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Abstract

We study reachability problems for various nondeterministic polynomial maps in Zn. We
prove that the reachability problem for very simple three-dimensional affine maps (with
independent variables) is undecidable and is PSPACE-hard for both two-dimensional affine
maps and one-dimensional quadratic maps. Then we show that the complexity of the
reachability problem for maps without functions of the form ±x + a0 is lower. In this
case the reachability problem is PSPACE for any dimension and if the dimension is not
fixed, then the problem is PSPACE-complete. Finally we extend the model by considering
maps as language acceptors and prove that the universality problem is undecidable for
two-dimensional affine maps.

1. Introduction

Many iterative maps can exhibit complex and unpredictable dynamics. They appear
in various parts of mathematics and in particular they have been extensively studied
in the context of chaos theory [11, 17] and control theory [6, 5] where these maps have
been defined over rational, real or complex numbers. On the other hand iterative maps
over integers are also important in computer science as they can be seen as the simplest
form of computer programs describing updates on integer counters or variables. The
classical reachability problems (i.e., whether a given set of values in the counters/variables
can be reached via iterations in loops) are in the core of verification procedures and the
complexity of their solutions could vary depending on several factors such as the type of
iterative functions (affine, linear, polynomial, elementary, etc.), the form of maps (i.e.,
deterministic, nondeterministic), the number of variables (i.e., dimension of a system)
and even history dependence (i.e., when the next value depends on several previous values
of counters/variables) [36, 37].
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In this paper we study the decidability of the reachability problem for simple stateless
systems of nondeterministic iterative polynomial maps defined on integer valued vectors.
The simplest form of a map with polynomial updates, i.e., where the updates are of the
form ~x = ~x + ~a0, can be seen as a vector addition system (VAS) on Zn. In this case
the reachability problem in one-dimensional system (i.e., with one variable/counter) for
additive updates of the form x+ a0 can be reduced to solving a single linear Diophantine
equation with solutions over natural numbers and the generalisation to the multidimen-
sional case, which is in the form of the n-dimensional vector addition system on Zn, is
known to be NP-complete [10, 19].

A simple generalisation to two-dimensional system of affine updates instead of additive
maps makes the reachability problem undecidable over rational numbers Q2; see [2]. The
affine transformations, that can encode the Post correspondence problem, are of a very
restricted form p(x, y) = (q1x+ q2y + q3, q4y).

Taking it into account we are focusing on a natural generalisation by defining multidi-
mensional system with n-variables over Zn, where each coordinate dependent only on one
variable and then we study the complexity of the reachability problem for different types
of the polynomial updates of the form

p(x1, . . . , xn) = (p1(x1), . . . , pn(xn))

for some univariate polynomials pi(x).
Our research is revealing many surprising complexity results. For example even a

simple increase from additive to affine updates where each variable is only self-dependent
leads to undecidability of the reachability problem in Z3. The core element of the proof
is in the construction of affine functions that simulate a state structure and can be used
to control in which order affine updates have to be applied. Then by generalising the
construction to encode any graph structure in one of the dimension we show that in
two-dimensional systems with affine functions the reachability is at least PSPACE-hard
while we do not know whether in this case the problem is decidable or not. Using a
different encoding technique we prove that in one-dimensional maps, the reachability
problem is PSPACE-complete. In the encoding a configuration of a machine (in this case
LBA) is stored as a residue class and updated accordingly using quartic polynomials. The
same encoding idea was used in [16]. See Table 1 for the summary of the results.

dim.
degree

1 2 3 4
the leading coefficient
a1 = ±1 a1 ∈ Z

1
NP-c. [19]

NP-h. [19]/PSPACE [16] PSPACE-c.
2 PSPACE-h./?
3 undecid.

Table 1: Complexity of reachability problems in nondeterministic polynomial maps according to the
degrees. Our results are on grey background.

Then we investigate the restrictions on the functions further by considering maps
without functions of the form ±x+ a0. Surprisingly, already for affine maps, this leads
to NP-hardness for any fixed dimension as well as PSPACE-hardness if the dimension is
not fixed. As for the upper bound, even for maps with polynomial updates — as long as
updates of the form ±x+a0 are not present — the reachability problem is in PSPACE, and
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thus PSPACE-complete if the dimension is not fixed. This heavily contrasts our knowledge
on general maps, where most notably, dimension two has no known upper bounds; see
Table 2.

dim.
type

affine polynomial
a1 6= ±1 a1 ∈ Z not including

±x+ a0

including
±x+ a0

1 NP-h. [19]/PSPACE [16] PSPACE-c.
2 PSPACE-h./? PSPACE-h./?
3
...

NP-h./PSPACE NP-h./PSPACE

n PSPACE-c.
undecid.

PSPACE-c.
undecid.

Table 2: Complexity of reachability problems in affine and polynomial maps with respect to inclusion of
polynomials of the form ±x + a0. Our results are on grey background.

Finally, we take a more language-theoretic approach and consider maps as language
acceptors. To this end, we fix the initial and target values, ~z0 and ~zf , in the reachability
problem for polynomial maps. Then, we attach a letter over a finite alphabet Σ to each
function. Now, a word w ∈ Σ∗ is accepted if there is a computation path from ~z0 to ~zf
reading w in the map. From this point of view, the reachability problem is the language
emptiness problem. We study another natural language-theoretic question known as the
universality problem, where we are asked whether all finite words are accepted by the map.
We show that for two-dimensional affine maps the universality problem is undecidable by
simulating an integer weighted automaton [20].

The research work on such systems with polynomial updates attracted visible attention
in verification community indicating the lack of understanding of even such simple systems.
In contrast to stateless systems (iterative maps) a model of polynomial register machines
which have additional state structure has been studied in [16, 35]. The authors showed
that the reachability problem is PSPACE-complete for one-dimensional polynomials and
undecidable for two-dimensional polynomials, respectively.

Multidimensional linear polynomial iteration has also been considered from a different
aspect. The vector reachability problem for n-dimensional matrices over F, where
F = Z,Q,C, . . ., studies whether for given two vectors ~x0, ~xf ∈ Fn and a set of matrices
{M1, . . . ,Mk} ⊆ Fn×n, there exists a finite sequence of matrices such that Mi1 · · ·Mij~x0 =
~xf . Since transforming a vector by a matrix can be expressed as a system of linear
equations, the multidimensional linear polynomial iteration can be seen as a vector
reachability problem. The main difference from our consideration is that we consider
only polynomials of the form p(x1, . . . , xn) = (p1(x1), . . . , pn(xn)) for some univariate
polynomials pi(x), while the polynomials in the vector reachability problem are of the form
p(x1, . . . , xn) = (a11x1 + · · ·+ a1nxn, . . . , an1x1 + · · ·+ annxn). The vector reachability
problem has been proven to be undecidable for 6 three-dimensional integer matrices in
[22] and for two 11-dimensional integer matrices in [21].

Recently, in [7], the authors studied a different variant of polynomial register machines.
They restricted the considerations to affine updates and moreover, that the matrix
monoid generated by the transformations is finite. In this variant, the reachability
problem is reducible to the reachability problem for integer VASS [10, 19] and thus
decidable. Additionally, the authors considered different restrictions on the affine updates
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and showed that some variants are PSPACE-complete while others are NP-complete.
The next level of complexity of iterative systems is to consider iterative maps over

rationals, where even for one-dimensional affine maps the reachability problem is still
open and can be seen as a special case of vector reachability for 2× 2 matrix semigroups
over Q. However, for nondeterministic iterative polynomials maps of degree at least
two, the reachability problem is decidable by an analysis of ρ-adic weights instead of
Euclidean distances [9]. The solution of reachability for iterative one-dimensional maps
over Q can particularly answer another long standing open problem — the reachability
for piecewise affine maps (PAM). Iteration of deterministic one-dimensional piecewise
affine map f : Q→ Q is often used as a reference model to show hardness of reachability
problems for various types of hybrid systems, where

f(x) = ai · x+ bi, for x ∈ Ii, i = 1, . . . , k.

Here, Ii = (li, ri] is a finite set of disjoint intervals and all coefficients ai, bi and the
extremities of Ii are from Q. The reachability problem for PAMs is “Given a PAM f(x)
and two points x0, y ∈ Q. Decide whether exist n ∈ N such that fn(x0) = y?” For the
special case of “complete maps” where each subinterval of the unit circle Ii is mapped
to the unit circle the reachability can be reduced to the reachability of nondeterministic
affine maps, i.e, tracing back non-deterministic trajectories with inverse functions (also
affine) starting from y [9]. Piecewise maps and related reachability problems have been
studied extensively in [28, 3, 29, 9] and can be generalised to non-deterministic maps if
the intervals are not disjoint or, in more general settings, when more than one function is
assigned to the same interval, that is, should be applied nondeterministically. Thus our
iterative maps can be seen as trivial piecewise nondeterministic maps where all functions
have been assigned only to one interval (−∞,∞).

Already starting from dimension two, the reachability problem is undecidable for
deterministic two-dimensional piecewise affine maps over Q. The reachability problem
for one-dimensional piecewise affine maps is an open problem even when there are only
two intervals. On the other hand, for more general updates the problem for deterministic
maps is undecidable. For example, if the updates are based on the elementary functions

{x2, x3,
√
x, 3
√
x, 2x, x + 1, x − 1} or on rational functions of the form p(x) = ax2+bx+c

dx+e ,
where the coefficients are rational numbers [30], then the problem is undecidable.

The present paper analyses polynomial maps over integers focusing on the core power
of iterative maps in minimalistic settings of integer numbers. A natural extension in
the future is to consider maps over rationals or reals. All our lower bounds can be
lifted to the more general settings. Moving to rationals or reals introduces on one hand
new challenges. On the other hand it can quickly enrich the model leading to simpler
undecidability constructions due to extra information that can be stores and used in
case of rational numbers or leading to unpredictability due to the nature of reals. In
particular, in Theorem 17, we show the undecidability of the reachability problem for
specific three-dimensional rational maps over rationals while the corresponding maps over
integers have a decidable reachability problem. When considering maps over rationals,
the questions can become harder having connections to group theory [14] and number
theory [8]. Changing the question from point reachability to staying within a set [15] or
set reachability [1], can be made more amenable to analysis.

Also our approach to look at the reachability from language-theoretic point of view is
in line with a recent paper [4] on the complexity of the zeroness problem for deterministic
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polynomial automata over rationals (i.e., a problem whether a given automaton outputs
zero on all words). Authors of [4] showed that while this problem is non-primitive recursive
in general, there is a subclass of polynomial automata for which the zeroness problem is
primitive recursive.

This paper is the full version of conference papers [33] and [27]. Unlike the conference
versions, we give full proofs of the results and provide additional comments on the
constructions.

This paper is organised as follows. In the next section, we introduce basic definitions
and models used in the paper. In Section 3, we prove that the reachability problem
for one-dimensional quartic maps is PSPACE-hard. Then, in Section 4, we consider the
reachability problem for multidimensional maps. Namely we show that the problem
is undecidable for three-dimensional affine maps and PSPACE-hard for two-dimensional
affine maps. In Section 5, we study maps without functions of the form ±x+ a0 and show
that the reachability problem is PSPACE for any dimension and that if the dimension
is not fixed, then the problem is PSPACE-complete. Finally in Section 6, we extend the
model by considering maps as language acceptors and prove that the universality problem
is undecidable for two-dimensional affine maps.

2. Preliminaries

We denote the set of natural numbers, integers and rational numbers by N, Z and
Q, respectively. The integers are assumed to be encoded in binary. For z1 ≤ z2 ∈ Z, we
denote the closed interval by [z1, z2] = {z ∈ Z | z1 ≤ z ≤ z2}.

We denote the ring of polynomials with integer coefficients over a variable x by Z[x].
A polynomial p(x) ∈ Z[x] is p(x) = anx

n + · · ·+ a1x+ a0, where ai ∈ Z and n ≥ 0. We
represent polynomials in sparse encoding by a sequence of pairs (i, ai)i∈I , where I = {i ∈
{0, . . . , n} | ai 6= 0}. Deciding whether for a given y ∈ Z, the polynomial p(y) evaluates to a
positive number can be done in polynomial time [12]. The multidimensional polynomials
Z[~x]n with independent variables ~x = (x1, . . . , xn) are of the form p(x1, . . . , xn) =
(p1(x1), . . . , pn(xn)) for some univariate polynomials p1(x), . . . , pn(x) ∈ Z[x]. That is,
dimensions are independent and do not affect the values in other dimensions.

Throughout the paper, we investigate the reachability problem for different classes of
polynomials and in order to simplify the terminology, we give names to the commonly
used classes:

Additive polynomials: AddZ = {±x + a0 | a0 ∈ Z},
Affine polynomials: AffZ[x] = {a1x + a0 | a1, a0 ∈ Z},

Quadratic polynomials: QuadZ[x] = {a2x
2 + a1x + a0 | a2, a1, a0 ∈ Z},

Quartic polynomials: QuartZ[x] = {a4x
4 + a3x

3 + a2x
2 + a1x + a0 | a4, a3, a2, a1, a0 ∈ Z}.

We also define the classes of polynomials without additive polynomials2, i.e., updates

2In [16], additive polynomials were called counter-like as they are similar to updates in counter
machines and VASSs. They could also be called (generalised) monic linear polynomials but the authors
find the name cumbersome.
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of form ±x+ a0:

AffZ[x] \ AddZ = {a1x+ a0 ∈ AffZ[x] | a1 6= ±1},
Z[x] \ AddZ = {p(x) ∈ Z[x] | p(x) 6= ±x+ a0, where a0 ∈ Z}.

The multidimensional variants AffZ[~x]n, QuadZ[~x]n and QuartZ[~x]n are defined in the
natural way, while AffZ[~x]n \AddZ is defined as ((AffZ[x] \AddZ)∪ {x})× · · · × ((AffZ[x] \
AddZ) ∪ {x})) and Z[~x]n \ AddZ is defined analogously. The class Z[x] \ AddZ seems
artificial at first but, as we prove later, polynomials of the form ±x + a0 play a vital
role in whether the reachability problem is decidable or undecidable. Indeed, we will
show that for Z[~x]n \ AddZ, the reachability problem is in PSPACE, while the problem
is undecidable already for AffZ[~x]3. Note that the multidimensional variant allows a
particular additive polynomial in each component. Namely, the identity polynomial
p(x) = x. This polynomial is essential as it allows the map to either apply a polynomial
of AffZ[x] \ AddZ or Z[x] \ AddZ or keep the value the same in each component. This is a
crucial property for the lower bounds proven in Lemma 18 and subsequent results relying
on the lemma. The different classes of polynomials are depicted below:

anx
n + · · ·+ a4x

4 + a3x
3 + a2x

2 + a1x+ a0 ∈ Z[x]

∈ AffZ[x]

∈ QuadZ[x]

∈ QuartZ[x]

±x+ a0 ∈ AddZ

In the encoding of Section 3, we use the Chinese remainder theorem to find the unique
solution to a system of linear congruences. That is, for given pairwise co-prime positive
integers n1, . . . , nk and b1, . . . , bk ∈ Z, the system of linear congruences x ≡ bi mod ni
for i = 1, . . . , k has the unique solution modulo n1 · · ·nk. Recall that a residue class b
modulo n is the set of integers {. . . , b− n, b, b+ n, . . .}.

An n-dimensional polynomial register machine (n-PRM) is a tuple R = (Q,∆), where
Q is a finite set of states and ∆ ⊆ Q × Z[~x]n × Q is the set of transitions labelled by
polynomials with variable ~x ∈ Zn. A configuration of R is a tuple [q, ~x] ∈ Q × Zn. A
configuration [q′, ~y′] is reachable from a configuration [q, ~y] by a transition (q, f(~x), q′) if
f(~y) = ~y′. This is denoted by [q, ~y] →R [q′, ~y′]. The reflexive and transitive closure of
→R is denoted by →∗R. The reachability problem is, given two configurations c and c′ of
R, to decide whether c→∗R c′ holds. If an n-PRM R has only one state, then R is called
a nondeterministic polynomial map or a map over Z[~x]n for short.

An n-PRM is called an n-dimensional affine register machine (n-ARM) if every
transition is labelled by an affine polynomial. A nondeterministic affine map (a map over
AffZ[~x]n) is defined analogously.

A linear-bounded automaton (LBA) is a Turing machine with a tape bounded by a
linear function of the length of the input. In other words, an LBA can be viewed as a
Turing machine with a finite tape. We denote an LBA A by a tuple (Q,Γ, δ), where
Q is a finite set of states, Γ = {B,C, 0, 1} is a finite tape alphabet, which includes two
special symbols B and C serving as left and right endmarkers of the tape. The transition
function is a relation δ ⊆ Q×Γ×Q×Γ×{L,R} such that a transition (q, γ, q′, γ′, d) ∈ δ
implies that if the LBA A is in state q and reads γ at the current head position on the
tape then A moves to the state q′ while writing γ′ onto the tape and moving the head
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position according to the direction d. Note that the head moves to the right if d = R and
to the left if d = L. Since the tape of A is delimited by endmarkers, we have conditions
that if the head is at the left endmarker B, then d is always R and γ′ = B, analogously if
γ = C, then d = L and γ′ = C. A configuration of A is a tuple (q,BwC, i), where q ∈ Q
is the currents state, w ∈ (Γ \ {B,C})∗ is the tape content and i ∈ [0, |w| + 1] is the
current head position. We define the successor relation →A between two configurations in
the standard way and →∗A is the reflexive and transitive closure of →A. See for example
[23] for more details on LBA.

The reachability problem of a given LBA A is to decide whether for given length of
the tape s, states q and q′, (q,B0sC, 0)→∗A (q′,B0sC, 0) holds and is well-known to be
PSPACE-complete. We often enumerate the states of A such that q′ = q|Q| and further
assume that A enters state q|Q| only in configuration (q|Q|,B0sC, 0).

Given an alphabet Σ = {a1, a2, . . . , am}, a finite word u is an element of semigroup Σ∗.
That is u = u1u2 · · ·un, where ui ∈ Σ. The empty word is denoted by ε. The length of a
finite word u is denoted by |u| and |ε| = 0. We denote w ∈ Σ∗ with |w| = s by w ∈ Σs.

Lemma 1. Let Σ = {a, b} and w ∈ Σ∗. Let τ : Σ → N be defined as τ(a) = 1 and
τ(b) = 2. The function σ : Σ∗ → N defined by

σ(w1w2 · · ·wk) =

k∑
i=1

τ(wi) · 3k−i

and σ(ε) = 0 is an injective function.

The function σ of the previous lemma, outputs a number in ternary representation
of the input word over the binary alphabet Σ. Since each natural number has a unique
ternary representation, σ is clearly an injective function.

We use the Post’s correspondence problem (PCP) [34] to show undecidability in
nondeterministic affine maps. Let Σ = {a, b} be a binary alphabet and

P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ Σ∗ × Σ∗

be a set of pairs of words where n ≥ 2. Then, the PCP is to determine if there exists a
finite sequence of indices `1, `2, . . . , `k with each 1 ≤ `i ≤ n such that

u`1u`2 · · ·u`k = v`1v`2 · · · v`k .

The PCP was shown to be undecidable for n = 7 in [31]. Recently the undecidability
bound has been improved to n = 5 [32]. We denote the minimal number of pairs for
which the PCP is undecidable by np and use it to describe other undecidability bounds
presented in the paper.

3. Reachability in maps over QuartZ[x]

In this section, we prove that the reachability problem in one-dimensional polynomial
maps with quartic polynomials is PSPACE-hard and PSPACE in general. The proof of the
lower bound is similar to the proof of PSPACE-hardness of the reachability problem for
polynomial register machines as found in [16]. Both proofs reduce from the reachability
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problem for LBA. Let us fix an LBA A with a tape of s letters for the remainder of the
section. The main difference of the proofs is that in [16], the states of PRM contain partial
information from a configuration of A: the state of A, the position of the read/write
head and the letter that the head is currently reading, while the tape content is encoded
as an integer and modified by the transitions according to the instructions of A. In our
proof, the whole configuration of A is encoded as an integer and updated according to
the instructions of A.

First, let us recall some definitions from [16]. Let pi denote the (i+3)-th prime number,
that is, p1 = 7, p2 = 11, . . . and let P be the product of m such primes, P =

∏m
i=1 pi,

where m = s+ s · |Q|.
The main idea of the encoding is to consider the integer line Z modulo P and integers

as the corresponding residue classes. We are interested in the residue classes that satisfy
linear congruences modulo pi for different pi. The first s primes will correspond to
each cell of the tape and the next s · |Q| primes will correspond to the head being in a
particular state in a particular cell. Note, that for the sake of simplicity, we omit the
behaviour of the head on the border letters. In fact, it is quite easy to deal with these
transitions as, among other information, we also encode the position of the head into
our integer. Then it is easy to hard-code the behaviour of A on the border letters into
corresponding polynomials. Indeed, consider a configuration [q, 1, .aw/] such that the
next configuration is [q′, 0, .bw/], where a, b ∈ {0, 1} and w ∈ {0, 1}s−1. As the head
respects the border letters, the next configuration is [q′′, 1, .bw/]. That is, all we need to
simulate is a transition from state q to q′′ and possible rewriting of a to b.

We are not interested in all residue classes modulo P and only a tiny fraction of the
residue classes is used to store information. A residue class r is of interest to us, if for every
1 ≤ i ≤ m, there is some bi ∈ {0, 1, 2} such that r ≡ bi mod pi. We call such residue
class sane and denote the set of all sane residue classes by S. A configuration [qj , i, .w/],
where i = {1, . . . , s} and w ∈ {0, 1}s, corresponds to a residue class r satisfying the
system of congruence equations

r ≡ w1 mod p1,

r ≡ w2 mod p2,

...

r ≡ ws mod ps,

r ≡ 1 mod p` if ` = s+ j + (i− 1)|Q|,
r ≡ 0 mod p` if ` > s and ` 6= s+ j + (i− 1)|Q|.

(1)

Intuitively, the first s congruence equations encode the tape content and the next s|Q|
equations encode the state and position of the head. We illustrate how a configuration
[q3, 2, .1001 · · · 1/] of an LBA corresponds to the residue class r satisfying the system of
linear congruences (1) in Figure 1.

Since the head of an LBA modifies the tape locally, to simulate a transition, for
example, δ(qj , a) = (qk, a

′, L), it is enough to check that the residue class r satisfies
congruence equations

r ≡ 1 mod ps+j+(i−1)|Q| and r ≡ a mod pi

for some i ∈ {1, . . . , s}. Then, the transition is simulated by moving from r to a residue
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q3

. /· · ·
s

tape
content

1st cell 2nd cell sth cellPosition of the head:

...

mod p1
mod p2

...

mod ps

...

mod ps+1

mod ps+2

mod ps+3

...

mod ps+|Q|

...

mod ps+|Q|+1

mod ps+|Q|+2

mod ps+|Q|+3

...

mod ps+2|Q|

· · · ...

mod ps+(s−1)|Q|+1

mod ps+(s−1)|Q|+2

mod ps+(s−1)|Q|+3

...

mod ps+s|Q|

←− state q1
←− state q2
←− state q3

...

←− state q|Q|

Figure 1: An illustration how configuration [q3, 2, .1001 · · · 1/] of an LBA (left) is encoded as residue
class r satisfying a system of linear congruences. Here, letters 0 and 1 are represented by white and grey
squares, respectively. A grey square in the ith cell column and the jth state row represents the head
being in the ith cell in state qj .

class r′ satisfying congruence equations

r′ ≡ 0 mod ps+j+(i−1)|Q|,

r′ ≡ 1 mod ps+k+(i−2)|Q|,

r′ ≡ a′ mod pi,

r′ ≡ r mod p` for all

` ∈ {1, . . . , s+ s · |Q|} \ {i, s+ j + (i− 1)|Q|, s+ k + (i− 2)|Q|}.

That is, to simulate a transition of the LBA, first we need to check that the current
residue class r corresponds to a configuration [qj , i, .w/], where wi = a, for some i and the
other letters of w are irrelevant. Then we move to the residue class r′ corresponding to
the configuration [qk, i− 1, .w′/], where w′i = a′ and w′` = w`, for all ` = {1, . . . , s} \ {i}.
Analogously, to simulate a transition where the head moves to the right, similar checks
need to be performed.

To this end, we need to locally modify the residue classes. That is, we need to have a
polynomial p(x) such that p(r) = r′. There are three mappings that are defined for each
index i ∈ {1, . . . ,m}, flipi,eqzeroi,eqonei : S → S. The mapping flipi is used to
change the residue class of r modulo pi in a particular way. The mappings eqzeroi and
eqonei are used to check that the residue class of r modulo pi is zero or one, respectively.

Let us describe the mappings in more details. For the mapping flipi(r) there are
three cases depending on whether r ≡ 0, 1, 2 mod pi:

if r ≡ 0 mod pi : if r ≡ 1 mod pi : if r ≡ 2 mod pi :

flipi(r) ≡

{
1 mod pi

r mod pj
flipi(r) ≡

{
0 mod pi

r mod pj
flipi(r) ≡

{
2 mod pi

r mod pj ,
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where j 6= i.
Similarly, for the remaining two mappings, there are three cases depending on whether

r ≡ 0, 1, 2 mod pi:

if r ≡ 0 mod pi : if r ≡ 1, 2 mod pi :

eqzeroi(r) ≡

{
0 mod pi

r mod pj
eqzeroi(r) ≡

{
2 mod pi

r mod pj

if r ≡ 1 mod pi : if r ≡ 0, 2 mod pi :

eqonei(r) ≡

{
1 mod pi

r mod pj
eqonei(r) ≡

{
2 mod pi

r mod pj ,

where j 6= i.
The move δ(qj , 0) = (qk, 0, L) of LBA M when the head is in ith position is now

realised by a composition of the functions

flips+k+(i−2)|Q| ◦ flips+j+(i−1)|Q| ◦ eqzeroi ◦ eqones+j+(i−1)|Q|.

In Figure 2 we illustrate how moves δ(qj , 0) = (qk, 0, L) and δ(qj , 1) = (qk, 0, R) of LBA
A are realised for the configuration [q, i, .w/]. Note, that we do not assume that q = qj
or that wi = 0 for the first move or wi = 1 for the second move. Mappings eqzero` and
eqone` verify that the bit encoded in the residue class modulo p` is 0 or 1, respectively.

δ(qj , 0) = (qk, 0, L)

eqzeroi

flips+k+(i−2)|Q| ◦ flips+j+(i−1)|Q| ◦ eqones+j+(i−1)|Q|

δ(qj , 1) = (qk, 0, R)

flipi ◦ eqonei

flips+k+i|Q| ◦ flips+j+(i−1)|Q| ◦ eqones+j+(i−1)|Q|

Figure 2: An illustration of mappings corresponding to moves of LBA.

The crucial ingredient for the simulation is that the functions flipi, eqzeroi and
eqonei can be realised by polynomials with coefficients in {0, . . . , P − 1}. We present
the lemma of [16].

Lemma 2. For any 1 ≤ i ≤ m and any of flipi,eqzeroi,eqonei : S → S, there is
a quadratic polynomial with coefficients from {0, . . . , P − 1} that realises the respective
function.

Proof. First, we show the polynomials corresponding to the mappings flipi, eqzeroi
and eqonei that map the values correctly when considering only Z/piZ. Then we explain
how to modify them to also map the values correctly for all Z/pjZ, where j 6= i.

It is easy to verify that the polynomials

peqzero(x) = −x2 + 3x,

peqone(x) = x2 − 2x+ 2 and

pflip(x) = 3 · 2−1x2 − 5 · 2−1x+ 1

10



realise the respective mappings. Note that since pi ≥ 7, 2 has a multiplicative inverse. For
example, let pi = 11, then 2−1 = pi−1

2 = 6 and the evaluations of polynomials peqzero(x),
peqone(x) and pflip(x) are presented in Table 3.

x peqzero(x) peqone(x) pflip(x)
0 −02 + 3 · 0 ≡ 0 02 − 2 · 0 + 2 ≡ 2 3 · 6 · 02 − 5 · 6 · 0 + 1 ≡ 1
1 −12 + 3 · 1 ≡ 2 12 − 2 · 1 + 2 ≡ 1 3 · 6 · 12 − 5 · 6 · 1 + 1 = −11 ≡ 0
2 −22 + 3 · 2 ≡ 2 22 − 2 · 2 + 2 ≡ 2 3 · 6 · 22 − 5 · 6 · 2 + 1 = 13 ≡ 2

Table 3: Evaluations of polynomials peqzero(x), peqone(x) and pflip(x) in Z/11Z.

Although these polynomials realise the conditions of flipi, eqzeroi and eqonei for i,
they (generally) do not realise the conditions when j 6= i. That is, peqzero(x) 6= x when
considering the polynomials in Z/pjZ. To illustrate this, consider peqzero(1) as above, but
now with respect to pj = 7. By the definition of eqzeroi, it should remain unchanged,
that is peqzero(1) = 1 with respect to pj . This is not the case, as 1 and 2 are different
residue classes. To obtain polynomials corresponding to flipi, eqzeroi and eqonei, we
consider polynomials peqzero(x), peqone(x) and pflip(x) as a2x2 + a1x+ a0 and construct a
system of congruences for each ` = {0, 1, 2}:

x ≡ a` mod pi

x ≡ b` mod pj for each j ∈ {1, . . . ,m} \ {i},

where b1 = 1 and b0 = b2 = 0. By applying the Chinese remainder theorem, we obtain
the unique solution for each coefficient and obtain the polynomials peqzero,i(x), peqone,i(x)
and pflip,i(x) by replacing the original coefficients with these unique solutions.

Now, for each i ∈ {1, . . . ,m} and each transition δ(qj , a) = (qk, a
′, D), where a, a′ ∈

{0, 1} and D = {L,R}, there exists a polynomial of at most degree 32 realising this
transition by Lemma 2. These polynomials are included in our map in order to simulate
A. Note, that our simulation is slightly different from [16] as there, in each step, the
PRM guessed (and verified) the content of the cell where the head moves in the successive
configuration and only correct moves are available due to the state structure. In our
model, as there is no state structure, each time a move is simulated, we have to verify
that indeed both the state and current cell are correct. The initial value x0 satisfies

x0 ≡ 1 mod ps+1 and x0 ≡ 0 mod p` if ` 6= s+ 1.

The main idea is still the same, if A is simulated incorrectly, the value x becomes 2
modulo some prime p` and will remain 2 forever.

It should be also pointed out that simulating behaviour on the border of the tape
is easy and results in polynomials of at most degree 32. Moreover, the sequence of
configurations [qj , 1, .aw/] → [qk, 0, .bw/] → [qj , 1, .bw/] does not require any special
considerations as each polynomial contains eqones+j ensuring that this sort of loop
cannot be used to unfaithfully modify the first letter on the tape.

By induction on the length of the run of LBA A, it is easy to see that [q1, 0, .0
s/]→∗

[qf , 0, .0
s/] in A if and only if a residue class r, such that

r ≡ 1 mod ps+|Q| and r ≡ 0 mod p` if ` 6= s+ |Q|,
11



is reachable from x0 by applying polynomials from the constructed map. To reach 0, we
need three additional polynomials: one polynomial to move to a residue class r′ such that
r′ ≡ 0 mod p` for all 1 ≤ ` ≤ m, and two polynomials to move from the integer r′ to
0. The first polynomial is pflip,s+|Q|(peqone,s+|Q|(x)) as we assumed that the final state
appears only in the configuration [q|Q|, 0, .0

s/]. The latter polynomials are p+(x) = x+P
and p−(x) = x− P .

We have proved the following lemma:

Lemma 3. The reachability problem is PSPACE-hard for polynomial maps over Z[x].

We illustrate the simulation of an LBA with polynomials.

Example 4. Let A be an LBA with a single state, a tape with two cells and a move
δ(q1, 0) = (q1, 1, R). We need two primes for the tape and another two for the head. That
is, we use primes 7, 11, 13 and 17. For the sake of readability, we present all the integers
modulo P = 7 · 11 · 13 · 17 = 17017. The integers r and s representing configurations
[q1, 1, .00/] and [q1, 2, .10/] can be solved from the system of congruences

r ≡ 0 mod 7, s ≡ 1 mod 7

r ≡ 0 mod 11, s ≡ 0 mod 11,

r ≡ 1 mod 13, s ≡ 0 mod 13,

r ≡ 0 mod 17, s ≡ 1 mod 17

using the Chinese remainder theorem. That is, r = 3927 and s = 715. The move
δ(q1, 0) = (q1, 1, R) is realised by flip1 ◦eqzero1 ◦ flip4 ◦ flip3 ◦eqone3. By Lemma 2,
eqone3 is realised by a quadratic polynomial a′2x

2 + a′1x+ a′0 with coefficients satisfying
the congruences

a′2 ≡ 0 mod 7, a′1 ≡ 1 mod 7, a′0 ≡ 0 mod 7,

a′2 ≡ 0 mod 11, a′1 ≡ 1 mod 11, a′0 ≡ 0 mod 11,

a′2 ≡ 1 mod 13, a′1 ≡ −2 mod 13, a′0 ≡ 2 mod 13,

a′2 ≡ 0 mod 17, a′1 ≡ 1 mod 17, a′0 ≡ 0 mod 17.

Solving these systems using the Chinese remainder theorem, we see that peqone,3(x) =
3927x2 + 5237x + 7854. The other polynomials are solved from similar systems of
congruences and are

pflip,3 = 14399x2 + 11782x+ 3927, pflip,4 = 12012x2 + 6007x+ 8008,

peqzero,1 = 7293x2 + 2432x, pflip,1 = 14586x2 + x+ 9724.

Finally, the composition of the polynomials is p(x) = 11968x4 + 8041x3 + 9207x2 +
11056x+ 8569. It can be easily verified that p(x) simulates the move δ(q1, 0) = (q1, 1, R)
from the configuration [q1, 1, .00/] correctly, i.e., p(r) = s.

Note, that in the previous example, the polynomial composed of five quadratic
polynomials is not of degree 32 but only of degree four. This is the case in general
due to the coefficients of the polynomials satisfying the particular congruences. For
example, consider the composition of two quadratic polynomials pu,k(x) and pv,`(x),

12



where u, v ∈ {flip, eqone, eqzero}, k, ` ∈ {1, . . . ,m} and moreover, they have different
index, k 6= `. Let α, β be the coefficients of the highest power. They can be expressed as
integers

α = x ·
m∏
j=1,
j 6=k

pj and β = y ·
m∏
j=1,
j 6=`

pj ,

where x, y ∈ Z and k, ` ∈ {1, . . . ,m} and k 6= `. Now, in the composition of pu,k(x) and
pv,`(x), the coefficient of x4 is α · β, which is

α · β = x ·
m∏
j=1,
j 6=k

pj · y ·
m∏
j=1,
j 6=`

pj = xy ·
m∏
j=1,
j 6=k,`

pj ·
m∏
j=1

pj .

The coefficient is divisible by P and, thus, can be replaced by 0 in our considerations.
Moreover, a similar calculation shows that the coefficient of x3 is also divisible by P while
the coefficient of x2 is divisible by P

pkp`
. In order to show that this holds in general, that is,

when composing four or five polynomials, let us denote pu,i, where u ∈ {flip, eqone, eqzero}
and i ∈ {1, . . . ,m}. Note that that for each polynomial, the coefficient of quadratic and
constant terms are divisible by P

py
, where y is the respective index. Let us also fix the order

of compositions. We write compositions in the form (pflip,k◦pu,k◦pflip,j◦pflip,i◦peqone,i)(x),
where u ∈ {eqone, eqzero}, indexes i, j, k ∈ {1, . . . ,m}. The order can be interpreted
as first verifying that the automaton is in the correct state and position on the tape,
peqone,i then updating the state and position on the tape using the next two polynomials,
pflip,j , pflip,i. Finally, verifying that the content of the tape was correct using pflip,k

and rewriting it using pflip,k. Note that, the outermost polynomial is not present if the
simulated move does not rewrite the content of the tape. Also note that as described
before, the indexes i, j, k are not arbitrary but here we omit the details for the sake of
readability.

Since composition of polynomials is associative, we consider the composition (pflip,k ◦
(pu,k ◦ (pflip,j ◦pflip,i))◦peqone,i)(x). By the previous observation, the polynomial resulting
from the composition (pu,k ◦ (pflip,j ◦ pflip,i))(x) is quadratic with the coefficient of the
quadratic term being divisible by P

pkpjpi
. Let us denote it by b2x

2 + b1x+ b0. Let us then

compose peqone,i(x) = a2x
2 + a1x+ a0 with the above polynomial. That is, we compute

b2(a2x
2 + a1x+ a0)2 + b1(a2x

2 + a1x+ a0) + b0 = c4x
4 + c3x

3 + c2x
2 + c1x+ c0.

The resulting polynomial is quartic and the coefficients c4 and c3 are divisible by P
pi

.

Indeed, c4 = b2a2 and c3 = 2b2a2a1 and hence both are divisible by P
pi

. Let us denote

pflip,k = d2x
2 + d1x+ d0, where d2 is divisible by P

pk
. The final composition is

d2(c4x
4 + c3x

3 + c2x
2 + c1x+ c0)2 + d1(c4x

4 + c3x
3 + c2x

2 + c1x+ c0) + d0.

Observe now that the coefficients of terms x8, x7, x6 and x5 are c24d2, 2c3c4d2, (c23d2 +
2c2c4d2) and (2c2c3d2 + 2c1c4d2), respectively. All four coefficients are divisible by P as
both c4d2 and c3d2 are divisible by P .

Hence for the polynomial p(x) simulating a transition of A, all the coefficients of
degrees higher than four are divisible by P . Thus we have our claimed lower bound.
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Lemma 5. The reachability problem is PSPACE-hard for polynomial maps over QuartZ[x].

To prove that the reachability problem is PSPACE-complete for general one-dimensional
maps, it remains to prove that the problem can be solved in PSPACE.

Lemma 6. The reachability problem for polynomial maps over Z[x] is in PSPACE.

Proof. Consider the map as a PRM with a single state and where the transitions are
labelled by the polynomials of the map. The reachability problem for PRM can be solved
in PSPACE and thus also the reachability problem for polynomial maps is in PSPACE.

Combining lemmas 5 and 6, we have our main result of the section.

Theorem 7. The reachability problem for polynomial maps is PSPACE-complete.

Next, we extend the previous results by considering polynomials over the field Q.
Additionally, we modify the polynomials to ensure that the image is always in (0, 1].

Let p(x) be a polynomial from our map. Then the corresponding map of rational
functions Q has a function p′(x) = 1

p( 1
x )

. It is easy to see that in fact p′ is of the form

r(x)
q(x) for some r(x), q(x) ∈ Z[x]. We can inherit the lower bound for the reachability for

rational functions from Lemma 3.

Corollary 8. The reachability problem for rational function iteration is PSPACE-hard,

when the rational functions are of form r(x)
q(x) : [0, 1]→ [0, 1] over polynomial ring Q[x].

4. Reachability in maps over AffZ[~x]
3 and AffZ[~x]

2

In this section, we consider the reachability problem in multidimensional maps. We will
show undecidability for AffZ[~x]3 and PSPACE-hardness for AffZ[~x]2 when the coefficients of
the functions are integers. That is, in the three-dimensional variant, we are investigating
functions of the form 

x1 := a1x1 + a0

x2 := a′1x2 + a′0
x3 := a′′1x3 + a′′0

,

where ai, a
′
i, a
′′
i ∈ Z, and show that the reachability problem is undecidable by encoding

the PCP in the first two dimensions and using the third dimension to make sure that only
one word is constructed. It is important to note that the reachability problem in maps
over AffZ[~x]3 is undecidable only in the case where affine functions can be of the form
±x+ a0. As we will prove in the following section, the reachability problem is decidable
even for polynomials of any degree, as long as none is of the form ±x+ a0, i.e., for maps
over Z[~x]n \ AddZ for any n. Finally, we will consider two-dimensional maps, where the
polynomials are affine and show that the reachability problem is PSPACE-hard.

Note, that the undecidability of the reachability problem for three-dimensional poly-
nomial maps holds as it is straightforward to simulate a two-dimensional PRM with
affine updates with undecidable reachability problem [35] and use the third dimension to
simulate state transitions using the construction of the previous section.
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Figure 3: An illustration of the behaviour of the register. State ⊥ corresponds to register value being
other than 0 or 1.

Lemma 9. The reachability problem for multidimensional polynomial iteration is unde-
cidable for three-dimensional polynomials.

However, we prove a stronger result using a different reduction. Namely, that the
reachability problem is undecidable already for AffZ[~x]3.

Theorem 10. The reachability problem for maps over AffZ[~x]3 is undecidable with at
least np + 2 affine functions over Z. (Currently, np = 5.)

Proof. Let Σ = {a, b} be a binary alphabet and let P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆
Σ∗ × Σ∗ be an instance of the PCP. We define a set of three-dimensional affine functions
to simulate the PCP. We show that (0, 0, 1) is reachable from (0, 0, 0) if and only if the
PCP has a solution. We define sets consisting of three-dimensional affine functions for
every pair (ui, vi) ∈ P , where 1 ≤ i ≤ n.

F1 = {(3|ui|x1 + σ(ui), 3
|vi|x2 + σ(vi), 2x3) | 1 ≤ i ≤ n},

F2 = {(3|ui|x1 + σ(ui), 3
|vi|x2 + σ(vi), 2x3 + 1) | 1 ≤ i ≤ n},

F3 = {(x1 − 1, x2 − 1, 2x3 − 1)},

where σ is the embedding of Lemma 1, i.e., ternary representation of a binary word.
Consider the two configurations (0, 0, 0) and (0, 0, 1). We prove the undecidability of the

reachability problem in affine maps by showing that the configuration (0, 0, 1) is reachable
from the initial configuration (0, 0, 0) by applying affine functions in F = F1 ∪ F2 ∪ F3 if
and only if the PCP instance P has a solution.

First, we prove that a configuration (x, y, 1), for some x, y ∈ Z, is reachable from
(0, 0, 0) if and only if first functions from F1 are applied, then a function from F2, and
finally functions from F3 are applied. Observe first that affine functions in the third
components in the functions from F1, F2 and F3 have fixed points 0, −1 and 1, respectively.
Additionally, if x is not a fixed point of a function p(x) from some Fi, then |p(x)| > |x|.
Now it is easy to see that applying the functions in the claimed order results in third
component being 1. Indeed, first 0 is fixed by applying functions from F1, then it is
mapped to 2 · 0 + 1 = 1 by a function from F2, and finally is again fixed by functions
from F3. If the functions are applied in a different order, then, as the absolute value does
not decrease, value 1 cannot be reached. This is illustrated in Figure 3.

Now we are ready to prove that we can reach both zeros in the first and second
dimensions if and only if the PCP has a solution. It is possible to construct an identical
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pair of words by concatenating the pairs in the PCP instance P if and only if the PCP
has a solution. In other words, we can reach a configuration (y, y, 1) for some y ∈ N
by applying the functions in F1 and F2 if and only if we have a solution for the PCP
instance P . Then, it is easy to see that the target configuration (0, 0, 1) is reachable by
applying the only affine function in F3 if and only if the PCP has a solution. Recall that
the PCP is undecidable for np = 5 pairs [32]. Note that |F | = 2np + 1. To achieve the
claimed size of np + 2, we observe that since a function from F2 is applied only once, we
can consider a set

F ′2 = {(3|ui| · x1 + σ(ui), 3
|vi| · x2 + σ(vi), 2 · x3 + 1)},

for some 1 ≤ i ≤ n. Indeed, this intuitively corresponds to assuming without loss of
generality that the final pair in a potential solution is (ui, vi). It is easy to see that the
reachability problem is undecidable for F1 ∪F ′2 ∪F3 and there are np + 2 functions in the
set.

In the previous proof, a state structure was simulated by affine functions. It is possible
to generalise the construction of the affine polynomials enforcing a richer state structure.
A construction for arbitrary state structure is proven next. We use this result in upcoming
results of the paper to embed a state structure of an automaton into affine functions. It
will allow us to prove PSPACE-hardness of the reachability problem and undecidability of
the universality problem for maps over AffZ[~x]2.

Lemma 11. Let G = (V,E) be a directed graph with vertices v0, . . . , vm−1. There exists
a set of affine functions F such that for an edge (vi, vj) ∈ E, where 0 ≤ i, j ≤ m − 1,
there exists a unique fij ∈ F such that fij(i) = j and fij(x) /∈ [0,m− 1] for all x 6= i.

Proof. Let G = (V,E) be a graph with V = {v0, . . . , vm−1}. For each edge of G, we add
an affine polynomial of the form m · x+ b, for some b ∈ Z, to the map. The idea is for
integers in [0,m− 1] to represent each vertex and with the correct affine function, the
value of the register changes according to the graph. In the event of wrong affine function
being chosen, the coefficient m ensures that the resulting value of the register will be
either larger than m or less than zero. Further, in both cases, none of the subsequent
functions result in a value in [0,m− 1].

Let us formally define the affine polynomials. Let (vi, vj) ∈ E be an edge from vi to
vj (possibly i = j), the corresponding affine function fij(x) is such that fij(i) = j, that
is, fij(x) = m · x+ b = j, where b = j −m · i ∈ [−m2 +m,m− 1]. It is easy to see that
fij(i

′) ∈ Z \ [0,m− 1] for i′ 6= i. Indeed, fij(i
′) = m · i′ + j −m · i = m(i′ − i) + j and if

i′ > i, then m(i′ − i) + j > m, or if i′ < i, then m(i′ − i) + j < 0. Note that the previous
observation implies that there is no sequence of affine functions fi1j1 , . . . , fikjk ∈ F , where
i1 6= i, such that fikjk(fik−1jk−1

(· · · (fi1j1(i)) · · · ) = j.

Example 12. We illustrate Lemma 11. Let G = (V,E), where V = {v0, v1, v2} and
E = {(v0, v0), (v0, v1), (v1, v1), (v1, v2), (v2, v2), (v2, v0)}. The corresponding set of affine
functions is {3x− 6, 3x− 4, 3x− 2, 3x− 1, 3x, 3x+ 1} and the state structure they define
is depicted in Figure 4.

Observe that Lemma 11 gives us a correspondence between an edge in a graph and an
affine function. It is easy to see that there is a one-to-one correspondence between a path
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Figure 4: Graph G (left) and an illustration of the behaviour of the register in the corresponding affine
map (right). State ⊥ corresponds to register value being other than 0, 1, 2.

from vertex vi to vertex vj in the graph and a sequence of affine functions transforming i
into j. We can use Lemma 11 to embed a state structure into a one-dimensional affine map.
In the next theorem, we embed a one-dimensional ARM of [24] into a two-dimensional
map, where the functions are affine.

Theorem 13. The reachability problem for maps over AffZ[~x]2 is PSPACE-hard.

Proof. LetR = (Q,∆) be a one-dimensional ARM with PSPACE-hard reachability problem
constructed in [24]. Denote Q = {q0, . . . , qm−1}. For each transition (qi, p(x), qj) of R,
we add two-dimensional function (p(x),m · x+ j −m · i) to the map. It is clear that (0, k)
is reachable from (0, `) if and only if [q`, 0]→∗R [qk, 0]. That is, the reachability problem
for maps over AffZ[~x]2 is PSPACE-hard.

There are two main open problems for dimension two. Namely, are the reachability
problems for maps over AffZ[~x]2 or Z[~x]2 decidable?

5. Reachability in maps without additive updates

In this section, we consider a restricted class of maps over AffZ[x], in the sense that
every affine function in the map is not of the form ±x + a0. It is easy to see that the
reachability problem for maps over AffZ[x] is NP-hard as we can easily reduce the subset
sum problem (SSP) [26] to the reachability problem in maps. The NP-hardness proof relies
on the use of polynomials of the form x+ a0 that correspond to integers in the SSP. Then,
we can easily reduce the SSP with a target integer s to the reachability problem for maps
over AffZ[x] with a target s. If we further restrict ourselves to maps where all polynomials
are of the form ±x+ a0, then the reachability problem is NP-complete [10, 19]. However,
we do not have a tight complexity bound for the reachability problem for maps over
AffZ[x] to the best of our knowledge. The best upper bound we know of is the PSPACE

upper bound given by Finkel et al. [16] following from the PSPACE-completeness of the
reachability problem for one-dimensional PRMs.

We consider a dual setting, where all polynomials of the form ±x+ a0 are excluded,
i.e., maps over Z[~x]n \ AddZ. We will prove that the reachability problem for maps
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over Z[~x]n \ AddZ is in PSPACE for any dimension n. Then, we establish the PSPACE-
completeness for maps over AffZ[~x]n \ AddZ, when n is not fixed, by proving the hardness
via a reduction of the reachability problem for LBA. Note that Theorem 13 does not yield
a lower bound for maps over AffZ[~x]n \ AddZ as the ARM of [24] relies on affine updates
of the form ±x+ a0.

Let us first prove that the reachability problem for maps over AffZ[x] \ AddZ remains
NP-hard. That is, we give an alternative proof for NP-hardness of the reachability problem
for maps over AffZ[x] that does not rely on additive updates.

Lemma 14. The reachability problem for maps over AffZ[x] \ AddZ is NP-hard.

Proof. We shall reduce the SSP to the reachability problem for maps over AffZ[x] \ AddZ.
Let (S, s) be an instance of the SSP, where S = {s1, s2, . . . , sk} is a set of positive integers
and s is a target integer. Recall that the SSP is a well-known NP-hard problem, where
the task is to decide whether there exists any subset of S whose elements sum up to the
target integer s [26].

Let n > max(S) · k be an integer with representation of size polynomial in the input.
We define the set of affine functions as follows:

F = {n · x+ ni−1 · si | 1 ≤ i ≤ k} ∪ {n · x}.

Now we prove that the map reaches nk−1 · s from 0 if and only if the instance (S, s) has a
solution. Assume first that there exists a subset S′ ⊆ S such that

∑
x∈S′ x = s. Let us

go through S element by element, starting with s1. We apply n · x + ni−1 · si or n · x
depending on whether si ∈ S′ or not. Indeed, let {i1, . . . , im} ⊆ {1, . . . , k} be the set of
indexes in S′ in increasing order. Now the composition of functions is

nk−im(nim−im−1(· · · (ni2−i1(ni1 · 0 + ni1−1 · si1) + ni2−1 · si2) · · · ) + nim−1−1sim)

= nk−im(nim−im−1(· · · (ni2−1 · (si1 + si2)) · · · ) + nim−1−1sim)

= · · · = nk−im(nim−1(si1 + · · ·+ sim))

= nk−1(si1 + · · ·+ sim) = nk−1s.

Assume then that (S, s) has no solution and assume towards a contradiction that
the map reaches the integer nk−1 · s. Let f1(x), f2(x), . . . , fm(x) be a sequence of affine
functions applied to 0 that results in nk−1 · s. We can assume that f1(x) 6= n · x. Indeed,
otherwise f1(0) = n · 0 = 0 and we can consider the sequence f2(x), . . . , fm(x) instead.
Observe that m < k, since f1(0) = ni−1 · si for some i, and each subsequent function
multiplies this value by n. Hence, after k applications of the functions, the value is at
least nk · si. Further notice that at every intermediate step, the value is of the form n` · y
for some ` ∈ {0, . . . , k − 1} and 0 < y < n. Indeed, if after applying fj(x), the result is
n`1 · y1 + n`2 · y2, where `2 < `1 and 0 < y2 < n, then after applying the next function
fj+1(x), the result is n`1+1 · y1 + n`2+1 · y2 + ni−1 · si for some i, or n`1+1 · y1 + n`2+1 · y2.
In both cases the coefficients of the terms n`1+1 and n`2+1 are non-zero. Following this
reasoning, after applying the functions fj+2(x), . . . , fm(x), the integer reached will have
non-zero coefficients for terms n`1+m−j−1 and n`2+m−j−1. This is a contradiction as
we assumed that after applying the sequence of affine functions, the reached integer is
nk−1 · s. It follows that a function n · x+ ni−1 · si appears in the sequence at most once.
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Now we can extract si’s from the sequence and see that they form a solution for the
instance (S, s) of the SSP which is a contradiction.

Since the integer nk−1 · s is reachable in maps over AffZ[x] \ AddZ if and only if the
SSP instance (S, s) has a solution, we can conclude that the reachability problem for
AffZ[x] \ AddZ is also NP-hard.

Like the case of maps over AffZ[x], we know that the reachability problem for maps
over AffZ[x] \ AddZ is decidable in PSPACE and is NP-hard. However, unlike the general
case of affine maps where the problem becomes undecidable in higher dimensions, the
reachability problem for maps over AffZ[~x]n \ AddZ stays in PSPACE for any dimension.
The reachability problem remains in PSPACE even if we do not impose a limit on the
degree of polynomials, that is, for Z[~x]n \ AddZ.

Theorem 15. The reachability problem for maps over Z[~x]n\AddZ is decidable in PSPACE

for any n ≥ 1.

Proof. Consider first n = 1. We follow the reasoning of [16]. In Lemma 3 of [16], it was
proven that there exists a bound b ∈ N such that every polynomial p(x) ∈ Z[x] \ AddZ
is monotonically increasing or decreasing in Z \ [−b, b] and, moreover, |p(y)| ≥ 2|y| for
all y ∈ Z \ [−b, b]. Note that the size of the representation of b is polynomial in size of
the representation of the input. Namely, b = d(a+ 2), where d is the maximal degree of
polynomials in the map and a the largest absolute value of the coefficients of polynomials
in the map. The monotonicity follows from the fact that the first derivative of p(x) has
no roots outside [−b, b]. The inequality |p(y)| ≥ 2|y| holds for all y ∈ Z \ [−b, b] because
p(y) is monotonic and does not intersect lines ±2y when y is outside [−b, b]. The details
can be found in the Appendix of [16].

Let z be the target integer. If |z| ≤ b, we can decide whether the integer z is reachable
in PSPACE by applying the given functions since we can store the current value and the
computation path in space polynomial in b which again has representation of polynomial
size in the size of the input. If z is outside the interval [−b, b], due to the properties
of polynomials in Z[x] \ AddZ, do not need to consider the integers outside the interval
[−z, z]. Namely, because for every p(x) ∈ Z[x] \ AddZ, |p(y)| ≥ |y| for all y ∈ Z \ [−b, b],
once the map reaches an integer outside [−z, z], it can never reach an integer in [−z, z].
That is, still only polynomial space in size of the input is required.

The PSPACE upper bound holds even if we consider n-dimensional case since we
can maintain the information of the current computation for each dimension in space
polynomial in the input.

Corollary 16. The reachability problem for maps over AffZ[~x]n \ AddZ is decidable in
PSPACE for any n ≥ 1.

Next we show that by considering a larger domain, the undecidability for three-
dimensional maps remains, even without additive updates. That is, we prove that the
reachability problem is undecidable for maps over AffQ[~x]3 \AddQ, i.e., when the functions
are of the form a1x+ a0, where a1, a0 ∈ Q and a1 6= ±1.

Theorem 17. The reachability problem for rational maps over AffQ[~x]3 \ AddQ is unde-
cidable with at least 2np + 1 affine functions over Q. (Currently, np = 5.)
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dim.
type

AffZ[x] \ AddZ AffZ[x] AffQ[x] \ AddQ

1 NP-h. [19]/PSPACE [16]
NP-h./?

2 NP-h. [19]/?
3
...

NP-h./PSPACE

n PSPACE-c.
undecid. undecid.

Table 4: The differences of complexity results for affine polynomials depending on the underlying ring
with and without additive updates. The results of this section are highlighted in grey.

Proof. Again, we reduce the PCP to show the undecidability of the problem but in a
slightly different way.

Let P be an instance of the PCP with n elements over a binary alphabet. Let us
define sets consisting of three-dimensional affine functions for every pair (ui, vi) ∈ P ,
where 1 ≤ i ≤ n:

1. (3|ui| · x1 + σ(ui), (n+ 1) · x2 + i, 2 · x3) ∈ F1 for all 1 ≤ i ≤ n,

2. (3|ui| · x1 + σ(ui), (n+ 1) · x2 + i, 2 · x3 + 1) ∈ F2 for some 1 ≤ i ≤ n, and

3.

(
1

3|vi|
· (x1 − σ(vi)),

1

n+ 1
· (x2 − i), 2 · x3 − 1

)
∈ F3 for all 1 ≤ i ≤ n,

where σ is the embedding of Lemma 1. Observe, that F2 consists of a single affine
function. We implicitly use the same approach as in Theorem 10, to assume without loss
of generality that the pair (ui, vi) is used last in a solution of the PCP.

Observe that none of the affine functions is of the form ±x + a0, in contrast to
the functions in the proof of Theorem 10. The main idea is that we first construct a
word u′ = ui1ui2 · · ·uik−1

, where 1 ≤ ij ≤ n for all 1 ≤ j ≤ k−1, in the first dimension by
applying affine functions from F1, corresponding to the words from u1 to un. Then, as in
the proof of Theorem 10, we apply a function from F2 once, resulting in u = u′uik in the
first component. Next, we cancel out the constructed word by applying affine functions
that are multiplicative inverses of affine functions corresponding to the words from v1

to vn. Note that ui1ui2 · · ·uik = vi1vi2 · · · vik should hold due to the second dimension
where we force the sequences of indices of words to be matched. Hence, we see that the
configuration (0, 0, 1) can be reached from the initial configuration (0, 0, 0) if and only if
the PCP instance P has a solution.

Now we prove the PSPACE-hardness of the reachability problem for maps over AffZ[~x]n\
AddZ by reducing the reachability problem of LBA to it. Note that the dimension n is
not fixed.

Lemma 18. The reachability problem for maps over AffZ[~x]n \ AddZ is PSPACE-hard.

Proof. Let A = (Q,Γ, δ), where Q = {q0, . . . , qm−1}, be an LBA with PSPACE-hard
reachability problem. Recall that in the reachability problem for LBAs, we are asked
whether (q0,B0sC, 0) →∗A (qm−1,B0sC, 0) holds. We reduce this reachability problem
to the reachability problem for maps over AffZ[~x]s+1 \ AddZ. Let us define the set FA of
affine functions that simulate the computation of A.
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The main idea is that we store the tape content of the LBA A in the first s dimensions
of the affine map. Then, we maintain the information of the current state and the head
position in the final dimension using the construction of Lemma 11.

Let (qj ,BwC, i) be the current configuration ofA, where 0 ≤ j ≤ m−1 and 1 ≤ i ≤ |w|.
Denote w = w1w2 · · ·ws ∈ {0, 1}s. The corresponding register value in the affine map is
as follows:

(w1, w2, . . . , ws︸ ︷︷ ︸
s

, z),

where z corresponds to the head being in state qj in position i of the tape.
First, let us construct a state structure incorporating information on both state and

position of the head of A. That is, we construct a graph GA with vertices (q, i) ∈
Q× [1, s] and with edges ((q, i), (q′, i− 1)) if there is a transition (q, a, q′, b, L) ∈ δ, and
((q, i), (q′, i + 1)) if there is a transition (q, a, q′, b, R) ∈ δ, for any a, b ∈ Γ. Note that
GA does not take the tape content into account. By Lemma 11, the graph GA can be
simulated by affine functions. We omit details on the behaviour of A on the endmarkers
B and C. These transitions can be easily hardcoded into the graph.

Then, to simulate rewriting of the tape, we consider a graph GΓ with two vertices,
0 and 1, and edges are (0, 0), (0, 1), (1, 0) and (1, 1). Intuitively, vertex 0 corresponds
to the symbol being 0 and edge (0, 0) corresponds to the head not rewriting the symbol,
while (0, 1) means that the symbol was rewritten as 1. By Lemma 11, there exists a set
of affine functions simulating this behaviour.

We are now ready to combine the two sets of affine functions in order to simulate A.
Let us consider transition (qj1 , 0, qj2 , 1, L) ∈ δ and the current head position is i where
1 ≤ i ≤ s. This transition switches the state from qj1 to qj2 if the tape has 0 in the
current head position while writing 1 and moving the head position to the left. This
implies that in GA constructed previously, we need to take the edge ((qj1 , i), (qj2 , i− 1))
to successfully perform the transition. Further, in the ith dimension, we apply edge (0, 1)
of GΓ. Note that we apply the identity function in the other dimensions unless explicitly
mentioned. The affine function corresponding to (qj1 , 0, qj2 , 1, L) is

(x, . . . , x, 2x+ 1, x, . . . , x, a · x+ b),

where a · x+ b corresponds to the edge ((qj1 , i), (qj2 , i− 1)) in GA, and 2x+ 1 is in the
ith dimension. The transitions moving the head to right are defined analogously.

Since we have proved that every transition of A can be simulated by an affine
function, it is clear that if (q0,B0sC, 0) →∗A (qm−1,B0sC, 0) holds in A, then we can
reach the register in the affine map corresponding to (qm−1,B0sC, 0) from the register
corresponding to the initial configuration (q0,B0sC, 0) of A. Therefore, we have proved
that the reachability problem for maps over AffZ[~x]n \AddZ is PSPACE-hard for unbounded
n.

Based on Corollary 16 and Lemma 18, we have the following main result:

Theorem 19. If the dimension n is not fixed, the reachability problem for maps over
AffZ[~x]n \ AddZ is PSPACE-complete.

It is not difficult to see that the PSPACE-completeness holds for multidimensional
ARMs and PRMs without additive updates as well.
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Corollary 20. If the dimension n is not fixed, the reachability problem for n-ARMs and
n-PRMs, where the update polynomials are not of the form ±x+ a0, is PSPACE-complete.

Corollary 21. If the dimension n is not fixed, the reachability problem for maps over
Z[~x]n \ AddZ is PSPACE-complete.

We consider a sort of dual of Lemma 11 by investigating PRMs, where the state
structure is induced by affine functions. Let F ⊆ (AffZ[x] \ AddZ) × Z[x] and ~xf be
the target value of the register respectively. We first consider the first component and
proceed as in the proof of Theorem 15. That is, we find the interval [−b, b] where the
affine polynomials have non-trivial behaviour. Recall that the representation of b is of
polynomial size. It is defined as b = max(a + 2, |xf |), where a is the largest absolute
value of the coefficients of polynomials and xf is the first component of the target. We
construct a PRM with 2b + 2 states where the transitions are defined by the affine
functions. More precisely, the 2b+ 1 states correspond to integers in the interval [−b, b]
and one vertex ⊥ corresponds to integers outside the interval. As the integers are encoded
in binary, there are exponentially many integers in the interval. Let (f1, f2) be a function
in the map. For each x ∈ [−b, b], we add a transition (x, f2, f1(x)) if f1(x) ∈ [−b, b] and
(x, f2,⊥) otherwise. We also add transition (⊥, f2,⊥). There are exponentially many
states in the size of the input and hence the PRM requires exponential space. Since the
reachability problem for PRMs is in PSPACE, the reachability problem for maps over
(AffZ[x] \ AddZ)× Z[x] is in EXPSPACE.

Theorem 22. The reachability problem for maps over (AffZ[x] \ AddZ) × Z[x] is in
EXPSPACE.

We can present a stronger result. Namely, if we consider maps in higher dimensions
with the same restrictions that only one component is Z[x] and the other components do
not have polynomials in AddZ, then the reachability problem is in EXPSPACE. That is, for
maps (Z[~x]n \ AddZ)× Z[x]. Indeed, using the same approach, we construct a PRM with
states consisting of n components each corresponding to [−bi, bi], where i ∈ {1, . . . , n}
and each bound bi is defined as the before. Let us denote this set by B. Note that
the number of states is still exponential in the size of the input. Let f1, . . . , fn, p be
a function in the map. For every (x1, . . . , xn) ∈ B, then the PRM has a transition
((x1, . . . , xn), p, (f1(x1), . . . , fn(xn))) if (f1(x1), . . . , fn(xn)) ∈ B and ((x1, . . . , xn), p,⊥)
otherwise. Finally, by considering the reachability for PRMs, we obtain the following
theorem.

Theorem 23. The reachability problem for maps over (Z[~x]n \ AddZ) × Z[x] is in
EXPSPACE.

While this result seems rather artificial, it is the only decidability result, that we know
of, for multidimensional maps where all components are not restricted to Z[x] \ AddZ.

6. Maps over AffZ[~x]
2 as language acceptors

In this section, we extend our models to operate on words. Then it is natural to
consider the languages accepted by the maps. In this context, the reachability problems of
the previous sections can be seen as language emptiness problems. Indeed, the language
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accepted by a map is empty if and only if the final configuration is not reachable from
the initial configuration. The complementary problem to the emptiness problem is
the universality problem, where we are asked whether every word is accepted by the
computational model. We show that for maps over AffZ[~x]2 the universality problem is
undecidable. This contrasts the known results on the emptiness problem as we showed
that the emptiness problem is undecidable for maps over AffZ[~x]3 and NP-hard for maps
over AffZ[~x]2. The model is connected to blind counter automata and VAS languages that
have been extensively studied in the past [18, 25, 13].

In [4] the authors study the zeroness problem, which is essentially the universality
problem we consider in this section. The main difference is that our model is nondeter-
ministic, while in [4] the automaton is deterministic. The authors show that the zeroness
problem is Ackermann-complete3.

Let us define the language acceptors more precisely. Let G ⊆ (Σ ∪ {ε})× F , where
F ⊆ Z[~x]n is an n-dimensional polynomial map, ~x0 and ~xf the initial and target vectors,
respectively, and Σ is an alphabet. A word ai1ai2 · · · aik , where aij ∈ Σ∪ {ε}, is accepted
by G, i.e., is in L(G), if there exists π = ((ai1 , fi1), (ai2 , fi2), . . . , (aik , fik)) such that
fik(· · · fi2(fi1(~x0)) · · · ) = ~xf . In the universality problem, given G ⊆ Σ×F , we are asked
to decide whether L(G) = Σ∗ or not.

Before proving that the universality problem for maps over AffZ[~x]2 is undecidable, we
recall the definition of integer weighted automata of [20]. An integer weighted automaton
Aγ is an NFA with integer weights on the transitions. The automaton accepts word w if
on the accepting path reading w, the sum of weights encountered is zero. Note that the
automata of [20] were defined without final states, i.e., F = Q. The transitions of Aγ are
of the form (qi, a, qj , z), with which the automaton reads letter a ∈ Σ in state qi, changes
its state to qj and adds z to the weight, i.e., applies function f(x) = x+ z. In [20] it was
proven that it is undecidable whether L(Aγ) = Σ∗ for integer weighted automata with at
least four states.

Theorem 24. The universality problem for maps over AffZ[~x]2 is undecidable.

Proof. LetAγ be an integer weighted automaton over alphabet Σ for which the universality
problem is undecidable. Let m− 1 be the number of states of Aγ and let us enumerate
them as q0, . . . , qm−2 such that q0 is the initial state. To accept words in a unique
state, we introduce a new state qm−1 and transition (qi, a, qm−1, z) for each transition
(qi, a, qj , z) of Aγ . The idea is to encode Aγ into maps in such way that the second
dimension is used to simulate the state transitions of the automaton using Lemma 11.
Let (qi, a, qj , z) be a transition of Aγ . The corresponding two-dimensional affine function
is (a, (x1 + z,m · x2 + j −m · i)). Now, a word w ∈ Σ∗ is accepted by the map if and only
if the register values (0,m− 1) are reachable from (0, 0) while reading word w. It is clear
that the map accepts w if and only if the automaton accepts w. That is, it is undecidable
whether the map accepts every finite word.

In [20], the constructed integer weighted automaton has alphabet of size |Γ|+ |δ|+ 3,
where Γ is the tape alphabet and δ is the transition function of a Turing machine with
one-way infinite tape.

3Ackermann is a complexity class containing decision problems solvable in time bounded by Ackermann
function, which is computable but not primitive-recursive.
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We further investigate the properties of the reachability sets of different maps. Let us
first define a reachability set. Let F ⊆ Z[~x]n be a map over Z[~x]n and let ~x0 ∈ Zn be the
initial value. The reachability set of F is defined iteratively:

Reach0(F ) = {~x0},
Reachi(F ) = {f(~x) | ~x ∈ Reachi−1(F ), f ∈ F},

Reach(F ) =

∞⋃
i=0

Reachi(F ).

Next we show that the intersection non-emptiness problem is undecidable for AffZ[~x]2

using the PCP. That is, for F,G ⊆ AffZ[~x]2 whether Reach(F ) ∩ Reach(G) 6= ∅. The
idea is for F (resp. G) to construct ternary representation of words ui (resp. vi) in the
first dimension and the corresponding indices in the second. Then the intersection is
non-empty if and only if it possible to construct the same word, i.e., the PCP has a
solution.

Lemma 25. Let F and G be two-dimensional affine maps. It is undecidable whether the
intersection of the respective reachability sets is empty or not.

Proof. Let Σ = {a, b} and let P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ Σ∗ × Σ∗ be an
instance of the PCP. We construct two sets consisting of affine maps using the embedding
of Lemma 1:

F = {(3|ui| · x1 + σ(ui), (n+ 1) · x2 + i) | 1 ≤ i ≤ n},
G = {(3|vi| · x1 + σ(vi), (n+ 1) · x2 + i) | 1 ≤ i ≤ n}.

It is clear that Reach(F ) (resp. Reach(G)) consists of ternary representation of words ui
(resp. vi) in the first dimension and the corresponding indices in the second. Now the
intersection of Reach(F ) and Reach(G) is non-empty if and only if there exists a solution
to the PCP instance.

By modifying the proof idea of the previous lemma, we show that the language
intersection problem is also undecidable. The idea is to construct two maps each accepting
indices of one of the components of the PCP instance. Then the intersection of the
languages is non-empty if and only if there exists a sequence of indices such that both
maps store the same ternary representations.

Theorem 26. Let F,G ⊆ Σ×AffZ[~x]2 and ~x0F
, ~x0G

and ~xfF , ~xfG be the respective initial
and target values. It is undecidable whether the intersection of the respective languages is
empty, that is, whether L(F ) ∩ L(G) = ∅ holds or not.

Proof. Let Γ = {a, b} and let P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ Γ∗ × Γ∗ be an
instance of the PCP and let Σ = {1, . . . , n,#}, where # is a fresh symbol. We construct
the affine maps using the embedding of Lemma 1:

F = {(i, (3|ui| · x1 + σ(ui), 2x2)) | 1 ≤ i ≤ n}
∪ {#, (x1 − 1, 2x2 + 1)} ∪ {#, (x1 − 1, 2x2 − 1)},

G = {(i, (3|vi| · x1 + σ(vi), 2x2)) | 1 ≤ i ≤ n}
∪ {#, (x1 − 1, 2x2 + 1)} ∪ {#, (x1 − 1, 2x2 − 1)}.
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Again, the second dimension is used to enforce the correct order of functions. Let
~x0F

= ~x0G
= (0, 0) be the initial value and ~xfF = ~xfG = (0, 1) be the target value. It is

clear that L(F ) (resp. L(G)) consists of ternary representation of words ui (resp. vi) in
the first dimension followed by #∗. Now the intersection of L(F ) and L(G) is non-empty
if and only if there exists a word w ∈ Σ∗ such that w = w′#m, where w′ ∈ (Σ \ {#})∗ is
a sequence of indices of a solution to the PCP instance.

7. Conclusions

In this paper we studied the reachability problem for polynomial maps. We showed
differences in the complexities under various restrictions. Namely, we showed that if the
functions in the maps are restricted to affine polynomials, the problem is undecidable
already in dimension three. On the other hand, two-dimensional affine maps are PSPACE-
hard and no upper bound is known, while one-dimensional maps with quartic functions are
PSPACE-complete. Another limitation to the maps leads to decidability in any dimension.
If the maps do not contain functions of the form ±x+ a0, then the reachability problem
is NP-hard for a fixed dimension and if the dimension is not fixed, the problem is PSPACE-
hard. The reachability problem is in PSPACE regardless of the dimension. This does
not extend to larger rings as the reachability problem remains undecidable for three-
dimensional maps where the coefficients are rational numbers even when functions of the
form ±x+ a0 are excluded.

Furthermore, we extended the model to language acceptors and showed that, on top of
the above mentioned language emptiness results, the language universality is undecidable
starting from dimension two even for affine maps.

There remain several open questions regarding the maps we have considered. Most
notably, two-dimensional maps do not have upper bounds and there is a complexity gap
for one-dimensional maps with functions of degree at most three. We showed two ways to
encode state structure – one based on encoding the finite state space into residue classes
and using quartic polynomials to move between residue classes and another based on
encoding the finite state space as integers and moving between them using affine functions.
It would be interesting to apply the techniques to other computational models. There
is also a plethora of language-theoretic questions related to the model such as closure
properties of the languages, coverability and separability, as well as characterisations of
the languages.
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