
J. Leroux and J.-F. Raskin (Eds.): Tenth International Symposium

on Games, Automata, Logics, and Formal Verification (GandALF’19).

EPTCS 305, 2019, pp. 91–106, doi:10.4204/EPTCS.305.7

c© P.K. Pandya and A. Wakankar

This work is licensed under the

Creative Commons Attribution License.

Specification and Optimal Reactive Synthesis of Run-time

Enforcement Shields

Paritosh K. Pandya

Tata Institute of Fundamental Research
Mumbai 400005, India

pandya@tifr.res.in

Amol Wakankar

Homi Bhabha National Institute

Bhabha Atomic Research Centre
Mumbai 400085, India

amolk@barc.gov.in

A system with sporadic errors (SSE) is a controller which produces high quality output but it may

occasionally violate a critical requirement REQ(I,O). A run-time enforcement shield is a controller

which takes (I,O) (coming from SSE) as its input, and it produces a corrected output O′ which guar-

antees the invariance of requirement REQ(I,O′). Moreover, the output sequence O′ must deviate

from O “as little as possible” to maintain the quality. In this paper, we give a method for logical

specification of shields using formulas of logic Quantified Discrete Duration Calculus(QDDC). The

specification consists of a correctness requirement REQ as well as a hard deviation constraint HDC

which must both be mandatorily and invariantly satisfied by the shield. Moreover, we also use quan-

titative optimization to give a shield which minimizes the expected value of cumulative deviation in

an H-optimal fashion. We show how tool DCSynth implementing soft requirement guided synthesis

can be used for automatic synthesis of shields from a given specification. Next, we give logical for-

mulas specifying several notions of shields including the k-Stabilizing shield of Bloem et al. [2, 9]

as well as the Burst-error shield of Wu et al. [21], and a new e,d-shield. Shields can be automati-

cally synthesized for all these specifications using the tool DCSynth. We give experimental results

showing the performance of our shield synthesis tool in relation to previous work. We also compare

the performance of the shields synthesized under diverse hard deviation constraints in terms of their

expected deviation and the worst case burst-deviation latency.

1 Introduction

A system with sporadic errors (SSE) is a controller which produces high quality desirable output for

any given input but it may sporadically violate a critical system requirement REQ(I,O), where I and O

are the set of input and output propositions. Many manually designed controllers have this character, as

they embody designer’s unspecified optimizations, however they may have obscure design errors. A run-

time enforcement shield for a specified critical requirement REQ(I,O) is a controller (Mealy machine)

which receives both input and output (I,O) generated by SSE. The shield produces a modified output

O′ which is guaranteed to invariantly meet the critical requirement REQ(I,O′) (correct-by-construction).

Moreover, in each run, the shield output O′ must deviate from the SSE output O “as little as possible”,

to maintain the quality. This allows the shield to benefit from system designer’s optimizations without

having to formally specify these or to handle these in the synthesis. See Figure 2.

A central issue in designing run-time enforcement shields is the underlying notion of “deviating as

little as possible” from the SSE output. There are several different notions explored in the literature

[2, 9, 21, 20]. In their pioneering paper, Bloem et al. [2] proposed the notion of k-stabilizing shield

which may deviate for at most k cycles continuously under suitable assumptions. If assumptions are not

met the shield may deviate arbitrarily. This was proposed as a hard requirement which must be manda-

torily satisfied by the shield in any behaviour. We call such constraints as hard deviation constraints.

http://dx.doi.org/10.4204/EPTCS.305.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

92 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

Konighofer et al [9] have proposed some variants of the k-stabilizing shield requirement with and with-

out fail safe state, which are also hard deviation constraints. Specific shield synthesis algorithms have

been developed for each of these constraints.

As our first main contribution, we propose a logical specification notation for hard deviation con-

straints using the formulas of an interval temporal logic QDDC. This logic allows us to succinctly and

modularly specify regular properties [13, 11, 12]. With its counting constructs and interval based modal-

ities, it can be used to conveniently specify both the correctness requirement REQ(I,O) as well as the

hard deviation constraint HDC.

Criticizing the inability of k-stabilizing shields in handling burst errors, Wu et al. [21, 20] proposed a

burst-error shield which enforces the invariance of the correctness requirement, and it locally minimizes

the measure of deviation between SSE output O and the shield output O′, at each step. An algorithm for

the synthesis of such shields was given. We call such a shield as locally deviation minimizing.

In this paper, as our second main contribution, we generalize the Wu technique to minimize the cu-

mulative deviation more globally. An H-optimal shield which minimizes at each point the expected value

of cumulative deviation in next H-steps of shield execution is computed. The cumulative deviation is av-

eraged over all possible H length inputs to arrive at the optimal estimate. A well known value iteration

algorithm [1, 16] for optimal policy synthesis of Markov Decision Processes allows us to compute such

a shield. We call such a shield as H-optimally deviation minimizing. This is a powerful optimization and

in the paper we experimentally show its significant impact on performance of the shield. It may be noted

that Wu’s burst-error shield is obtained by selecting H = 0.

Finally, we propose a uniform method for synthesizing a run-time enforcement shield from given

logical specification (REQ,HDC) and a horizon value (natural number) H . The resulting shield invari-

antly meets the correctness requirement REQ as well as the hard deviation constraint HDC. Moreover,

the shield is H-optimally deviation minimizing. The shield synthesis is carried out by using the soft

requirement guided controller synthesis tool DCSynth [18]. This tool allows synthesis of H-optimal

controllers from specified hard and soft QDDC requirements.

Using the proposed formalism, in the paper, we formulate several diverse notions of shields. These

include a logical specification of Bloem’s k-stabilizing shield and Wu’s burst-error shield, as well as

a new notion of e,d-shield. A uniform synthesis method using the tool DCSynth can be applied to

obtain the corresponding run-time enforcement shields. It is notable that tool DCSynth uses an efficient

BDD-based semi-symbolic representation of automata/controllers with aggressive minimization. This

allows the tool to scale better and to produce smaller sized shields. In the paper, we give an experimental

evaluation of the performance of our DCSynth tool and compare it with some previously reported studies

in the literature.

With the ability to formulate shields with diverse hard deviation constraints, it is natural to ask for a

comparison of the performance of these shields. The performance must essentially measure the extent

of deviation of the shield output from the SSE output. Towards this, we propose two measures of the

shield performance.

• We compute the probability of deviation in long run. For this, we assume that the input to the

shield is fully random, with each input variable value chosen independently of the past and each

other. While simplistic, this does provide some indication of the shield’s effectiveness in average.

• We measure the worst case burst-deviation latency. This gives the maximum number of con-

secutive deviations possible in the worst case. (If unbounded, we report ∞). A model checking

technique implemented in a tool CTLDC [14] allows us to compute this worst case latency.

P.K. Pandya and A. Wakankar 93

Tool DCSynth provides facilities for the computation of each of these performance measures for a syn-

thesized shield. The reader may refer to the original papers on DCSynth [18, 15] for details of techniques

by which such performance can be measured. In this paper, we synthesize shields with different hard

deviation constraints and we provide a comparison of the performance of these shields. This allows us to

draw some preliminary conclusions. Clearly, much wider experimentation is needed for firmer insight.

The rest of the paper is organized as follows. Section 2.1 describes the syntax and semantics of the

logic QDDC. Section 2.3 gives the syntax of DCSynth specification and brief outline of the synthesis

method. Section 3 describes the various logical notions of shield specification. Section 4 describes

metrics to evaluate the shield performance and corresponding experimental results. In Section 5, we

conclude the paper with discussion and related work.

2 Preliminaries

We provide a brief overview of logic QDDC as well as the soft requirement guided H-optimal controller

synthesis method implemented in tool DCSynth. This method and tool is applied to the problem of

run-time enforcement shield synthesis in this paper. The reader may refer to the original paper [18] for

further details of these preliminaries.

2.1 Quantified Discrete Duration Calculus (QDDC) Logic

Let PV be a finite non-empty set of propositional variables. Let σ a non-empty finite word over the

alphabet 2PV . It has the form σ = P0 · · ·Pn where Pi ⊆ PV for each i ∈ {0, . . . ,n}. Let len(σ) = n+ 1,

dom(σ) = {0, . . . ,n}, σ [i, j] = Pi · · ·Pj and σ [i] = Pi.

The syntax of a propositional formula over variables PV is given by:

ϕ := f alse | true | p ∈ PV | !ϕ | ϕ && ϕ | ϕ || ϕ

with &&, ||, ! denoting conjunction, dis-junction and negation, respectively. Operators such as ⇒ and

⇔ are defined as usual. Let Ω(PV) be the set of all propositional formulas over variables PV . Let

i ∈ dom(σ). Then the satisfaction of propositional formula ϕ at point i, denoted σ , i |= ϕ is defined as

usual and omitted here for brevity.

The syntax of a QDDC formula over variables PV is given by:

D := 〈ϕ〉 | [ϕ] | [[ϕ]] | D ^ D | !D | D || D | D && D

ex p. D | all p. D | slen ⊲⊳ c | scount ϕ ⊲⊳ c | sdur ϕ ⊲⊳ c

where ϕ ∈ Ω(PV), p ∈ PV , c ∈ N and ⊲⊳∈ {<,≤,=,≥,>}.

An interval over a word σ is of the form [b,e] where b,e ∈ dom(σ) and b ≤ e. Let Intv(σ) be the set

of all intervals over σ . Let σ be a word over 2PV , let [b,e] ∈ Intv(σ) be an interval. Then the satisfaction

of a QDDC formula D written as σ , [b,e] |= D, is defined inductively as follows:

σ , [b,e] |= 〈ϕ〉 iff b = e and σ ,b |= ϕ ,

σ , [b,e] |= [ϕ] iff b < e and ∀b ≤ i < e : σ , i |= ϕ ,

σ , [b,e] |= [[ϕ]] iff ∀b ≤ i ≤ e : σ , i |= ϕ ,

σ , [b,e] |= D1^D2 iff ∃b ≤ i ≤ e : σ , [b, i] |= D1 and σ , [i,e] |= D2,

with Boolean combinations !D, D1 || D2 and D1 && D2 defined in the expected way. We call word

σ ′ a p-variant, p ∈ PV , of a word σ if ∀i ∈ dom(σ),∀q 6= p : q ∈ σ ′[i] ⇔ q ∈ σ [i]. Then σ , [b,e] |=
ex p. D iff σ ′, [b,e] |= D for some p-variant σ ′ of σ ; and (all p. D)⇔ (!ex p. !D).

94 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

p 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1

q 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

φuntil(3) 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Figure 1: Example behaviour for φuntil(3)

Entities slen , scount and sdur are called terms. The term slen gives the length of the interval in

which it is measured. Term scount ϕ , where ϕ ∈ Ω(PV), counts the number of positions including the

first and the last point in the interval under consideration where ϕ holds. Formally, for ϕ ∈ Ω(PV) we

have slen(σ , [b,e]) = e−b, and scount(σ ,ϕ , [b,e]) = ∑i=e
i=b

{

1, if σ , i |= ϕ ,

0, otherwise.

}

.

We also define the following derived constructs: pt = 〈true〉, ext =!pt, 〈〉DDD = true^D^true, [[[]]]DDD =
(!〈〉!D) and ppprrreee fff (((DDD))) =!((!D)^true). Thus, σ , [b,e] |= []D iff σ , [b′,e′] |= D for all sub-intervals b ≤
b′ ≤ e′ ≤ e and σ , [b,e] |= pref (D) iff σ , [b,e′] |= D for all prefix intervals b ≤ e′ ≤ e.

Finally, we define σ , i |= D iff σ , [0, i] |= D, and σ |= D iff σ , [0, len(σ)−1] |= D. Let L(D) = {σ |
σ |= D}, the set of behaviours accepted by D. Let D be valid, denoted |=dc D, iff L(D) = (2PV)+. Notice

that σ , i |= D denotes that the past of position i satisfies the formula D.

Example 1. We give an example QDDC formula over propositions {p,q,r} which specifies a typical

recurrent reach-avoid behaviour required in many control systems. Intuitively, the formula ϕuntil(n)
holds at a position i in the behaviour if, since the previous occurrence of r, the proposition p persists

till an occurrence of q. Moreover, q must occur within n time units from the last occurrence of r. For

example, here r may denote entering of enemy air-space, p may denote that the UAV is invisible and q

may denote that the target is reached. Let ϕ3 abbreviate ϕuntil(3). Figure 1 gives a possible behaviour σ
where the last row gives the value of σ , i |= ϕ3 for each position i.

• Until(p,q,n): ((slen<(n)) && [[p]]) ||
(((([p] || pt)^<q>) && slen<=n)^true).

The second disjunct holds for an interval [b,e] provided q occurs at a position b ≤ j ≤ e with

j ≤ b+n and p persists from b to j−1. E.g. in Figure 1, σ , [5,9] |= until(p,q,3) with j = 8. The

first disjunct holds for an interval [b,e] provided e− b < n and p holds throughout the interval.

E.g. σ , [11,12] |= until(p,q,3). Note that σ , [2,4] 6|= until(p,q,3).

• SinceLast(p,D): !(true^(<p>^((slen=1^[[!p]]) || pt) && !(D)))

This formula fails to hold at position i provided there is a previous (last) occurrence of p in the

past of i, at say position j ≤ i, and D does not hold for the interval [j, i].

• Let ϕuntil(n) be the QDDC formula SinceLast(r,(Until(p,q,n))).

Then, σ ,1 |= ϕ3 since there is no r at any position j ≤ 1. Also, σ ,9 |= ϕ3 as, since the previous

occurrence of r at position 5, the proposition p persists till 7 and q holds at 8 (with 8 ≤ 5+ 3).

Note also that σ ,12 |= ϕ3 since the previous r occurs at 12 (with 12 < 12+ 3) and σ , [12,12] |=
[[p]]. Finally, σ ,4 6|= ϕ3 as, since the previous r at position 4, neither does q occur in-between

nor do we have σ , [2,4] |= [[p]].

P.K. Pandya and A. Wakankar 95

Theorem 2. [13] For every formula D over variables PV we can construct a Deterministic Finite Au-

tomaton (DFA) A (D) over alphabet 2PV such that L(A (D)) = L(D). We call A (D) a formula automa-

ton for D or the monitor automaton for D.

A tool DCVALID implements this formula automaton construction in an efficient manner by inter-

nally using the tool MONA [8]. It gives minimal, deterministic automaton (DFA) for the formula D. We

omit the details here. However, the reader may refer to several papers on QDDC for detailed description

and examples of QDDC specifications as well as its model checking tool DCVALID [13, 11, 12].

In the rest of the paper we consider QDDC formulas and automata where variables PV = I ∪O are

partitioned into disjoint sets of input variables I and output variables O. Such a formula/automaton

specifies a relation between inputs and outputs.

For technical convenience, we define a notion of indicator variable for a QDDC formula (regular

property). The idea is that the indicator variable w witnesses the truth of a formula D at any point in

execution. Thus, Ind(D,w) = pre f (EP(w)⇔ D). Here, EP(w) = (true^〈w〉), i.e. in a behaviour σ and

a position i, we have σ , i |= EP(w) iff w ∈ σ [i]. If σ |= Ind(D,w) then for for any i, we have σ , i |= D

iff w ∈ σ [i]. Thus variable w is true exactly at those positions where the past of the position satisfies D.

These indicator variables can be used as auxiliary propositions in another formula using the notion of

cascade composition ≪ defined below.

Definition 3 (Cascade Composition). Let D1, . . . ,Dk be QDDC formulas over input-output variables

(I,O) and let W = {w1, . . . ,wk} be the corresponding set of fresh indicator variables i.e. (I∪O)∩W = /0.

Let D be a formula over variables (I ∪O∪W). Then, the cascade composition ≪ and its equivalent

QDDC formula are as follows:

D ≪ 〈Ind(D1,w1), . . . , Ind(Dk,wk)〉 = D∧
∧

1≤i≤k

pre f (EP(wi)⇔ Di)

This composition gives a formula over input-output variables (I,O∪W).

Cascade composition provides a useful ability to modularize a formula using auxiliary propositions

W which witness other regular properties given as QDDC formulas.

Example 4. Consider a formula D= (scount dev <= 3) which holds at a point provided the proposi-

tion dev is true at most 3 times in the entire past. Let formula D1= (true^<o 6= o’>) which holds at a

point provided that the values of propositions o and o’ differ at that position. Then, D≪ Ind(D1,dev)

is equivalent to the formula (scount dev <= 3) && pref(EP(dev) <=> D1). This formula holds

at a position i, provided D1 holds at most 3 time in the interval [0,i]. That is o 6=o’ for at-most 3

positions in the interval [0,i].

2.2 Supervisors and Controllers

Now we consider QDDC formulas and automata where variables PV = I∪O are partitioned into disjoint

sets of input variables I and output variables O. We show how Mealy machines can be represented as

special form of Deterministic finite automata (DFA). Supervisors and controllers are Mealy machines

with special properties. This representation allows us to use the MONA DFA library [8] to efficiently

compute supervisors and controllers in our tool DCSynth.

Definition 5 (Output-nondeterministic Mealy Machines). A total and Deterministic Finite Automaton

(DFA) over input-output alphabet Σ = 2I × 2O is a tuple A = (Q,Σ,s,δ ,F), as usual, with δ : Q× 2I ×
2O → Q. An output-nondeterministic Mealy machine is a DFA with a unique reject (or non-final) state

r which is a sink state i.e. F = Q−{r} and δ (r, i,o) = r for all i ∈ 2I , o ∈ 2O.

96 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

Intuition is that the transitions from q∈F to r are forbidden (and kept only for making the DFA total).

Language of any such Mealy machine is prefix-closed. Recall that for a Mealy machine, F = Q−{r}.

A Mealy machine is deterministic if ∀s ∈ F , ∀i ∈ 2I , ∃ at most one o ∈ 2O s.t. δ (s, i,o) 6= r. An output-

nondeterministic Mealy machine is called non-blocking if ∀s ∈ F , ∀i ∈ 2I ∃o ∈ 2I s.t. δ (s, i,o) ∈ F .

It follows that for all input sequences a non-blocking Mealy machine can produce one or more output

sequence without ever getting into the reject state.

For a Mealy machine M over variables (I,O), its language L(M) ⊆ (2I × 2O)∗. A word σ ∈ L(M)
can also be represented as pair (ii,oo) ∈ ((2I)∗,(2O)∗) such that σ [k] = ii[k]∪oo[k],∀k ∈ dom(σ). Here

σ , ii,oo must have the same length. We will not distinguish between σ and (ii,oo) in the rest of the

paper. Also, for any input sequence ii ∈ (2I)∗, we will define M[ii] = {oo | (ii,oo) ∈ L(M)}.

Definition 6 (Controllers and Supervisors). An output-nondeterministic Mealy machine which is non-

blocking is called a supervisor. A deterministic supervisor is called a controller.

The non-deterministic choice of outputs in a supervisor denotes unresolved decision. The determin-

ism ordering below allows supervisors to be refined into controllers.

Definition 7 (Determinism Order and Sub-supervisor). Given two supervisors Sup1,Sup2 we say that

Sup2 is more deterministic than Sup1, denoted Sup1 ≤det Sup2, iff L(Sup2)⊆ L(Sup1). We call Sup2 to

be a sub-supervisor of Sup1.

Note that being supervisors, they are both non-blocking, and hence /0 ⊂ Sup2[ii] ⊆ Sup1[ii] for any

ii ∈ (2I)∗. The supervisor Sup2 may make use of additional memory for resolving and pruning the

non-determinism in Sup1.

2.3 DCSynth Specification and Controller Synthesis

This section gives a brief overview of the soft requirement guided controller synthesis method from

QDDC formulas. The method is implemented in a tool DCSynth. (See [18] for details). This method

and the tool will be used for synthesis of run-time enforcement shields in the subsequent sections.

Definition 8. A supervisor Sup realizes invariance of QDDC formula D over variables (I,O), denoted

as Sup realizes AG (D), provided L(Sup) ⊆ L(D). Recall that, by the definition of supervisors, Sup

must be non-blocking. The supervisor Sup is called maximally permissive provided for any supervisor

Sup′ such that Sup′ realizes AG (D), we have Sup ≤det Sup′. Thus, no other supervisor with larger

languages realizes the invariance of D. This Sup is unique up to language equivalence of automata, and

the minimum state maximally permissive supervisor is denoted by MPS(D).

A well-known greatest fixed point algorithm for safety synthesis over A (D) gives us MPS(D) if it is

realizable. We omit the details here (see [18]).

Proposition 9 (MPS Monotonicity). Given QDDC formulas D1 and D2 over variables (I,O) such that

|= (D1 ⇒ D2), we have:

• MPS(D2)≤det MPS(D1), and

• If MPS(D1) is realizable then MPS(D2) is also realizable.

A DCSynth specification is a tuple (I,O,Dh,Ds) where I and O are the set of input and output vari-

ables, respectively. Formula Dh, called the hard requirement, and formula Ds, called the soft requirement,

are QDDC formulas over the set of propositions PV = I ∪O. The objective in DCSynth is to synthesize

a deterministic controller which (a) invariantly satisfies the hard requirement Dh, and (b) optimally

satisfies Ds for as many inputs as possible.

The controller synthesis goes through following three stages.

P.K. Pandya and A. Wakankar 97

1. The DCSynth specification (I,O,Dh,Ds) is said to be realizable iff MPS(Dh) is realizable (i.e.

it exist). The synthesis method first computes the maximally permissive supervisor MPS(Dh)
realizing invariance of Dh. When clear from context we will abbreviate this as MPS.

2. A sub-supervisor of MPS(Dh) which satisfies Ds for “as many inputs as possible” is computed.

This is formalized using a notion of H-optimality w.r.t. the soft requirement Ds. We explain

this only intuitively. The reader may refer to the original paper [18] for a formal definition of

H-optimality and the synthesis algorithm. Let H be a natural number called horizon. We construct

the maximally permissive sub-supervisor of MPS(Ds), called MPHOS(Dh,Ds,H), by pruning the

non-deterministic choice of outputs in MPS and retaining only the outputs which give the highest

expected count of (intermittent) occurrence of Ds over the next H steps of execution. This count

is averaged over all input sequences of length H . A well known value-iteration algorithm due to

Bellman [1], adapted from optimal strategy synthesis for Markov Decision Processes [16], gives

us the required H-optimal maximally permissive sub-supervisor. See the paper [18] for full de-

tails which are omitted here. Note that, by construction, MPS(Dh) ≤det MPHOS(Dh,Ds,H). By

Definition 7, all the behaviours of MPHOS will invariantly satisfy Dh and the MPHOS will be

H-optimal with respect to Ds. When clear from context, MPHOS(Dh,Ds,H) will be abbreviated

as MPHOS.

3. Both MPS(Dh) and MPHOS(Dh,Ds,H) are supervisors and they may be output-nondeterministic

as there can be several optimal outputs possible. Any controller obtained by arbitrarily resolving

the output non-determinism in MPHOS(Dh,Ds,H) will also be H-optimal. In tool DCSynth, we

allow users to specify a preference ordering Ord on the set of outputs 2O. Any supervisor Sup

can be determinized by retaining only the highest ordered output among those permitted by Sup.

This is denoted by DetOrd(Sup). In tool DCSynth, the output ordering is specified by giving a

lexicographically ordered list of output variable literals, as illustrated in Example 10 below. This

facility is used to determinize supervisors MPHOS(Dh,Ds,H) and MPS(Dh) as required. These

are denoted by Detord(MPHOS(Dh,Ds,H)) and DetOrd(MPS(Dh)).

Example 10. For a supervisor Sup over variables (I,{p,q}), an output ordering can be given as list

(!q > !p), Then, the determinization step will select the highest allowed output from the list (p =
f alse,q = f alse), (p = true,q = f alse), (p = f alse,q = true), (p = true,q = true) in that order. This

choice is made for each state and each input.

In summary, given a DCSynth specification (I,O,Dh,Ds), a horizon value H and a preference or-

dering ord on outputs 2O, the tool DCSynth outputs maximally permissive supervisors MPS(Dh) and

MPHOS(Dh,Ds,H) as well as controllers DetOrd(MPS(Dh)) and Detord(MPHOS(Dh,Ds,H)).

Extended DCSynth specification: DCSynth supports the specification of soft requirements as an or-

dered list of formulas with user defined weights. This feature is used in the synthesis of run-time en-

forcement shields. The extended DCSynth specification is a tuple S = (I,O,Dh,〈Ds
1 : θ1, · · · ,D

s
k : θk〉)

where I and O are sets of input and output variables respectively. The QDDC formula Dh, which is

over I ∪O, specifies the hard requirement on the controller to be synthesized. The soft requirement

〈Ds
1 : θ1, · · · ,D

s
k : θk〉 is a list where each Ds

i is a QDDC formula over I ∪O. θi ∈ N specifies the weight

of the soft requirement Ds
i . The weight (reward) of a transition is sum of weights of each of the formula

Ds
i which holds on taking the transition. The tool DCSynth produces a supervisor, which maximizes

the cumulative expected value of this reward over next H-steps of execution. This cumulative reward is

averaged over all input sequences of length H .

98 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

3 Specification and Synthesis of Run-time Enforcement Shields

Given a correctness requirement REQ(I,O) as a QDDC formula over input-output propositions (I,O),
a system with sporadic errors (SSE) may fail to meet the requirement at some of the points in a behaviour

(ii,oo). (The reader may recall Definition 5 and its following two paragraphs for the notation.) A run-

time enforcement shield is a Mealy machine with input variables I ∪O and output variable O′. See

Figure 2. For any input (ii,oo) the shield produces a modified output oo′ such that (ii,oo′) invariantly

satisfies the correctness requirement REQ(I,O′). Moreover, the output oo′ must deviate from the SSE

output oo as little as possible to maintain quality. There are several distinct notions of “deviating as little

as possible” leading to different shields.

I SSE

O

Shield
O′

Figure 2: Run-time Enforcement Shield.

In this section, we give a logical framework for specifying various shields by using the logic QDDC.

We then provide an automatic synthesis of a run-time enforcement shield from its logical specification

using the tool DCSynth of the previous section. Thus, we achieve a logical specification and a uniform

synthesis method for shields.

Deviation constraints specify the extent of allowed deviation in a shield’s behaviour. Our specifi-

cation has hard deviation constraint HDC which must be mandatorily and invariantly satisfied by the

shield. (This is similar to the hard requirement in DCSynth.) We also define a canonical soft deviation

constraint Hamming(O,O′) which will be useful in minimizing cumulative deviation during synthesis.

Overall, a shield specification consists of a pair (REQ,HDC).

3.1 Hard Deviation Constraints

Two indicator propositions, SSEOK and Deviation play an important role in formulating hard deviation

constraints. Proposition SSEOK indicates whether the SSE is meeting the requirement REQ(I,O) at the

current position. Proposition Deviation indicates whether at the current position, the shield output is

different from the SSE output. Recall that in DCSynth specifications, the formula Ind(D,w) defines a

fresh output proposition w which is true at a position provided the past of the position satisfies formula

D (see Definition 3). We use the following list of indicator definitions in formulating hard deviation

constraints. Let, O = {o1, . . . ,or} and O′ = {o′1, . . . ,o
′
r}.

INDDEF =

〈

Ind(REQ(I,O), SSEOK),
Ind(true^〈∨i(oi 6= o′i)〉, Deviation)

〉

A hard deviation constraint HDC is a QDDC formula over propositions SSEOK and Deviation. It

specifies a constraint on Deviation conditional upon the behaviour of SSEOK. In Subsection 3.4, we will

give a list of several different hard deviation constraints.

P.K. Pandya and A. Wakankar 99

For shield synthesis using DCSynth, we define the QDDC formula HShield given in Equation 1)

as the hard requirement over the input-output propositions (I ∪O,O′). Notice that in its formulation,

we use the cascade composition from Definition 3. This allows us to modularize the specification into

components REQ and HDC.

HShield = REQ(I,O′)∧HDC(SSEOK,Deviation)≪ INDDEF (1)

The constraint (QDDC formula) HShield must be invariantly satisfied by the shield. Tool DCSynth

gives us a maximally permissive supervisor MPS(HShield) with this property (See definition 8). This

supervisor can be termed as shield-supervisor without deviation minimization and it will be denoted by

MPS(REQ,HDC).

3.2 Soft Deviation Constraint

While HDC already places some constraints on the permitted deviation, we can further optimize the

deviation in supervisor MPS(REQ,HDC) of the previous section. Quantitative optimization techniques

from Markov Decision Processes can be used. (Stocasticity comes from the distribution of inputs to the

shield.) The tool DCSynth allows us to specify such optimization using a list of soft requirement formulas

with weights. The tool optimizes a supervisor to a sub-supervisor which maximizes the expected value

of cumulative weight of soft requirements over next H-steps. This cumulative weight is averaged over

all input sequences of length H . See Section 2.3 and [18] for further details.

We make use of this H-optimal sub-supervisor computation to get a sub-supervisor which mini-

mizes the expected cumulative deviation over next H-steps. Given the set of output propositions O =
{o1, . . . ,or}, consider the DCSynth soft-requirement

Hamming(O,O′) = 〈(true^〈o1 = o′1〉) : 1, . . . ,(true^〈or = o′r〉) : 1〉 (2)

Thus, non-deviation of any output variable oi = o′i at current position contributes a reward 1. This is

summed over all output variables to give weight (reward) of the soft requirement. Thus, the weight of

the soft requirement Hamming(O,O′) at any position k in a word (ii,oo,oo′) is the value (r− h) where

h is the hamming distance between oo[k] and oo′[k]. If oo and oo′ perfectly match at position k then the

weight at position k is r, whereas if oo and oo′ differ in values of say p variables at position k then the

weight at the position k is r− p.

By using Hamming(O,O′) as soft requirement and by selecting a horizon value H , we can apply the

tool DCSynth to obtain a sub-supervisor

MPHOS(MPS(REQ,HDC), Hamming(O,O′), H)

of the supervisor MPS(REQ,HDC). This sub-supervisor retains only the outputs which maximize the

expected accumulated weight of Hamming(O,O′) over next H steps in future. This supervisor is called

the shield-supervisor with deviation minimization and denoted by MPHOS(REQ,HDC,H).

3.3 Determinization

The reader must note that both the shield-supervisors MPS(REQ,HDC) and MPHOS(REQ,HDC,H)
are output non-deterministic. Multiple choice of outputs may satisfy the hard deviation constraints while

being H-optimal for the soft deviation constraint. Any arbitrary resolution of the output non-determinism

will preserve the invariance guarantees and H-optimality (see [18]).

100 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

In our method, we allow the user to specify a preference ordering ord on the shield outputs 2O′
. A

lexicographically ordered list of output literals is given as explained in Example 10. A deterministic

controller is obtained by retaining only the highest ordered output from the non-deterministic choice

of outputs offered by the supervisor. Thus, given a preference ordering ord we can obtain shields

(deterministic controllers) Detord(MPS(REQ,HDC)) and Detord(MPHOS(REQ,HDC,H)).

In summary, given a correctness requirement REQ(I,O) to be enforced by the shield, a hard devi-

ation constraint HDC(SSEOK,Deviation), a horizon value H (for globally minimizing the deviation

over next H steps) and a preference ordering ord on shield outputs 2O′
, we can synthesize shields

Detord(MPS(REQ,HDC)) and Detord(MPHOS(REQ,HDC,H)). When ord,REQ,HDC,H are clear

from context, these shields are referred to as Shield NoDM (shield with no deviation minimization)

and Shield DM (shield with deviation minimization), respectively.

3.4 Variety of Hard Deviation Constraints and Shield-Types

In Table 1 below, we give a useful list of several different hard deviation constraints (HDC) as QDDC

formulas. These include the specifications of the burst-error shield of Wu et al. and the k-stabilizing

shield of Bloem et al. as well as a new notion of e,d-shield. Labels V0 to V3 are used to identify these

specifications in the experiments. Each of these HDC can be used to synthesize shields with or without

deviation minimization as explained in the previous subsection.

Table 1: Variety of Hard Deviation Constraints

ShieldType HDC

V0 Burst-shield true

V1 k-shield []([[Deviation]]=>slen<k)

V2 k-stabilizing shield []([[SSEOK && Deviation]]=>slen<k) &&

([]((<!Deviation>^[[SSEOK]]) => [[!Deviation]]))

V3 e,d-shield []((scount !SSEOK <= e) => (scount Deviation <=d) &&

([]((<!Deviation>^[[SSEOK]]) => [[!Deviation]]))

We provide some explanation and comments on these specifications.

• The proposition SSEOK denotes that the SSE is not making correctness error where as proposition

Deviation denotes that the shield is deviating from the SSE output. The QDDC formula

([]((<!Deviation>^[[SSEOK]]) => [[!Deviation]])) states that in any observation

interval, if the interval begins with no deviation, and there is no error by SSE during the interval,

then there is no deviation throughout the interval. This property can be called NoSpuriousDeviation.

It is included as a conjunct in k-Shield V2 as well as e,d-Shield V3.

• Burst-shield (V0) does not enforce any hard deviation constraint. Thus, only hard requirement on

the synthesized shield is to meet REQ(I ∪O,O′) invariantly. However, we can use this together

with deviation minimization using the soft deviation constraint Hamming(O,O′). By taking hori-

zon H = 0, we obtain the burst sheild of Wu et al. [21] which locally optimizes deviation at each

step without any look-ahead into the future. Larger horizon values give superior shields which im-

prove the probability of non-deviation in long run, as shown by our experiments which are reported

later in this paper.

P.K. Pandya and A. Wakankar 101

• A k-shield (V1) specifies (as its hard deviation constraint) that for any observation interval the

deviation can invariantly happen for at most k cycles. Thus, a burst of deviation has length of at

most k cycles. The k-shield (V1) specifies that this property must hold unconditionally. Such a

specification is often unrealizable. For example, if SSE makes consecutive errors for more than k

cycles, the shield may be forced to deviate for all of these cycles. Hence, several variants of the V1

shield have been considered.

• The k-stabilizing shield (V2) specifies that the shield may deviate as long as SSE makes errors (even

burst errors). Once SSE recovers from deviation (indicated by SSEOK becoming and remaining

true), the shield may deviate for at most k cycles. Thus, the shield must recover from deviation

within k cycles once SSEOK is established and maintained. Also, there must be no spurious

deviation due to conjunct NoSpuriousDeviation. This specification precisely gives the k-stabilizing

shield without fail-safe state, originally defined by Konighofer et al. [9]. By a variation of this, the

k-stabilizing shield with fail-safe state [9] can also be specified but we omit this here.

• We define a new notion of shield called e,d-shield (V3). This states that in any observation interval

if the count of errors by SSE (given by the term (scount !SSEOK)) is at most e then the count of

number of cycles with deviations (given by the term (scount Deviation)) is at most d. Thus

e errors lead to at most d deviations. Also, there is no spurious deviation due to the conjunct

NoSpuriousDeviation.

It may be noted that irrespective of the shield type the synthesized shield have to meet the requirement

REQ(I,O′) invariantly as specified by the formula HShield (See Equation 1).

4 Performance Measurement Metrics and Experiments

In this section we give the experimental results for shield synthesis carried out in our framework. We

first benchmark the performance of our tool and compare it with some other tools for shield synthesis

in Section 4.1. In Section 4.2 we define some performance measurement metrics for shields and we use

these to compare various shield types.

4.1 Performance of Tool DCSynth in Shield Synthesis

We have synthesized Burst-shield V0 with deviation minimization using DCSynth for all the benchmark

examples given in [21]. The results are tabulated in Table 2. All our experiments were conducted on

Linux (Ubuntu 18.04) system with Intel i5 64 bit, 2.5 GHz processor and 4 GB memory. The formula

automata files of Wu et al.[19] were used in place of QDDC formulas for uniformity. For a comparision

with other tools, the results for the k-stabilizing shield synthesis and the Burst-error shield synthesis for

the same examples are reproduced directly from Wu et al. [21]. As these are for unknown hardware

setup, a direct comparison of the synthesis times with the DCSynth synthesis times is only indicative.

As the table suggests, in most of the cases, the shield synthesized by DCSynth compares favorably

with the results reported in literature [21], both in terms of the size of the shield and the time taken for the

synthesis. Recall that DCSynth uses aggressive minimization to obtain smaller shields. As an example,

for the specification AMBA G5+6+9e64+10, our tool synthesizes a shield significantly faster and with

smaller number of states than the existing tools[2, 21].

102 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

Table 2: Synthesis of Burst shield-V0 with Deviation Minimization optimization using DCSynth. For

each specification, the number of states of the resulting shield and time (in seconds) for synthesizing it

are reported. For comparision, results for k-stabilizing shield synthesis and Burst-error shield synthesis

are reproduced directly from Wu et al. [21].

Specification

k-Stabilizing shield Burst-error shield Burst shield V0 with DM

For H=0 For H=10

states time states time states time states time

Toyota Powertrain 38 0.2 38 0.3 9 0.07 9 0.35

Traffic light 7 0.1 7 0.2 4 0.008 4 0.059

F64 p 67 0.7 67 0.5 67 0.009 67 0.029

F256 p 259 46.9 259 10.5 259 0.08 259 0.09

F512 p 515 509.1 515 54.4 515 0.24 515 0.26

G(¬ q) ∨ F64(q ∧ F64 p) 67 0.8 67 0.6 67 0.015 67 0.06

G(¬ q) ∨ F256(q ∧ F256 p) 259 46.2 259 10.7 259 0.16 259 0.27

G(¬ q) ∨ F512(q ∧ F512 p) 515 571.7 515 54.5 515 0.77 515 0.91

G(q ∧ ¬ r → (¬ r ∪4 (p ∧ ¬ r))) 15 0.1 145 0.1 6 0.002 6 0.013

G(q ∧ ¬ r → (¬ r ∪8 (p ∧ ¬ r))) 109 0.2 5519 4.5 10 0.003 10 0.023

G(q ∧ ¬ r → (¬ r ∪12 (p ∧ ¬ r))) 753 6.3 27338 1414.5 14 0.009 14 0.03

AMBA G1+2+3 22 0.1 22 0.1 7 0.002 7 0.01

AMBA G1+2+4 61 6.3 78 2.2 8 0.2 8 1.69

AMBA G1+3+4 231 55.6 640 97.6 14 0.25 14 2.01

AMBA G1+2+3+5 370 191.8 1405 61.8 12 0.017 13 0.105

AMBA G1+2+4+5 101 3992.9 253 472.9 12 1.27 12 8.86

AMBA G4+5+6 252 117.9 205 26.4 18 0.86 18 7.99

AMBA G5+6+10 329 9.8 396 31.4 27 3.7 27 36.14

AMBA G5+6+9e4+10 455 17.6 804 42.1 46 5.58 46 52.96

AMBA G5+6+9e8+10 739 34.9 1349 86.8 64 7.44 64 70.73

AMBA G5+6+9e16+10 1293 74.7 2420 189.7 100 11.3 100 105.2

AMBA G5+6+9e64+10 4648 1080.8 9174 2182.5 316 37.17 316 202.52

AMBA G8+9e4+10 204 7.0 254 6.1 48 0.29 16 2.13

AMBA G8+9e8+10 422 22.5 685 33.7 84 0.55 20 3.49

AMBA G8+9e16+10 830 83.7 1736 103.1 156 1.02 28 6.32

AMBA G8+9e64+10 3278 2274.2 7859 2271.5 588 5.96 76 24.89

4.2 Comparison between various shield notions

For comparing the performance of shields synthesized with different shield types, we define the following

performance metrics.

Expected Value of Non-deviation of a Shield in Long run: A shield is said to be in a non-deviating

state if the shield output O′ matches the SSE output O. A proposition !Deviation holds for such states.

We measure the probability of shield being in such states over its long runs, as described below.

Given a shield S over input-output propositions ((I∪O),O′) and a QDDC formula (regular property)

D over variables I∪O∪O′, we construct a Discrete Time Markov Chain (DTMC), denoted as Muni f (S,D),
whose analysis allows us to measure the probability of D holding in long runs (steady state) of S under

independent and identically distributed (iid) inputs. This value is called the expected value of D holding

in a shield S and designated as Euni f (S,D).

The construction of the desired DTMC is as follows. The product S ×A (D) gives a finite state

automaton with the same behaviours as S. Moreover, it is in accepting state exactly when D holds for the

past behaviour. (Here A (D) works as a total deterministic monitor automaton for D without restricting

S). By assigning uniform discrete probabilities to all the inputs from any state, we obtain the DTMC

Muni f (S,D) along with a designated set of accepting states. The DTMC is in accepting state precisely

P.K. Pandya and A. Wakankar 103

when D holds. Standard techniques from Markov chain analysis allow us to compute the probability

(Expected value) of being in the set of accepting states on long runs (steady state) of the DTMC. This

gives us the desired value Euni f (S,D). A leading probabilistic model checking tool MRMC implements

this computation [7]. In DCSynth, we provide a facility to compute Muni f (S,D) in a format accepted by

the tool MRMC. Hence, using DCSynth and MRMC, we are able to compute Euni f (S,D).
The expected value of a shield S being in a non-deviating state over long runs can be computed as

Euni f (S,true^<!Deviation>).

Worst Case Burst-Deviation Latency: The worst case burst-deviation latency gives the maximum

number of consecutive cycles for which the shield deviates even when the SSE is satisfying the require-

ment. Thus, it denotes the maximum length of an interval in the behaviour of the shield for which the

formula “SSEOK && Deviation” holds invariantly.

Given a Shield S and a QDDC formula D, the latency goal MAXLEN(D,S) computes

sup{e−b | ρ , [b,e] |= D, ρ ∈ Exec(S)}

i. e. it computes the length of the longest interval satisfying D across all the executions of S. Thus, it

computes the worst case span of behaviour fragments matching D in S. Tool CTLDC [14] implements

a model checking technique for computing MAXLEN(D,S). The worst case burst deviation latency of

shield measures the maximum number of consecutive cycles having deviation in worst case. The worst

case burst-deviation latency of a shield S can be computed as MAXLEN([[SSEOK && Deviation]],S).

4.2.1 Experiments and Findings

We can use the expected value of deviation and the worst case burst-deviation latency, defined above,

for comparing the shields obtained using various shield-types defined in Section 3.4. We synthesized

various shields for the correctness requirement ϕuntil(n) given in Example 1 with n = 5 and the input-

output propositions ({r},{p,q}). The output propositions of synthesized shield are {p′,q′}. For each

shield type Vi given in Table 1, the deterministic shields Vi NoDM and Vi DM were synthesized as

outlined in the last paragraph of Section 3.3. Here Vi NoDM denotes shield synthesized without deviation

minimization where as Vi DM denotes the shield obtained with deviation minimization optimization. The

shield-supervisors were determinized with the preference ordering (!q′ >!p′) on outputs.

Table 3 gives the results obtained. We report the number of states of the shield along with the

time taken (in seconds) by the tool DCSynth to compute the shield. Moreover, for comparing the per-

formance of the resulting shields, their Expected Value of non-deviation as well as the worst case

burst-deviation latency are reported in the table under the columns titled Expected Value and Latency,

respectively.

It is observed that with deviation minimization optimization, several different shield types resulted in

identical shields, although the time to synthesize them differed. For example, shields in rows numbered

10 to 15 are identical. We indicate such a situation by merging the corresponding rows to a single cell.

We give our findings below.

• The k-shield (V1) is unrealizable as expected. See its description in Section 3.4 for an explanation.

All the other shield types are found to be realizable.

• For shield synthesis without deviation minimization, we obtain distinct shields with distinct per-

formance for each shield type. The Burst shield (V0) has the poorest performance (expected non-

deviation 0.25 and latency ∞) as it enforces trivial hard deviation requirement true. The best

104 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

Table 3: Shield Synthesis for the formula ϕuntil(5) of Example 1 with various shield types defined in

Table 1 and their Performance comparison. The expected value of non-deviation in long run and the

worst case burst-deviation latency are reported.

Sr. No. Shield Type States Time Expected Value Latency

Shield Synthesis of Requirement ϕuntil(5) Without Deviation Minimization

1. V0 NoDM 18 0.004 0.25 ∞

2. V1 NoDM(k=1) Unrealizable

3. V2 NoDM(k=1) 14 0.004 0.7142793 1

4. V1 NoDM(k=3) Unrealizable

5. V2 NoDM(k=3) 18 0.009 0.5982051 3

6. V3 NoDM(e=1,d=1) 13 0.001 0.7499943 0

7. V3 NoDM(e=1,d=2) 26 0.005 0.7182475 1

8. V3 NoDM(e=1,d=3) 40 0.008 0.6614611 2

Shield Synthesis of Requirement ϕuntil(5) With Deviation Minimization

9. V1 DM(k=1) Unrealizable

10. V0 DM(H=0)

13

0.003

0.833252 0

11. V2 DM(k=1)(H=0) 0.005

12. V2 DM(k=3)(H=0) 0.006

13. V3 DM(e=1,d=1)(H=0) 0.004

14. V3 DM(e=1,d=2)(H=0) 0.005

15. V3 DM(e=1,d=3)(H=0) 0.004

16. V0 DM(H=10)

8

0.016

0.8571396 0

17. V2 DM(k=1)(H=10) 0.01

18. V2 DM(k=3)(H=10) 0.009

19. V3 DM(e=1,d=1)(H=10) 0.008

20. V3 DM(e=1,d=2)(H=10) 0.012

21. V3 DM(e=1,d=3)(H=10) 0.013

performance is obtained for the newly defined e,d-shield type V3 by choosing e = d. This gives

0.74 as the expected value of non-deviation and worst case latency of 0 cycles. With increased

difference d − e the performance degrades. Similarly in k-stabilizing shield (V2) the performance

degrades with increase in the value of k, as expected.

• The performance of the shield considerably improves with the deviation minimization (DM) opti-

mization. Expected value of 0.85 compares well against the best value of 0.74 without deviation

minimization. Also burst-deviation latency drops to 0 with DM. We also notice that the perfor-

mance improves with increase in the horizon value when using DM. This is intuitively clear as

the tool performs global optimization across larger number of steps of look-ahead with increased

horizon.

• For shield synthesis with deviation minimization optimization, all the different shield types V0,V2,V3

resulted in identical shield for a given value of horizon H . Thus shields in rows 10-15 (synthesized

with H = 0) and rows 16-21 (synthesized with H = 10) are found to be identical. This shows that

deviation minimization effectively supersedes the different hard deviation guarantees provided by

P.K. Pandya and A. Wakankar 105

the HDC. While this is not theoretically guaranteed, our experience with robust controller synthe-

sis also indicates the overwhelming effectiveness of the DM-like optimization [15].

5 Discussion and Related Work

In this paper we have presented a logical framework for specifying error-correcting run-time enforce-

ment shields using formulas of logic QDDC. The specification contains a correctness requirement REQ,

specifying the desired input-output relation to be maintained, as well as a hard deviation constraint HDC

which specifies a constraint on deviation between the system output and the shield output. Our shield

synthesis gives a shield which invariantly satisfies both REQ and HDC. Moreover, a powerful optimiza-

tion globally minimizes the cumulative deviation between the system and the shield output.

The idea of error-correcting run-time enforcement shield was proposed in the pioneering work of

Bloem et al. [2], where the notion of k-stabilizing shield (with a synthesis algorithm) was proposed. This

was further enhanced by Konighofer et al. [9]. Extension of shield synthesis to liveness properties has

also been explored in this paper. Wu et al. [21, 20] defined the burst shield which is capable of handling

burst errors. Moreover, they proposed optimizing the shield with the choice of output which locally

minimizes the deviation at each stage. In this paper, we have enhanced this with global optimization of

cumulative deviation across next H steps.

In our method, the shield is logically specified using QDDC formulas and a uniform method for the

synthesis of the shield is proposed. A tool DCSynth implements the synthesis method. Logic QDDC

[13, 12, 11] with its interval logic modalities, threshold counting constraints, regular expression like

constructs and second-order quantification over temporal variables provides a very rich vocabulary to

specify both the system requirements and the deviation constraints. Logic QDDC is a discrete time

version of Duration Calculus proposed by Zhou, Hoare and Ravn [5, 4] with known automata theoretic

decision and model checking procedures [13, 3, 17, 10]. Using the proposed technique, we have specified

the k-stabilizing shield of Konighofer et al. [9], the burst shield of Wu et al. [21, 20], as well as a new e,d-

shield. Moreover, we have measured the performance of the shields resulting from these different criteria

in terms of the expected value of deviation in long runs, as well as the worst case burst deviation latency.

Our experiments show an overwhelming impact of global deviation minimization on the quality of the

shield. At the same time, hard deviation constraints provide a conditional hard guarantee on the worst

case deviation. Hence, the combination of hard deviation constraint together with global minimization

of deviation is useful.

Konighofer et al. [9] as well as Ehlers and Topku [6] propose controller/shield synthesis technique

for optimal achievable value of parameter k in a regular specification. By contrast, our current method

requires k to be specified. In our future work, we will address similar optimal parametric synthesis from

parameterized QDDC specifications.

References

[1] R. E. Bellman (1957): Dynamic Programming. Princeton Univ. Press.

[2] Roderick Bloem, Bettina Könighofer, Robert Könighofer & Chao Wang (2015): Shield Synthesis: - Runtime

Enforcement for Reactive Systems. In Christel Baier, editor: TACAS, LNCS 9035, Springer, pp. 533–548,

doi:10.1007/978-3-662-46681-0_51.

http://dx.doi.org/10.1007/978-3-662-46681-0_51

106 Specification and Optimal Reactive Synthesis of Run-time Enforcement Shields

[3] Gaurav Chakravorty & Paritosh K. Pandya (2003): Digitizing Interval Duration Logic. In Warren A. Hunt

& Fabio Somenzi, editors: CAV, LNCS 2725, Springer, pp. 167–179, doi:10.1007/978-3-540-45069-6_

17.

[4] Zhou Chaochen & Michael R. Hansen (2004): Duration Calculus - A Formal Approach to Real-Time

Systems. Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/

978-3-662-06784-0.

[5] Zhou Chaochen, C. A. R. Hoare & A. P. Ravn (1991): A Calculus of Durations. Inf. Process. Lett. 40(5), pp.

269–276, doi:10.1016/0020-0190(91)90122-X.

[6] Rüdiger Ehlers & Ufuk Topcu (2014): Resilience to Intermittent Assumption Violations in Reactive Synthesis.

In: HSCC, HSCC ’14, ACM, New York, NY, USA, pp. 203–212, doi:10.1145/2562059.2562128.

[7] J. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns & D. N. Jansen (2011): The ins and outs of the proba-

bilistic model checker MRMC. Performance Evaluation 68, pp. 89–220, doi:10.1016/j.peva.2010.04.

001. Available at http://www.sciencedirect.com/science/article/pii/S0166531610000660.

[8] N. Klarlund, A. Møller & M. I. Schwartzbach (2001): MONA Implementation Secrets 2088, pp. 182–194.

doi:10.1007/3-540-44674-5_15.

[9] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura Humphrey, Robert Könighofer,

Ufuk Topcu & Chao Wang (2017): Shield synthesis. FMSD 51(2), pp. 332–361, doi:10.1007/

s10703-017-0276-9.

[10] Shankara Narayanan Krishna & Paritosh K. Pandya (2005): Modal Strength Reduction in Quantified Discrete

Duration Calculus. In: FSTTCS, LNCS 3821, Springer, pp. 444–456, doi:10.1007/11590156_36.

[11] Raj Mohan Matteplackel, Paritosh K. Pandya & Amol Wakankar (2017): Formalizing Timing Diagram Re-

quirements in Discrete Duration Calculus. In: SEFM 2017, LNCS 10469, Springer International Publishing,

pp. 253–268, doi:10.1007/978-3-319-66197-1_16.

[12] Paritosh K. Pandya (2001): Model Checking CTL*[DC]. In: TACAS, LNCS 2031, Springer, pp. 559–573,

doi:10.1007/3-540-45319-9_38.

[13] Paritosh K. Pandya (2001): Specifying and deciding quantified discrete-time duration calculus formulae

using DCVALID. In: RTTOOLS (affiliated with CONCUR 2001), CiteSeer.

[14] Paritosh K. Pandya (2005): Finding Extremal Models of Discrete Duration Calculus formulae using

Symbolic Search. Electronic Notes in Theoretical Computer Science 128(6), pp. 247 – 262, doi:10.

1016/j.entcs.2005.04.015. Available at http://www.sciencedirect.com/science/article/

pii/S1571066105002471. AVoCS 2004.

[15] Paritosh K. Pandya & Amol Wakankar (2019): Specification and Reactive Synthesis of Robust Controllers.

CoRR abs/1905.11157. Available at http://arxiv.org/abs/1905.11157.

[16] Martin L. Puterman (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st

edition. John Wiley & Sons, Inc., New York, NY, USA, doi:10.1002/9780470316887.

[17] Babita Sharma, Paritosh K. Pandya & Supratik Chakraborty (2005): Bounded Validity Checking of Interval

Duration Logic. In: TACAS, LNCS 3440, Springer, pp. 301–316, doi:10.1007/978-3-540-31980-1_20.

[18] Amol Wakankar, Paritosh K. Pandya & Raj Mohan Matteplackel (2019): DCSYNTH: A Tool for Guided Re-

active Synthesis with Soft Requirements, (To Appear in Proc. VSTTE 2019). CoRR abs/1903.03991. Available

at http://arxiv.org/abs/1903.03991.

[19] Meng Wu (2016): iShield2 Synthesizer. https://bitbucket.org/mengwu/shield-synthesis/. Available at

https://bitbucket.org/mengwu/shield-synthesis/.

[20] Meng Wu, H. Zeng, C. Wang & H. Yu (2017): INVITED: Safety guard: Runtime enforcement for safety-

critical cyber-physical systems. In: DAC, ACM, pp. 1–6, doi:10.1145/3061639.3072957.

[21] Meng Wu, Haibo Zeng & Chao Wang (2016): Synthesizing Runtime Enforcer of Safety Properties Under

Burst Error. In Sanjai Rayadurgam & Oksana Tkachuk, editors: NFM, LNCS 9690, Springer, pp. 65–81,

doi:10.1007/978-3-319-40648-0_6.

http://dx.doi.org/10.1007/978-3-540-45069-6_17
http://dx.doi.org/10.1007/978-3-540-45069-6_17
http://dx.doi.org/10.1007/978-3-662-06784-0
http://dx.doi.org/10.1007/978-3-662-06784-0
http://dx.doi.org/10.1016/0020-0190(91)90122-X
http://dx.doi.org/10.1145/2562059.2562128
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://www.sciencedirect.com/science/article/pii/S0166531610000660
http://dx.doi.org/10.1007/3-540-44674-5_15
http://dx.doi.org/10.1007/s10703-017-0276-9
http://dx.doi.org/10.1007/s10703-017-0276-9
http://dx.doi.org/10.1007/11590156_36
http://dx.doi.org/10.1007/978-3-319-66197-1_16
http://dx.doi.org/10.1007/3-540-45319-9_38
http://dx.doi.org/10.1016/j.entcs.2005.04.015
http://dx.doi.org/10.1016/j.entcs.2005.04.015
http://www.sciencedirect.com/science/article/pii/S1571066105002471
http://www.sciencedirect.com/science/article/pii/S1571066105002471
http://arxiv.org/abs/1905.11157
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1007/978-3-540-31980-1_20
http://arxiv.org/abs/1903.03991
https://bitbucket.org/mengwu/shield-synthesis/
http://dx.doi.org/10.1145/3061639.3072957
http://dx.doi.org/10.1007/978-3-319-40648-0_6

	1 Introduction
	2 Preliminaries
	2.1 Quantified Discrete Duration Calculus (QDDC) Logic
	2.2 Supervisors and Controllers
	2.3 DCSynth Specification and Controller Synthesis

	3 Specification and Synthesis of Run-time Enforcement Shields
	3.1 Hard Deviation Constraints
	3.2 Soft Deviation Constraint
	3.3 Determinization
	3.4 Variety of Hard Deviation Constraints and Shield-Types

	4 Performance Measurement Metrics and Experiments
	4.1 Performance of Tool DCSynth in Shield Synthesis
	4.2 Comparison between various shield notions
	4.2.1 Experiments and Findings

	5 Discussion and Related Work

