
Advice Complexity of Treasure Hunt

in Geometric Terrains

Andrzej Pelc ∗† Ram Narayan Yadav ‡

Abstract

Treasure hunt is the task of finding an inert target by a mobile agent in an unknown environ-
ment. We consider treasure hunt in geometric terrains with obstacles. Both the terrain and the
obstacles are modeled as polygons and both the agent and the treasure are modeled as points.
The agent navigates in the terrain, avoiding obstacles, and finds the treasure when there is a
segment of length at most 1 between them, unobstructed by the boundary of the terrain or by
the obstacles. The cost of finding the treasure is the length of the trajectory of the agent. We
investigate the amount of information that the agent needs a priori in order to find the treasure
at cost O(L), where L is the length of a shortest path in the terrain from the initial position of
the agent to the treasure, avoiding obstacles. Following the well-established paradigm of algo-
rithms with advice, this information is given to the agent in advance as a binary string, by an
oracle cooperating with the agent and knowing the whole environment: in our case, the terrain,
the position of the treasure and the initial position of the agent. Advice complexity of treasure
hunt is the minimum length of the advice string (up to multiplicative constants) that enables
the agent to find the treasure at cost O(L).

We first consider treasure hunt in regular terrains which are defined as convex polygons with
convex c-fat obstacles, for some constant c > 1. A polygon is c-fat if the ratio of the radius
of the smallest disc containing it to the radius of the largest disc contained in it is at most
c. For the class of regular terrains, we establish the exact advice complexity of treasure hunt.
We then show that advice complexity of treasure hunt for the class of arbitrary terrains (even
for non-convex polygons without obstacles, and even for those with only horizontal or vertical
sides) is exponentially larger than for regular terrains.

keywords: mobile robot, treasure hunt, polygon, obstacle.

∗Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mail:
pelc@uqo.ca
†Partially supported by NSERC discovery grant 2018-03899 and by the Research Chair in Distributed Computing

at the Université du Québec en Outaouais.
‡Department of Computer Science and Engineering, Indian Institute of Information Technology, Dharwad, India.

E-mail : narayanram1988@gmail.com

ar
X

iv
:1

81
1.

06
82

3v
2

 [
cs

.C
G

]
 4

 J
an

 2
02

0

1 Introduction

1.1 The background and the problem

Treasure hunt is the task of finding an inert target by a mobile agent in an unknown environment.

We consider treasure hunt in geometric terrains with obstacles. This task has important applications

when the terrain is dangerous or difficult to access for humans. Rescuing operations in mines

contaminated or submerged by water are an example of situations where a lost miner is a target

that has to be found fast by a mobile robot, and hence the length of the robot’s trajectory should

be as short as possible.

We model the treasure hunt problem as follows. The terrain is represented by an arbitrary polygon

P0 with pairwise disjoint polygonal obstacles P1, ...,Pk, included in the interior of P0, i.e., the

terrain is T = P0 \ (P1 ∪ · · · ∪ Pk). We assume that the polygon P0 is closed (i.e., contains its

boundary) and the polygons P1, ...,Pk are open (i.e., do not contain their boundaries). In this way

the terrain T is a closed subset of the plane, i.e., it contains its entire boundary, which is the union

of boundaries of all polygons. It should be noted that the restriction to polygons is only to simplify

the description, and all our results can be generalized to the case where polygons are replaced by

compact subsets of the plane homeotopic with a disc (i.e., without holes) and regular enough to

have well-defined boundary length. The treasure is modeled as an inert interior point of the terrain.

The mobile agent (robot) is modeled as a point starting inside the terrain and moving along a

polygonal line inside it. It is equipped with a compass and a unit of length, and we assume that

it has unbounded memory: from the computational point of view the agent is a Turing machine.

The moves of the agent are of two types: free moves and boundary moves. A free move is a move

of the agent in the terrain along a segment of a chosen length in a chosen direction. Such a move

may be interrupted if the agent hits the boundary of the terrain during its execution, and the

agent becomes aware of this interruption. A boundary move is executed by an agent located on

the boundary of the terrain. Such a move is of the form: follow the boundary that you are on

(this can be the boundary of any of the polygons Pi) in a chosen direction (there are two possible

directions), either at a chosen distance or until getting to a point with a given property.

The aim of treasure hunt is for the agent to see the treasure. We assume that the agent currently

located at a point p of the terrain sees all points q for which the segment pq is entirely contained in

T and is of length at most 1. The cost of a treasure hunt algorithm on an instance is the length of

the trajectory of the agent from its initial position until it sees the treasure. We assume that the

agent does not know the terrain nor the location of the treasure before starting treasure hunt.

We investigate the amount of information that the agent needs a priori in order to find the treasure

at cost O(L), where L is the length of a shortest path in the terrain from the initial position of

the agent to the treasure. ∗ (Since the agent sees at distance 1, we have C ≤ L ≤ C + 1, where C

is the optimal cost of treasure hunt with full knowledge). Following the well-established paradigm

of algorithms with advice (see the subsection “Related work”), this information is given to the

∗Since we use the O-notation for functions with positive real values that can be smaller than 1, it is important to
give a precise definition that we will use: For two functions f, g : R+ −→ R+, we say that f(x) is in O(g(x)) if there
exists a positive constant c such that f(x) ≤ cg(x), for all x ∈ R+.

2

agent in advance as a binary string, by an oracle cooperating with the agent and knowing the

whole environment: in our case, the terrain, the position of the treasure and the initial position of

the agent. Advice complexity of treasure hunt is the minimum length of the advice string (up to

multiplicative constants) that enables the agent to find the treasure at costO(L). Advice complexity

of a task can be considered to be a measure of its difficulty. Hence our aim is to estimate the difficulty

of treasure hunt in geometric terrains. It is well known that many algorithmic tasks become feasible

or easier, when the algorithm is supplied with a particular item of information, such as the size or

diameter of the graph. However, the paradigm of algorithms with advice permits us to establish

the minimum size of the information needed, regardless of its nature. Hence the measure of advice

complexity is a quantitative approach to the knowledge provided to the algorithm, as opposed to

the qualitative approach, studying the impact of knowing particular items of information, such as

various numerical parameters of the problem. To the best of our knowledge, this is the first time

that the advice complexity approach is applied to the problem of treasure hunt in the geometric

setting.

Coming back to our application in the context of a miner lost in the mine, advice complexity of

treasure hunt may be crucial. The miner knows the terrain, knows his/her position and knows the

entrance to the mine. How to text as little information as possible to the rescuing team (time is

precious) to allow a robot to reach the miner fast?

In order to formulate our results, we define the following parameter λ called the accessibility of the

treasure. λ = min(1/2, ρ), where ρ is the largest radius, such that some disc with radius ρ contains

the treasure and is contained in the terrain. Since the treasure is located in an interior point of the

terrain, we have λ > 0. By definition, any disc of radius λ containing the treasure and contained

in the terrain has the property that the agent reaching any point of this disc can see the treasure.

1.2 Our results

We first consider treasure hunt in regular terrains which are defined as convex polygons with convex

c-fat obstacles, for some constant c > 1. A polygon is c-fat if the ratio of the radius of the smallest

disc containing it to the radius of the largest disc contained in it is at most c. (For example, all

regular convex polygons are 2-fat). For the class of regular terrains, we establish the exact advice

complexity of treasure hunt. For L > λ, we provide a treasure hunt algorithm working at cost O(L)

for all regular terrains, using advice of size O(log(L/λ)), and we construct a class of regular terrains

for which there is no treasure hunt algorithm working at cost O(L) with advice of size o(log(L/λ)).

For L ≤ λ, we construct a treasure hunt algorithm working at cost O(L) for all regular terrains,

without any advice.

In order to appreciate the strength of the tightness result for L > λ, notice that its positive part

gives a concrete advice of size O(log(L/λ)) (in our case indicating the approximate direction towards

the treasure with respect to the initial position of the agent), and a treasure hunt algorithm of cost

O(L) for the class of regular terrains, using this advice, while the negative part shows that no

advice of size of smaller order, regardless of its kind and meaning, can help to accomplish treasure

hunt at cost O(L) in all regular terrains.

We then show that advice complexity of treasure hunt for the class of arbitrary terrains (even

3

for non-convex polygons without obstacles, and even for those with only horizontal or vertical

sides) is exponentially larger than for regular terrains. Our negative result is even stronger: we

construct terrains with treasure accessibilty 1/2 for which advice complexity of treasure hunt can

be a function of L growing arbitrarily fast.

1.3 Related work

Treasure hunt. The problem of searching for a target by one or more mobile agents was investi-

gated under many different scenarios. The environment where the target is hidden may be a graph

or a plane, and the search may be deterministic or randomized. The book [3] surveys both the

search for a fixed target and the related rendezvous problem, where the target and the searching

agent are both mobile and their role is symmetric: they cooperate to meet. This book is concerned

mostly with randomized search strategies. In [36, 42] the authors studied relations between the

problems of treasure hunt (searching for a fixed target) and rendezvous in graphs. The authors

of [4] studied the task of finding a fixed point on the line and in the grid, and initiated the study

of the task of searching for an unknown line in the plane. This research was continued, e.g., in

[30, 35]. In [41] the authors concentrated on game-theoretic aspects of the situation where multiple

selfish pursuers compete to find a target, e.g., in a ring. The main result of [34] is an optimal

algorithm to sweep a plane in order to locate an unknown fixed target, where locating means to get

the agent originating at point O to a point P such that the target is in the segment OP . In [20]

the authors considered the generalization of the search problem in the plane to the case of several

searchers. Efficient search for a fixed or a moving target in the plane, under complete ignorance of

the searching agent, was studied in [40].

Exploration of terrains. Exploration of unknown terrains by mobile robots is a subject closely

related to treasure hunt. A mobile agent has to see all points of the terrain, where seeing a point p

means either the existence of a segment between the current position of the agent and p inside the

terrain (unlimited vision), or the existence of such a segment of length at most 1 (limited vision).

Most of the research in this domain concerns the competitive framework, where the trajectory of

the robot not knowing the environment is compared to that of the optimal exploration algorithm

having full knowledge.

In [11], the authors gave a 2-competitive algorithm for rectilinear polygon exploration with unlim-

ited vision. The case of non-rectilinear polygons (without obstacles) was also studied in [10, 28]

and a competitive algorithm was given in this case.

For polygonal environments with an arbitrary number of polygonal obstacles, it was shown in [11]

that no competitive strategy exists, even if all obstacles are parallelograms. Later, this result was

improved in [2] by giving a lower bound in Ω(
√
k) for the competitive ratio of any on-line algorithm

exploring a polygon with k obstacles. This bound remains true even for rectangular obstacles.

Nevertheless, if the number of obstacles is bounded by a constant k, then there exists a competitive

algorithm with competitive ratio in O(k) [10].

Exploration of polygons by a robot with limited vision has been studied, e.g., in [23, 25, 38]. In

[23] the authors described an on-line algorithm with competitive ratio 1 + 3(ΠD/A), where Π is

a quantity depending on the perimeter of the polygon, D is the area seen by the robot, and A is

4

the area of the polygon. In [38] the author studied exploration of the boundary of a terrain with

limited vision. The cost of exploration of arbitrary terrains with obstacles, both for limited and

unlimited vision, was studied in [9].

Navigation in a n × n square room filled with rectangle obstacles aligned with sides of the square

was considered in [5, 6, 7, 39]. It was shown in [5] that the navigation from a corner to the center

of a room can be performed with a competitive ratio O(log n), only using tactile information (i.e.,

the robot modeled as a point sees an obstacle only when it touches it). No deterministic algorithm

can achieve a better competitive ratio, even with unlimited vision [5]. For navigation between any

pair of points, there is a deterministic algorithm achieving a competitive ratio of O(
√
n) [7]. No

deterministic algorithm can achieve a better competitive ratio [39]. However, there is a randomized

approach performing navigation with a competitive ratio of O(n
4
9 log n) [6].

Algorithms with advice. The paradigm of algorithms with advice was developed mostly for tasks

in graphs. Providing arbitrary types of knowledge that can be used to increase efficiency of solutions

to network problems has been proposed in [1, 12, 15, 16, 17, 18, 19, 21, 22, 24, 29, 31, 33, 36, 37, 43].

This approach was referred to as algorithms with advice. The advice is given either to the nodes of

the network or to mobile agents performing some task in it. In the first case, instead of advice, the

term informative labeling schemes is sometimes used if different nodes can get different information.

Several authors studied the minimum size of advice required to solve network problems in an efficient

way. In [17], the authors compared the minimum size of advice required to solve two information

dissemination problems using a linear number of messages. In [19], it was shown that advice of

constant size given to the nodes enables the distributed construction of a minimum spanning tree

in logarithmic time. In [14, 15], the advice paradigm was used for online problems. In [16], the

authors established lower bounds on the size of advice needed to beat time Θ(log∗ n) for 3-coloring

cycles and to achieve time Θ(log∗ n) for 3-coloring unoriented trees. In the case of [37], the issue was

not efficiency but feasibility: it was shown that Θ(n log n) is the minimum size of advice required to

perform monotone connected graph clearing. In [29], the authors studied radio networks for which

it is possible to perform centralized broadcasting in constant time. They proved that constant time

is achievable with O(n) bits of advice in such networks, while o(n) bits are not enough. In [22],

the authors studied the problem of topology recognition with advice given to the nodes. In [12],

the task of drawing an isomorphic map by an agent in a graph was considered, and the problem

was to determine the minimum advice that has to be given to the agent for the task to be feasible.

Leader election with advice was studied in [26] for trees, and in [13] for arbitrary graphs. Graph

exploration with advice was studied in [8, 27] and treasure hunt with advice in graph environments

was investigated in [32, 36].

2 Regular terrains

In this section we give three results concerning treasure hunt in regular terrains. First we consider

the case L > λ, where L is the length of a shortest path in the terrain between the initial position

of the agent and the location of the treasure, and λ is the accessibility of the treasure. In this case

we construct a treasure hunt algorithm working in any regular terrain at cost O(L), using advice

of size O(log(L/λ)) and we show that this size of advice is optimal for the class of regular terrains.

5

Then we consider the case L ≤ λ and provide a a treasure hunt algorithm working at cost O(L)

for all regular terrains, without any advice.

In our algorithm for L > λ we will need to convey advice that is conceptually a pair (a1, a2),

where ai are positive integers. However, by definition, the advice has to be a single binary string,

hence it is important to efficiently and unambiguously code such pairs as binary strings, so that

the decoding be unambiguous as well and correctly restore the coded pair. This can be done as

follows. A pair (a1, a2) can be viewed as a string over the 3-symbol alphabet with symbols 0, 1 and

comma, where a1 and a2 are represented in binary. Code any such string replacing 0 by 01, 1 by

10, and comma by 11. Denote the obtained binary string by Code(a1, a2). It is clear that the pair

(a1, a2) can be unambiguously decoded from Code(a1, a2) and that the length of Code(a1, a2) is

O(log(max(a1, a2)).

We start by describing the procedure Walk(γ, x), that is at the core of both our algorithms for

regular terrains. Its high-level idea is the following. Suppose that the initial position of the agent is

p and that N is the half-line starting at p that forms angle γ with the direction North. This half-line

can possibly intersect some obstacles in the terrain. The aim of the procedure is to travel along

the line N circumventing the encountered obstacles in an efficient way, until the total trajectory

travelled by the agent has length x. The agent walks along N starting at p. When it hits an

obstacle at a point r, the agent finds the other point r′ of the intersection of N with the perimeter

of the obstacle (such a point r′ is unique by the convexity of the obstacle), using a version of the

Cow Path walk (searching for an unknown point in the line, cf. [4]) executed on the perimeter.

Then the agent goes further along the line N , circumventing each encountered obstacle as above,

until the total trajectory traveled by the agent has length x. We will show that if a point q is in the

line N at distance y from p and outside of all obstacles then the smallest x such that Walk(γ, x)

reaches q is O(y). This is due to the fact that if a convex c-fat polygon is cut by a line then the

smaller part of its perimeter between the cutting points is only d times larger than the Euclidean

distance between these points, where d depends only on c. This is proved in Lemma 2.1.

Suppose that the agent hits an obstacle O at a point r while moving along the line N . The agent

starts searching for the other point r′ of intersection of N with the perimeter R of the obstacle O

by using Procedure CowPath(R,N, r) described below. CowPath is a version of the Cow Path

walk on the line transposed to the walk on the perimeter R.

The agent identifies two directions of travelling on R, call these directions dir1 and dir2, defined

as follows. Let a and b, with a ≤ b, be the distances between r and the two closest vertices of the

polygon O along the perimeter R.

If a < b and a ≤ 1 then dir1 is towards the vertex at distance a. (In this case the agent can see

this vertex). Otherwise (either both distances a and b are equal, or they are both larger than 1),

the agent could start in any of the two directions but it must be unambiguously defined. There are

two cases.

If the point r is one of the vertices of the polygon O then dir1 corresponds to the side adjacent to

r forming a smaller angle with direction North.

If the point r lies in the interior of a side e of the polygon O then dir1 is defined as follows. If e

is horizontal, then direction dir1 corresponds to West. Otherwise, the direction dir1 corresponds

6

to the part of e in the Northern half-plane defined by the horizontal line passing through r. In all

cases, dir2 is the other direction than dir1.

The agent walks on the perimeter R of the obstacle O starting at point r. Let z = min(1, a). First,

it goes in direction dir1 at distance z. Then the agent goes back to r and goes in direction dir2
until distance 2z is travelled or until it visits the point r′, whichever comes first. The agent swings

in this way each time doubling the travelled distance until reaching point r′, when it finishes the

execution of the procedure. Notice that the agent starts with distance z, rather than distance 1,

as opposed to the classic Cow Path walk (that assumes that the target is at distance at least 1)

because point r′ could be much closer to r than 1 along R. Starting with distance z is safe, as z

is smaller than the shorter path between r and r′ along R. Algorithm 1 gives the pseudocode of

Procedure CowPath(R,N, r).

Algorithm 1: Procedure CowPath(R,N, r)

1 begin
2 Compute dir1, dir2 and z
3 i← z
4 while the point r′ on the line N other than r is not visited do
5 Go on R in direction dir1 until (r′ is visited) or (distance i is traveled)
6 if the point r′ is visited then
7 Exit
8 end
9 else

10 Go back on R to point r
11 i← 2i

12 end
13 Go on R in direction dir2 until (r′ is visited) or (distance i is traveled)
14 if the point r′ is visited then
15 Exit
16 end
17 else
18 Go back on R to point r
19 i← 2i

20 end

21 end

22 end

After finding the point r′ on the perimeter of the obstacle, the agent continues along the line N ,

using procedure CowPath whenever an obstacle is hit, until it travels a total trajectory of length

x. Algorithm 2 gives the pseudocode of procedure Walk(γ, x). The algorithm is interrupted when

the length of the total trajectory traveled by the agent is x.

7

Algorithm 2: Procedure Walk(γ, x)

1 begin
2 Let N be the half-line starting at p that forms angle γ with the direction North
3 repeat
4 begin
5 Go along the line N
6 if the perimeter R of an obstacle is hit at point r then
7 Call Procedure CowPath(R,N, r)
8 end

9 end

10 end

Remark. Since perimeters of obstacles are included in the terrain, if the line N along which

the agent travels intersects only the perimeter of an obstacle, this is not considered as hitting the

obstacle, and the agent continues its travel along N .

The following geometric result will be crucial for the analysis of our algorithms.

Lemma 2.1 Let c > 1 be a constant and let P be a convex c-fat polygon. Consider any line M

cutting P at points a and b. Then, there is a constant d such that the length s of the smaller part

of the perimeter of P between points a and b is at most d · |ab|.

Proof: Let α and β be the interior angles at points a and b, induced by the cut of the polygon P

by the line M . Let |ab| = x. We consider the following three cases:

Case 1. α = π − β

In this case the sides of the polygon that are cut by the line M are parallel, see Fig. 1. Let x′ be the

distance between the parallel lines containing these sides. In Fig. 1, x′ = |ab′|. By the definition of

r, we have, 2r ≤ |ab′|. As the angle ∠ ab′b is a right angle, we have 2r ≤ |ab′| ≤ |ab|. The length s

of the smaller part of the perimeter of P between points a and b is at most 2πR because the entire

convex polygon P is contained in a circle of diameter 2R. Hence, s/|ab| ≤ 2πR/2r ≤ π · c. This

proves the lemma in Case 1.

Case 2. α < π/2 and β ≤ π/2, or α > π/2 and β ≥ π/2

It is enough to consider the first conjunction, as the second follows by interchanging the two parts

of the perimeter of P cut by M . Consider the part of the perimeter of P between points a and b

corresponding to angles α and β in the cut by line M . (This is the upper part of the perimeter in

Fig. 2). There are two subcases.

Subcase 2.1. The center of the largest circle contained in P is in the upper part of P : Fig. 2 (a).

In this case x = |ab| ≥ |a′b′| ≥ 2r, see Fig. 2 (a). The rest of the proof is as in Case 1.

8

a

b

b′

α β M

Figure 1: Proof of Lemma 2.1 – Case 1: α = π − β

a b

p

a′ b′
q′

qt

α β

o

h

M

M ′

t′

a b

a′ b′o

r

r M ′

M

(a)

(b)

α β

Figure 2: Proof of Lemma 2.1 – Case 2: α < π/2 and β ≤ π/2

9

a b

d

q p

α β′
δ

γ
β

M

Figure 3: Proof of Lemma 2.1 – Case 3: β 6= π − α, α < π/2 and β > π/2

Subcase 2.2. The center of the largest circle contained in P is in the lower part of P : Fig. 2 (b).

Let p be the point in the upper part of the perimeter of P farthest from the line M . Consider the

line M ′ parallel to M containing the center of the largest circle contained in P . Let a′ and b′ be

the points in which the line M ′ cuts the lines containing the sides of P that are cut by M . Let

y = |a′b′|. Consider the triangle a′b′p. Let t and t′ be the points where line M cuts the sides a′p

and b′p of this triangle, respectively. Let x′ = |tt′|. Hence x′ ≤ x. Let q and q′ be the points of

intersection with M and M ′, respectively, of the line perpendicular to M and containing p. Let

h = |pq| and h′ = |pq′|. We have h/x′ = h′/y. By definition of R and r we have h′ ≤ 2R and

y ≥ 2r. Hence h/x′ ≤ (2R)/(2r) ≤ c. Since x′ ≤ x, we have h/x ≤ c. Consider the rectangle (with

dotted sides in Fig. 2 (b)) whose one side is the segment ab and that contains p. The length of the

upper part of the perimeter of P is at most 2h+ x. Hence this length is at most (2c+ 1)x, which

proves the lemma in Case 2.

Case 3. β 6= π − α, α < π/2 and β > π/2

Let β′ = π− β be the exterior angle at point b induced by the cut of polygon P by the line M , see

Fig. 3. Without loss of generality, we can assume α < β′ in the rest of the proof of this case. For

α > β′, the proof is similar. Let d be the endpoint of the side of the polygon P containing point

a, in the part of the perimeter corresponding to angle α (the upper part in Fig. 3). Let y = |ad|.
Let q be the point of intersection of the line containing points a and d and the line perpendicular

to the side of polygon P containing point b. Let z = |dq| and x′′ = |bq|. The segment bq cuts the

perimeter of the polygon P at point p, see Fig. 3. Let x′ = |bp|, and let t = |dp|. Denote the angles

∠ abq and ∠ aqb by γ and δ respectively.

Since β − γ = π/2, we have γ = π/2− β′. As α < β′, we have γ = π/2− β′ < π/2− α. Consider

the triangle aqb. Since α+ γ + δ = π and α+ γ < π/2, we have δ > π/2. Hence, y + z + x′′ ≤ 2x.

Since t ≤ z + (x′′ − x′), we have y + t + x′ ≤ 2x. Let the length of the part of the perimeter P ,

between the points p and b (clockwise in Fig. 3) be s′. By Case 2, there is a constant k ≥ 1 such

that s′/x′ ≤ k. We have (y + t+ s′)/x ≤ (y + t+ kx′)/x ≤ k(y + t+ x′)/x. Since y + t+ x′ ≤ 2x,

we have k(y + t + x′)/x ≤ 2k. This implies that (y + t + s′)/x ≤ 2k. This proves the lemma in

Case 3. �

10

p

q

O1

O2

O3

r1

r′1
r2

r′2
r3

r′3

µ1

µ2

µ3

π1

π2

π3

π4

Figure 4: Obstacles intersecting the line N and the construction of the polygonal line Q

We use Lemma 2.1 to prove the following result that will be used in the analysis of our algorithms.

Lemma 2.2 Let N be the half-line starting at p that forms angle γ with the direction North. Let

q be a point in the line N at distance y from p and outside of all obstacles. Then the smallest x

such that Walk(γ, x) reaches q is O(y).

Proof: Let O1, . . . , Ot be the obstacles intersecting line N between p and q, in the order in which

they are intersecting it, when the segment pq is traversed from p to q. Let r1, r
′
1, r2, r

′
2, . . . , rt, r

′
t

be the points of intersection of N with the perimeters of the obstacles, so that ri, r
′
i belong to the

perimeter of Oi. Let π1 be the segment pr1, let πi, for i = 2, . . . , t, be the segment r′i−1ri, and let

πt+1 be the segment r′tq. Let µi, for i = 1, . . . , t, be the shorter part of the perimeter of the obstacle

Oi, between ri and r′i. (In the case of equality, take any of the two parts). The polygonal line Q is

defined as the concatenation of segments π1, µ1, π2, µ2, . . . , πt, µt, πt+1 (cf. Fig. 4). By Lemma 2.1,

the length of each part µi is at most d times larger than the length of the segment rir
′
i, for some

constant d ≥ 1, and thus the length of Q is at most dy.

Consider the smallest x such that Walk(γ, x) reaches q. Let T be the trajectory of the agent,

starting from point p and executing procedure Walk(γ, x). By definition, the length of T is x.

The competitive ratio of the Cow Path walk on the line is 9 (cf. [4]), and this holds regardless of

the length of the first segment used, as long as it does not exceed the distance to the target (this

length is 1 in the classic case and z in our case). Hence the length of the part of the trajectory T
corresponding to the perimeter of Oi is at most 9 times larger than µi. Hence the length of T is at

most 9 times larger than the length of Q, and hence it is at most 9dy. This proves the lemma. �

2.1 The case L > λ

In the case L > λ, the high-level idea of the advice and of the algorithm that uses it is the following.

Let k = d7L/λe. The oracle constructs k half-lines H0, . . . ,Hk−1, starting at the initial position

p of the agent, such that H0 goes North and the angle between consecutive half-lines is 2π/k.

For i = 0, . . . , k − 1, the sector Si is defined as the set of points in the plane between Hi and

H(i+1) mod k, including Hi and excluding H(i+1) mod k. Suppose that the treasure is in sector Sj .

11

The oracle gives the string Code(k, j) as advice. The algorithm decodes the couple (k, j), and

constructs angles γ1 = 2πj/k and γ2 = 2π(j + 1)/k. Let Mi, for i = 1, 2, be the half-lines starting

at p forming angle γi with direction North (these are the half-lines bounding sector Sj). Let w′

be the distance between p and the closest point in any of the lines M1,M2 that does not belong

to the terrain. Let w = min(1, w′). The agent walks in phases, alternately on M1 and M2, using

procedures Walk(γ1, 2
jw) and Walk(γ2, 2

jw) in phase j = 0, 1, . . . , and backtracking to p in each

phase using the reverse trajectory, until it sees the treasure. The pseudocode of the algorithm is

given in Algorithm 3. It is interrupted as soon as the agent sees the treasure.

Algorithm 3: Algorithm FarTreasure

1 begin
2 Decode the couple (k, j)
3 Compute angles γ1 = 2πj/k and γ2 = 2π(j + 1)/k
4 Find w
5 j ← 0
6 repeat
7 begin
8 Walk(γ1, 2

jw)
9 backtrack to p

10 Walk(γ2, 2
jw)

11 backtrack to p
12 j ← j + 1

13 end

14 end

The following theorem is the main positive result of this section.

Theorem 2.1 For L > λ, Algorithm FarTreasure accomplishes treasure hunt in any regular

terrain at cost O(L) with advice of size O(log(L/λ)).

In order to prove the theorem, we need the following lemmas.

Lemma 2.3 The size of advice is O(log(Lλ)).

Proof: As mentioned in the description of the string Code(a1, a2), the length of this string is

O(log(max(a1, a2))). We have k = d7L/λe and j ≤ k, hence log k ∈ O(log(L/λ)) and log j ∈
O(log(L/λ)), which proves the lemma. �

Lemma 2.4 For L > λ, Algorithm FarTreasure correctly accomplishes treasure hunt in any

regular terrain at cost O(L).

Proof: The proof relies on the following geometric claim.

12

Claim 2.1 Consider a sector with angle α = 2π/k formed by half-lines M1 and M2 starting at a

point p. Let q be a point in this sector at distance at most L > λ from p. Then any circle of radius

λ containing point q must intersect at least one of the half-lines M1 or M2 at distance at most 2L

from point p.

In order to prove the claim, we first show that any circle of radius λ containing point q must

intersect at least one of the half-lines M1 or M2. Suppose by contradicition that there exists such a

circle C not intersecting any of these lines. C has the center at a distance r ≤ λ+ L < 2L from p.

The largest circle containing q with center at distance r from p not intersecting any of the half-lines

M1 or M2 has the center c on the bisectrix of angle α. This center c is at distance x from both

lines M1 and M2. By our assumption, x ≥ λ. The angle β = α/2 between the bisectrix and any of

the lines M1 and M2 corresponds to the arc of length ρ = βr of a circle with radius r centered at

p. We have x < ρ = βr = πr/k < π·2L
7L/λ < λ. This is a contradiction that proves that any circle of

radius λ containing point q must intersect at least one of the half-lines M1 or M2.

It remains to show that some point of intersection of such a circle with at least one of the half-lines

M1 or M2 is at distance at most 2L from p. The distance from p to the closest such point must be

smaller than r < 2L, which concludes the proof of the claim.

Using the above claim, the lemma can be proved as follows. Let ∆ be a circle of radius λ containing

the treasure and contained in the terrain. Let Mi, for i = 1, 2, be the half-line starting at p forming

angle γi with direction North (these are the half-lines bounding the sector containing the treasure).

Since the treasure is at distance at most L from p, it follows from the claim that there exists a

point q in ∆ and situated in one of the lines Mi, at distance at most 2L from p. By Lemma 2.2,

the agent will get to point q during the execution of the repeat loop of Algorithm FarTreasure

for the smallest j such that bL ≤ 2jw, where b is some constant. Denote this smallest j by j0.

At the point q the agent sees the treasure. Hence the cost of Algorithm FarTreasure is at most

4w(1 + 2 + · · ·+ 2j0) ≤ 8w2j0 . Since by definition of j0 we have w2j0−1 < bL, the cost of Algorithm

FarTreasure is at most 16bL, which concludes the proof of the lemma. �

Now the proof of Theorem 2.1 is a direct consequence of Lemmas 2.3 and 2.4.

We end this section by showing that the size O(log(L/λ)) of advice used by Algorithm FarTreasure

is optimal for the class of regular terrains. In order to prove this, we construct a class of regular

terrains with treasure accessibility λ for which any treasure hunt algorithm working at cost O(L)

must use advice at least 1
2 log(L/λ).

We start the construction by defining the gadget G(o), for any point o in the plane. The gadget

consists of 8 squares of side x = 3λ/2, situated as follows (see Fig. 5). There are four squares σN ,

σE , σS , σW whose centers are at distance λ + x/2 from point o, respectively, North, East, South

and West from this point. The remaining four squares are placed as follows. Let y = (2λ − x)/2.

The center of σNW is West of the center of σN , at distance x + y from it. The center of σNE is

East of the center of σN , at distance x+ y from it. The center of σSE is East of the center of σS ,

at distance x + y from it. The center of σSW is West of the center of σS , at distance x + y from

it. Notice that the NW corner of σNW , the NE corner of σNE , the SE corner of σSE and the SW

corner of σSW are corners of a square S(o) of side 3x + 2y = 5λ which is the convex hull of the

eight squares of the gadget.

13

a

λ

x

y

x

x

3x + 2y

θ1

θ2

o

b c

d

σNW σN σNE

σE

σSEσSW

σW

σS

Figure 5: The gadget G(o)

Lemma 2.5 An agent located outside of the square S(o) cannot see the point o.

Proof: Let a be the point North from o at distance λ from it. Let b be the SE corner of σN . Let

θ2 be the angle ∠ aob. Let c be the SW corner of σNE . Let d the NW corner of σNE . Let θ1 be

the angle ∠ cdb, see Fig. 5. Due to the symmetries of the gadget G(o), the lemma follows from the

inequality θ2 > θ1. This inequality is proved as follows. tan θ2 = x/(2λ). tan θ1 = y/x. Hence

tan θ2 =
3λ/2

2λ
= 3/4 > 1/6 =

λ/4

3λ/2
=

(2λ− x)/2

x
= y/x = tan θ1.

Hence θ2 > θ1. �

Theorem 2.2 Let λ be a real in the interval (0, 1/2]. There exist arbitrarily large reals L and

regular terrains with an initial position p of the agent and the location q of the treasure in it, such

that L is the length of a shortest path in the terrain between p and q, λ is the accessibility of the

treasure, and the agent needs advice of size at least 1
2 log(L/λ) to accomplish treasure hunt at cost

O(L) in this terrain.

Proof: We construct the regular terrain as follows. Consider a square with side A = 20kλ, where

k is a positive integer. Let the initial position p of the agent be the South-West corner of S, see

Fig. 6. Partition the square S into four equal quadrants. Let S′ be the top-right quadrant. S′ has

side of length A/2. Partition S′ into A2

100λ2
square tiles of side 5λ. Tile rows are indexed 1, 2, . . .

from the North side of S′ going South, and tile columns, and are indexed 1, 2, . . . from the West

side of S′ going East. Now, place the gadget G(o) contained in square S(o) of side 5λ (see Fig.

5) in every other tile of odd-indexed tile rows in S′ (see Fig. 6, where these tiles are shaded: we

will call them shaded tiles in the sequel). The distance between any two shaded tiles is at least 5λ.

14

G(o) G(o)

G(o) G(o)

A

A/2

p

Figure 6: Regular terrrain with initial position p of the agent

At least 1/4 of all tiles are shaded, so the number of such tiles is at least A2

400λ2
. This finishes the

description of the terrain. Since all obstacles are squares, the terrain is regular. Notice that if the

treasure is placed in the center of any shaded tile then λ is the accessibility of the treasure.

We prove the theorem by contradiction. Suppose that the minimum size of advice to accomplish

treasure hunt at cost O(L) in any terrain from the above described class is less than 1
2 log(L/λ).

Consider all possible locations of the treasure in the center of any of the shaded tiles. Notice

that the length L of a shortest path in the terrain from p to any such center is in the interval

[
√

2A/2,
√

2A/2 +A].

Using less than 1
2 log(L/λ) bits, we have at most

√
L/λ different advice strings. By the pigeonhole

principle, there is a subset Σ of at least A2/(400λ2)√
L/λ

shaded tiles, such that the location of the

treasure at their center corresponds to the same advice string. By Lemma 2.5, in order to see the

treasure located at the center of a shaded tile, the agent must get to this tile. Since the minimum

distance between any two shaded tiles is at least 5λ, any trajectory T of the agent that enables it

to accomplish treasure hunt when the treasure is located at the center of some tile in the set Σ,

must have length at least (A2/(400λ2)√
L/λ

· 5λ = A2

80
√
λL

. Since L is in the interval [
√

2A/2,
√

2A/2 +A],

the length of T is at least cL
3/2
√
λ

for some positive constant c. Since λ ≤ 1/2, the cost of treasure

hunt is at least cL3/2 and hence cannot be linear in L, which gives a contradiction. �

Theorems 2.1 and 2.2 imply that for L > λ, the size O(log(L/λ)) of advice used by Algorithm

FarTreasure is sufficient to find the treasure in all regular terrains at cost O(L) and cannot be

improved.

2.2 The case L ≤ λ

In the case L ≤ λ, we show an algorithm working without any advice and finding the treasure at

cost O(L). The high-level idea of the algorithm is the following. Let Li, for i = 0, . . . , 11, be the

half-lines starting at the initial position p of the agent and forming angle γi = πi/6 with direction

15

North. Let w′ be the distance between p and the closest point in any of the lines Li that does not

belong to the terrain. Let w = min(1, w′). The agent walks in phases, in a round-robin fashion on

lines L0, L1, . . . , L11, using procedures Walk(γ0, 2
jw), Walk(γ1, 2

jw), ..., Walk(γ11, 2
jw) in phase

j = 0, 1, . . . , and backtracking to p in each phase using the reverse trajectory, until it sees the

treasure. The pseudocode of the algorithm is given in Algorithm 4. It is interrupted as soon as the

agent sees the treasure.

Algorithm 4: Algorithm CloseTreasure

1 begin
2 Find w
3 j ← 0
4 repeat
5 begin
6 for i := 0 to 11 do
7 Walk(πi/6, 2jw)
8 backtrack to p

9 end
10 j ← j + 1

11 end

12 end

The following result proves the correctness and estimates the cost of Algorithm CloseTreasure.

Theorem 2.3 For L ≤ λ, Algorithm CloseTreasure accomplishes treasure hunt in any regular

terrain at cost O(L) with no advice.

Proof: We consider two cases. Let ∆ be a circle of radius λ containing the treasure and contained

in the terrain.

Case 1. λ/9 ≤ L ≤ λ.

We first prove the following claim, similar to Claim 2.1

Claim 2.2 Consider a sector with angle α = π/6 formed by half-lines M1 and M2 starting at a

point p. Let q be a point in this sector at distance at most L from p, where λ/9 ≤ L ≤ λ. Then

any circle of radius λ containing point q must intersect at least one of the half-lines M1 or M2 at

distance at most 10L from point p.

In order to prove the claim, we first show that any circle of radius λ containing point q must

intersect at least one of the half-lines M1 or M2. Suppose by contradicition that there exists such

a circle C not intersecting any of these lines. C has the center at a distance r ≤ λ+ L < 2λ from

p. The largest circle containing q, with center at distance r from p, not intersecting any of the

half-lines M1 or M2 has the center c on the bisectrix of angle α. This center c is at distance x

from both lines M1 and M2. By our assumption, x ≥ λ. The angle β = α/2 = π/12 between the

16

P

λ

d
π/6 β

λ

δ

Q

R

γ

α

S

M

γ

x T

R′

Figure 7: Illustration of the proof of Lemma 2.3

bisectrix and any of the lines M1 and M2 corresponds to the arc of length ρ = βr of a circle with

radius r centered at p. We have x < ρ = βr = πr/12 ≤ π·2λ
12 < λ. This is a contradiction that

proves that any circle of radius λ containing point q must intersect at least one of the half-lines M1

or M2.

It remains to show that some point of intersection of such a circle with at least one of the half-lines

M1 or M2 is at distance at most 10L from p. The distance from p to the closest such point must

be smaller than r ≤ λ+ L ≤ 10L, which concludes the proof of the claim.

Let Q be the half-line starting at p and containing the treasure. Suppose that the angle γ between

the direction North and Q satisfies πi/6 ≤ γ < π(i + 1)/6. Hence the treasure is in the sector

formed by half-lines Li and Li+1. Let M1 = Li and M2 = Li+1. Since the treasure is at distance

at most L from p, it follows from Claim 2.2 that there exists a point q′ in ∆ and situated in one of

the lines Mi, at distance at most 10L from p.

Case 2. L < λ/9.

In this case we will use the following claim.

Claim 2.3 Consider positive reals d, λ, such that λ ≥ 9d. Let PR be a line segment of length λ+d

and let S be a point in this segment such that |PS| = d and |SR| = λ. Let M be a half-line starting

from point P , forming an angle π/6 with the segment PR. Let Q be the point in M closest to P

such that |QR| = λ. Then |PQ| ≤ 1.2 · |PS|.

Let |PQ| = x and |PS| = d. Denote the angle ∠PSQ by δ, the angle ∠SQR by γ, the angle ∠QRS
by α and the angle ∠PQS by β, see Fig. 7.

By the sine rule applied to the triangle PQR, we have sin(π/6)
sin(β+γ) = λ

λ+d . Since λ/(λ + d) ≥ 0.9, we

have sin(β + γ) ≤ sin(π/6)/0.9 ≤ 0.56. We have arcsin 0.56 = 0.594. Let A = (π − 0.594) ≥ 2.54.

Since Q is the point in M closest to P such that |QR| = λ, we have (β + γ) > π/2. Thus, by

definition of A we have (β+γ) ≥ A. Using the triangle PQR, we have α = π−π/6−(β+γ) ≤ 5π
6 −A.

Since the triangle SQR is isoceles, we have γ = (π−α)/2. Since α ≤ 5π
6 −A, we have γ ≥ π

12 + A
2 .

By definition, we have δ = π−γ. Since γ ≥ π
12 + A

2 , we have δ ≤ 11π
12 −

A
2 . Using the triangle PQS,

we have β = (π − π
6 − δ) = 5π

6 − δ. Since δ ≤ 11π
12 −

A
2 , we have β ≥ A

2 −
π
12 ≥

2.54
2 −

π
12 ≥ 1.

17

By the sine rule applied to the triangle PQS, we x
d = sin δ

sinβ ≤
1

sinβ . Since π/2 ≥ β ≥ 1, we have

sinβ ≥ sin 1 and thus x
d ≤

1
sin 1 ≤ 1.2. This proves the claim.

Let d be the distance between point p and the treasure. We have d ≤ L < λ/9. The distance

between p and the center of ∆ is at most λ + d. Let M1 = Li and M2 = Li+1 be half-lines such

that the center of ∆ is located in the sector formed by M1 and M2.

First suppose that the center of ∆ is located on one of the lines M1 or M2 at distance exactly d+λ

from p. Since the angle between lines M1 and M2 is π/6, it follows from Claim 2.3 (with P replaced

by p) that circle ∆ intersects the other line Mi at distance x ≤ 1.2 · d from p. Hence, if the center

of ∆ is located anywhere in the sector formed by M1 and M2 at some distance at most λ+ d from

p, the circle ∆ intersects both lines Mi at distance x ≤ 1.2 ·d from p. This is due to the fact that in

the situation depicted in Fig.7 the length of the segment PQ is a decreasing function of the length

of the segment PR and of the angle between segments PR and PQ.

Hence in both cases we showed the existence of a point q′ in ∆ and situated in one of the lines Mi,

at distance at most 10L from p. By Lemma 2.2, the agent will get to point q′ during the execution

of the repeat loop of Algorithm CloseTreasure for the smallest j such that gL ≤ 2jw, where g is

some constant. Denote this smallest j by j0. At the point q′ the agent sees the treasure. Hence the

cost of Algorithm CloseTreasure is at most 24w(1 + 2 + · · ·+ 2j0) ≤ 48w2j0 . Since by definition of

j0 we have w2j0−1 < gL, the cost of Algorithm CloseTreasure is at most 96gL, which concludes

the proof of the theorem in both cases. �

Remarks.

1. Our algorithms FarTreasure and CloseTreasure can be merged into a single treasure hunt

algorithm preserving the features of the two algorithms in the respective cases: with no advice use

algorithm CloseTreasure and with a non-empty advice string use algorithm FarTreasure.

2. The threshold for L in comparison to λ separating the cases that yield treasure hunt with

advice O(log(L/λ)) and treasure hunt with no advice is somewhat arbitrary. It is easy to see that

whenever L ≤ cλ, for some positive (even very large) constant c, a treasure hunt algorithm at cost

O(L) with no advice can be designed by suitably increasing the number of half-lines Li along which

procedure Walk is executed in Algorithm CloseTreasure, i.e., decreasing the angle π/6 between

consecutive half-lines. This would result in increasing the constant hidden in the O(L) cost bound.

Using Algorithm FarTreasure for λ < L ≤ cλ makes this hidden constant lower at the expense of

a constant number of bits of advice.

3 Arbitrary terrains

In this section we show that the advice complexity of treasure hunt is dramatically larger for the

class of arbitrary terrains than for that of regular terrains. We show that the size of advice required

for treasure hunt at cost O(L) in some non-convex polygons, even without obstacles and even with

all sides horizontal or vertical, is exponentially larger than that for regular terrains. In fact, we will

show that this difference may be even more significant.

18

1/2

p

q

A

A/2

A/4

x x

Figure 8: A non-convex terrain (without obstacles) with the initial position p of the agent and the
location q of the treasure in it. The accessibility of the treasure is λ = 1/2.

Theorem 3.1 For arbitrarily large integers A, there exists a class C(A) of (non-convex) polygons

P without obstacles, with an initial position p of the agent and the location q of the treasure in

each of these polygons, so that the length L of a shortest path between p and q in P is Θ(A), the

accessibility of the treasure is λ = 1/2, and the smallest size of advice required for treasure hunt at

cost O(L) in all polygons of this class, is at least linear in L.

Proof: Fix an integer A > 8. We construct the class C(A) of (nonconvex) polygons Pi as follows.

Consider the square S of side length A with vertical and horizontal sides. Remove from the square

S two rectangles with horizontal side of length (A− 1)/2 and vertical side of length 1: one of these

removed rectangles has its upper-left corner at the upper-left corner of S and the other has its

upper-right corner at the upper-right corner of S (see Fig. 8). In the third quarter of the height of

the square S (counting from the upper horizontal side) we remove vertical stripes of width x = 1/2A

and height A/4 − x, and two horizontal stripes with upper side at height A/2 of the square, of

height x, and lengths respectively 2(i − 1)x, for the left horizontal stripe and A − (2i − 3)x, for

the right horizontal stripe (see Fig. 8). Let k = A/(2x) = A · 2A−1. In each of the polygons Pi
there are k vertical corridors of width x, k − 1 of them closed from above at the height A/2 + x

(counting from the upper horizontal side of the square S), and one corridor open, exactly the ith

corridor counting from the left.

The initial position p of the agent is the lower-left corner of the square S, and the location q of the

treasure is at distance 1/2 from the upper horizontal side of S and in the middle between the two

vertical sides of S (see Fig. 8). Thus the accessibility of the treasure is λ = 1/2 and the length

L of a shortest path between p and q in P satisfies the inequalities A/2 < L < 5A/2, and hence

L ∈ Θ(A).

19

We prove the theorem by contradiction. Suppose that the size of advice is at most A/2. Hence there

are at most 2A/2 distinct pieces of advice. The number of polygons in the class C(A) is k = A ·2A−1.
By the pigeonhole principle there are at least y = k/2A/2 = A ·2A/2−1 polygons in the class C(A) to

which corresponds the same advice α. Let Pi1 , . . . ,Piy be these polygons. Consider the trajectory

of the agent corresponding to advice α. This trajectory must enter each of the corridors i1, . . . , iy,

counted from the left, at the height at least A/4+1/2, counting from the bottom side of the square

S. This means that the agent must enter each of these corridors at depth at least 1/2 from the

beginning of the corridor. At any lower point in a corridor, the agent cannot see if the corridor is

open or closed (because it can see only at distance at most 1), and hence not going deeper in one

of the corridors j ∈ {i1, . . . , iy} would preclude it from seeing the treasure, if the actual polygon

is Pj . Hence the trajectory of the agent corresponding to advice α must have a length of at least

2 · (1/2) · y = y, in the case when the actual polygon is Pj , where the last visited corridor has index

j. However, y = A · 2A/2−1 is not in O(A) and hence not in O(L), which is a contradiction. This

contradiction proves that the size of advice must be larger than A/2, and hence it must be in Ω(L).

�

Remark. By replacing x = 1/2A in the above proof by 1/f(A), for any faster growing function

f(A) (for example f(A) = 22
A

) we could get the lower bound Ω(log f(L)) on the required size

of advice (instead of just Ω(L)), and hence show an arbitrarily large difference between advice

complexity of treasure hunt in arbitrary vs. regular terrains.

4 Conclusion

Using advice complexity as a measure of the difficulty of a task, we established that treasure hunt

in the class of arbitrary terrains is dramatically more difficult than in the class of regular terrains.

A natural intermediate class of terrains is that of convex polygons with arbitrary convex obstacles

(not necessarily c-fat). It remains open what is the advice complexity of treasure hunt in this class.

A problem related to treasure hunt is that of finding a shortest path in a terrain. What is the

advice complexity of this problem, i.e., what is the smallest advice that the agent needs in order to

find a path of length exactly L (rather than of length O(L)) to the target? Unfortunately, this is

not a good formulation, as no finite advice could permit the agent to solve this problem, even in the

empty plane. Intuitively, the advice would have to convey the exact direction to the target, which

cannot be done with a finite number of bits, as the target is a point. (This simple observation

can be easily formalized). An attempt to relax the task by requiring the (exact) shortest path

not to hit the target but to “see it”, i.e., get at distance 1 from it, must still fail for the same

reason. It seems that a reasonable formulation of the shortest path problem in a terrain, in the

context of advice complexity, has to relax the term “shortest”. For example, the relaxation could

be up to an additive constant (rather than up to a multiplicative constant, as we did, requiring

cost O(L)). More precisely, the following problem remains open. What is the best complexity of

advice sufficient to solve the treasure hunt problem in a terrain (again, the agent has to see the

treasure), at cost L + O(1)? Since the agent can see at distance 1, this version of treasure hunt

is equivalent to solving the shortest path problem up to an additive constant. Similarly as in this

paper, it would be interesting to find whether the difficulty of this problem (measured by advice

complexity) varies for different classes of terrains.

20

References

[1] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor queries, Proc. 12th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 547–556.

[2] S. Albers and K. Kursawe and S. Schuierer, Exploring unknown environments with obstacles,

Algorithmica 32 (2002), 123–143.

[3] S.Alpern and S.Gal, The Theory of Search Games and Rendezvous, Kluwer Academic Publi-

cations, 2003.

[4] R. Baeza-Yates, J. Culberson, and J. Rawlins, Searching the plane, Information and Compu-

tation 106 (1993), 234-252.

[5] E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line navigation in a room, Journal of Algorithms

17 (1994), 319-341.

[6] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen and M. Saks, Randomized robot navigation

algorithms, Proc. 7th ACM-SIAM Symp. on Discrete Algorithms (1996), 74-84.

[7] A. Blum, P. Raghavan and B. Schieber, Navigating in unfamiliar geometric terrain, SIAM

Journal on Computing 26 (1997), 110-137.

[8] H.J. Bockenhauer, J. Fuchs, W. Unger, The Graph Exploration Problem with Advice. CoRR

abs/1804.06675 (2018).

[9] J. Czyzowicz, D. Ilcinkas, A. Labourel, A. Pelc, Worst-case optimal exploration of terrains

with obstacles, Information and Computation 225 (2013), 16-28.

[10] X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown environment, Proc.

32nd Symp. on Foundations of Computer Science (FOCS 1991), 298–303.

[11] X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown environment I: the

rectilinear case, Journal of the ACM 45 (1998), 215-245.

[12] D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel and Distributed Com-

puting 72 (2012), 132–143.

[13] Y. Dieudonné, A. Pelc, Impact of knowledge on election time in anonymous networks, Proc.

29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017), 207-215.

[14] S. Dobrev, R.Kralovic, E. Markou. Online graph exploration with advice. Proc. 19th Interna-

tional Colloquium on Structural Information and Communication Com- plexity (SIROCCO

2012), 267-278.

[15] Y. Emek, P. Fraigniaud, A. Korman, A. Rosen, Online computation with advice, Theoretical

Computer Science 412 (2011), 2642–2656.

[16] P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc, Distributed computing with advice: Informa-

tion sensitivity of graph coloring, Distributed Computing 21 (2009), 395–403.

21

[17] P. Fraigniaud, D. Ilcinkas, A. Pelc, Communication algorithms with advice, Journal of Com-

puter and System Sciences 76 (2010), 222–232.

[18] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Information and Computation

206 (2008), 1276–1287.

[19] P. Fraigniaud, A. Korman, E. Lebhar, Local MST computation with short advice, Theory of

Computing Systems 47 (2010), 920–933.

[20] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran and Melanie E. Moses, A Distributed

Deterministic Spiral Search Algorithm for Swarms, Proc. IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2016), 4430-4436.

[21] E. Fusco, A. Pelc, Trade-offs between the size of advice and broadcasting time in trees, Algo-

rithmica 60 (2011), 719–734.

[22] E. Fusco, A. Pelc, R. Petreschi, Topology recognition with advice, Information and Computa-

tion 247 (2016), 254-265.

[23] Y. Gabriely, Y. Rimon, Spanning-tree based coverage of continuous areas by a mobile robot,

Proc. Int. Conf. of Robotics and Automaton (ICRA 2001), 1927-1933.

[24] C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance labeling in graphs, Journal of Algorithms

53 (2004), 85-112.

[25] S.K. Ghosh, J.W. Burdick, A. Bhattacharya and S. Sarkar, Online algorithms with discrete

visibility - exploring unknown polygonal environments, Robotics & Automation Magazine 15

(2008), 67-76.

[26] C. Glacet, A. Miller, A. Pelc, Time vs. information tradeoffs for leader election in anonymous

trees, ACM Transactions on Algorithms 13 (2017), 31:1-31:41.

[27] B. Gorain, A. Pelc, Deterministic graph exploration with advice, Proc. 44th International

Colloquium on Automata, Languages and Programming (ICALP 2017), 132:1-132:14.

[28] F. Hoffmann. C. Icking, R. Klein and K. Kriegel, The polygon exploration problem, SIAM J.

Comput. 31 (2001), 577–600.

[29] D. Ilcinkas, D. Kowalski, A. Pelc, Fast radio broadcasting with advice, Theoretical Computer

Science, 411 (2012), 1544–1557.

[30] A. Jez and J. Lopuszanski, On the two-dimensional cow search problem, Information Process-

ing Letters 109 (2009), 543 - 547.

[31] M. Katz, N. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, SIAM

Journal of Computing 34 (2004), 23–40.

[32] D. Komm, R. Kralovic, R. Kralovic, J. Smula, Treasure hunt with advice, Proc. 22nd Inter-

national Colloquium on Structural Information and Communication Com- plexity (SIROCCO

2015), 328-341.

22

[33] A. Korman, S. Kutten, D. Peleg, Proof labeling schemes, Distributed Computing 22 (2010),

215–233.

[34] E. Langetepe, On the Optimality of Spiral Search, Proc. 21st Ann. ACM-SIAM Symp. Disc.

Algor. (SODA 2010), 1-12.

[35] E. Langetepe, Searching for an axis-parallel shoreline, Theoretical Computer Science 447

(2012), 85-99.

[36] A. Miller, A. Pelc, Tradeoffs between cost and information for rendezvous and treasure hunt,

Journal of Parallel and Distributed Computing 83 (2015), 159-167.

[37] N. Nisse, D. Soguet, Graph searching with advice, Theoretical Computer Science 410 (2009),

1307–1318.

[38] S. Ntafos, Watchman routes under limited visibility, Comput. Geom. Theory Appl. 1 (1992),

149–170.

[39] C. H. Papadimitriou, M. Yannakakis, Shortest paths without a map, Theor. Comput. Sci. 84

(1991), 127–150.

[40] A. Pelc, Reaching a target in the plane with no information, Information Processing Letters

140 (2018), 13-17.

[41] K. Spieser and E. Frazzoli, The Cow-Path Game: A Competitive Vehicle Routing Problem,

Proc. 51st IEEE Conference on Decision and Control (2012), 6513 - 6520.

[42] A. Ta-Shma and U. Zwick, Deterministic rendezvous, treasure hunts and strongly universal

exploration sequences. ACM Transactions on Algorithms 10 (2014), 12:1-12:15.

[43] M. Thorup, U. Zwick, Approximate distance oracles, Journal of the ACM, 52 (2005), 1–24.

23

	1 Introduction
	1.1 The background and the problem
	1.2 Our results
	1.3 Related work

	2 Regular terrains
	2.1 The case L>
	2.2 The case L

	3 Arbitrary terrains
	4 Conclusion

