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Abstract. For one-safe Petri nets or condition/event-systems, a process
as defined by Carl Adam Petri provides a notion of a run of a system
where causal dependencies are reflected in terms of a partial order. Goltz
and Reisig have generalised this concept for nets where places carry mul-
tiple tokens, by distinguishing tokens according to their causal history.
However, this so-called individual token interpretation is often considered
too detailed. Here we identify a subclass of Petri nets, called structural
conflict nets, where no interplay between conflict and concurrency due
to token multiplicity occurs. For this subclass, we define abstract pro-
cesses as equivalence classes of Goltz-Reisig processes. We justify this
approach by showing that there is a largest abstract process if and only
if the underlying net is conflict-free with respect to a canonical notion of
conflict.

1 Introduction

In this paper we address a well-known problem in Petri net theory, namely how
to generalise Petri’s concept of non-sequential processes to nets where places
may carry multiple tokens. We propose and justify a solution for a subclass of
Petri nets, called structural conflict nets.

One of the most interesting features of Petri nets is that they allow the ex-
plicit representation of causal dependencies between action occurrences when
modelling reactive systems. Petri defined condition/event systems, where —
amongst other restrictions — places (there called conditions) may carry at most
one token. For this class of nets, he proposed what is now the classical notion
of a process, given as a mapping from an occurrence net (acyclic net with un-
branched places) to the original net [Pet77,GSW80]. A process models a run of
the represented system, obtained by choosing one of the alternatives in case of
conflict. It records all occurrences of the transitions and places visited during
such a run, together with the causal dependencies between them, which are given
by the flow relation of the net.

However, the most frequently used class of Petri nets are nets where places
may carry arbitrarily many tokens, or a certain maximal number of tokens when
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adding place capacities. This type of nets is often called place/transition systems
(P/T systems). Here tokens are usually assumed to be indistinguishable entities,
for example representing a number of available resources in a system. Unfortu-
nately, it is not straightforward to generalise the notion of process, as defined by
Petri for condition/event systems, to P/T systems. In fact, it has now for more
than 30 years been a well-known problem in Petri net theory how to formalise an
appropriate causality-based concept of process or run for general P/T systems.
In the following we give an introduction to the problem and a short overview on
existing approaches.

As a first approach, Goltz and Reisig generalised Petri’s notion of process to
general P/T systems [GR83]. We call this notion of a process GR-process. It is
based on a canonical unfolding of a P/T system into a condition/event system,
representing places that may carry several tokens by a corresponding number of
conditions (see [Gol87]). Fig. 1 shows a P/T system with two of its GR-processes.
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Fig. 1. A net N with its two maximal GR-processes. The correspondence between
elements of the net and their occurrences in the processes is indicated by labels.

However, if one wishes to interpret P/T systems with a causal semantics,
there are alternative interpretations of what “causal semantics” should actually
mean. Goltz already argued that when abstracting from the identity of multiple
tokens residing in the same place, GR-processes do not accurately reflect runs of
nets, because if a Petri net is conflict-free, in the sense that there are no choices
to resolve, it should intuitively have only one complete run, yet it may have
multiple maximal GR-processes [Gol86]. This phenomenon occurs in Fig. 1, since
the choice between alternative behaviours is here only due to the possibility to
choose between two tokens which can or even should be seen as indistinguishable
entities. A similar argument is made, e.g., in [HKT95].

At the heart of this issue is the question whether multiple tokens residing in
the same place should be seen as individual entities, so that a transition con-
suming just one of them constitutes a choice, as in the interpretation underlying
GR-processes, or whether such tokens are indistinguishable, so that taking one
is equivalent to taking the other. Van Glabbeek and Plotkin call the former
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viewpoint the individual token interpretation of P/T systems. For an alternative
interpretation, they use the term collective token interpretation [GP95]. A pos-
sible formalisation of these interpretations occurs in [Gla05]. In the following we
call process notions for P/T systems which are adherent to a collective token phi-
losophy abstract processes. Another option, proposed by Vogler, regards tokens
only as notation for a natural number stored in each place; these numbers are
incremented or decremented when firing transitions, thereby introducing explicit
causality between any transitions removing tokens from the same place [Vog91].

Mazurkiewicz applies again a different approach in [Maz89]. He proposes
multitrees, which record possible multisets of fired transitions, and then takes
confluent subsets of multitrees as abstract processes of P/T systems. This ap-
proach does not explicitly represent dependencies between transition occurrences
and hence does not apply to nets with self-loops, where such information may
not always be retrieved.

Yet another approach has been proposed by Best and Devillers in [BD87].
Here an equivalence relation is generated by a transformation for changing
causalities in GR-processes, called swapping, that identifies GR-processes which
differ only in the choice which token was removed from a place. In this paper, we
adopt this approach and we show that it yields a fully satisfying solution for a
subclass of P/T systems. We call the resulting notion of a more abstract process
BD-process. In the special case of one-safe P/T systems (where places carry at
most one token), or for condition/event systems, no swapping is possible, and a
BD-process is just an isomorphism class of GR-processes.

Meseguer and Montanari formalise runs in a net N as morphisms in a cate-
gory T (N) [MM88]. In [DMM89] it has been established that these morphisms
“coincide with the commutative processes defined by Best and Devillers” (their
terminology for BD-processes). Likewise, Hoogers, Kleijn and Thiagarajan
[HKT95] represent an abstract run of a net by a trace, thereby generalising
the trace theory of Mazurkiewicz [Maz95], and remark that “it is straightfor-
ward but laborious to set up a 1-1 correspondence between our traces and the
equivalence classes of finite processes generated by the swap operation in [Best
and Devillers, 1987]”.

As observed by Vogler [Vog90] (as a consequence of Corollary 5.6 therein),
it can be argued that BD-processes are not fully satisfying as abstract processes
for general P/T systems. To illustrate this result, we recall in Fig. 2 an example
due to Ochmański [Och89] — see also [DMM89,GGS11a]. In the initial situation
only two of the three enabled transitions can fire, which constitutes a conflict.
However, the equivalence obtained from the swapping transformation (formally
defined in Section 3) identifies all possible maximal GR-processes and hence
yields only one complete abstract run of the system. We are not aware of a
solution, i.e. any formalisation of the concept of a run of a net that conforms to
the collective token interpretation and meets the requirement that for this net
there is more than one complete run.

In [GGS11a] and in the present paper, we continue the line of research of
[MM88,DMM89,Maz89,HKT95] to formalise a causality-based notion of an ab-
stract process of a P/T system that fits a collective token interpretation. As
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a b c d

Fig. 2. A net with only a single process up to swapping equivalence.

remarked already in [Gol86], ‘what we need is some notion of an “abstract pro-
cess”’ and ‘a notion of maximality for abstract processes’, such that ‘a P/T-
system is conflict-free iff it has exactly one maximal abstract process starting
at the initial marking’. The example from Fig. 2 shows that BD-processes are
in general not suited. However, we show that BD-processes are completely ade-
quate on a subclass of P/T-systems — proposed in [GGS11a] — where conflict
and concurrency are clearly separated. We called these nets structural conflict
nets. Using the formalisation of conflict for P/T systems from [Gol86], we have
shown in [GGS11a] that, for this subclass of P/T systems, we obtain some finite
BD-processes without a common extension whenever the net contains a conflict.
The proof of this result is quite involved; it was achieved by using an alternative
characterisation of BD-processes via firing sequences from [BD87]. As we point
out in Section 5, this result implies that a structural conflict net with a largest
BD-process must be conflict-free.

In this paper, we will show the reverse direction of this result, namely that a
structural conflict net has a largest BD-process if the net is conflict-free. We then
have established that there is a largest abstract process in terms of BD-processes
for structural conflict nets if and only if the net is conflict-free with respect to
a canonical notion of conflict.

We proceed by defining basic notions for P/T systems in Section 2. In Sec-
tion 3, we define GR-processes and BD-processes, as well as a natural partial
order on BD-processes that gives rise to the notion of a largest BD-process.
Section 4 recalls the concept of conflict in P/T systems and defines structural
conflict nets.1 In Section 5 we recall a result from [GGS11a] that implies that a
structural conflict net featuring any conflict cannot have a largest BD-process.
In Section 6 we prove the converse, that a conflict-free structural conflict net
does have a largest BD-process. Finally, Section 7 reformulates (and slightly
strengthens) our result in the terminology of [GGS11a], where we did not em-
ploy a partial order on BD-processes, and hence no canonical notion of a largest
BD-process. We show that a structural conflict net is conflict-free iff it has a
unique maximal GR-process up to swapping equivalence.

1 The material in Sections 2, 3.1 and 4 follows closely the presentation in [GGS11a],
but needs to be included to make the paper self-contained.
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The results of this paper, together with a slightly extended overview on the
existing approaches on semantics of Petri nets, were previously announced in
[GGS11b], with proofs in an accompanying technical report. Our current proofs
are conceptually much simpler, as they are carried out directly on BD-processes,
rather than via the auxiliary concepts of BD-runs and FS-runs. This became
possible after turning swapping equivalence into a preorder on BD-processes,
simply by employing only one of the two symmetric clauses defining this rela-
tion. That idea stems from Walter Vogler [personal communication, 20-11-2012],
whom we gratefully acknowledge.

Additionally, we thank the referees for their very detailed and helpful com-
ments.

2 Place/transition systems

We will employ the following notations for multisets.

Definition 1. Let X be a set.

• A multiset over X is a function A : X → IN, i.e. A ∈ INX.

• x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.

• For multisets A and B over X we write A ⊆ B iff A(x) ≤ B(x) for all x∈X ;
A ∪B denotes the multiset over X with (A ∪B)(x) := max(A(x), B(x)),
A ∩B denotes the multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) := A(x) +B(x),
A − B is given by (A − B)(x) := A(x) ·− B(x) = max(A(x) − B(x), 0), and
for k ∈ IN the multiset k · A is given by (k ·A)(x) := k ·A(x).

• The function ∅ : X → IN, given by ∅(x) := 0 for all x ∈ X , is the empty
multiset over X .

• If A is a multiset over X and Y ⊆ X then A ↾Y denotes the multiset over Y
defined by (A ↾ Y )(x) := A(x) for all x ∈ Y .

• The cardinality |A| of a multiset A over X is given by |A| :=
∑

x∈X A(x).

• A multiset A over X is finite iff |A| < ∞, i.e., iff the set {x | x ∈ A} is finite.

• A function π : X → Y extends to multisets A ∈ INX by π(A)(y) =
∑

y=π(x)

A(x).
In this paper, this sum will always turn out to be finite.

Two multisets A : X → IN and B : Y → IN are extensionally equivalent iff
A ↾(X ∩Y ) = B ↾(X ∩Y ), A ↾(X \Y ) = ∅, and B ↾(Y \X) = ∅. In this paper we
often do not distinguish extensionally equivalent multisets. This enables us, for
instance, to use A ∪ B even when A and B have different underlying domains.
With {x, x, y} we will denote the multiset over {x, y} with A(x)=2 and A(y)=1,
rather than the set {x, y} itself. A multiset A with A(x) ≤ 1 for all x is identified
with the set {x | A(x) = 1}.

Below we define place/transition systems as net structures with an initial
marking. In the literature we find slight variations in the definition of P/T sys-
tems concerning the requirements for pre- and postsets of places and transitions.
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In our case, we do allow isolated places. For transitions we allow empty post-
sets, but require at least one preplace, thus avoiding problems with infinite self-
concurrency. Moreover, following [BD87], we restrict attention to nets of finite
synchronisation, meaning that each transition has only finitely many pre- and
postplaces. Arc weights are included by defining the flow relation as a function
to the natural numbers. For succinctness, we will refer to our version of a P/T
system as a net.

Definition 2.

A net is a tuple N = (S, T, F,M0) where

• S and T are disjoint sets (of places and transitions),

• F : ((S×T ) ∪ (T×S)) → IN (the flow relation including arc weights), and

• M0 : S → IN (the initial marking)

such that for all t ∈ T the set {s | F (s, t) > 0} is finite and non-empty, and
the set {s | F (t, s) > 0} is finite.

Graphically, nets are depicted by drawing the places as circles and the transitions
as boxes. For x, y ∈ S ∪ T there are F (x, y) arrows (arcs) from x to y.2 When
a net represents a concurrent system, a global state of this system is given as
a marking, a multiset of places, depicted by placing M(s) dots (tokens) in each
place s. The initial state is M0.

Definition 3. Let N=(S, T, F,M0) be a net and x ∈ S ∪ T .

The multisets •x, x• : S ∪ T → IN are given by •x(y) = F (y, x) and x•(y) =
F (x, y) for all y∈S∪T . If x ∈ T , the elements of •x and x• are called pre- and
postplaces of x, respectively. These functions extend to multisets X : S∪T →
IN as usual, by •X :=

∑
x∈S∪T X(x) · •x and X• :=

∑
x∈S∪T X(x) · x•.

The system behaviour is defined by the possible moves between markings M
and M ′, which take place when a finite multiset G of transitions fires. When
firing a transition, tokens on preplaces are consumed and tokens on postplaces
are created, one for every incoming or outgoing arc of t, respectively. Obviously,
a transition can only fire if all necessary tokens are available in M in the first
place. Definition 4 formalises this notion of behaviour.

Definition 4. Let N=(S, T, F,M0) be a net, G ∈ INT, G non-empty and finite,
and M,M ′ ∈ INS.

G is a step from M to M ′, written M
G
−→N M ′, iff

• •G ⊆ M (G is enabled) and

• M ′ = (M − •G) +G•.

2 This is a presentational alternative for the common approach of having at most one
arc from x to y, labelled with the arcweight F (x, y) ∈ IN.
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We may leave out the subscript N if clear from context. For a word σ =
t1t2 . . . tn ∈ T ∗ we write M

σ
−→ M ′ for

∃M1,M2, . . . ,Mn−1. M
{t1}
−→M1

{t2}
−→M2 · · ·Mn−1

{tn}
−→M ′.

When omitting σ or M ′ we always mean it to be existentially quantified.

Note that steps are (finite) multisets, thus allowing self-concurrency. Also note
that M

{t,u}
−−−→ implies M

tu
−→ and M

ut
−→.

3 Processes of place/transition systems

We now define two notions of a process of a net, modelling a run of the repre-
sented system on two levels of abstraction.

3.1 GR-processes

A (GR-)process is essentially a conflict-free, acyclic net together with a mapping
function to the original net. It can be obtained by unwinding the original net,
choosing one of the alternatives in case of conflict. The acyclic nature of the
process gives rise to a notion of causality for transition firings in the original net
via the mapping function. A conflict present in the original net is represented by
the existence of multiple processes, each representing one possible way to decide
the conflict.

Definition 5.

A pair P = (N, π) is a (GR-)process of a net N = (S, T, F,M0) iff

• N = (S,T,F,M0) is a net, satisfying

− ∀s ∈ S. |•s| ≤1≥ |s•| ∧ M0(s) =

{
1 if •s = ∅
0 otherwise,

− F is acyclic, i.e. ∀x∈S∪T. (x, x) 6∈F
+
, where F

+
is the transitive closure

of {(x, y) | F(x, y) > 0},

− and {t ∈ T | (t, u) ∈ F
+
} is finite for all u ∈ T.

• π : S ∪ T → S ∪ T is a function with π(S) ⊆ S and π(T) ⊆ T , satisfying

− π(M0) = M0, i.e. M0(s) = |π−1(s) ∩M0| for all s ∈ S, and

− ∀t ∈ T, s ∈ S. F (s, π(t)) = |π−1(s) ∩ •t| ∧ F (π(t), s) = |π−1(s) ∩ t•|, i.e.
∀t ∈ T. π(•t) = •π(t) ∧ π(t•) = π(t)•.

P is called finite if T is finite. The end of P is defined as P ◦ = {s ∈ S | s• = ∅}.

Let GR(N) (resp. GRfin(N)) denote the collection of (finite) GR-processes of N.
A process is not required to represent a completed run of the original net. It

might just as well stop early. In those cases, some set of transitions can be added
to the process such that another (larger) process is obtained. This corresponds
to the system taking some more steps and gives rise to a natural order between
processes.
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Definition 6. Let P = ((S,T,F,M0), π) and P ′ = ((S
′
,T ′,F ′,M

′
0), π

′) be two
processes of the same net.

• P ′ is a prefix of P , notation P ′ ≤ P , and P an extension of P ′, iff S
′
⊆ S,

T ′ ⊆ T, M
′
0 = M0, F

′ = F ↾(S
′
×T ′ ∪ T ′×S

′
) and π′ = π ↾(S

′
∪ T ′).

• A process of a net is said to be maximal if it has no proper extension.

The requirements above imply that if P ′ ≤ P , (x, y) ∈ F
+
and y ∈ S

′
∪ T ′ then

x ∈ S
′
∪ T ′. Conversely, any subset T ′ ⊆ T satisfying (t, u) ∈ F

+
∧ u ∈ T ′ ⇒

t ∈ T ′ uniquely determines a prefix of P , denoted P ↾ T ′.
In [Pet77,GSW80,GR83] processes were defined without requiring the third

condition on N from Definition 5. Goltz and Reisig [GR83] observed that certain
processes did not correspond with runs of systems, and proposed to restrict the
notion of a process to those that can be approximated by finite processes [GR83,
end of Section 3]. This is the role of the third condition on N in Definition 5;
it is equivalent to requiring that each transition occurs in a finite prefix. In
[Pet77,GSW80,GR83] only processes of finite nets were considered. For those
processes, the requirement of discreteness proposed in [GR83] is equivalent with
imposing the third condition on N in Definition 5 [GR83, Theorem 2.14].

Two processes P =(N, π) and P ′=(N ′, π′) are isomorphic, notation P ∼= P ′,
iff there exists an isomorphism φ from N to N ′ which respects the process map-
ping, i.e. π = π′ ◦φ. Here an isomorphism φ between two nets N = (S,T,F,M0)
and N ′ = (S

′
,T ′,F ′,M

′
0) is a bijection between their places and transitions

such that M
′
0(φ(s)) = M0(s) for all s ∈ S and F ′(φ(x), φ(y)) = F(x, y) for all

x, y ∈ S ∪ T.

3.2 BD-processes

Next we formally introduce the swapping transformation and the resulting
equivalence notion on GR-processes from [BD87].

Definition 7. Let P = ((S,T,F,M0), π) be a process and let p, q ∈ S with

(p, q) /∈ F
+
∪ (F

+
)−1 and π(p) = π(q).

Then swap(P, p, q) is defined as ((S,T,F ′,M0), π) with

F
′(x, y) =





F(q, y) iff x = p, y ∈ T

F(p, y) iff x = q, y ∈ T

F(x, y) otherwise.

If P is the first process depicted in Fig. 1, with p and q the two places that
are mapped to place 4 of the underlying net N , then swap(P, p, q) is the second
process of Fig. 1. The transformation simply swaps the arcs leaving p and q.

Definition 8.

• Two processes P and Q of the same net are one step swapping equivalent
(P ≡1 Q) iff swap(P, p, q) is isomorphic to Q for some places p and q.

• We write ≡∗
1 for the reflexive and transitive closure of ≡1.
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By taking p=q in Definition 8 one finds that P≡1P for any non-empty process P.
In [BD87, Definition 7.8] swapping equivalence—there denoted ≡∞

1 —is defined
in terms of reachable B-cuts. Using [BD87, Definition 3.14] this definition can be
rephrased as follows:

Definition 9. Let N be a net, and P,Q ∈GR(N).

Then P ≡∞
1 Q iff

∀P ′′ ∈GRfin(N), P ′′ ≤ P. ∃Q′ ≡∗
1 Q, Q′′ ≤ Q′. P ′′ ∼= Q′′ (1)

and, vice versa,

∀Q′′ ∈GRfin(N), Q′′ ≤ Q. ∃P ′ ≡∗
1 P, P ′′ ≤ P ′. P ′′ ∼= Q′′ .

In [BD87, Theorem 7.9] (as well as below) it is shown that ≡∞
1 is an equivalence

relation on GR-processes. Trivially, ≡∗
1 is included in ≡∞

1 .

Definition 10.

We call a ≡∞
1 -equivalence class of GR-processes a BD-process, and write P

∞
.

To support the idea that ≡∞
1 is a natural equivalence relation on GR-processes,

an alternative characterisation of ≡∞
1 is presented in Section 3.3 below.

In order to establish concepts of a maximal and of a largest BD-process, we
turn ≡∞

1 into a preorder by focusing on only one of the two clauses of Definition 9
(formulated differently).

Definition 11. Let N be a net, and P,Q ∈ GR(N).

Then P ⊑∞
1 Q iff

∀P ′′ ∈GRfin(N), P ′′ ≤ P. ∃P ′, Q′ ∈ GRfin(N). P ′′ ≤ P ′ ≡∗
1 Q′ ≤ Q. (2)

We proceed to show that (2) is equivalent to (1) and that ⊑∞
1 is a preorder.

For P,Q ∈ GR(N) write P ∼S Q if there are places p and q such that
swap(P, p, q) = Q (or equivalently swap(Q, p, q) = P ). Clearly, the operations
of swapping two places in a process, and of bijectively renaming all places and
transitions, commute:

Observation 1 ∃P ′∈GR(N). P ∼= P ′ ∼S Q ⇔ ∃Q′∈GR(N). P ∼S Q′ ∼= Q.

The same holds for the operations of taking a prefix and of bijectively renaming
all places and transitions:

Observation 2 ∃P ′ ∈GR(N). P ∼= P ′ ≤ Q ⇔ ∃Q′ ∈GR(N). P ≤ Q′ ∼= Q.

Moreover, instead of first swapping two places p and q in a process and then
extending the resulting process, we can just as well first extend and then swap:

Observation 3 ∃P ′∈GR(N). P ∼S P ′ ≤ Q ⇒ ∃Q′∈GR(N). P ≤ Q′ ∼S Q.

This implication can in general not be reversed, since it could be that out of two
swapped places p and q occurring in Q and Q′ only one occurs in P .

Lemma 1. If P ≤ Q′ ∼S Q for some P ∈ GRfin(N) and Q′, Q ∈ GR(N), then
there are P ′, P ′′ ∈GRfin(N) with P ≤ P ′ ∼S P ′′ ≤ Q.
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Proof. Let Q = swap(Q′, p, q) for certain places p and q in Q′. Take a finite
prefix P ′ of Q′ that includes P as well as p and q. Then P ≤ P ′ ≤ Q′. Let
P ′′ := swap(P ′, p, q). Then P ′ ∼S P ′′ ≤ Q. ⊓⊔

P ≡1 Q is defined by ∃Q′. P ∼S Q′ ∼= Q. Using that ∼S is reflexive on nonempty
processes we have:

Observation 4 ∼= ⊆ ≡∗
1.

So, using Observation 2, (1) can be reformulated as

∀P ′′ ∈GRfin(N), P ′′ ≤ P. ∃Q′ ≡∗
1 Q. P ′′ ≤ Q′.

From Observations 2 and 3 we obtain:

Corollary 1. ∃P ′ ∈GR(N). P ≡∗
1 P ′ ≤ Q ⇒ ∃Q′ ∈GR(N). P ≤ Q′ ≡∗

1 Q. ⊓⊔

Likewise, from Observation 2 and 3 and Lemma 1 we obtain:

Corollary 2. If P ≤ Q′ ≡∗
1 Q for some P ∈GRfin(N) and Q′, Q∈GR(N), then

there are P ′, P ′′ ∈GRfin(N) with P ≤ P ′ ≡∗
1 P ′′ ≤ Q. ⊓⊔

Together, Corollaries 1 and 2 imply the equivalence of (1) and (2). Corollary 1,
in combination with the transitivity of ≤ and ≡∗

1, implies the transitivity of ⊑∞
1 .

Moreover, by definition ⊑∞
1 is reflexive.

Corollary 3. ⊑∞
1 is a preorder on GR(N). Hence≡∞

1 is an equivalence relation.

It follows that ⊑∞
1 induces a partial order on BD-processes, and thereby concepts

of a maximal and a largest BD-process.3

3.3 An alternative characterisation of swapping equivalence

Let P ∈ GR(N). The set BD(P ) of finite BD-approximations of P is the smallest
set of finite GR-processes that contains all finite prefixes of P and is closed under
≡1 and taking prefixes. (By Observation 4 it therefore is also closed under ∼=.)
Thus, it is the smallest subset of GR(N) satisfying

– if P ′ ∈ GRfin(N) and P ′ ≤ P then P ′ ∈ BD(P ),
– if P ′ ≡1 Q ∈ BD(P ) then P ′ ∈ BD(P ),
– if P ′ ≤ Q ∈ BD(P ) then P ′ ∈ BD(P ).

Proposition 1. P ⊑∞
1 Q ⇔ BD(P )⊆BD(Q). So P ≡∞

1 Q ⇔ BD(P )=BD(Q).

Proof. BD(P ) = {P ′′′ ∈GRfin(N) | ∃P ′′, P ′ ∈GRfin(N). P ′′′ ≤ P ′′ ≡∗
1 P ′ ≤ P}

by Corollary 1. Using this, the result follows directly from Definition 11. ⊓⊔
3 A preorder is a relation that is reflexive and transitive; it is an equivalence relation
if it moreover is symmetric, and a partial order if it moreover is antisymmetric.
Given a preorder ⊑, its kernel is the equivalence relation ≡ defined by P ≡ Q iff
P ⊑ Q∧Q ⊑ P . Moreover, the induced partial order ≤ on the ≡-equivalence classes
is given by [P ] ≤ [Q] iff P ⊑ Q; it is easy to check that this is independent of the
choices of representatives P and Q within the ≡-equivalences classes [P ] and [Q].

Here ≡∞
1 is the kernel of ⊑∞

1 , and “maximal” or “largest” refers to the induced
partial order on BD-processes.
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4 Conflicts in place/transition systems

We recall the notion of conflict introduced in [Gol86]. It formalises the notion of
conflict alluded to in [Rei85, p. 23].

Definition 12. Let N = (S, T, F,M0) be a net and M ∈ INS.

• A finite, non-empty multiset G ∈ INT is in (semantic) conflict in M iff

¬M
G
−→ ∧ ∀t ∈ G. M

G ↾{t}
−−−→.

• N is (semantically) conflict-free iff no finite, non-empty multiset G ∈ INT is
in semantic conflict in any M with M0 −→ M .

• N is binary-conflict--free iff no multiset G ∈ INT with |G| = 2 is in semantic
conflict in any M with M0 −→ M .

Thus, N is binary-conflict--free iff whenever two different transitions t and u are
enabled at a reachable marking M , then also the step {t, u} is enabled at M .
The above concept of (semantic) conflict-freeness formalises the intuitive notion
that there are no choices to resolve.

Remark: In a net such as displayed in Fig. 3, the multiset {t, t} is never enabled.
For this reason the multiset {t, t, u} does not count as being in conflict, even
though it is never enabled. However, its subset {t, u} is in conflict.

t u

Fig. 3. A net which is persistent but not binary-conflict–free

A number of alternative concepts of conflict and conflict-freeness have been
contemplated in the Petri net community.

A Petri net N is called persistent [KM69,LR78] if for every marking M with
M0 −→ M and every t, u ∈ T with t 6= u, M

t
−→ and M

u
−→, we have M

tu
−→;

in other words, if any transition u that is enabled in a reachable marking will
still be enabled after firing any other transition t. Trivially, a net that is binary-
conflict--free is also persistent. The net of Fig. 3, on the other hand, is persistent
but not binary-conflict--free.

t u t u

Fig. 4. Two nets with structural conflict, but no choices to resolve.

A pair of different transitions in a net that share a preplace can be called a
structural conflict. As illustrated in Fig. 4, the presence of a structural conflict
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does not imply that there are choices to resolve. A net that is free of structural
conflicts is certainly conflict-free, but Fig. 4 shows that the reverse does not hold.

A triple (M, t, u) of a reachable markingM and two different transitions t and
u withM

t
−→,M

u
−→ and •t∩•u 6= ∅ could be called a reachable structural conflict.

This constitutes a middle ground between semantic and structural conflict. The
nets of Fig. 4 do not have a reachable structural conflict. However, the net
of Fig. 5, although semantically conflict-free, does have a reachable structural
conflict.

t u

Fig. 5. A net with a reachable structural conflict, but no choices to resolve.

Landweber and Robertson [LR78] define a Petri net to be conflict-free “if
every place which is an input of more than one transition is on a self-loop with
each such transition.” This is an extension of the concept structural conflict-
freeness that is closer to persistence. It classifies the net of Fig. 3 as conflict-free
and the nets of Fig. 4 as having conflicts. Hence, this notion, just as persistence
and structural conflict-freeness, does not formalise the intuitive concept “no
choices to resolve”.

We proposed in [GGS11a] a class of P/T systems where (semantic) conflict-
freeness coincides with the absence of reachable structural conflicts. We called
this class of nets structural conflict nets. For a net to be a structural conflict net,
we required that two transitions sharing a preplace will never occur both in one
step.

Definition 13. Let N = (S, T, F,M0) be a net.

N is a structural conflict net iff ∀t, u. (M0 −→
{t,u}
−−−→) ⇒ •t ∩ •u = ∅.

Note that this excludes self-concurrency from the possible behaviours in a struc-
tural conflict net: as in our setting every transition has at least one preplace,
t = u implies •t∩•u 6= ∅. Also note that in a structural conflict net a non-empty,
finite multiset G is in conflict in a reachable marking M iff G is a set and two
distinct transitions in G are in conflict in M . Hence a structural conflict net
is conflict-free if and only if it is binary-conflict--free. Moreover, two transitions
enabled in M are in (semantic) conflict iff they share a preplace.

Trivially, the class of structural conflict nets includes the class of safe nets,
in which no reachable marking assigns multiple tokens to the same place. It also
includes the non-safe net of Fig. 1, as well as the buffer synchronised systems of
sequential machines from [Rei82] and the locally sequential globally asynchronous
nets (LSGA nets) of [GGS13], in which asynchronous communication is mod-
elled by buffer-places between sequential components that may collect arbitrarily
many tokens.
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5 A structural conflict net having a largest BD-process is
conflict-free

The result announced in this section—that each structural conflict net hav-
ing a ⊑∞

1 -largest BD-process must be conflict-free—is in essence obtained in
[GGS11a]. However, there we had not defined the order ⊑∞

1 , and thus neither
the corresponding notion of a ⊑∞

1 -largest BD-process. Instead we used differ-
ent terminology, and the work in this section merely consists of relating the
terminology of [GGS11a] to the one of the present paper.

In [GGS11a] a partial BD-run of a net N is defined as a ≡∗
1-equivalence

class of finite GR-processes of N .4 Let P be the partial BD-run containing P .
The prefix/extension relation ≤ on GRfin(N) from Definition 6 is lifted to par-
tial BD-runs by P ′ ≤ P iff P ′ ≡∗

1 Q′ ≤ Q ≡∗
1 P for some Q′, Q ∈ GRfin(N).

By Corollary 1, ≤ is a partial order on partial BD-runs, and P ′ ≤ P iff
P ′ ≤ Q ≡∗

1 P for some Q ∈ GRfin(N). Moreover, P ′ ≤ P iff P ′ ⊑∞
1 P .

In [GGS11a] a BD-run of a net N is defined as a prefix-closed and directed
set of partial BD-runs of N . Here we define the notion of a collapsed BD-run, or
BD†-run.

Definition 14. A BD†-run of a net N is a subset R of GRfin(N) that is prefix-
closed and closed under ≡∗

1, and satisfies

P,Q ∈ R ⇒ ∃P ′, Q′ ∈ R. P ≤ P ′ ≡∗
1 Q′ ≥ Q .

Note that a BD†-run is a set of finite GR-processes, whereas a BD-run is a set
of sets of finite GR-processes. We proceed to show that the two notions have the
same information content. For a BD-run R, let R† := {P ∈GRfin(N) | P ∈R}.
Trivially, R† is a BD†-run. Moreover, R1 ⊆ R2 implies R†

1 ⊆ R†
2.

Conversely, for R a BD†-run, let R := { P | P ∈ R}. Trivially, R is a
BD-run. Moreover, R1 ⊆ R2 implies R1 ⊆ R2 . Also note that R† = R for

any BD-run R, and R †
= R for any BD†-run R. Thus we have a ⊆-preserving

bijective correspondence between BD-runs and BD†-runs. It follows that a net
has a unique maximal BD-run iff it has a unique maximal BD†-run.5

[GGS11a, Section 5] defines the concept of an FS-run—an FS run is a certain
set of sets of firing sequences—and establishes a⊆-preserving bijective correspon-
dence between FS-runs and BD-runs. It follows that a net has a unique maximal
FS-run iff it has a unique maximal BD-run.

The set of finite prefixes of a GR-process P is directed: for P1, P2 ∈ GRfin(N)
with P1 ≤ P and P2 ≤ P , there is a process P3 ∈ GRfin(N) with P1 ≤ P3 ≤ P
and P2 ≤ P3. Just take as transitions of P3 the union of the transitions from P
that occur in P1 or P2.

4 It is easy to see that on finite GR-processes the relations ≡∞
1 and ≡∗

1 coincide. Hence
a partial BD-run is the same as a finite BD-process, i.e., an equivalence class P

∞

with P a finite GR-process. We do not use this fact further on.
5 Exactly as in the proof of Lemma 5 in the next section it follows that each BD-run
is a prefix of a maximal BD-run. Hence a unique maximal BD-run is the same as
largest BD-run. The same applies to BD†-runs.
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Lemma 2. If a net has a ⊑∞
1 -largest BD-process then it has a largest BD†-run.

Proof. Let P
∞
be the ⊑∞

1 -largest BD-process of a net N . We claim that the set
of all finite GR-processes of N is a BD†-run. Clearly, it is then also the largest.

Trivially, GRfin(N) is prefix-closed and closed under ≡∗
1. Now suppose P1, Q1

∈ GRfin(N). Since P1 ⊑∞
1 P and P1 ≤ P1 one has P1 ≤ P2 ≡∗

1 P3 ≤ P for some
P2, P3 ∈ GRfin(N). Likewise Q1 ≤ Q2 ≡∗

1 Q3 ≤ P for some Q2, Q3 ∈ GRfin(N).
Using that the set of prefixes of P is directed, let P4 ∈ GRfin(N) be such that
P3 ≤ P4 ≤ P and Q3 ≤ P4. Now Corollary 1 yields P1 ≤≡∗

1 P4 ≡∗
1≥ Q1, which

needed to be established. ⊓⊔

Theorem 1. Let N be a structural conflict net.
If N has a ⊑∞

1 -largest BD-process then N is conflict-free.

Proof. [GGS11a, Theorem 6] says that if a structural conflict net N has exactly
one maximal FS-run then N is conflict-free.

Now suppose N has a ⊑∞
1 -largest BD-process. By Lemma 2 it has a unique

maximal BD†-run. Hence it has a unique maximal BD-run, and a unique maximal
FS-run. It follows that N is conflict-free. ⊓⊔

Note that [GGS11a, Theorem 6] can be reformulated as saying that a structural
conflict net N that is not conflict-free fails to have a unique maximal BD-run.
This implies that the set of all partial BD-runs of N fails to be a BD-run, and
must hence fail to be directed. This in turn implies that there are two finite
BD-processes of N without a common extension.

6 A conflict-free structural conflict net has a largest
BD-process

In this section we prove the main result of this paper (Theorem 2), namely that
each conflict-free structural conflict net has a largest BD-process with respect
to the order ⊑∞

1 . We make use of a labelled transition relation between the
processes of a given net. The fact that we are dealing with a structural conflict
net is used only at the end of the proof of Theorem 2.

Let P = ((S,T,F,M0), π) and P ′ = ((S
′
,T ′,F ′,M

′
0), π

′) be GR-processes
of a net N = (S, T, F,M0). Henceforth, we will write P ′ a

−→ P with a ∈ T a
transition of the underlying net, if P ′ ≤ P and T = T

′ .
∪ {t} for some t with

π(t) = a. Let P0(N) be the set of initial processes of a net N : those with an
empty set of transitions. A process P0 ∈ P0(N) has exactly one place for each
token in the initial marking of N ; two processes in P0(N) differ only in the
names of these places. Now for each finite process P of N , having n transitions,
there is a sequence P0

a1−→ P1
a2−→ . . .

an−→ Pn with P0 ∈ P0(N) and Pn = P .
For P = ((S,T,F,M0), π) a finite GR-process of a net N = (S, T, F,M0),

we write P̂ for the marking π(P ◦) ∈ INS . The following observations describe
a bisimulation between the above transition relation on the processes of a net,
and the one on its markings.
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Observation 5 Let N = (S, T, F,M0) be a net, a ∈ T , and P,Q ∈ GRfin(N).

(a) P0(N) 6= ∅ and if P ∈ P0 then P̂ = M0.

(b) If P
a

−→ Q then P̂
a

−→ Q̂.

(c) If P̂
a

−→ M then there is a Q with P
a

−→ Q and Q̂ = M .

(d) P̂ is reachable in the sense that M0 −→ P̂ . (This follows from (a) and (b).)

Lemma 3. Let P, P ′ ∈GRfin(N), and a, b transitions of the underlying net N.

If P
a

−→ P ′ and P̂
{a,b}
−−−→ then ∃Q,Q′. P ′ b

−→ Q′ ∧ P
b

−→ Q
a

−→ Q′.

Proof. Since P̂
{a,b}
−−−→ we have •a+•b ⊆ π(P ◦). Furthermore π(P ◦ \ P ′◦) = •a.

So •b ⊆ π(P ◦ ∩ P ′◦). Therefore, there exist Q and Q′ as required. ⊓⊔

The following observations are easy to check. For (b) note that P ≡∗
1 Q implies

P̂ = Q̂; also compare Corollary 1.

Observation 6 Let P,Q,Q′ be finite GR-processes of a net N .

(a) If P
a

−→ Q and P
a

−→ Q′ then Q ≡∗
1 Q′.

(b) If P ≡∗
1 Q

a
−→ Q′ then P

a
−→ P ′ ≡∗

1 Q′ for some P ′ ∈GRfin(N).

Lemma 4. Let N = (S, T, F,M0) be a binary-conflict--free net, a, b ∈ T with
a 6= b, and P, P ′, Q be finite GR-processes of N .

If P
a

−→ P ′ and P
b

−→ Q then P̂
{a,b}
−−−→ and ∃Q′. P ′ b

−→ Q′ ∧Q
a

−→≡∗
1 Q′.

Proof. Suppose P
a

−→ P ′ and P
b

−→ Q with a 6= b. We have M0 −→ P̂ by Ob-
servation 5(d). Moreover, P̂

a
−→ P̂ ′ and P̂

b
−→ Q̂ by Observation 5(b). Hence, as

N is binary-conflict--free, P̂
{a,b}
−−−→. By Lemma 3 there are Q′, Q′′ with P ′ b

−→ Q′

and P
b

−→ Q′′ a
−→ Q′. By Observation 6(a), Q ≡∗

1 Q′′, and hence Q
a

−→≡∗
1 Q′

by Observation 6(b). ⊓⊔

Lemma 5 ([GGS11a]). Let N be a net.
Every GR-process P of N is a prefix of a maximal GR-process of N .

Proof. The set of all processes of N of which P is a prefix is partially ordered
by ≤. Every chain in this set has an upper bound, obtained by componentwise
union. Via Zorn’s Lemma this set contains at least one maximal process. ⊓⊔

Since the set of GR-processes ofN is non-empty by Observation 5(a), this implies
that each net has a maximal GR-process.

Theorem 2. Let N be a conflict-free structural conflict net.
Then N has a ⊑∞

1 -largest BD-process.

Proof. Let P be a maximal GR-process of N—it exists by Lemma 5. We show
that P

∞
is the ⊑∞

1 -largest BD-process of N , i.e., for each GR-process Q of N
one has Q ⊑∞

1 P . This proof is illustrated in Fig. 6.
Let BD(P ) be as defined in Section 3.3. As remarked there, using Corollary 1,

BD(P ) = {P ′′′ ∈GRfin (N) | ∃P ′′, P ′ ∈GRfin(N). P ′′′ ≤ P ′′ ≡∗
1 P ′ ≤ P}.



16 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

Towards a contradiction, suppose Q 6⊑∞
1 P for some Q ∈ GR(N). Then, by

Definition 11, there is a finite prefix Q′′ of Q with Q′′ /∈ BD(P ). Let Q0 be a
minimal such prefix w.r.t. the prefix order ≤ of Definition 6. Q0 can be written
as ((S,T,F,M0), π). Since all initial processes of N are isomorphic, each initial
process of N is in BD(P ). Hence Q0 must have a transition.

QP

Q0Q′
0

P ′
0

Q′

Q′
1

Q′
n

+t

Q1

Qn

P0

P ′
1

P ′
m+1

P1

Pm+1

P ′
m Pm

6⊒∞
1

≤

≤

≡
∗
1

≤

a
1

−
→

=

··
·

b
−→

π

a
1

−
→

≡
∗ 1

··
·

b
−→

b
−→

b
−→

≡
∗ 1

c
0

−
→

c
m

−
→

≥

··
·

πP

b
−→

b
−→

b
−→

c
0

−
→

≡
∗ 1

··
·

c
m

−
→

≡
∗ 1

Fig. 6. Illustration of the proof of Theorem 2.
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Let t be a maximal element in T with respect to F
+
. Then Q0 ↾ (T \ {t}) =:

Q′
0 is a process and Q′

0 ∈ BD(P ). Hence there exists finite P ′
0, Q

′ such that
Q′

0 ≤ Q′ ≡∗
1 P ′

0 ≤ P . Moreover, there are Q′
1, . . . , Q

′
n ∈ BD(P ) and transitions

a1 . . . , an of N with Q′
n = Q′ and Q′

i−1
ai−→ Q′

i for i = 1, . . . , n.
π(t) is some transition b of N , so Q′

0
b

−→ Q0. We now show by induction on
i ∈ {1, . . . , n} that there are Q1, . . . , Qn ∈ GRfin(N) \BD(P ) with Q′

i

b
−→ Qi

and Qi−1
ai−→≡∗

1 Qi for i = 1, . . . , n. Namely, given Qi−1, as Qi−1 6∈ BD(P ) we
have Qi−1 6≡∗

1 Q′
i ∈ BD(P ). Using that Q′

i−1
ai−→ Q′

i and Q′
i−1

b
−→ Qi−1, this

implies ai 6= b by Observation 6(a). Now Lemma 4 yields a Qi ∈GRfin(N) such
that Q′

i

b
−→ Qi and Qi−1

ai−→≡∗
1 Qi. As BD(P ) is ≡∗

1- and prefix-closed, we have
Qi 6∈ BD(P ).

Since Q′
n ≡∗

1 P ′
0 and Q′

n

b
−→ Qn, there is a P0 ∈ GRfin(N) with P ′

0
b

−→ P0

and P0 ≡∗
1 Qn, using Observation 6(b). Hence P0 6∈ BD(P ).

Now let u be any transition in P := (N, πP ) that is not included in P ′
0. Then

there are P ′
1, . . . , P

′
m+1 ≤ P with P ′

i

ci−→ P ′
i+1 for i = 0, . . . ,m and cm = πP (u).

Exactly as above, by induction on i, b 6= ci for i = 0, . . . ,m and there are
P1, . . . , Pm+1 ∈ GRfin(N) \BD(P ) with P ′

i+1
b

−→ Pi+1 and Pi
ci−→≡∗

1 Pi+1 for

i = 0, . . . ,m. Moreover, since P ′
m

cm−→ P ′
m+1 and P ′

m
b

−→, we have P̂ ′
m

{cm,b}
−−−−→ by

Lemma 4. By Observation 5(d) we furthermore have M0 −→ P̂ ′
m, where N =:

(S, T, F,M0). Hence, as N is a structural conflict net, •b ∩ •cm = ∅.

Since P̂ ′
0 ⊇ •b, by Observation 5(b), and the tokens in the preplaces of b

cannot be consumed by the πP -image of any transition of P that fires after P ′
0

has been executed, P can be extended with the transition b, and hence is not
maximal. This is the required contradiction. ⊓⊔

7 Unique maximal GR-processes up to ≡
∞

1

Together, Theorems 1 and 2 say that a structural conflict net has a ⊑∞
1 -largest

BD-process iff it is conflict-free. The “only if” direction stems essentially from
[GGS11a], and “if” is contributed here.

Since the preorder ⊑∞
1 was not employed in [GGS11a], there we did not

consider ⊑∞
1 -largest BD-processes. Instead, we spoke of a “unique maximal GR-

process up to ≡∞
1 ”, using the notion of maximality from Definition 6, that is,

maximality w.r.t. the prefix order≤ between GR-processes. The following propo-
sitions compare ⊑∞

1 -maximality and ≤-maximality.

Proposition 2. Let N be a net and P a process thereof.
If P

∞
is ⊑∞

1 -maximal then some Q ∈ P
∞
is maximal.

Proof. Assume P
∞
is ⊑∞

1 -maximal. By Lemma 5 there exists some maximal
Q with P ≤ Q. By Definition 11, P ≤ Q implies P ⊑∞

1 Q. Since P
∞
is ⊑∞

1 -
maximal we have Q ≡∞

1 P and Q is a maximal process within P
∞
. ⊓⊔

The reverse of Proposition 2 does not hold. The first process depicted in Fig. 7
cannot be extended, for none of the tokens in place 2 will in the end come to
rest. So it is maximal. Yet, it is not ⊑∞

1 -maximal. For it is swapping equivalent
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1

a
2

b

3

3

1

2

2

a a a1 1 1

2

2

2

1

2

2
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a a a

b b b

1 1 1

2 2 2

2 2 2

3 3 3

Fig. 7. A net and two maximal GR-processes thereof.

with the top half of the second process (using only one of the tokens in place 2),
which can be extended with the bottom half.

Proposition 3. Let N be a net and P a process thereof.
If P is the only maximal process up to ≡∞

1 , then it is the ⊑∞
1 -largest process.

Proof. Let P be the only maximal process of N up to ≡∞
1 , and Q any other

process of N . Let Q′ be a maximal process with Q ≤ Q′—it exists by Lemma 5.
Using Definition 11, Q ≤ Q′ trivially implies Q ⊑∞

1 Q′. Since P is the only
maximal process up to ≡∞

1 , we have Q′ ≡∞
1 P . Thus Q ⊑∞

1 P , showing that P
is the ⊑∞

1 -largest process of N . ⊓⊔

[GGS11a, Corollary 1] says that if a structural conflict net N has only one
maximal GR-process up to ≡∞

1 then N is conflict-free. Using Proposition 3 this
is a weakening of Theorem 1. We now establish the converse, that a conflict-free
structural conflict net has only one maximal GR-process up to ≡∞

1 ; this is a
strengthening of Theorem 2.

Theorem 3. Let N be a conflict-free structural conflict net.
Then N has a unique maximal GR-process up to ≡∞

1 .

Proof. Let P and Q be two maximal GR-processes of N . The proof of Theorem 2
shows that P

∞
is the ⊑∞

1 -largest BD-process of N , and the same holds for Q.
So Q ⊑∞

1 P and P ⊑∞
1 Q, i.e., Q ≡∞

1 P . ⊓⊔
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Thus we obtained, for structural conflict nets N , that N is conflict-free iff N has
a ⊑∞

1 -largest BD-process, iff N has a unique maximal GR-process up to ≡∞
1 .

In our technical report [GGS11b] we moreover show that for structural conflict
nets the converse of Proposition 2 holds: if P ∈ GR(N) is maximal, then P

∞

is ⊑∞
1 -maximal—see Lemma 12. Consequently, for structural conflict nets also

the converse of Proposition 3 holds. So for structural conflict nets there is no
difference between a ⊑∞

1 -largest BD-process and a unique maximal GR-process
up to ≡∞

1 .

8 Conclusion

We defined a BD-process as an equivalence class of Goltz-Reisig processes un-
der the swapping equivalence proposed by Best and Devillers, and argued that
on the subclass of structural conflict nets BD-processes constitute a fully sat-
isfactory concept of abstract process of a Petri net under the collective token
interpretation. To justify that assessment we showed that a structural conflict
net is conflict-free iff it has a largest BD-process.

In the technical report belonging to [GGS11b] we strengthen the result ob-
tained here by showing that each countable net without binary conflict (even if
not a structural conflict net) has a largest BD-process. However, proving this is
much more complicated than the results presented here.

We leave as an open question to consider also branching time semantics. The
notion of a process for condition/event systems was adapted to a branching time
semantics of nets through the concept of an unfolding of Nielsen, Plotkin and
Winskel [NPW81]. Unfolding a net results in an occurrence net with forward
branched places that captures all runs of the net, together with the branch-
ing structure of choices between them. This work was adapted by Engelfriet in
[Eng91] to P/T systems without arc weights, and Meseguer, Sassone and Monta-
nari extended this to cover arc weights as well [MMS97]. The resulting occurrence
nets have one branch for every maximal GR-process of the underlying net. It is
an open question whether such a construction can be adapted to the collective
token interpretation of Petri nets, so that an unfolding of a net has one branch
for every BD-process, and thus remains unbranched in case of conflict-free nets.
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