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Abstract

A k-antipower (for k ≥ 2) is a concatenation of k pairwise distinct words of the same length.
The study of fragments of a word being antipowers was initiated by Fici et al. (ICALP 2016) and
first algorithms for computing such fragments were presented by Badkobeh et al. (Inf. Process. Lett.,
2018). We address two open problems posed by Badkobeh et al. We propose efficient algorithms
for counting and reporting fragments of a word which are k-antipowers. They work in O(nk log k)
time and O(nk log k + C) time, respectively, where C is the number of reported fragments. For
k = o(

√

n/ log n), this improves the time complexity of O(n2/k) of the solution by Badkobeh et
al. We also show that the number of different k-antipower factors of a word of length n can be
computed in O(nk4 log k log n) time. Our main algorithmic tools are runs and gapped repeats.
Finally we present an improved data structure that checks, for a given fragment of a word and an
integer k, if the fragment is a k-antipower.

This is a full and extended version of a paper from LATA 2019. In particular, all results about
counting different antipowers factors are completely new compared with the LATA proceedings ver-
sion.

1 Introduction

Typical types of regular words are powers. If equality is replaced by inequality, other versions of powers
are obtained. Antipowers are a new type of regularity of words, based on diversity rather than on
equality, that was recently introduced by Fici et al. in [11, 12]. Algorithmic study of antipowers was
initiated by Badkobeh et al. [2]. Very recently, a related concept of antiperiods was considered by Alamro
et al. [1].

Let us assume that x = y0 · · · yk−1, where k ≥ 2 and yi are words of the same length d. We then say
that:

• x is a k-power if all yi’s are the same;

• x is a k-antipower (or a (k, d)-antipower) if all yi’s are pairwise distinct;

• x is a weak k-power (or a weak (k, d)-power) if it is not a k-antipower, that is, if yi = yj for some
i 6= j;

• x is a gapped (q, d)-square if y0 = yk−1 and q = k − 2.

In the first three cases, the length d is called the base of the power or antipower x.
If w is a word, then by w[i . . j] we denote a fragment of w composed of letters w[i], . . . , w[j]. The

corresponding word w[i] . . . w[j] is called a factor of w. I.e., a fragment is a positioned factor. A fragment
(and thus some occurrence of a factor) of w can be represented in O(1) space by the indices i and j.
Badkobeh et al. [2] considered fragments of a word that are antipowers and obtained the following result.
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Fact 1.1 ([2]). The maximum number of k-antipower fragments in a word of length n is Θ(n2/k), and
they can all be reported in O(n2/k) time. In particular, all k-antipower fragments of a specified base d
can be reported in O(n) time.

Badkobeh et al. [2] asked for an output-sensitive algorithm that reports all k-antipower fragments in a
given word. We present such an algorithm. En route to enumerating k-antipowers, we (complementarily)
find weak k-powers. Also gapped (q, d)-squares play an important role in our algorithm.

2-antipowers can be called antisquares. An antisquare is simply an even-length word that is not a
square. The number of fragments of a word of length n being squares can obviously be Θ(n2), e.g., for
the word an. However, the number of different square factors in a word of length n is O(n); see [13, 9].
In comparison, the number of different antisquare factors of a word of length n can already be Θ(n2).
For example, this is true for a de Bruijn word. Still, we show that the number of different antisquare
factors of a word can be computed in O(n) time and that the number of different k-antipower factors
for relatively small values of k can also be computed efficiently.

For a given word w, an antipower query (i, j, k) asks to check if a fragment w[i . . j] is a k-antipower.
Badkobeh et al. [2] proposed the following data structures for answering such queries.

Fact 1.2 ([2]). Antipower queries can be answered (a) in O(k) time with a data structure of size O(n);
(b) in O(1) time with a data structure of size O(n2).

In either case, answering n antipower queries using Fact 1.2 requires Ω(n2) time in the worst case. We
show a trade-off between the data structure space (and construction time) and query time that allows
answering any n antipower queries more efficiently.

Our results We assume an integer alphabet {1, . . . , nO(1)}. Our first result is an algorithm that
computes the number C of fragments of a word of length n that are k-antipowers in O(nk log k) time
and reports all of them in O(nk log k + C) time.

Our second result is an algorithm that computes the number of different factors of a word of length
n that are k-antipowers in O(nk4 log k logn) time.

Our third result is a construction in O(n2/r) time of a data structure of size O(n2/r), for any
r ∈ {1, . . . , n}, which answers antipower queries in O(r) time. Thus, any n antipower queries can be
answered in O(n

√
n) time and space.

This is a full and extended version of [18].

Structure of the paper Our algorithms are based on a relation between weak powers and two notions
of periodicity of words: gapped repeats and runs. In Section 2, we recall important properties of these
notions. Section 4 shows a simple algorithm that counts k-antipower fragments in a word of length n in
O(nk3) time. In Section 5, it is improved in three steps to an O(nk log k)-time algorithm. One of the steps
applies static range trees that are recalled in Section 3. Algorithms for reporting k-antipower fragments
and answering antipower queries are presented in Section 6. The reporting algorithm makes a more
sophisticated application of the static range tree that is also described in Section 3. Finally, an algorithm
that counts the number of different k-antipower factors in a word of length n in O(nk4 log k logn) time
is shown in Section 7.

2 Preliminaries

The length of a word w is denoted by |w| and the letters of w are numbered 0 through |w| − 1, with
w[i] representing the ith letter. Let [i . . j] denote the integer interval {i, i + 1, . . . , j} and [i . . j) denote
[i . . j − 1]. By w[i . . j] we denote the fragment of w between the ith and the jth letter, inclusively.
Fragments are also called positioned factors. If i > j, the fragment is empty. Let us further denote
w[i . . j) = w[i . . j − 1]. The word w[i] · · ·w[j] that corresponds to the fragment w[i . . j] is called a factor
of w. Thus the two main counting algorithms that we develop count different k-antipower fragments and
different k-antipower factors of the input word, respectively.

By wR we denote the reversed word w. We say that p is a period of the word w if w[i] = w[i + p]
holds for all i ∈ [0 . . |w| − p).

2



An α-gapped repeat γ (for α ≥ 1) in a word w is a fragment of w of the form uvu such that |uv| ≤ α|u|.
The two occurrences of u are called arms of the α-gapped repeat and |uv|, denoted per(γ), is called the
period of the α-gapped repeat. Note that an α-gapped repeat is also an α′-gapped repeat for every
α′ > α. An α-gapped repeat is called maximal if its arms can be extended simultaneously with the same
character neither to the right nor to the left. In short, we call maximal α-gapped repeats α-MGRs and
the set of α-MGRs in a word w is further denoted by MGRepsα(w). The first algorithm for computing
α-MGRs was proposed by Kolpakov et al. [20]. It was improved by Crochemore et al. [8], Tanimura et
al. [23], and finally Gawrychowski et al. [14], who showed the following result.

Fact 2.1 ([14]). Given a word w of length n and a parameter α, the set MGRepsα(w) can be computed
in O(nα) time and satisfies |MGRepsα(w)| ≤ 18αn.

A run (a maximal repetition) in a word w is a triple (i, j, p) such that w[i . . j] is a fragment with the
smallest period p, 2p ≤ j − i+ 1, that can be extended neither to the left nor to the right preserving the
period p. Its exponent e is defined as e = (j− i+ 1)/p. Kolpakov and Kucherov [19] showed that a word
of length n has O(n) runs, with sum of exponents O(n), and that they can be computed in O(n) time.
Bannai et al. [3] recently refined these combinatorial results.

Fact 2.2 ([3]). A word of length n has at most n runs, and the sum of their exponents does not exceed
3n. All these runs can be computed in O(n) time.

A generalized run in a word w is a triple γ = (i, j, p) such that w[i . . j] is a fragment with a period p,
not necessarily the shortest one, 2p ≤ j − i + 1, that can be extended neither to the left nor to the right
preserving the period p. By per(γ) we denote p, called the period of the generalized run γ. The set of
generalized runs in a word w is denoted by GRuns(w).

A run (i, j, p) with exponent e corresponds to
⌊

e
2

⌋

generalized runs (i, j, p), (i, j, 2p), (i, j, 3p), . . . ,

(i, j,
⌊

e
2

⌋

p). By Fact 2.2, we obtain the following.

Corollary 2.3. For a word w of length n, |GRuns(w)| ≤ 1.5n and this set can be computed in O(n)
time.

Our algorithm uses a relation between weak powers, α-MGRs, and generalized runs; see Fig. 1 for an
example presenting the interplay of these notions.

c c c a b a b a c b a b b a c b

* * * * b a b a

* * a b a b * *

* * b a b a * *

a b a b * * * *

b a b a * * * *

a b a c b a b bantipower

b a * * * * b a

a c * * * * a c

c b * * * * c b

c c c a b a b a c b a b b a c b

* * * b a c * * * b a c

* * * a c b * * * a c b

Figure 1: To the left: all weak (4, 2)-powers and one (4, 2)-antipower in a word of length 16. An asterisk
denotes any character. The first five weak (4, 2)-powers are generated by the run ababa with period 2,
and the last three are generated by the 1.5-MGR bacb ab bacb, whose period (6) is divisible by 2. To
the right: all weak (4, 3)-powers in the same word are generated by the same MGR because its period is
a multiple of 3.

An interval representation of a set X of integers is

X = [i1 . . j1] ∪ [i2 . . j2] ∪ · · · ∪ [it . . jt],

where i1 ≤ j1, j1 + 1 < i2, i2 ≤ j2, . . . , jt−1 + 1 < it, it ≤ jt. We denote this representation by R(X).
The value t is called the size of the representation. The following simple lemma allows implementing
basic operations on interval representations.
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Lemma 2.4. Assume that X1, . . . ,Xr are non-empty families of subintervals of [0 . . n). The interval
representations of

⋃X1,
⋃X2, . . . ,

⋃Xr can be computed in O(n + m) time, where m is the total size of
the families Xi. Similarly, the interval representation of X1 ∩X2 ∩ · · · ∩Xr can be computed in O(n+m)
time.

Proof. We start by sorting the endpoints of the intervals and grouping them by the index i of the family
Xi. This can be done in O(n+m) time using bucket sort [6]. Next, to compute the interval representation
of

⋃Xi, we scan the endpoints left to right maintaining the number of intervals containing the current
point. We start an interval when this number becomes positive and end one when it drops to 0. This
processing takes O(m) time.

In order to compute the representation of the intersection, we use the same type of a counter when
simultaneously processing the interval representations of

⋃X1,
⋃X2, . . . ,

⋃Xr, but start an interval only
when the counter becomes equal to r.

Let J be a family of subintervals of [0 . .m), initially empty. Let us consider the following operations
on J , where I is an interval: insert(I): J := J ∪ {I}; delete(I): J := J \ {I} for I ∈ J ; and count,
which returns |⋃J |. It is folklore knowledge that all these operations can be performed efficiently using
a static range tree (sometimes called a segment tree; see [21]). In Section 3, we prove the following
lemma for completeness.

Lemma 2.5. There exists a data structure of size O(m) that, after O(m)-time initialization, supports
insert and delete in O(logm) time and count in O(1) time.

Let us introduce another operation report that returns all elements of the set A = [0 . .m) \ ⋃J .
We also show in Section 3 that a static range tree can support this operation efficiently.

Lemma 2.6. There exists a data structure of size O(m) that, after O(m)-time initialization, supports
insert and delete in O(logm) time and report in O(|A|) time.

3 Applications of static range tree

Let m be a power of two. A basic interval is an interval of the form [a . . a + 2i) that is a subinterval of
[0 . .m − 1) and such that i ≥ 0 is an integer and 2i | a. For example, the basic intervals for m = 8 are
[0 . . 1), . . . , [7 . . 8), [0 . . 2), [2 . . 4), [4 . . 6), [6 . . 8), [0 . . 4), [4 . . 8), [0 . . 8). In a static range tree (sometimes
called a segment tree; see [21]) each node is identified with a basic interval. The children of a node
J = [a . . a + 2i), for i > 0, are lchild(J) = [a . . a + 2i−1) and rchild(J) = [a + 2i−1 . . a + 2i). Thus, a
static range tree is a full binary tree of size O(m). The root of the tree, root , corresponds to [0 . .m).

Every interval I ⊆ [0 . .m) can be decomposed into a disjoint union of at most 2 logm basic intervals.
The decomposition can be computed in O(logm) time recursively starting from the root. Let J be a
node considered in the algorithm. If J ⊆ I, the algorithm adds J to the decomposition. Otherwise, for
each child J ′ of the node J , if J ′ ∩ I 6= ∅, the algorithm makes a recursive call to the child. At each
level of the tree, the algorithm makes at most two recursive calls. The resulting set of basic intervals is
denoted by Decomp(I); see Fig. 2.

[0 . . 8)

[0 . . 4) [4 . . 8)

[0 . . 2) [2 . . 4) [4 . . 6) [6 . . 8)

[0 . . 1) [1 . . 2) [2 . . 3) [3 . . 4) [4 . . 5) [5 . . 6) [6 . . 7) [7 . . 8)

Figure 2: A static range tree for m = 8 with the set of nodes that comprises Decomp( [1 . . 7) ). The
paths visited in the recursive decomposition algorithm are shown in bold.
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Proofs of the lemmas from Section 2 follow.
Instead of Lemma 2.5, we show an equivalent lemma with an operation count′ which returns

|[0 . .m) \⋃J |.

Lemma 3.1. There exists a data structure of size O(m) that, after O(m)-time initialization, supports
insert and delete in O(logm) time and count′ in O(1) time.

Proof. Let m′ be the smallest power of two satisfying m′ ≥ m. Observe that the data structure for
m can be simulated by an instance constructed for m′: it suffices to insert an interval [m. .m′) in
the initialization phase to make sure that integers i ≥ m will not be counted when count′ is invoked.
Henceforth, we may assume without loss of generality that m is a power of two.

We apply a static range tree. Every node J of the tree stores two values (see Fig. 3):

• bi(J) = | {I ∈ J : J ∈ Decomp(I)} |

• val(J) = | J \ ⋃{J ′ : J ′ ⊆ J, J ′ ∈ Decomp(I), I ∈ J } |.

The value val (J) can also be defined recursively:

• If bi(J) > 0, then val (J) = 0.

• Otherwise, we define val(J) = 1 if J is a leaf and val (J) = val (lchild (J)) + val(rchild (J)) if it is
not.

This allows computing val (J) from bi(J) and the values stored in the children of J .

[0 . . 8)

[0 . . 4) [4 . . 8)

[0 . . 2) [2 . . 4) [4 . . 6) [6 . . 8)

[0 . . 1) [1 . . 2) [2 . . 3) [3 . . 4) [4 . . 5) [5 . . 6) [6 . . 7) [7 . . 8)

3

2 1

2 0 0 1

1 1 0 0 0 1 0 1

Figure 3: A static range tree for m = 8 that stores the family J = {[2 . . 3), [3 . . 5), [4 . . 7), [6 . . 7)}.
The values val(J) are shown in bold. The arrows present selected jump pointers (cf. Lemma 2.6).

The data structure can be initialized bottom-up in O(m) time. The respective operations on the
data structure are now implemented as follows:

• insert(I): Compute Decomp(I) recursively. For each J ∈ Decomp(I), increment bi(J). For each
node J encountered in the recursive computation, recompute val(J).

• delete(I): Similar to insert, but we decrement bi(J) for each node J ∈ Decomp(I).

• count′: Return val (root).

The complexities of the respective operations follow.

Proof of Lemma 2.6. As in the proof of Lemma 3.1, we assume without loss of generality that m is a
power of two. Again, the data structure applies a static range tree. We also reuse the values bi(J) for
nodes; we generalize the val(J) values, though.

If J and J ′ are basic intervals and J ′ ⊆ J , then we define valJ (J ′) as 0 if there exists a basic interval
J ′′ on the path from J to J ′ (i.e., such that J ′ ⊆ J ′′ ⊆ J) for which bi(J ′′) > 0, and as val(J ′) otherwise.
These values satisfy the following properties.
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Observation 3.2. For every node J , (a) valJ(J) = val (J); and (b) val root(J) = |J \⋃J |.
By point (b) of the observation, our goal in a report query is to report all leaves J such that

val root(J) = 1. The first idea how to do it would be to recursively visit all the nodes J ′ of the tree such
that val root(J

′) > 0. However, this approach would work in Ω(|A| logm) time since for every leaf all the
nodes on the path to the root would need to be visited.

In order to efficiently answer report queries, we introduce jump pointers, stored in each node J , such
that jump(J) is the lowest such node J ′ in the subtree of J such that valJ(J ′) = valJ(J); see Fig. 3.

The pointer jump(J) can be computed in O(1) time from the values in the children of J :

jump(J) =







J if J is a leaf or 0 < val (lchild (J)) < val (J),
jump(lchild(J)) if val(rchild(J)) = 0,
jump(rchild(J)) otherwise.

This formula allows recomputing the jump pointers on the paths visited during a call to insert or
delete without altering the complexity.

Let us consider a subtree that is composed of all the nodes J with positive val root(J). Using jump
pointers, we make a recursive traversal of the subtree that avoids visiting long paths of non-branching
nodes of the subtree. It visits all the leaves and branching nodes of the subtree and, in addition, both
children of each branching node. With this traversal, a report query is therefore answered in O(|A|)
time.

4 Computing a compact representation of weak k-powers

Let us denote by Squares(q, d) the set of starting positions of gapped (q, d)-square fragments in the input
word w.

We say that an occurrence at position i of a gapped (q, d)-square is generated by a gapped repeat
uvu if the gapped repeat has period p = (q + 1)d and w[i . . i + d), w[i + p . . i + p + d) are contained
in the first arm and in the second arm of the gapped repeat, respectively; cf. Fig. 4. In other words,
u = u1u2u3, |u2| = d, |u3vu1| = qd, and uvu starts in the input word at position i− |u1|.

u

d

v
u

dq · d

Figure 4: An occurrence of a gapped (q, d)-square generated by a gapped repeat with period (q + 1)d.
Gray rectangles represent equal words.

Similarly, an occurrence in w of a (q, d)-square is generated by a generalized run with period p =
(q + 1)d if it is fully contained in this generalized run. See Fig. 5 for a concrete example.

b a b b a c a a b b a c a a b b a c a a b b a c a a b b a c ac

Figure 5: An occurrence of a gapped (2, 4)-square acaabbac aabbacaa generated by a generalized run
with period 12. Note that the generalized run has its origin in a (generalized) run with period 6 (depicted
below) that does not generate this gapped square.

Lemma 4.1.
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(a) Every gapped (q, d)-square fragment is generated by a (q + 1)-MGR with period (q + 1)d or by a
generalized run with period (q + 1)d.

(b) Each gapped repeat and each run γ with period (q+1)d generates a single interval of positions where
gapped (q, d)-squares occur, which is further denoted by Squares(q, d, γ) (see Fig. 6). Moreover, this
interval can be computed in constant time.

Proof. (a) Let i be the starting position of an occurrence of a gapped (q, d)-square x of length ℓ := |x| =
(q + 2)d. Observe that x has period p := (q + 1)d. We denote by γ = w[i′ . . j′] the longest factor with
period p that contains x (i.e., such that i′ ≤ i and i + ℓ− 1 ≤ j′).

If |y| < 2p, then γ is a gapped repeat with period p, and it is maximal by definition. Moreover, it is
a (q + 1)-MGR since its arms have length at least d.

Otherwise (if |γ| ≥ 2p), the factor γ corresponds to a generalized run (i′, j′, p) that generates the
gapped square x. In particular, this happens for q = 0.

d

u
v

u

d

Figure 6: An interval, represented as a sequence of four consecutive positions (black dots), of starting
positions of gapped (q, d)-square fragments generated by a gapped repeat with period (q + 1)d.

(b) Let γ be a gapped repeat or a generalized run with length ℓ and period p = (q+1)d that starts at
position i in w. Then γ generates gapped (q, d)-squares that start at positions in [i . . i+ ℓ− (p+ d)].

Let us denote
Chaink(q, d, i) = { i, i− d, i− 2d, . . . , i− (k − q − 2)d }.

This definition can be extended to intervals I. To this end, let us introduce the operation

I ⊖ r = { i− r : i ∈ I }

and define Chaink(q, d, I) = I ∪ (I ⊖d) ∪ (I⊖ 2d) ∪· · ·∪ (I⊖ (k− q− 2)d). This set is further referred
to as an interval chain; it can be stored in O(1) space.

We denote by WeakPow k(d) the set of starting positions in w of weak (k, d)-power fragments. A chain
representation of a set of integers is its representation as a union of interval chains, limited to some base
interval (in the case of weak (k, d)-powers, this will be [0 . . n− kd)). The size of the chain representation
is the number of chains. The following lemma shows how to compute small chain representations of the
sets WeakPow k(d).

Lemma 4.2.

(a) WeakPowk(d) =
⋃k−2

q=0

⋃

i∈Squares(q,d) Chaink(q, d, i) ∩ [0 . . n− kd].

(b) WeakPowk(d) =
⋃k−2

q=0

⋃{Chaink(q, d, I) : γ ∈ MGRepsq+1(w) ∪ GRuns(w), where per(γ) =
(q + 1)d and I = Squares(q, d, γ) } ∩ [0 . . n− kd].

(c) For d = 1, . . . , ⌊n/k⌋, the sets WeakPowk(d) have chain representations of total size O(nk2) which

can be computed in O(nk2) time. In particular,
∑⌊n/k⌋

d=1

∑k−2
q=0 |R(Squares(q, d))| = O(nk2) and all

these interval representations can be computed in O(nk2) time.

Proof. As for point (a), x = y0 · · · yk−1 for |y0| = · · · = |yk−1| = d is a weak (k, d)-power if and only
if yi · · · yj is a gapped (j − i − 1, d)-square for some 0 ≤ i < j < k. Conversely, a gapped (q, d)-square
occurring at position i implies occurrences of weak (k, d)-powers at positions in the set Chaink(q, d, i),
limited to the interval [0 . . n− kd] due to the length constraint; see Fig. 7.
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d dq · d

ii− di− 2di− (k − q − 2)d

k · d

. . .

Figure 7: The fact that i ∈ Squares(q, d) is a witness of inclusion (Chaink(q, d, i) ∩ [0 . . n − kd]) ⊆
WeakPowk(d).

Algorithm 1: SimpleCount(w, n, k)

(Cd)
⌊n/k⌋
d=1 := (∅, . . . , ∅)

for q := 0 to k − 2 do
foreach (q + 1)-MGR or generalized run γ in w do

p := per(γ)
if (q + 1) | p then

d := p
q+1

I := Squares(q, d, γ)
Cd := Cd ∪ {Chaink(q, d, I) }

antipowers := 0
for d := 1 to ⌊n/k⌋ do

WeakPowk(d) := (
⋃ Cd) ∩ [0 . . n− kd]

antipowers := antipowers + (n− kd + 1) − |WeakPow k(d)|
return antipowers

Formula in (b) follows from point (a) by Lemma 4.1. Indeed, Lemma 4.1(a) shows that every gapped
(q, d)-square fragment is generated by a (q + 1)-MGR with period (q + 1)d or a generalized run with
period (q + 1)d. By Lemma 4.1(b), the starting positions of all such gapped squares that are generated
by an MGR or a generalized run γ form an interval I = Squares(q, d, γ). Hence, it yields an interval
chain Chaink(q, d, I) of starting positions of weak (k, d)-powers by point (a).

Finally, we obtain point (c) by applying the formula from point (b) to compute the chain represen-
tations of sets WeakPowk(d) for all d = 1, . . . , ⌊n/k⌋. This is also shown in the first part of the following
SimpleCount algorithm, where the resulting chain representations are denoted as Cd. The total number
of interval chains in these representations is O(nk2) because, for each q ∈ [0 . . k − 2], the number of
(q + 1)-MGRs and generalized runs γ is bounded by O(nk) due to Facts 2.1 and 2.2, respectively. More-
over, the desired interval representations of the sets Squares(q, d) can be computed from the intervals
Squares(q, d, γ) in linear time using Lemma 2.4.

Lemma 4.2 lets us count k-antipowers by computing the size of the complementary sets WeakPowk(d).
Thus, we obtain the following preliminary result.

Proposition 4.3. The number of k-antipower fragments in a word of length n can be computed in
O(nk3) time.

Proof. See Algorithm 1. We use Lemma 4.2, points (b) and (c), to express the sets WeakPowk(d)
for all d = 1, . . . , ⌊n/k⌋ as a union of O(nk2) interval chains. That is, the total size of the sets Cd is
O(nk2). Each of the interval chains consists of at most k intervals. Hence, Lemma 2.4 can be applied to
compute interval representations of the sets WeakPow k(d) in O(nk3) total time. Finally, the size of the
complement of the set WeakPowk(d) (in [0 . . n− kd]) is the number of (k, d)-antipowers.

Next, we improve the time complexity of this algorithm to O(nk log k).
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5 Counting k-antipower fragments in O(nk log k) time

We improve the algorithm SimpleCount threefold. First, we show that the chain representation of weak
k-powers actually consists of only O(nk) chains. Then, instead of processing the chains by their interval
representations, we introduce a geometric interpretation that reduces the problem to computing the
area of the union of O(nk) axis-aligned rectangles. This area could be computed directly in O(nk log n)
time, but we improve this complexity to O(nk log k) by exploiting properties of the dimensions of the
rectangles.

5.1 First improvement of SimpleCount

First, we improve the O(nk2) bounds of Lemma 4.2(c). By inspecting the structure of MGRs, we
actually show that the formula from Lemma 4.2(b) generates only O(nk) interval chains. A careful
implementation lets us compute such a chain representation in O(nk) time.

We say that an α-MGR for integer α with period p is nice if α | p and p ≥ 2α2. Let NMGRepsα(w)
denote the set of nice α-MGRs in the word w. The following lemma provides a combinatorial foundation
of the improvement.

Lemma 5.1. For a word w of length n and an integer α > 1, |NMGRepsα(w)| ≤ 54n.

Proof. Let us consider a partition of the word w into blocks of α letters (the final n mod α letters are not
assigned to any block). Let uvu be a nice α-MGR in w. We know that 2α2 ≤ |uv| ≤ α|u|, so |u| ≥ 2α.
Now, let us fit the considered α-MGR into the structure of blocks. Since α | |uv|, the indices in w of the
occurrences of the left and the right arm are equal modulo α. We shrink both arms to u′ such that u′ is
the maximal inclusion-wise interval of blocks which is encompassed by each arm u. Then, let us expand
v to v′ so that it fills the space between the two occurrences of u′.

Let us notice that |uv| = |u′v′|. Moreover, |u′| ≥ 1
3 |u| since u encompasses at least one full block

of w. Consequently, |u′v′| ≤ 3α|u′|.
Let t be a word whose letters correspond to whole blocks in w and u′′, v′′ be factors of t that

correspond to u′ and v′, respectively. We have |u′′| = |u′|/α and |v′′| = |v′|/α, so u′′v′′u′′ is a 3α-gapped
repeat in t. It is also a 3α-MGR because it can be expanded by one block neither to the left nor to the
right, as it would contradict the maximality of the original nice α-MGR. This concludes that every nice
α-MGR in w has a corresponding 3α-MGR in t. Also, every 3α-MGR in t corresponds to at most one
nice α-MGR in w, as it can be translated into blocks of w and expanded in a single way to a 3α-MGR
(that can happen to be a nice α-MGR).

We conclude that the number of nice α-MGRs in w is at most the number of 3α-MGRs in t. As
|t| ≤ n/α, due to Fact 2.1 the latter is at most 54n.

Lemma 5.2. For d = 1, . . . , ⌊n/k⌋, the sets WeakPowk(d) have chain representations of total size O(nk)

which can be computed in O(nk) time. In particular,
∑⌊n/k⌋

d=2k−2

∑k−2
q=0 |R(Squares(q, d))| = O(nk).

Proof. The chain representations of sets WeakPow k(d) are computed for d < 2k − 2 and for d ≥ 2k − 2
separately.

From Fact 1.1, we know that all (k, d)-antipowers for given k and d can be found in O(n) time. This
lets us compute the set WeakPow k(d) (and its trivial chain representation) in O(n) time. Across all
d < 2k − 2, this gives O(nk) chains and O(nk) time.

Henceforth we consider the case that d ≥ 2k − 2. Let us note that if a gapped (q, d)-square with
d ≥ 2(q + 1) is generated by a (q + 1)-MGR, then this (q + 1)-MGR is nice. Indeed, by Lemma 4.1(a)
this (q + 1)-MGR has period p = (q + 1)d ≥ 2(q + 1)2. This observation lets us express the formula of
Lemma 4.2(b) for d ≥ 2k − 2 equivalently using NMGRepsq+1(w) instead of MGRepsq+1(w).

By Fact 2.2 and Lemma 5.1, for every q we have only |NMGRepsq+1(w)∪GRuns(w)| = O(n) MGRs
and generalized runs to consider. Hence, the total size of chain representations of sets WeakPowk(d)
for d ≥ 2k − 2 is O(nk) as well. The same applies to the total size of interval representations of sets
Squares(q, d) for d ≥ 2k − 2.

The last piece of the puzzle is the following claim.

Claim 5.3. The sets NMGRepsα(w) for α ∈ [1 . . k − 1] can be built in O(nk) time.
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(a) I = [21 . . 23], q = 0 6 7 8 11 12 13 16 17 18 21 22 23

(b) I = [19 . . 21], q = 1 9 10 11 14 15 16 19 20 21

(c) I = [13 . . 20], q = 2

8 9 10 11 12 13 14 15 13 14 15 16 17 18 19 20
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(a) (b) (c) (d)

Figure 8: Examples of decompositions of various interval chains Chaink(q, d, I) into orthogonal rectangles
in the grid Gd for d = 5, k = 5, n = 52.

Proof. The union of those sets is a subset of MGRepsk−1(w). Therefore, we can consider each (k − 1)-
MGR uvu with period p = |uv| and report all α ∈ [αL . . αR] such that α | p, where

αL =
⌈

p
|u|

⌉

, αR = min
(

k − 1,
⌊
√

p
2

⌋)

.

We will use an auxiliary table next such that

nextp[α] = min{α′ ∈ [α + 1 . . k) : α′ | p}. 1

This table has size O(nk). For every p ∈ [1 . . n], all values nextp[α] for α ∈ [1 . . k) can be computed, right
to left, in O(k) time. Then, all values α for which uvu is a nice α-MGR can be computed by iterating
α := nextp[α] until a value greater than αR is reached, starting from α = αL − 1. Thus, the total time

of constructing the sets NMGRepsα(w) is O(|MGRepsk−1(w)| +
∑k−1

α=1 |NMGRepsα(w)|) = O(nk).

This concludes the proof.

5.2 Second improvement of SimpleCount

We reduce the problem to computing unions of sets of orthogonal rectangles with bounded integer
coordinates.

For a given value of d, let us fit the integers from [0 . . n − kd] into the cells of a grid of width d so
that the first row consists of numbers 0 through d − 1, the second of numbers d to 2d − 1, etc. Let us
call this grid Gd. The main idea behind the lemma presented below is shown in Fig. 8.

Lemma 5.4. The set Chaink(q, d, I) is a union of O(1) orthogonal rectangles in Gd, each of height at
most k or width exactly d. The coordinates of the rectangles can be computed in O(1) time.

Proof. Translating the set Chaink(q, d, I) onto our grid representation, it becomes a union of horizontal
strips, each corresponding to an interval I ⊖ ad, for a ∈ [0 . . k − q − 2], that possibly wrap around into
the subsequent rows. Those strips have their beginnings in the same column, occupying consecutive
positions. Depending on the column index of the beginning of a strip and its length, we have three cases:

1We assume that min ∅ = ∞.
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• The strip does not wrap around at all (Fig. 8(a)). Then, the union of all strips is simply a single
rectangle. Its height is exactly k − q − 1.

• The strip’s length is smaller than the length of the row, but it wraps around at some point
(Fig. 8(b)). Then, there exists a column which does not intersect with any strip. The strips’
parts that have wrapped around (that is, to the left of the column) form a rectangle and similarly
the strips’ parts that have not wrapped around form a rectangle as well. Both of these rectangles
have height equal to k − q − 1.

• The strip’s length is greater than or equal to the length of the row. In this case, excluding the
first and the last row, the union of the strips is actually a rectangle fully encompassing all columns
(Fig. 8(c)). Therefore the union of all strips can be represented as a union of three rectangles: the
first row, the last row and what is in between. Both the first and the last row have height equal
to 1 and the rectangle in between has width equal to d.

In some cases, such decomposition into orthogonal rectangles may include some cells that are not on the
grid (negative numbers or numbers greater than n−kd); see Fig. 8(d). In that case, we consider the first
and the last included rows as individual rectangles; the remaining part of the decomposition corresponds
to one of the cases mentioned before.

Thus, by Lemma 5.2, our problem reduces to computing the area of unions of rectangles in subsequent
grids Gd. In total, the number of rectangles is O(nk).

5.3 Third improvement of SimpleCount

Assume that r axis-aligned rectangles in the plane are given. The area of their union can be computed
in O(r log r) time using a classic sweep line algorithm (see Bentley [5]). This approach would yield
an O(nk logn)-time algorithm for counting k-antipowers. We refine this approach in the case that the
rectangles have bounded height or maximum width and their coordinates are bounded.

Lemma 5.5. Assume that r axis-aligned rectangles in [0 . . d]2 with integer coordinates are given and
that each rectangle has height at most k or width exactly d. The area of their union can be computed in
O(r log k + d) time and O(r + d) space.

Proof. We assume first that all rectangles have height at most k.
Let us partition the plane into horizontal strips of height k. Thus, each of the rectangles is divided

into at most two. The algorithm performs a sweep line in each of the strips.
Let the sweep line move from left to right. The events in the sweep correspond to the left and right

sides of rectangles. The events can be sorted left-to-right, across all strips simultaneously, in O(r + d)
time using bucket sort [6].

For each strip, the sweep line stores a data structure that allows insertion and deletion of intervals
with integer coordinates in [0 . . k] and querying for the total length of the union of the intervals that are
currently stored. This corresponds to the operations of the data structure from Lemma 2.5 for m = k
(with elements corresponding to unit intervals), which supports insertions and deletions in O(log k) time
and queries in O(1) time after O(k)-time preprocessing per strip. The total preprocessing time is O(d)
and, since the total number of events in all strips is at most 2r, the sweep works in O(r log k) time.

Finally, let us consider the width-d rectangles. Each of them induces a vertical interval on the second
component. First, in O(r + d) time the union S of these intervals represented as a union of pairwise
disjoint maximal intervals can be computed by bucket sorting the endpoints of the intervals. Then, each
maximal interval in S is partitioned by the strips and the resulting subintervals are inserted into the
data structures of the respective strips before the sweep. In total, at most 2r + d/k additional intervals
are inserted so the time complexity is still O((r + d/k) log k + d) = O(r log k + d).

We arrive at the main result of this section.

Theorem 5.6. The number of k-antipower fragments in a word of length n can be computed in O(nk log k)
time and O(nk) space.
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Proof. We use Lemma 5.2 to express the sets WeakPowk(d) for d = 1, . . . , ⌊n/k⌋ as unions of O(nk)
interval chains. This takes O(nk) time. Each chain is represented on the corresponding grid Gd as the
union of a constant number of rectangles using Lemma 5.4. This gives O(nk) rectangles in total on all
the grids Gd, each of height at most k or width exactly d, for the given d.

As the next step, we renumber the components in the grids by assigning consecutive numbers to
the components that correspond to rectangle vertices. This can be done in O(nk) time, for all the
grids simultaneously, using bucket sort [6]. The new components store the original values. After this
transformation, rectangles with height at most k retain this property and rectangles with width d have
maximal width. Let the maximum component in the grid Gd after renumbering be equal to Md and the
number of rectangles in Gd be Rd; then

∑

dRd = O(nk) and
∑

d Md = O(nk).
As the final step, we apply the algorithm of Lemma 5.5 to each grid to compute |WeakPow k(d)| as

the area of the union of the rectangles in the grid. One can readily verify that it can be adapted to
compute the areas of the rectangles in the original components. The algorithm works in O(

∑

d Rd log k+
∑

dMd) = O(nk log k) time. In the end, the number of (k, d)-antipower fragments equals n − kd + 1 −
|WeakPowk(d)|.

6 Reporting antipowers and answering antipower queries

The same technique can be used to report all k-antipower fragments. In the grid representation, they
correspond to grid cells of Gd that are not covered by any rectangle. Hence, in Lemma 5.5, instead of
computing the area of the rectangles with the aid of Lemma 2.5, we need to report all grid cells excluded
from rectangles using Lemma 2.6. The computation takes O(r log k + d + Cd) time where Cd is the
number of reported cells. By plugging this routine into the algorithm of Theorem 5.6, we obtain the
following result.

Theorem 6.1. All fragments of a word of length n being k-antipowers can be reported in O(nk log k+C)
time and O(nk) space, where C is the size of the output.

Finally, we present our data structure for answering antipower queries that introduces a smooth
trade-off between the two data structures of Badkobeh et al. [2] (see Fact 1.2). Let us recall that an
antipower query (i, j, k) asks to check if a fragment w[i . . j] of the word w is a k-antipower.

Theorem 6.2. Assume that a word of length n is given. For every r ∈ [1 . . n], there is a data structure
of size O(n2/r) that can be constructed in O(n2/r) time and answers antipower queries in O(r) time.

Proof. Let w be a word of length n and let r ∈ [1 . . n]. If an antipower query (i, j, k) satisfies k ≤ r,
we answer it in O(k) time using Fact 1.2(a). This is always O(r) time, and the data structure requires
O(n) space.

Otherwise, if w[i . . j] is a k-antipower, then its base is at most n/r. Our data structure will let us
answer antipower queries for every such base in O(1) time.

Let us consider a positive integer b ≤ n/r. We group the length-b fragments of w by the remainder
modulo b of their starting position. For a remainder g ∈ [0 . . b− 1] and index i ∈ [0 . .

⌊

n−g
b

⌋

), we store,
as Ab

g[i], the smallest index j > i such that w[jb+ g . . j(b+ 1) + g) = w[ib+ g . . i(b+ 1) + g) (j = ∞ if it

does not exist). We also store a data structure for range minimum queries over Ab
g for each group; it uses

linear space, takes linear time to construct, and answers queries in constant time (see [4]). The tables
take O(n) space for a fixed b, which gives O(n2/r) in total. They can also be constructed in O(n2/r)
total time, as shown in the following claim.

Claim 6.3. The tables Ab
g for all b ∈ [1 . .m] and g ∈ [0 . . b− 1] can be constructed in O(nm) time.

Proof. Let us assign to each fragment of w of length at most m an identifier in [0 . . n) such that the
factors corresponding to two equal-length fragments are equal if and only if their identifiers are equal.
For length-1 fragments, this requires sorting the alphabet symbols, which can be done in O(n) time for
an integer alphabet. For factors of length ℓ > 1, we construct pairs that consist of the identifiers of the
length-(ℓ− 1) prefix and length-1 suffix and bucket sort the pairs. This gives O(nm) time in total.

To construct the tables Ab
g for a given b, we use an auxiliary array D that is indexed by identifiers in

[0 . . n). Initially, all its elements are set to ∞. For a given g, the indices i are considered in descending
order. For each i, we take as x the identifier of the factor w[ib + g . . i(b + 1) + g), set Ab

g[i] to D[x] and
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then D[x] to i. Afterwards, in the same loop, all such values D[x] are reset to ∞. For any b and g, both
loops take O(n/b) time.

Given an antipower query (i, j, k) such that (j − i + 1)/k = b, we set

g = i mod b, i′ =
⌊

i
b

⌋

, j′ =
⌊

j+1
b

⌋

− 2,

and ask a range minimum query on Ab
g[i′], . . . , Ab

g[j′]. Then, w[i . . j] is a k-antipower if and only if the
query returns a value that is at least j′ + 2.

7 Counting different k-antipower factors

7.1 Warmup: Counting different antisquare factors

Let us first show how to count different antisquare factors, that is, different 2-antipowers in a word w of
length n.

Recall that the suffix tree of a word w is a compact trie representing all the suffixes of the word w$,
where $ is a special end-marker. The root, the branching nodes, and the leaves are explicit in the suffix
tree, whereas the remaining nodes are stored implicitly. Explicit and implicit nodes of the suffix tree are
simply called its nodes. Each implicit node is represented as its position within a compacted edge. The
string-depth of a node v is the length of the path from v to the root in the uncompacted version of the
trie. The locus of a factor of w is the node it corresponds to. The suffix tree of a word of length n can
be constructed in O(n) time [10].

Proposition 7.1. The number of different antisquare factors in a word of length n can be computed in
O(n) time.

Proof. The algorithm counts different factors of even length and subtracts the number of different square
factors. The latter can be computed in O(n) time [15, 7]. The former can be computed by counting
(explicit and implicit) nodes of the suffix tree of w at even string-depths. For every edge of the suffix
tree, this number can be easily retrieved in constant time.

We will use the same idea, i.e. subtract the number of weak k-powers from the number of all factors
of length divisible by k, to count the number of different k-antipower factors. The algorithm requires at
some point the following auxiliary data structure related to the suffix tree.

A weighted ancestor query in the suffix tree, given a leaf v and a non-negative integer d, returns the
ancestor of v located at depth d (being an explicit or implicit node). A weighted ancestor query can be
used to compute, for a factor u of w given by its occurrence, the locus of u in the suffix tree.

Fact 7.2 ([17, Section 7.1]). A batch of m weighted ancestor queries (for any rooted tree of n nodes with
positive polynomially-bounded integer weights of edges) can be answered in O(n + m) time.

7.2 Representing the set of weak powers

We say that x = y0 · · · yk−1, where |y0| = · · · = |yk−1| = d, is a weak (k, i, j, d)-power if i < j, yi = yj ,
and this is the “leftmost” pair of equal factors among y0, . . . , yk−1, i.e., for any i′ < j′ such that yi′ = yj′ ,
either i′ > i, or i′ = i and j′ > j. This definition satisfies the following uniqueness property.

Observation 7.3. A weak (k, d)-power is a weak (k, i, j, d)-power for exactly one pair of indices 0 ≤ i <
j < k.

We denote by WeakPowk,i,j(d) the set of starting positions of weak (k, i, j, d)-powers in w; see Fig. 9.
The following lemma shows that this set can be computed efficiently.

Lemma 7.4. For a given k, the sets WeakPowk,i,j(d) for all d = 1, . . . , ⌊n/k⌋ and 0 ≤ i < j < k have
interval representations of total size O(nk4 log k) which can be computed in O(nk4 log k) time.

Proof. Let us note that a ∈ WeakPow k,i,j(d) if and only if all the following conditions are satisfied:

1. a + i · d ∈ Squares(j − i− 1, d)
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Figure 9: This weak (7, 3)-power is actually a weak (7, 1, 3, 3)-power. We have 0 ∈ WeakPow 7,1,3(3),
since 3 ∈ Squares(1, 3), 3 6∈ Squares(0, 3), and 0 6∈ Squares(q, 3) for q ∈ [0 . . 5].

2. a + i · d 6∈ Squares(q, d) for q < j − i− 1

3. for every c ∈ [0 . . i) and q ≤ k − c− 2, we have a + c · d 6∈ Squares(q, d).

Intuitively, if y0 · · · yk−1, with all factors of length d, is a weak (k, i, j, d)-power, then the first condition
corresponds to yi = yj, the second condition to yi 6= yj′ for i < j′ < j, and the third condition to
yi′ 6= yj′ for i′ < i and i′ < j′ < k.

Hence, WeakPow k,i,j(d) = (Ai,j(d) \ (Bi,j(d) ∪ Ci,j(d))) ∩ [0 . . n− kd], where

Ai,j(d) = Squares(j − i− 1, d) ⊖ (i · d),

Bi,j(d) =

j−i−2
⋃

q=0

(Squares(q, d) ⊖ (i · d)) ,

Ci,j(d) =

i−1
⋃

c=0

k−c−2
⋃

q=0

(Squares(q, d) ⊖ (c · d)) .

By Lemma 4.2(c), the interval representations of all sets Squares(q, d) for 0 ≤ q ≤ k − 2 can be
computed in O(nk2) time. By Lemma 5.2, the total size of interval representations of sets Squares(q, d)
over all d ≥ 2k − 2 is O(nk). We further have:

Claim 7.5.
∑k−2

q=0

∑2k−3
d=1 |R(Squares(q, d))| = O(nk log k).

Proof. The interval representation of the set Squares(q, d) has size O(n/d). Indeed, if a < b < a +
d and a, b ∈ Squares(q, d), then c ∈ Squares(q, d) for any a < c < b, so the endpoints of any two
consecutive intervals in the representation are at least d positions apart. Hence, the total size of interval
representations of the sets in question is O(k

∑2k−3
d=1 n/d) = O(nk log k).

In conclusion,
∑k−2

q=0

∑⌊n/k⌋
d=1 |R(Squares(q, d))| = O(nk log k).

For any i, j, and d,

|R(Ai,j(d))| + |R(Bi,j(d))| + |R(Ci,j(d))| ≤ (k + 2)

k−2
∑

q=0

|R(Squares(q, d))|.

Hence, over all i, j, d the size of these interval representations does not exceed

k2(k + 2)

⌊n/k⌋
∑

d=1

k−2
∑

q=0

|R(Squares(q, d))| = O(nk4 log k).

Finally, Lemma 2.4 can be used to compute the sets Ai,j(d) \ (Bi,j(d) ∪ Ci,j(d)) in O(nk4 log k) total
time (note that set subtraction can be computed as intersection with set complement).

We say that a weak (k, i, j, d)-power y0 · · · yk−1 is generated by an MGR or a generalized run γ if
the (j − i− 1, d)-square yi · · · yj is generated by γ. We denote by WeakPow k,i,j(d, γ) the set of starting
positions of weak (k, i, j, d)-powers generated by γ. It can be readily verified that the intervals generated
in the above lemma can be labeled by the MGR or generalized run γ that generated them. This labelling
is unique due to the following simple observation.
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Observation 7.6. For any different MGRs or generalized runs γ1, γ2, the sets WeakPow k,i,j(d, γ1) and
WeakPowk,i,j(d, γ2) are disjoint.

Proof. It suffices to note that for any q ≤ k− 2 and d, the sets Squares(q, d, γ1) and Squares(q, d, γ2) are
disjoint.

Let us first show how to count different weak (k, i, j, d)-powers for i > 0. The case of i = 0 will be
taken care of in Section 7.5.

Definition 7.7. Let i > 0. We say that a function g that assigns to every weak (k, i, j, d)-power factor
x of w a position g(x) = q ∈ [0 . . kd) is a synchronizer if for every a ∈ WeakPowk,i,j(d, γ), the value
a + g(w[a] . . . w[a + kd− 1]) is the same.

Note that a synchronizer function is defined on factors of w, not on fragments; i.e., it admits the same
value for every occurrence of the same weak (k, i, j, d)-power factor.

We will now show how to efficiently construct a synchronizer in the case of i > 0. For a fragment
α = w[a . . b] of w, let us denote start(α) = a and end(α) = b.

Lemma 7.8. A function synch that assigns to every weak (k, i, j, d)-power x, for i > 0, such that
x = w[a] . . . w[a + kd− 1] and a ∈ WeakPowk,i,j(d, γ), the position start(γ) − a, is a synchronizer.

Proof. Clearly, for any positions a1, a2 ∈ WeakPow k,i,j(d, γ) we have

a1 + synch(w[a1] . . . w[a1 + kd− 1]) = a2 + synch(w[a2] . . . w[a2 + kd− 1]) = start(γ).

Now let us show that synch is indeed a function on the set of weak k-power factors, i.e., that its
value does not depend on the particular occurrence of a weak k-power. Let w[a] . . . w[a + kd − 1] =
y0 · · · yk−1 = x be an occurrence of a weak (k, i, j, d)-power for equal-length words y0, . . . , yk−1 and let γ
be the MGR or generalized run that generates it. We have yi = yj and γ has period p = (j − i)d. Let
r = max{b < i · d : x[b] 6= x[b + p]}. We have r > (i − 1)d, since otherwise we would have yi−1 = yj−1

and x would not be a weak (k, i, j, d)-power. Then position r + 1 corresponds to the starting position of
γ, i.e., synch(x) = start(γ) − a = r + 1. Hence, indeed this value does not depend on the position a and
synch(x) ∈ [0, |x|).

7.3 Reduction to Path Pairs Problem

We say that T is a compact tree if it is a rooted tree with positive integer weights on edges. If an edge
weight is e > 1, this edge contains e − 1 implicit nodes. We make an assumption that the depth of
a compact tree with N explicit nodes does not exceed N . A path in a compact tree is an upwards or
downwards path that connects two explicit nodes. Let us introduce the following convenient auxiliary
problem.

Problem 7.9. Path Pairs Problem

Input: Two compact trees T and T ′ containing up to N explicit nodes each and a set P of M
pairs (π, π′) of equal-length paths where π is a path going downwards in T and π′ is a path going
upwards in T ′.

Output: |⋃(π,π′)∈P Induced(π, π′)|, where by Induced(π, π′) we denote the set of pairs of (explicit

or implicit) nodes (u, u′) such that u is the ith node on π and u′ is the ith node on π′, for some i.

Example 7.10. Let us consider the instance of Path Pairs Problem from Fig. 10. We have P =
{(π1, π

′
1), (π2, π

′
2), (π3, π

′
3)}, where

• π1 = 1 → 6, π′
1 = 8 → 3 (solid lines),

• π2 = 2 → 10, π′
2 = 10 → 1 (dotted lines),

• π3 = 1 → 14, π′
3 = 13 → 1 (dashed lines).
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Figure 10: Illustration of Path Pairs Problem and Example 7.10. For simplicity, the trees in this
example do not contain implicit nodes.

Then

Induced(π1, π
′
1) = {(1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3)},

Induced(π2, π
′
2) = {(2, 10), (3, 6), (4, 5), (7, 4), (8, 3), (9, 2), (10, 1)},

Induced(π3, π
′
3) = {(1, 13), (2, 12), (12, 11), (13, 2), (14, 1)}.

In total |⋃3
i=1 Induced(πi, π

′
i)| = 16 and Induced(π1, π

′
1) ∩ Induced(π2, π

′
2) = {(3, 6), (4, 5)}.

Synchronizers let us reduce the problem in scope to the auxiliary problem.

Lemma 7.11. Computing the number of different weak (k, i, j, d)-powers for given k and all 0 < i <
j < k, d ≤ n

k in a word of length n reduces in O(nk4 log k) time to a Path Pairs Problem with
M,N = O(nk4 log k).

Proof. Let us consider the suffix tree T of w and the suffix tree T ′ of wR.
For every interval [a . . b] in the interval representation of WeakPowk,i,j(d), let us denote q = a +

synch(w[a] . . . w[a+kd−1]). Then we create a downwards path π in T that connects the loci of w[q . . a+kd)
and w[q . . b + kd) and an upwards path π′ in T ′ that connects the loci of (w[a . . q))R and (w[b . . q))R.
We use weighted ancestor queries (Fact 7.2) to find the endpoints of the paths in the suffix trees, which
can be explicit or implicit nodes.

Finally, we make the endpoints of the paths explicit in both trees. This can be achieved by grouping
the endpoints by the compact edges they belong to and sorting them, within each edge, in the order of
non-decreasing string-depth, which can be done in linear time via radix sort.

The resulting instance of a Path Pairs Problem is equivalent to counting the number of different
weak powers by the definition of a synchronizer.

By Lemma 7.4, the number of intervals in the interval representation of WeakPowk,i,j(d) over all
0 < i < j is O(nk4 log k). Each of them produces one pair of paths. In the end, we obtain O(nk4 log k)
paths in two compact trees containing O(nk4 log k) explicit nodes each. The conclusion follows.

7.4 Solution to Path Pairs Problem

Let us recall the notion of a heavy-path decomposition of a rooted tree T that was introduced in [22].
Here, we only consider explicit nodes of T . For each non-leaf node u of T , the heavy edge (u, v) is a
downwards edge for which the subtree rooted at v has the maximal number of leaves (in case of several
such subtrees, we fix one of them). The remaining edges are called light. A heavy path is a maximal
path of heavy edges; it includes the light edge going up from its topmost node provided that its topmost
node is not the tree root. A known property of the heavy-path decomposition is that the path from any
leaf u in T towards the root visits at most logN heavy paths, where N is the number of nodes of T .

In the solution to Path Pairs Problem, we compute the heavy path decompositions of both trees
T and T ′. For each pair of paths (π, π′) in P , we decompose each path π, π′ into maximal fragments
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Figure 11: Partitioning of the second pair of paths from Example 7.10 into 2, 3 → 4, 7 → 8, 9 → 10 and
10, 6 → 5, 4 → 3, 2 → 1 along the heavy paths (drawn as thick edges).

belonging to different heavy paths. Note that the decomposition of the upwards path π′ can be computed
in O(log n) time assuming that each tree node stores the topmost node in its heavy path and the
decomposition of the downwards path π can be computed in O(log n) time by traversing π in the
reverse direction. Then we further decompose the paths π, π′ into maximal subpaths π = π1, . . . , πℓ,
π′ = π′

1, . . . , π
′
ℓ so that the lengths of πi and π′

i are the same and each πi and each π′
i is a fragment of one

heavy path in T and in T ′, respectively; we have ℓ ≤ 2 logN . For an illustration, see Fig. 11. Finally,
we create new pairs of paths (πi, π

′
i), label each of them by the pair of heavy paths they belong to, and

group them by their labels. This can be done using radix sort in O(N +M logN) time, since the number
of new path pairs is O(M logN) and the number of heavy paths in each tree is O(N).

In the end, we obtain O(M logN) very simple instances of the Path Pairs Problem, in each of
which the compact trees T and T ′ are single paths corresponding to pairs of heavy paths from the
original compact trees. We call such an instance special. The total number of path pairs across the
special instances is O(M logN).

Lemma 7.12. The answers to K special instances of Path Pairs Problem containing compact trees
of depth at most N and at most K paths in total can be computed in O(N + K) time.

Proof. For convenience let us reverse the order of edges in the tree T ′ of each instance so that both
paths in each path pair lead downwards. Let us number the (explicit and implicit) nodes of trees T and
T ′ top-down as 0, 1, . . . ,O(N) in every instance. Then a path pair (π, π′) such that π connects nodes
with numbers i and j and π′ connects nodes with numbers i′ and j′, with j − i = j′ − i′, can be viewed
as a diagonal segment that connects points (i, i′) and (j, j′) in a 2D grid. Thus, each instance reduces
to counting the number of grid points that are covered by the segments. Again for convenience we can
rotate each grid by 45 degrees to make the segments horizontal.

This problem can easily be solved by a top-down, and then left-to-right sweep. We only need the
segment endpoints to be ordered first by the vertical, and then by the horizontal coordinate. This
ordering can be achieved using radix sort in O(N + K) time across all instances.

This concludes the proof of the following lemma.

Lemma 7.13. Path Pairs Problem can be solved in O(N + M logN) time.

7.5 Counting different weak powers with i = 0

We say that word v is a cyclic shift of word u if there exist words x and y such that u = xy and
v = yx. For a word s, by minrot(s) we denote a position i ∈ [0 . . |s|) such that s[i . . |s|)s[0 . . i) is the
lexicographically minimum cyclic shift of s. In case that there is more than one such position (i.e., that
s is a power of a shorter word), we select as minrot(s) the first such position.

If i = 0, we partition every set A = WeakPow k,0,j(d, γ) into four sets. Let

J1 = [start(γ) . . end(γ) − kd + 1], J2 = J1 ∩ [0 . . start(γ) + per(γ)).
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Then let

I1 = J2 ∩ [0 . . start(γ) + minrot(γ)], I2 = J2 \ I1, I3 = J1 \ J2,
I4 = [start(γ) . . end(γ)] \ J1.

We define WeakPow q
k,j(d, γ) as WeakPowk,0,j(d, γ) ∩ Iq for q = 1, 2, 3, 4. For an example, see Fig. 12.

By the following observation, these sets will be of interest only for q = 1, 2, 4.

Observation 7.14. Assuming that a ∈ WeakPow 3
k,j(d, γ), then a − per(γ) ∈ WeakPowk,0,j(d, γ) and

w[a . . a + kd) = w[a′ . . a′ + kd) for a′ = a− per(γ). Actually, in this case γ is a generalized run.

a b a a b c a b a a b c a b a a b c a d d d

a b a a b c a b a a b c

b a a b c a b a a b c a

a a b c a b a a b c a b

WeakPow
1

4,2
(3, γ)

a b c a b a a b c a b a

b c a b a a b c a b a a

c a b a a b c a b a a b

WeakPow
2

4,2
(3, γ)

a b a a b c a b a a b c

b a a b c a b a a b c a
WeakPow

3

4,2
(3, γ)

a a b c a b a a b c a d

a b c a b a a b c a d d

b c a b a a b c a d d d

WeakPow
4

4,2
(3, γ)

Figure 12: The sets WeakPow q
k,j(d, γ) for a run γ, k = 4, j = 2, d = 3. Note that the weak powers

from the third set occur also in the first set. For a ∈ WeakPow 1
4,2(3, γ), a + synch(a) = start(γ) + 2. For

a ∈ WeakPow 2
4,2(3, γ), a + synch(a) = start(γ) + 8. For a ∈ WeakPow4

4,2(3, γ), a + synch(a) = end(γ).

We can then extend Definition 7.7 by saying that a function synch on weak (k, 0, j, d)-powers that
assigns to each of them a number in [0 . . kd) is a 0-synchronizer if a+ synch(w[a] . . . w[a+ kd− 1]) is the
same for each element a ∈ WeakPow q

k,j(d, γ), for a given MGR or generalized run γ and q ∈ {1, 2, 4}.
This lets us extend Lemma 7.8 as follows.

Lemma 7.15. A function synch that assigns to every weak (k, 0, j, d)-power x, such that x = w[a] . . . w[a+
kd− 1] and a ∈ WeakPow k,0,j(k, d, γ), a number:

• start(γ) + minrot(γ[0 . . per(γ)) − a if a ∈ WeakPow1
k,j(d, γ)

• start(γ) + minrot(γ[0 . . per(γ)) + per(γ) − a if a ∈ WeakPow2
k,j(d, γ)

• end(γ) − a if a ∈ WeakPow 4
k,j(d, γ)

is a 0-synchronizer. (See also Fig. 12.)

Proof. The proof in the case that a ∈ WeakPow 4
k,j(d, γ) is analogous to the proof of Lemma 7.8.

In the first two cases, synch(y0 . . . yk−1) = minrot(y0 . . . yj−1) and clearly, for any positions a1, a2 ∈
WeakPow q

k,j(d, γ) we have

a1 + synch(w[a1] . . . w[a1 + kd− 1]) = a2 + synch(w[a2] . . . w[a2 + kd− 1]).

This shows that synch is indeed a synchronizer.

We use the following internal queries in texts by Kociumaka [16] to efficiently partition the intervals
comprising WeakPow k,i,j(d, γ) into maximal intervals that belong to WeakPow q

k,i,j(d, γ).
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Fact 7.16 ([16]). One can preprocess a word w of length n in O(n) time so that for any factor s of w,
minrot(s) can be computed in O(1) time.

Then the problem reduces to Path Pairs Problem, as in the previous section.

Lemma 7.17. Computing the number of different weak (k, 0, j, d)-powers for given k and all 0 < j < k,
d ≤ n

k in a word of length n reduces in O(nk3 log k) time to a Path Pairs Problem with M,N =
O(nk3 log k).

We finally arrive at the main result of this section.

Theorem 7.18. The number of different k-antipower factors in a word of length n can be computed in
O(nk4 log k logn) time.

Proof. Let w be a word of length n. We reduce counting different k-antipower factors of w to counting
the numbers of different factors of w of length that is divisible by k and of different weak k-power factors
of w. As in the proof of Proposition 7.1, the former can be computed in O(n) time using the suffix
tree of w. By Observation 7.3, every weak (k, d)-power is a weak (k, i, j, d)-power for exactly one pair of
indices 0 ≤ i < j < k. We reduce counting the number of different weak (k, i, j, d)-power factors of w to
instances of the Path Pairs Problem with N,M = O(nk4 log k) using Lemmas 7.11 and 7.17 for i > 0
and i = 0, respectively, and solve these instances in O(nk4 log k logn) time using Lemma 7.13.
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