, r2, and r3 form a sub-configuration in Cexp.

Proof: For contradiction, assume that r1, r2, and r3 form a sub-configuration Cs not in
Cexp. From Lemma 35, if r4 does not exist, the three robots achieve perpetual exploration from
configuration Cs. However, Cs is unsolvable for perpetual exploration from Lemmas 25, 26, 27, 28,
and 29. This is a contradiction. 2

From Lemmas 35 and 36, during configurations Ct1 to Ct2 , robots r1, r2, and r3 continue to
form a sub-configuration in Cexp and explore the ring. That is, they must change their colors and
positions from a sub-configuration to another sub-configuration in Cexp. We show transitions among
sub-configurations in Fig. 7, and list all rules to realize such transitions as follows. Note that, in
Fig. 7, we do not distinguish symmetric sub-configurations such as GWW and WWG.
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Figure 7: Transitions among configurations in Cexp

R1 : ∅
W
(G) G

:: W,← R2 : ∅(W)W :: G,→

R3 : ∅
W
(G) G

:: W,→ R4 : ∅
G

(W) W
:: G,→

R5 : ∅
G

(W) G
:: W,← R6 : ∅(W)G :: W,→

R7 : ∅
W
(G) W

:: G,← R8 : ∅(G)W :: G,→

R9 : ∅
G

(W) W
:: G,← R10 : ∅ (G) G :: W,→

R11 : ∅
G

(W) G
:: W,→ R12 : ∅

W
(G) W

:: G,→

R13 : ∅ (G)
W
G

:: W,⊥ R14 : ∅ (W)
G
W

:: G,⊥

R15 : G (W) W :: G,⊥ R16 : G (G) W :: W,⊥

The next lemma shows A includes neither R15 nor R16.

Lemma 37 Algorithm A includes neither R15 nor R16.

Proof: Assume that A includes R15 for contradiction. Consider a configuration WGWW ∈ Csol.
This configuration transits to WGGW by R15. From Lemma 31, configuration WGGW is unsolvable.
This is a contradiction. Similarly we can show that A does not include R16. 2
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Since three robots that form a sub-configuration in Cexp have to explore the ring, they repeat
state transitions by the above rules. This means A includes a set of rules that form a (simple) cycle
in Fig. 7. We list all such sets of rules as follows. Note that, from Lemma 37, each set includes
neither R15 nor R16.

{R11}, {R12}
{R1,R2}, {R3,R4}, {R3,R14}, {R13,R4}, {R13,R14}
{R5,R6}, {R7,R8}, {R9,R10}
{R2,R3,R7}, {R2,R13,R7}, {R8,R4,R1}, {R8,R14,R1},
{R10,R4,R5}, {R10,R14,R5}, {R6,R3,R9}, {R6,R13,R9},
{R2,R5,R10,R7}, {R8,R9,R6,R1}

However, A cannot include some of the above sets. For example, let us consider a set
{R2,R5,R10,R7}. Starting from sub-configuration GWW, the three robots change their sub-
configuration as follows.

GWW
R2−−→

G
W
G ∅

R5−−→
GGW

R10−−→ ∅
G
W W

R7−−→
GWW

Note that these sub-configurations include the same nodes. This implies that, when the robots
form GWW again, they do not change their positions. Hence, if A includes this set, the three
robots cannot explore the ring. On the other hand, let us consider a set {R2,R3,R7}. Starting
from sub-configuration GWW, the three robots change their sub-configuration as follows.

∅GWW
R2−−→ ∅ G

W
G ∅

R3−−→ ∅
G
W W ∅

R7−−→
GWW∅

In this case, when the robots form GWW again, they change their positions. Hence, by this set of
rules, the three robots can explore the ring. By considering all sets of rules, the following four sets
of rules allow robots to explore the ring:

{R2,R3,R7}, {R8,R4,R1}, {R10,R4,R5}, {R6,R3,R9}.

That is, A includes at least one of the above four sets of rules. However, in the following lemmas,
each set of rules makes some configuration in Csol unsolvable.

Lemma 38 If A includes {R2,R3,R7} or {R10,R4,R5}, A cannot solve terminating exploration
from some configuration in Csol.

Proof: First, we consider the case that A includes {R2,R3,R7}. Let us consider a configuration
WGWW ∈ Csol. From rules R2 and R3, the configuration changes as follows.

WGWW
R2−−→

W G
W
G
R3−−→

W
W
G W

Let Ca be the last configuration. Since robots cannot move from Ca by rules R2,R3,R7, A includes
some other rules to move robots from Ca. We consider all possibilities in the following.

• A includes R′1 :
W

W
(G) W

:: G,← ∨ →. In this case, robots change their states as follows.

W
W
G W

R′1−−→
W W

G
W

R2−−→ G
W

G
W

From Lemma 31, the last configuration is unsolvable.
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• A includes R′2 :
W

W
(G) W

:: W,← ∨ →. In this case, robots change their states as follows.

W
W
G W

R′2−−→
W W

W
W

From Lemma 32, the last configuration is unsolvable.

• A includes R′3 :
W

W
(G) W

:: W,⊥. In this case, robots change their states as follows.

W
W
G W

R′3−−→
W

W
W W

From Lemma 32, the last configuration is unsolvable.

• A includes R′4 :
W

G
(W) W

:: G,← ∨ →. In this case, robots change their states as follows.

W
W
G W

R′4−−→
W G

W
G
R3−−→

W
W
G W

That is, the robots repeatedly change their states while keeping their positions. This implies
that they cannot achieve exploration.

• A includes R′5 :
W

G
(W) W

:: W,← ∨ →. In this case, robots change their states as follows.

W
W
G W

R′5−−→
W G

W
W

From Lemma 32, the last configuration is unsolvable.

• A includes R′6 :
W

G
(W) W

:: G,⊥. In this case, robots change their states as follows.

W
W
G W

R′6−−→
W

G
G W

From Lemma 32, the last configuration is unsolvable.

• A includes R′7 : ∅ (W)
W
G

:: W,→. In this case, robots change their states as follows.

W
W
G W

R′7−−→
W
W
G W

From Lemma 32, the last configuration is unsolvable.
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• A includes R′8 : ∅ (W)
W
G

:: G,→. In this case, robots change their states as follows.

W
W
G W

R′8−−→
W
G
G W

From Lemma 32, the last configuration is unsolvable.

• A includes R′9 : ∅ (W)
W
G

:: W,←. Recall that, from Ct1 to Ct2 , three robots change their

states by rules R2, R3, and R7. Let us consider a configuration such that three robots form
G
W W

. In the next configuration, three robots can form
G
W ∅ W by rule R′9. This contradicts

to Lemma 36.

• A includes R′10 : ∅ (W)
W
G

:: G,←. Let us consider a configuration such that three robots

form
G
W W

to explore the ring. In the next configuration, three robots can form
G
W ∅ G by

rule R′10. This contradicts to Lemma 36.

• A includes R′11 : ∅ (W)
W
G

:: G,⊥. Let us consider a configuration such that three robots

form
G
W W

to explore the ring. After that, the three robots change their states as follows.

G
W W

R′11−−→ G
W G

R3−−→
W

W
G

R′11−−→
G
W
G
R3−−→ G

W W

That is, the robots repeatedly change their states while keeping their positions. This implies
that they cannot explore the ring, and thus this contradicts to Lemma 35.

From the above discussion, for any rule included in A, some configuration in Csol becomes unsolvable
or exploration of three robots becomes impossible. Therefore, if A includes {R2,R3,R7}, A cannot
solve terminating exploration from some configuration in Csol.

We can prove the case of {R10,R4,R5} similarly because, in rules R10, R4, and R5, the roles
of colors are just swapped from rules R2, R3, and R7. 2

Lemma 39 If A includes {R8,R4,R1} or {R6,R3,R9}, A cannot solve terminating exploration
from some configuration in Csol

Proof: First, we consider the case that A includes {R8,R4,R1}. Let us consider configuration
GGWW ∈ Csol. Assume that robots r1, r2, r3, and r4 form the sub-configuration GGWW in this
order. Since robots cannot move from this configuration by rules R8, R4, and R1, A includes some
other rules to move robots from the configuration. We consider all possibilities in the following.

First consider the case that r1 can move. That is, A includes a rule such that the guard is
∅(G)G.
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• A includes R′′1 : ∅(G)G :: G,→. In this case, robots change configuration GGWW ∈ Csol to

configuration
G
G W W

, which is unsolvable from Lemma 32.

• A includes R′′2 : ∅(G)G :: W,→. In this case, from rules R′′2 and R8, robots change configura-

tion GWGG ∈ Csol to configuration
G
W

G
W

, which is unsolvable from Lemma 31.

• A includes R′′3 : ∅(G)G :: G,←. In this case, from rules R′′3 and R8, robots change their states
from configuration GWGG ∈ Csol as follows.

GWGG
R′′3−−→ GWG∅G R8−−→

G
G
W ∅ ∅ G

The last configuration is unsolvable from Lemma 32.

• A includes R′′4 : ∅(G)G :: W,←. In this case, from rules R′′4 and R8, robots change their
states from configuration GWGG ∈ Csol as follows.

GWGG
R′′4−−→ GWG∅W R8−−→

G
G
W ∅ ∅ W

The last configuration is unsolvable from Lemma 32.

• A includes R′′5 : ∅(G)G :: W,⊥. In this case, robots change configuration GGGW ∈ Csol to
configuration WGGW, which is unsolvable from Lemma 31.

Next consider the case that r2 can move. That is, A includes a rule such that the guard is
G(G)W.

• A includes R′′6 : G(G)W :: G,→. In this case, from rules R′′6 and R8, robots change configu-

ration GGWG ∈ Csol to configuration
G ∅

G
G
W

, which is unsolvable from Lemma 32.

• A includes R′′7 : G(G)W :: W,→. In this case, robots change configuration GGWG ∈ Csol to

configuration
G ∅

W
W G

, which is unsolvable from Lemma 32.

• A includes R′′8 : G(G)W :: G,←. In this case, robots change configuration GGWG ∈ Csol to

configuration
G
G ∅ W G

, which is unsolvable from Lemma 32.

• A includes R′′9 : G(G)W :: W,←. In this case, from rules R′′9 and R8, robots change configu-

ration GGWG ∈ Csol to configuration
W
G ∅

W
G

. Since two robots with the same color have the

same view, they make the same behaviors if they are activated at the same time. In addition,
the view is symmetric, the direction of the movement is decided by the scheduler. Hence,

33



when some robot moves from the configuration, two robots move to the middle node of the
two towers and create a tower. Since they have the same color, the configuration is unsolvable
from Lemma 32.

• A includes R′′10 : G(G)W :: W,⊥. In this case, robots change configuration GGWG ∈ Csol to
configuration GWWG, which is unsolvable from Lemma 31.

Next consider the case that r3 can move. That is, A includes a rule such that the guard
is G(W)W. In the first four cases, we consider configurations from Ct1 to Ct2 . During these
configurations, three robots change their states by rules R8, R4, and R1. In particular, we consider
a sub-configuration GWW in Cexp.

• A includes R′′11 : G(W)W :: G,→. From a sub-configuration GWW, the robots change their

states to
G ∅

G
W

. This sub-configuration is not in Cexp, which contradicts to Lemma 36.

• A includes R′′12 : G(W)W :: W,→. From a sub-configuration GWW, the robots change their

states to
G ∅

W
W

. This sub-configuration is not in Cexp, which contradicts to Lemma 36.

• A includes R′′13 : G(W)W :: G,←. From a sub-configuration GWW, the robots change their

states to
G
G ∅ W . This sub-configuration is not in Cexp, which contradicts to Lemma 36.

• A includes R′′14 : G(W)W :: W,←. From a sub-configuration GWW, the robots change their

states to
W
G ∅ W . This sub-configuration is not in Cexp, which contradicts to Lemma 36.

• A includes R′′15 : G(W)W :: G,⊥. In this case, robots change configuration WGWW ∈ Csol to
configuration WGGW, which is unsolvable from Lemma 31.

Lastly consider the case that r4 can move. That is, A includes a rule such that the guard is
∅(W)W. Similarly to the previous case, we consider a sub-configuration GWW in Cexp.

• A includes R′′16 : ∅(W)W :: G,→. From rules R′′16 and R1, robots change their states from a
sub-configuration GWW as follows.

GWW
R′′16−−→

G
W
G ∅

R1−−→ GWW

That is, the robots repeatedly change their states while keeping their positions. This implies
that they cannot explore the ring, and thus this contradicts to Lemma 35.

• A includes R′′17 : ∅(W)W :: W,→. From a sub-configuration GWW, the robots change their

states to
G
W
W

. This sub-configuration is not in Cexp, which contradicts to Lemma 36.

• A includes R′′18 : ∅(W)W :: G,←. From a sub-configuration GWW, the robots change their
states to GW∅G. This sub-configuration is not in Cexp, which contradicts to Lemma 36.
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• A includes R′′19 : ∅(W)W :: W,←. From a sub-configuration GWW, the robots change their
states to GW∅W. This sub-configuration is not in Cexp, which contradicts to Lemma 36.

• A includes R′′20 : ∅(W)W :: G,⊥. From a sub-configuration GWW, the robots change their
states to GWG. This sub-configuration is not in Cexp, which contradicts to Lemma 36.

From the above discussion, for any rule included in A, some configuration in Csol becomes
unsolvable or exploration of three robots becomes impossible. Therefore, ifA includes {R8,R4,R1},
A cannot solve terminating exploration from some configuration in Csol

We can prove the case of {R6,R3,R9} similarly because, in rules R6, R3, and R9, the roles of
colors are just swapped from rules R8, R4, and R1. 2

From Lemmas 38 and 39, A cannot solve terminating exploration from some configuration in
Csol. Therefore, we have Lemma 30. As described above, this implies Theorem 18.
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