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Abstract

We study the capabilities of probabilistic finite-state machines that act as ver-
ifiers for certificates of language membership for input strings, in the regime
where the verifiers are restricted to toss some fixed nonzero number of coins
regardless of the input size. Say and Yakaryılmaz showed that the class of lan-
guages that could be verified by these machines within an error bound strictly
less than 1/2 is precisely NL, but their construction yields verifiers with error
bounds that are very close to 1/2 for most languages in that class when the
definition of “error” is strengthened to include looping forever without giving a
response. We characterize a subset of NL for which verification with arbitrarily
low error is possible by these extremely weak machines. It turns out that, for
any ε > 0, one can construct a constant-coin, constant-space verifier operating
within error ε for every language that is recognizable by a linear-time multi-
head nondeterministic finite automaton (2nfa(k)). We discuss why it is difficult
to generalize this method to all of NL, and give a reasonably tight way to relate
the power of linear-time 2nfa(k)’s to simultaneous time-space complexity classes
defined in terms of Turing machines.

Keywords: Interactive Proof Systems, Multi-head finite automata,
Probabilistic finite automata

1. Introduction

The classification of languages in terms of the resources required for verifying
proofs (“certificates”) of membership in them is a major concern of computa-
tional complexity theory. In this context, important tradeoffs among different
types of resources such as time, space, and randomness have been demonstrated:
The power of deterministic polynomial-time, polynomial-space bounded verifiers
characterized by the class NP has, for instance, been shown to be identical to
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that of probabilistic bounded-error polynomial-time logarithmic-space verifiers
that toss only logarithmically many coins in terms of the input size [2].

The study of finite-state probabilistic verifiers started in the late 1980’s.
Condon and Lipton [3] showed that, even under this severe space restriction,
one can verify membership in any Turing-recognizable language if one is not
required to halt with high probability on rejected inputs. Dwork and Stock-
meyer [4] showed that interactive proof systems with constant-space verifiers
outperform “stand-alone” finite-state recognizers when required to halt with
high probability as well. The area has grown to have a rich literature where sce-
narios with multiple provers and quantum verifiers have also been considered.
The study of interactive proof systems with quantum finite automata, which
was initiated by Nishimura and Yamakami [5, 6], continued with the considera-
tion of more powerful quantum models by Yakaryılmaz [7] and Zheng et al. [8].
The power of finite-state verifiers that are faced with two opposing provers were
studied by Feige and Shamir [9] and Demirci et al. [10] in the classical setup,
and by Yakaryılmaz et al. [11] in the quantum setup.

Recently, Say and Yakaryılmaz initiated the study of the power of classical
finite-state verifiers that are restricted to toss some fixed, nonzero number of
coins regardless of the input size, and proved [12] that the class of languages
which have certificates that could be verified by these machines within an error
bound strictly less than 1/2 is precisely NL, i.e. languages with deterministic
logarithmic-space verifiers.

The construction given in [12] could exhibit a constant-randomness verifier
operating within error ε for some ε < 1/2 for any language in NL, however, it
provided a method for reducing this error to more desirable smaller values only
in the “weak” regime where looping forever without a response is not considered
to be an error. Indeed, when the error definition is strengthened to include this
behavior, for many languages in NL, the constructed verifier’s error bound is
uncomfortably close to 1/2, raising the question of whether the class of languages
for which it is possible to obtain verifiers with arbitrarily small positive error
bounds is a proper subset of NL or not.

In this paper, we characterize a subset of NL for which verification with
arbitrarily low error is possible by these extremely weak machines. It turns out
that for any ε > 0, one can construct a constant-coin, constant-space verifier
operating within error ε for every language that is recognizable by a linear-
time multi-head finite automaton (2nfa(k)). We discuss why it is difficult to
generalize this method to all of NL and give a reasonably tight way to relate
the power of linear-time 2nfa(k)’s to simultaneous time-space complexity classes
defined in terms of Turing machines. We conclude with a list of open questions.

2. Preliminaries

The reader is assumed to be familiar with the standard concepts of automata
theory, Turing machines (TMs), and basic complexity classes [13].

The following notation will be used throughout this paper:
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• P(A) is the power set of A.

• A ⊔ B is the union of sets A and B, that also asserts that the two are
disjoint.

• στ is the sequences σ and τ concatenated.

• σi is the ith element of the sequence σ.

• 〈O1, . . . , Ok〉 is the encoding of objects Oi in the alphabet of context.

2.1. Multihead finite automata

A (two-way) k-head nondeterministic finite automaton, denoted 2nfa(k), is
a 6-tuple consisting of

1. a finite set of states Q;

2. an input alphabet Σ;

3. a transition function δ : Q × Γk → P
(

Q × ∆k
)

, where

• Γ = Σ⊔{ ⊲,⊳ } is the tape alphabet, where ⊲ and ⊳ are respectively
the left and right end markers, and

• ∆ = { −1, 0, +1 } is the set of head movements, where −1 and +1
respectively indicate moving left and right, and 0 indicates staying
put;

4. an initial state q0 ∈ Q;

5. an accept state qacc ∈ Q; and

6. a reject state qrej ∈ Q.

The 2 in the denotation 2nfa(k) indicates that these automata can move their
heads in both directions, i.e. that their heads are two-way. For the rest of the
paper, unless specified otherwise, our (multi-head) finite automata should be
assumed as two-way.

A 2nfa(k) M = (Q, Σ, δ, q0, qacc, qrej) starts from the state q0 with ⊲x⊳
written on its single read-only tape where x ∈ Σ∗ is the input string. All k tape
heads are initially on the ⊲ symbol. The function δ maps the current state and
the k symbols under the tape heads to a set of alternative steps M can take.
By picking an alternative (q, d), M transitions into the state q and moves its ith

head by di.
The configuration of a 2nfa(k) M at a step of its execution is the (k + 1)-

tuple consisting of its state and its head positions at that moment. The initial
configuration of M is (q0, 0k).

Starting from its initial configuration and following different alternatives
offered by δ, a 2nfa(k) M may have several computational paths on the same
string. A computational path of M halts if it reaches qacc or qrej, or if δ does
not offer any further steps for M to follow. M accepts an input string x if
there is a computational path of M running on x that halts on qacc. M rejects
an input string x if M running on x halts on a state other than qacc on every
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computational path. The language recognized by M is the set of all strings
accepted by M .

Given an input string x, M may have computational paths that never halt.
In the special case that M halts on every computational path for every input
string, M is said to be an always halting 2nfa(k).

A (two-way) k-head deterministic finite automaton, denoted 2dfa(k), differs
from a 2nfa(k) in its transition function, which is defined as δ : Q×Γk → Q×∆.
1-head finite automata are simply called finite automata and are denoted as 2dfa

and 2nfa for the deterministic and nondeterministic counterparts, respectively.
For any k, let L(2nfa(k)) denote the class of languages recognized by a

2nfa(k). L(2nfa(1)) is the class of regular languages [14].
For any growth function f(n), NSPACE(f(n)) denotes the class of languages

recognized by nondeterministic Turing machines (NTMs) which are allowed to
use O(f(n)) space for inputs of length n. The class NSPACE(log n) is commonly
denoted as NL.

Lemma 1. Nondeterministic multi-head finite automata are equivalent to loga-
rithmic space NTMs in terms of language recognition power [15]. Put formally;

⋃

k>0

L(2nfa(k)) = NL .

Lemma 2. The languages in NL are organized in a strict hierarchy, based on the
number of heads of the nondeterministic finite automata recognizing them [16].
Formally, the following is true for any k > 0:

L(2nfa(k)) ( L(2nfa(k + 1))

For any given k, let L(2nfa(k), f(n)) denote the class of languages that are
recognized by a 2nfa(k) running for O(f(n)) steps on every alternative compu-
tational path on any input of length n. Clearly, those machines are also always
halting. Let L(2nfa(∗), f(n)) denote the class of languages that are recognized
by a nondeterministic multi-head finite automata with any number of heads and
running in O(f(n)) time. We use linear-time designation instead of f(n) = n.

Lemma 3. The following is true for any k > 0:

L(2nfa(k)) ⊆ L
(

2nfa(2k), nk
)

Proof. Let M be any 2nfa(k) with Q as its set of states. Running on an input
string of length n, M can have T = |Q| · (n + 2)k different configurations. If
M executes more than T steps, then it must have repeated a configuration.
Therefore, for every input string it accepts, M should have an accepting com-
putational path of at most T steps.

With the help of k additional counter heads, the 2nfa(2k) M ′ can simulate
M while imposing it a runtime limit of T steps. Machine M ′ can count up to T
as follows: Let c1, . . . , ck denote the counter heads. Head c1 moves right every
|Q|th step of M ’s simulation. For all i < k, whenever the head ci reaches the
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right end marker, it rewinds back to the left end, and head ci+1 moves once to
the right. If ck attempts to move past the right end, M ′ rejects.

If the simulation halts before timeout, M ′ reports M ’s decision. The strings
that M would loop on are rejected by M ′ due to timeout. The 2nfa(2k) M ′

recognizes the same language as M , but within the time limit of O
(

nk
)

.

Lemmas 1 and 3 can be combined into the following useful fact.

Corollary 4. For every A ∈ NL, there is a minimum number kA such that
there exists an always halting 2nfa(kA) recognizing A, but not an always halting
2nfa(h) where h < kA.

Proof. Let KA be the set of numbers of heads of always halting multi-head non-
deterministic finite automata recognizing A. By Lemmas 1 and 3, for some k,
there is a 2nfa(k) and thereby an always halting 2nfa(2k) recognizing A, respec-
tively. Thus, 2k ∈ KA and KA is non-empty. By the well-ordering principle,
KA has a least element, which we call kA.

Lemma 5. HALTING2nfa = { 〈M〉 | M is an always halting 2nfa } is decidable.

Proof. The two-way alternating finite automaton, denoted 2afa, is a generaliza-
tion of the 2nfa model. The state set of a 2afa is partitioned into universal and
existential states. A 2afa accepts a string x if and only if starting from the
initial state, every alternative transition from the universal states and at least
one of the alternative transitions from the existential states leads to acceptance.
Thus, a 2nfa is a 2afa with only existential states. We refer the reader to [17]
for a formal definition of the 2afa model.

A one-way nondeterministic finite automaton, denoted 1nfa, is a 2nfa that
cannot move its head to the left. A 1dfa is a deterministic 1nfa.

Consider the following algorithm to recognize HALTING2nfa:

D = “On input 〈M〉, where M is a 2nfa, and Σ is its alphabet:
1. Construct a 2afa M ′

2afa by modifying M to accept whenever it halts and
designating every state as universal.

2. Convert M ′

2afa to an equivalent 1nfa M ′

1nfa.
3. Convert M ′

1nfa to an equivalent 1dfa M ′

1dfa.
4. Check whether M ′

1dfa recognizes Σ∗. If it does, accept. Otherwise,
reject.”

By its construction, M ′

2afa (and therefore M ′

1dfa) recognizes Σ∗ if and only
if M halts in every computational path while running on every possible input
string, i.e. it is always halting. Stages 2 and 3 can be implemented by the
algorithms given in [18] and the proof for the Theorem 1.39 of [13], respectively.
The final check in stage 4, also known as the universality problem for 1dfa’s, is
decidable in nondeterministic logarithmic space [19], thus in polynomial time
by Corollary 8.26 in [13]. So the algorithm D decides whether a given 2nfa M
is always halting.

5



2.2. Probabilistic Turing machines and finite automata

A probabilistic Turing machine (PTM) is a Turing machine equipped with
a randomization device. In its designated coin-tossing states, a PTM obtains a
random bit using the device and proceeds by its value. The language of a PTM

is the set of strings that it accepts with a probability greater than 1/2.
A (two-way) probabilistic finite automaton (2pfa) is a restricted PTM with

a single read-only tape. This model can also be viewed as an extension of a 2dfa

with designated coin-tossing states.1 A 2pfa tosses a hypothetical coin whenever
it is in one of those states and proceeds by its random outcome. Formally, a
2pfa consists of the following:

1. A finite set of states Q = Qd ⊔ Qr, where

• Qd is the set of deterministic states, and

• Qr is the set of coin-tossing states.

2. An input alphabet Σ.

3. A transition function overloaded as deterministic δd and coin-tossing δr,
where

• δd : Qd × Γ → Q × ∆, where Γ and ∆ are as defined for the 2nfa(k)’s,
and

• δr : Qr ×Γ×R → Q×∆, where R = { 0, 1 } is a random bit provided
by a “coin toss”.

4. An initial state q0.

5. An accept state qacc.

6. A reject state qrej.

The language of a 2pfa is similarly the set of strings which are accepted with
a probability greater than 1/2.

Due to its probabilistic nature, a PTM may occasionally err and disagree
with its language. In this paper, we will be concerned about the following types
of error:

1. Failing to accept – rejecting or looping indefinitely given a member input

2. Failing to reject – accepting or looping indefinitely given a non-member
input

1One may also think of a 2pfa as a 2nfa where each state has probabilities associated
with each of its outgoing transitions, and the machine selects which transition to follow
with these corresponding probabilities. To make this alternative model equivalent to the
constant-randomness machines studied in this paper, it is sufficient to restrict the transition
probabilities to dyadic rationals.
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2.3. Interactive proof systems

Our definitions of interactive proof systems (IPSes) are based on [4]. We will
focus on a single variant, namely the private-coin one-way IPS with a finite-state
verifier.

An IPS consists of a verifier and a prover. The verifier is a PTM vested
with the task of recognizing an input string’s membership, and the prover is a
function providing the purported proof of membership.

In a private-coin one-way IPS, the coin flips (both their outcomes and the
information on when they are flipped) are hidden from the prover P , and P
communicates the proof to the verifier V in a monologue. In such an IPS, as a
simplification, P can instead be viewed as a certificate function c : Σ∗ → Λ∞ that
maps input strings to infinitely long certificates, where Σ and Λ are respectively
the input and certificate alphabets. V , in turn, can be thought of as having
an additional certificate tape to read with a head that cannot move to the left.
Given an input string x ∈ Σ∗, V executes on it as usual with c(x) written on
its certificate tape.

Note that the “one-way” denotation for an IPS qualifies only the interaction
(i.e. specifies that the verifier does not communicate back), and not the head
movements of the verifier.

In this paper, the term “PTM verifier in a private-coin one-way IPS” will be
abbreviated as “PTM verifier”. Accordingly, “2pfa verifier” shall mean “two-way
probabilistic finite automaton verifier in a private-coin one-way IPS”.

The language A of a PTM verifier V is the set of strings that V can be
“convinced” to accept with a probability greater than 1/2 by some certificate
function c. The error bound2 of V , denoted εV , is then defined as the minimum
value satisfying both of the following:

• ∀x ∈ A, V paired with some c(x) accepts x with a probability at least
1 − εV .

• ∀x /∈ A, V paired with any c(x) rejects x with a probability at least 1−εV .

Let 1IPε(t(n), s(n), r(n)) be the class of languages that have verifiers with
an error at most ε (ε < 1/2) using O(s(n)) space and O(r(n)) amount of coins
in the worst case and with an expected runtime in O(t(n)), where n denotes the
length of the input string. Instead of a function of n, we write simply cons, log,
poly, and exp to describe constant, logarithmic, polynomial, and exponential
limits in terms of the input length, respectively. We write 0 and ∞ to describe
that a resource is unavailable and unlimited, respectively. Furthermore, let

1IP(t(n), s(n), r(n)) =
⋃

ε< 1

2

1IPε(t(n), s(n), r(n)),

2Our definition of the error bound corresponds to the “strong” version of the IPS definition
in [4].
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and

1IP∗(t(n), s(n), r(n)) =
⋂

ε>0

1IPε(t(n), s(n), r(n)).

The following are trivial:

NP = 1IP(poly, poly, 0)

NL = 1IP(poly, log, 0)

The class NP is further characterized [20, 2] as

NP = 1IP(poly, log, poly) = 1IP(poly, log, log),

and the class NL [12] as

NL = 1IP(∞, cons, cons).

For polynomial-time verifiers with the ability to use at least logarithmic
space, the class 1IP∗(t(n), s(n), r(n)) is identical to the corresponding class
1IP(t(n), s(n), r(n)), since such an amount of memory can be used to time one’s
own execution and reject computations that exceed the time limit, enabling the
verifier to run through several consecutively appended copies of certificates for
the same string and deciding according to the majority of the results of the
individual controls. For constant-space verifiers, this procedure is not possi-
ble, and the question of whether 1IP∗(∞, cons, cons) equals 1IP(∞, cons, cons)
is nontrivial, as we will examine in the following sections.

3. Linear-time 2nfa(k)’s and verification with small error

In [12], Say and Yakaryılmaz showed that membership in any language in
NL may be checked by a 2pfa verifier using some constant number of random
coin tosses. They also showed how the weak error of the verifier can be made
arbitrarily small.3 We will now describe their approach, which forms the basis
of our own work.

The method, which we will name µ1, for producing a constant-randomness
2pfa verifier given any language A ∈ NL, takes an always halting 2nfa(k) MA

recognizing A (for some k), which exists by Lemmas 1 and 3, as its starting
point. The constructed verifier µ1(A) will attempt to repeatedly simulate MA

by looking at the certificate while relying on its private coins to compensate
for having k − 1 fewer input heads than MA. Given any input string x, µ1(A)
expects a certificate c(x) to contain m successive segments, each of which de-
scribe an accepting computational path of MA on x. c(x) is supposed to provide
the following information for each transition of MA en route to purported ac-
ceptance: the symbols read by the k heads, and the nondeterministic branch

3In contrast to the (strong) error definition we use in this paper, the weak error definition
(also by [4]) does not regard the verifier looping forever on a non-member input as an error.
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taken. Verifier µ1(A) attempts to simulate MA through the provided compu-
tational path until either the simulation halts, or µ1(A) catches a “lie” in the
certificate and rejects. µ1(A) chooses a head of MA at random by tossing ⌈log k⌉
coins in private before each simulation. Throughout the simulation, µ1(A) mim-
ics the movements of this chosen head and compares c(x)’s claims against what
is being scanned by that head, while leaving the remaining k − 1 unverified. If
the simulation rejects, then so does µ1(A). If m such simulation rounds end
with acceptance, µ1(A) accepts.

For any language in A ∈ NL which can be recognized by an always halting
2nfa(k) MA, the verifier of µ1 simulating MA for m rounds tosses a total of
m · ⌈log k⌉ coins, which is a constant with respect to the input length.

Paired with the proper certificate c(x), µ1(A) accepts all strings x ∈ A with
probability 1. As mentioned earlier, the “weak error” of µ1(A) therefore depends
only on its worst-case probability of accepting some x /∈ A.

For x /∈ A, there does not exist an accepting computation of MA on x. Still,
a certificate may describe a fictional computational path of MA to acceptance
by reporting false values for the symbols read by at least one of the heads. Since
µ1(A) cannot check many of the actual readings, it may fail to notice those lies.
However, since µ1(A) chooses a head to verify at random, there is a non-zero
chance that µ1(A) detects any such lie.

The likelihood that µ1(A) chooses a head that the certificate is lying about
is at least 1/k.4 Therefore, the weak error of µ1(A) is at most ((k − 1)/k)

m
. This

upper bound for weak error can be brought as close to 0 as one desires by
increasing m, the number of rounds to simulate.

Although the underlying 2nfa(k) MA recognizing A ∈ NL is an always halting
machine, the verifier µ1(A) may still be wound up in an infinite loop by some
certificate: MA might be relying on the joint effort of its many heads to ensure
that it always halts. Since µ1(A) validates only a single head’s readings, lies on
what others read may tamper this joint effort and lead µ1(A) into a loop. A
malicious certificate might lead µ1(A) in a loop by lying about one head alone.
If this happens during the first round, there would not be any more rounds for
µ1(A) since it would be in a loop. The (strong) error εµ1(A) of µ1(A) is therefore
at most (k − 1)/k. This upper bound to εµ1(A) cannot be reduced to less than
(kA − 1)/kA, where kA is the minimum number of heads required in an always
halting machine to recognize A by Corollary 4.

Say and Yakaryılmaz also propose the method µ2, which is a slightly modified
version of µ1 that produces verifiers with errors less than 1/2, albeit barely so.
Let A ∈ NL and MA be an always halting 2nfa(k) recognizing A for some k.
Regardless of the input string, the verifier µ2(A) rejects at the very beginning
with a probability (k − 1)/2k by tossing ⌈log k⌉ + 1 coins. Then it continues just

4The error in the approximation k ≈ 2⌈log k⌉ used in this analysis does not affect the end
result and simplifies the explanation.
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like µ1(A). The bounds for the error εµ2(A) are as follows:

k − 1

2k
≤ εµ2(A) ≤

k2 − 1

2k2

3.1. Safe and risky heads

How much of NL may yet fit into 1IP∗(∞, cons, cons)? Method µ1 was our
starting point in working towards a lower bound for 1IP∗(∞, cons, cons).

Let MA be the 2nfa(k) that µ1(A) uses to verify A ∈ NL. The cause for
µ1(A)’s high strong error turns out to be a decidable characteristic of MA’s
heads. We will refer to such undependable heads as risky.

Definition 1 (Safe and risky heads). Let M be a 2nfa(k) with the transi-
tion function δ : Q × Γk → P

(

Q × ∆k
)

. For i between 1 and k, let Mi be a 2nfa

with the transition function δi : Q × Γ → P(Q × ∆) defined as follows:

δi(q, x) =
⋃

y∈Γk

yi=x

{ (r, di) | (r, d) ∈ δ(q, y) }

If Mi is always halting, then the ith head of M is a safe head. Otherwise, it is
a risky head.

The execution of each 2nfa Mi in Definition 1 is designed to correspond to
the ith-head-only simulation of the 2nfa(k) M by the verifier of µ1. Just like the
verifier of µ1 and by the way δi is defined, Mi can make any of the transitions
allowed by M ’s transition function (δ) and chooses one by the certificate while
making sure that the ith symbol fed to M ’s transition function (yi) is the same
as the symbol it is reading itself (x). Crucially, if a certificate can wind the
verifier of µ1 into a loop during the single-headed simulation of M , then the
2nfa Mi has a branch of computation that loops with an analogous certificate.
The converse is also true. Therefore, the verifier of µ1 can be wound up in a
loop during a round of verification if and only if it has chosen a risky head to
verify.

Example 1. Let Σ = { 0, 1 } and EQ =
{

0i1i
∣

∣ i ∈ N
}

. Figure 1 depicts the
state diagram of the 2nfa(2) MEQ = (Q, Σ, δ, q0, qacc, qrej): Whenever (r, d) ∈
δ(q, x), an arc is drawn from q to r with the label x → d. Recall that x and d
are tuples of symbols and head movements, respectively. The arc coming from
nowhere to q0 indicates that it is the initial state. Such a pictorial representation
of an automaton is called its state diagram.

MEQ starts by moving its second head to the leftmost 1 in the input. It then
moves both heads to the right as long as they scan 0 and 1, respectively, and
accepts only if this walk ends when these heads simultaneously read 1 and ⊳,
respectively. The empty string is accepted immediately.

Figure 2 depicts MEQ1
, which is the 2nfa associated with the first head of

MEQ obtained as described in Definition 1. It has a computational path that
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q0 q1 q2 qacc

qrej

(⊲,⊲) → (+1, +1)

(0, 0) → (0, +1)

(0, 1) → (+1, +1)

(⊳,⊳) → (0, 0)

(0, 1) → (+1, +1)

(1,⊳) → (0, 0)

Figure 1: State diagram of 2nfa(2) MEQ .

q0 q1 q2 qacc

qrej

⊲ → +1

0 → 0

0 → +1

⊳ → 0

0 → +1

1 → 0

Figure 2: State diagram of 2nfa MEQ1
.

loops indefinitely on q1 given any input string that begins with a 0. Thus, MEQ1

is not always halting, and by Definition 1, the first head of MEQ is risky.
Indeed, µ1(EQ) simulating MEQ and running on an input string that begins

with 0 would loop forever at state q1 if µ1(EQ) were to track the first head, and
the certificate were to report infinite sequences of 0’s as both heads’ readings.

Unlike the first one, the second head of MEQ is safe. Figure 3 depicts the
2nfa MEQ2

associated with it. Since every transition other than those that lead
into the accept state moves the head to the right, the head will eventually reach
the end of the input, and MEQ2

will accept, unless it gets “stuck” (and implicitly
rejects) by encountering a 0 while at state q2.

q0 q1 q2 qacc

qrej

⊲ → +1

0 → +1

1 → +1

⊳ → 0

1 → +1

⊳ → 0

Figure 3: State diagram of 2nfa MEQ2
.

Lemma 6. Being safe or risky is a decidable property of a 2nfa(k)’s heads.

Proof. To decide whether the ith head of a 2nfa(k) M is safe, an algorithm
can construct the 2nfa Mi described in Definition 1 and test whether Mi ∈
HALTING2nfa by the algorithm in Lemma 5.
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Consider a language A ∈ NL that is recognized by a 2nfa(k) MA that always
halts, and has safe heads only. The verifier µ1(A) using MA cannot choose a
risky head, and therefore can never loop. Thus, it verifies A with εµ1(A) ≤
((k − 1)/k)

m
.

3.2. 2nfa(k)’s with a safe head and small-error verification

The distinction of safe and risky heads has been the key to our improvement
to the method µ1. Method µ3, which is to be introduced in the proof of the
following lemma, is able to produce verifiers with an error bound equaling any
desired non-zero constant for a subset of languages in NL.

Lemma 7. Let A ∈ NL. If there exists an always halting 2nfa(k) with at least
one safe head that recognizes A, then A ∈ 1IP∗(∞, cons, cons).

Proof idea. The method µ3 in the proof will construct verifiers similar to those
of µ1, except with a key difference. Given a language A ∈ NL recognized by an
always halting 2nfa(k) MA that has at least one safe head, every head of MA

has essentially the same probability of getting chosen by µ1(A). If MA does not
have any risky heads, then µ3(A) will be identical to µ1(A).

If MA does have some risky heads, then µ3(A) will mostly avoid choosing
them, although still giving each of them a slight chance to be chosen. Since
µ3(A) may loop only if it is tracking a risky head, the looping probability of
µ3(A) decreases as the probability of the selected head being risky gets lower.

The redeemable disadvantage of µ3(A)’s bias towards choosing among safe
heads is that the certificate’s lies about the risky heads are now less likely to be
detected. However, since the bias is not absolute, the probability p of choosing
the least likely of the heads is still non-zero. Thus, the probability of detecting
an existing lie in any given round is at least p, and µ3(A) fails to catch a lie
in m rounds with probability at most (1 − p)

m
, which can be lowered to any

non-zero value by increasing m.
It is impossible for µ3(A) to read multiple rounds of infinite computational

paths from the certificate, since µ3(A) would not be able to get past the first one.
The probability of µ3(A) looping is the greatest when an infinite computational
path is given in the first round. Thus, the increased number of rounds does not
make µ3(A) any more likely to loop.

Proof. Let A ∈ NL and MA = (Q, Σ, δ, q0, qacc, qrej) be an always halting 2nfa(k)
recognizing A with at least one safe head.

Let s = ⌈log k⌉. Let kS and kR be the number of safe and risky heads,
respectively. Let νS(i) ∈ { 1, . . . , k } be the head index of the ith safe head
where i ∈ { 1, . . . , kS }. If kR > 0, let νR be defined analogously.

The following parameters will be controlling the error of the verifier:

• m as the number of rounds to simulate

• PR < 1 as the probability that the selected head is a risky head which
must be finitely representable in binary and 0 if and only if kR is zero

12



Let r be the minimum number of fractional digits to represent PR in binary.
Then the algorithm for µ3(A) is as follows:

µ3(A) = “On input x:
1. Repeat m times:
2. Move the tape head to the left end of the input.
3. Choose i from { 1, . . . , k } randomly with bias, as follows:
4. Flip r coins for a uniformly random binary probability value t

with r fractional digits.
5. Flip s more coins for an s-digit binary number u < 2s.
6. Let i = νR((u mod kR) + 1) if t < PR, and νS((u mod kS) + 1)

otherwise.
7. Let q = q0. Repeat the following until q = qacc:
8. Read y ∈ Σk from the certificate. If yi differs from the symbol

under the tape head, reject.
9. Read (q′, d) ∈ Q × ∆k from the certificate. If (q′, d) /∈ δ(q, y),

or q′ = qrej, reject.
10. Set q = q′. Move the tape head by di.
11. Accept.”

An iteration of stage 1 is called a round. The string of symbols read from
the certificate during a round is called a round of certificate. Running on a non-
member input string, µ3(A) false accepts for a round when that round ends
without rejecting. Similarly, µ3(A) loops on a round when that round does not
end.

Verifier µ3(A) keeps track of MA’s state, starting from q0 and advancing it
by δ and the reports of the certificate. At any given round, µ3(A) can either
pass the round by arriving at qacc, reject by arriving at qrej or via verification
error, or loop via a loop of transitions availed by δ.

Verifier µ3(A) running on an input string x ∈ A accepts with probability 1
when paired with an honest certificate that logs an accepting execution path of
MA for m rounds.

Given an input x /∈ A, every execution path of the always halting 2nfa(k) MA

recognizing A rejects eventually. For µ3(A) to accept x or loop on it, a certificate
c(x) must be reporting an execution path that is possible by δ, despite being
impossible for M running on x. The weak point of µ3(A)’s verification is the
fact that it overlooks k − 1 symbols in stage 8. Hence, c(x) must lie about those
overlooked symbols. Since, however, µ3(A) chooses a head to verify randomly
and in private, any lie about any head has just as much chance of being caught
as how often that head gets selected.

Let p be the probability of µ3(A) choosing the least likely head of MA. By
the restrictions on PR and the definition of νS and νR, every head of MA has
a non-zero chance of being chosen, and therefore p > 0. If c(x) has a lie in it,
then p is also the minimum probability of it being detected.

Falsely accepting a string x is possible for µ3(A) only if x is not a member
of A, c(x) lies for more than m rounds, and µ3(A) fails to detect the lies in each
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round. The probability of this event is at most

(1 − p)m. (1)

Looping on a string x /∈ A is possible for µ3(A) only if c(x) is a lying
certificate with m′ ≤ m rounds, µ3(A) fails to detect the lies in each round, and
µ3(A) chooses a risky head on the final and infinite round. The probability of
this event is at most

(1 − p)m′
−1 · PR. (2)

The probability that µ3(A) falsely accepts (Equation (1)) can be reduced
arbitrarily to any non-zero value by increasing m. The probability that it loops
on a non-member input (Equation (2)) can also be reduced to any positive value
by reducing PR if kR > 0, and is necessarily 0 otherwise.

Verifier µ3(A) tosses m · (r + s) coins; a constant amount that does not
depend on the input string.

In summary, given any language A ∈ NL that can be recognized by a 2nfa(k)
with at least one safe head and for any error bound ε > 0, µ3(A) can verify
memberships to A within that bound. The amount of coins µ3(A) uses depends
on ε only and is constant with respect to the input string.

3.3. Linear-time 2nfa(k)’s and safe heads

Lemma 8. Given a language A, the following statements are equivalent:

(1) A ∈ L(2nfa(k), linear-time).

(2) A is recognized by a 2nfa(k) with at least one safe head.

The proof of Lemma 8 will be in two parts.

Proof of (1) =⇒ (2). Given A ∈ L(2nfa(k), linear-time), for some k, there ex-
ists a 2nfa(k) M recognizing A together with a constant c such that given any
input string x, M halts in at most c · |x| steps. Consider the 2nfa(k + 1) M ′

which operates its first k heads by M ’s algorithm and uses its last head T as a
timer that moves to the next cell on the input tape every cth step of the execu-
tion. Head T times out when it reaches the end of the string, and M ′ rejects in
that case.

Note that M ′ recognizes indeed the same language as M since M , as well
as M ′, runs for at most c · |x| steps for any given input string x, and therefore
T never reaches the end of x nor times out. Apparent from its monotonic
movement, however, head T in M ′ is safe.

Proof of (2) =⇒ (1). Let M be a 2nfa(k) recognizing A such that its ith head
is a safe head. Let δ : Q × Γk → P

(

Q × ∆k
)

be the transition function of M .
Let Mi be the 2nfa with the following transition function as in Definition 1:

δi(q, x) =
⋃

y∈Γk

yi=x

{ (r, di) | (r, d) ∈ δ(q, y) }
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Note the relationship between the computational paths (sequences of con-
figurations) of M and Mi running on the same input string. These machines
have the same state set, but Mi is running a program which has been obtained
from the program of M by removing all constraints provided by all the other
k − 1 heads. If one looks at any possible computational path of M through
“filters” that only show the current state and the present position of the ith

head and hide the rest of the information in M ’s configurations, one will only
see legitimate computational paths of Mi.

Since the ith head is safe, Mi is always halting, and δi does not allow Mi to
ever repeat its configuration in a computation. But this means that M is also
unable to loop forever since the two components of its configuration (the state
and the position of its ith head) can never be in the same combination of values
at two different steps. As a result, M cannot run for more than |Q| · (n + 2)
steps, where n is the length of the input string.

We have proven the following theorem.

Theorem 9. L(2nfa(∗), linear-time) ⊆ 1IP∗(∞, cons, cons).

Note that the following nonregular languages, among others, have linear-time
2nfa(k)’s and can therefore be verified with arbitrarily small error by constant-
randomness, constant-space verifiers:

EQ =
{

0
i
1

i
∣

∣ i ∈ N
}

PAL = { x | x is the reverse of itself }

MIXEDEQ =
{

x
∣

∣ x ∈ { 0, 1 }∗ and contains equally many 0’s and 1’s
}

CERT =
{

x1 · · · xl#x+
1 · · · x+

l

∣

∣ l > 0 and x1, . . . , xl ∈ { 0, 1 }
}

There are 2dfa(2)’s without risky heads recognizing the languages EQ and
PAL. We have not been able to find 2nfa(k)’s without risky heads that recognize
the languages MIXEDEQ and CERT.

4. Towards tighter bounds

Having determined that L(2nfa(∗), linear-time) ⊆ 1IP∗(∞, cons, cons) ⊆ NL,
it is natural to ask if any one of these subset relationships can be replaced by
equalities. Let us review the evidence we have at hand in this matter.

One approach to prove the claim that constant-space, constant-randomness
verifiers can be constructed for every desired positive error bound (i.e. that
1IP∗(∞, cons, cons) = 1IP(∞, cons, cons)) would be to show that NL equals
L(2nfa(∗), linear-time), i.e. that any 2nfa(k) has a linear-time counterpart recog-
nizing the same language. This, however, is a difficult open question [12]. As a
matter of fact, there are several examples of famous languages in NL, e.g.

PATH = { 〈G, s, t〉 | G is a directed graph with a path from node s to node t } ,
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for which we have not been able to construct 2nfa(k)’s with a safe head, and we
conjecture that L(2nfa(∗), linear-time) 6= NL.

We will now show that L(2nfa(∗), linear-time) is contained in a subset of NL
corresponding to a tighter time restriction of O(n2/log(n)) on the underlying non-
deterministic Turing machine. We will use the notation NTISP(f(n), g(n)) for
the class of languages that can be verified by a TM that uses O(f(n)) time and
O(g(n)) space, simultaneously. For motivation, recall that logarithmic-space
TM’s require Ω(n2/log(n)) time for recognizing the palindromes language [21, 22,
23], which is easily recognized by a linear-time 2dfa(2).

Theorem 10. L(2nfa(∗), linear-time) ⊆ NTISP(n2/log(n), log n).

Proof idea. Given a 2nfa(k) M that runs in linear time, an NTM N can simulate
it in O(n2/log(n)) steps. One such N uses k counters for keeping the head
positions of M and k caches for a faster access to the symbols in the vicinity of
each head, on a tape with 2k tracks. N initializes its caches with a ⊲ symbol
followed by the first log(n) symbols of the input and puts a mark on ⊲ symbols
to indicate the position of each simulated head. Counters are initialized to 0 for
yet another indication of the head positions.

To mimic M reading its tape, N reads the marked symbols on its caches. To
move the simulated heads, N both moves the marks on the caches and adjusts
the counters. If a mark reaches the end of its cache, N re-caches by copying the
log(n) symbols centered around the corresponding head from the input to that
cache. Counters provide the means for N to locate these symbols on the input.

As the analysis will show, the algorithm described for N runs within the
promised time and space bounds. In the following proof, N will have an addi-
tional track that has a mark on its log(n)/2

th cell to indicate the middle of the
caches.

Proof. Let M = (Q, Σ, δ, q0, qacc, qrej) be a 2nfa(k) that runs in linear time. An
NTM N can simulate M by using 2k + 1 tracks on its tape to have

• k log(n)-digit binary counters, κ1, . . . , κk, with their least significant digit
on their left end;

• k caches of input excerpts of log(n) length, η1, . . . , ηk; and

• a mark on the log(n)/2
th cell to indicate the middle.

The work tape alphabet Γ = Γk
κ × Γk

η × { ⊲⊳, ␣ } allows N to encode this
information, where

• Γκ = { 0, 1, ␣ } to represent each κi and

• Γη = Σ⋄ ⊔
H

Σ⋄ to represent each cache, where

– Σ⋄ = Σ ⊔ { ⊲,⊳, #, ␣ } and

–
H

Σ⋄ is a clone of Σ⋄, containing “marked” versions of all Σ⋄’s symbols.

Cells of the work tape are initialized with ␣2k+1 symbols. The algorithm of
N is as follows:
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N = “On input x of length n:
1. Write 0 to each κi.
2. Write #

H

⊲x1 · · · xlog(n)# to each ηi.

3. Write ⊲⊳ to the log(n)/2
th cell of the last track.

4. Let q = q0. Repeat the following until q = qacc:
5. Scan the caches. Note the marked symbol in each ηi as yi via state

transitions.
6. Guess a (r, d) ∈ δ(q, y1 · · · yk). Reject if the set is empty, or r = qrej.
7. For all i, adjust κi, and move the mark on ηi by di.
8. Re-cache each ηi that has a

H

# symbol as follows:
9. Clear the mark on

H

# of ηi.
10. Go to κi

th cell on the input.
11. Go to middle of ηi on the work tape.
12. Move both tape heads left until the left end of ηi is reached.
13. Copy log(n) symbols from the input to between the # symbols of

ηi.
14. Move both tape heads left until the middle of ηi is reached.
15. Mark the middle symbol on ηi.
16. Set κi to the input head’s position index.
17. Update q as r.
18. Accept.”

N should carefully prepend/append the left/right end marker to a cache
when copying the beginning/end of the input in stage 13, respectively. N should
also skip stage 7 for an i if the corresponding movement is done while reading
an end marker and attempting a movement beyond it. These details have been
omitted from the algorithm to reduce clutter.

Counting up to n in binary is a common task across this algorithm, and it
takes linear time by a standard result of amortized analysis. Only the stages
that take a constant number of steps are omitted from the following analysis.

Stage 2 takes O(n) time as it involves counting up to n in binary to find
and mark the log(n)th cell on the caches. After putting # on both ends, copying
x1 · · · xlog(n) in between them takes log(n) more steps. Stage 3 can be performed

in O
(

log2 n
)

steps by putting ⊲⊳ symbols to both ends (aligned with the #

symbols) and moving them towards the center one by one until they meet.
Given that M runs in linear time, the loop of stage 4 is repeated for at most

O(n) many times. Stages 5 and 7 take logarithmic time.
The re-caching in stage 8 is to shift the window of input on a cache by

log(n)/2, so that the mark will be centered on that cache. Stages 10 and 16 are
the most time consuming sub-stages of a re-cache, involving decrementing of
κi down to 1 and setting it back to its original value, respectively. They both
take O(n) time since they count down from or up to n at most. Every other
sub-stage of a re-cache takes O(log n) time. As a result, each re-cache takes
O(n) time.

Re-caches are prohibitively slow. Luckily, since the head marker moves to
the middle with every re-cache, a subsequent re-cache cannot happen on the
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same cache for at least another log(n)/2 steps of the simulation. Moreover, since
the number of steps that M runs is in O(n), the number of times a cache can
be re-cached is in O(n/log(n)) for the entire simulation. Hence, stage 8’s time
cost to N is O(n2/log(n)).

Caches and counters occupy O(log n) cells on N ’s tape. Since every stage of
N runs in O(n2/log(n)) time, so does N .

It is not known whether NL contains any language that is not a member of
NTISP(n2/log(n), log n).

If 1IP∗(∞, cons, cons) is indeed a proper subset of 1IP(∞, cons, cons), study-
ing the effects of imposing an additional time-related bound on the verifier may
be worthwhile in the search for a characterization. We conclude this section by
noting the following relationship between runtime, the amount of randomness
used, and the probability of being fooled by a certificate to run forever in our
setup:

Lemma 11. Let V be a 2pfa verifier that flips at most r coins in a private-
coin one-way IPS for the language A. If some string x /∈ A of length n can be
paired with some certificate c(x) that causes V to run for ω

(

n2r−1 )

steps with
probability 1, then V has error at least 1/2.

Proof. Let V be a 2pfa as described above. By an idea introduced in [12], we
will construct a verifier equivalent to V . For z ∈ { 0, 1 }

r
, let Vz be the 2dfa

verifier that is based on V , but hard-wired to assume that its ith “coin flip” has
the outcome zi. Construct a 2pfa verifier V ′ that flips r coins at the beginning
of its execution and obtains the r-bit random string z. V ′ then passes control
to Vz .

Verifiers V and V ′ have the same behavior whenever their random bits are
the same. Therefore, they are equivalent.

Each Vz has Θ(n) different configurations, where n denotes the length of the

input string. Similarly, any collection of 2r−1 distinct Vz has Θ
(

n2r−1)

different
collective configurations. Let V be any one of those collections.

Let x and c(x) be a nonmember string and its certificate satisfying the
premise of the statement. Then each Vz paired with c(x) also runs on x for

ω
(

n2r−1 )

steps. The collection V , in that many steps, necessarily repeats a
collective configuration.

Consider the prefix p(x) of c(x) consumed by V ′ until the first time a col-
lective configuration of V is repeated. Also consider the suffix s(x) of p(x) con-
sumed by V ′ since the first occurrence of the repeated collective configuration.
Then V ′ paired with the certificate c′(x) = p(x)s(x)∞ repeats its configurations
forever whenever it chooses any of the Vz ∈ V to pass the execution to.

Both V ′ and V paired with c′(x) loop on x with a probability at least 1/2.
Consequently, their errors are at least 1/2.
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NL
⋃

k>0 L(2nfa(k)) 1IP(∞, cons, cons)

1IP∗(∞, cons, cons)

L(2nfa(∗), linear-time)

= =

⊇

⊇

⊆

NTISP(n2/log(n), log n)

⊇

⊇

Figure 4: Inclusion diagram of the language classes covered.

5. Open questions

For an overview of our results, we present the inclusion diagram in Figure 4.
The equalities on the left- and right-hand sides of the diagram were shown in [15]
and [12], respectively. We conclude with a list of open questions.

• Is there a language in NL, or even in NTISP(n2/log(n), log n), requiring any
2nfa(k) recognizing it to have a super-linear runtime?

• Is there a language in NL that cannot be recognized by any log-space NTM

running in O(n2/log(n)) time?

• Is there a language verified by some constant-space, constant-randomness
machine, but not by one with smaller strong error? Is it possible to build
such a verifier for any language in NL and for any desired positive error
bound?

• Is it possible to construct a linear-time 2nfa(k) for every language that
has verifiers using constant space and randomness for any desired positive
strong error?
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