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Abstract
We continue and extend previous work on the parameterized complexity analysis of the NP-hard
Stable Roommates with Ties and Incomplete Lists problem, thereby strengthening earlier
results both on the side of parameterized hardness as well as on the side of fixed-parameter tractability.
Other than for its famous sister problem Stable Marriage which focuses on a bipartite scenario,
Stable Roommates with Incomplete Lists allows for arbitrary acceptability graphs whose edges
specify the possible matchings of each two agents (agents are represented by graph vertices). Herein,
incomplete lists and ties reflect the fact that in realistic application scenarios the agents cannot bring
all other agents into a linear order. Among our main contributions is to show that it is W[1]-hard
to compute a maximum-cardinality stable matching for acceptability graphs of bounded treedepth,
bounded tree-cut width, and bounded feedback vertex number (these are each time the respective
parameters). However, if we “only” ask for perfect stable matchings or the mere existence of a stable
matching, then we obtain fixed-parameter tractability with respect to tree-cut width but not with
respect to treedepth. On the positive side, we also provide fixed-parameter tractability results for
the parameter feedback edge set number.
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44:2 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

1 Introduction

The computation of stable matchings is a core topic in the intersection of algorithm design
and theory, algorithmic game theory, and computational social choice. It has numerous
applications – the research goes back to the 1960s. The classic (and most prominent from
introductory textbooks) problem Stable Marriage, which is known to be solvable in linear
time, relies on complete bipartite graphs for the modeling with the two sides representing
the same number of “men” and “women”. Herein, each side expresses preferences (linear
orderings aka rankings) over the opposite sex. Informally, stability then means that no two
matched agents have reason to break up. Stable Roommates, however, is not restricted
to a bipartite setting: given is a set V of agents together with a preference list Pv for
every agent v ∈ V , where a preference list Pv is a strict (linear) order on V \ {v}. The
task is to find a stable matching, that is, a set of pairs of agents such that each agent is
contained in at most one pair and there is no blocking edge (i.e., a pair of agents who strictly
prefer their mates in this pair to their partners in the matching; naturally, we assume that
agents prefer to be matched over being unmatched). Such a matching can be computed in
polynomial time [18]. We refer the reader to the monographs [16, 25] for a general discussion
on Stable Roommates. Recent practical applications of Stable Roommates and its
variations also to be studied here range from kidney exchange to connections in peer-to-peer
networks [10, 33, 34].

If the preference lists Pv for all agents v are complete, then the graph-theoretic model
behind is trivial – a complete graph reflects that every agent ranks all other agents. In the
more realistic scenario that an agent may only rank part of all other agents, the corresponding
graph, referred to as acceptability graph, is no longer a complete graph but can have an
arbitrary structure. We assume that the acceptability is symmetric, that is, if an agent v finds
an agent u acceptable, then also agent u finds v acceptable. Moreover, to make the modeling
of real-world scenarios more flexible and realistic, one also allows ties in the preference lists
(rankings) of the agents, meaning that tied agents are considered equally good. Unfortunately,
once allowing ties in the preferences, Stable Roommates already becomes NP-hard [24, 32],
indeed this is true even if each agent finds at most three other agents acceptable [7]. Hence,
in recent works specific (parameterized) complexity aspects of Stable Roommates with
Ties and Incomplete Lists (SRTI) have been investigated [1, 3, 5]. In particular, while
Bredereck et al. [3] studied restrictions on the structure of the preference lists, Adil et
al. [1] initiated the study of structural restrictions of the underlying acceptability graph,
including the parameter treewidth of the acceptability graph. We continue Adil et al.’s line of
research by systematically studying three variants (“maximum”, “perfect”, “existence”) and
by extending significantly the range of graph parameters under study, thus gaining a fairly
comprehensive picture of the parameterized complexity landscape of Stable Roommates
with Ties and Incomplete Lists.

Notably, while previous work [1, 15] argued for the (also practical) relevance for studying
the structural parameters treewidth and vertex cover number, our work extends this to
further structural parameters that are either stronger than vertex cover number or yield
more positive algorithmic results than possible for treewidth. We study the arguably most
natural optimization version of Stable Roommates with ties and incomplete lists, referred
to as Max-SRTI:

Input: A set V of agents and a profile P = (Pv)v∈V .
Task: Find a maximum-cardinality stable matching or decide that none exists.

Max-SRTI
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In addition to Max-SRTI, we also study two NP-hard variants. The input is the same,
but the task either changes to finding a perfect stable matching – this is Perfect-SRTI –
or to finding just any stable matching – this is SRTI-Existence.1

Input: A set of agents V and a profile P = (Pv)v∈V .
Task: Find a perfect stable matching or decide that none exists.

Perfect-SRTI

Input: A set of agents V and a profile P = (Pv)v∈V .
Task: Find a stable matching or decide that none exists.

SRTI-Existence

Related Work. On bipartite acceptability graphs, where Stable Roomates is called
Stable Marriage, Max-SRTI admits a polynomial-time factor- 2

3 -approximation [29].
However, even on bipartite graphs it is NP-hard to approximate Max-SRTI by a factor
of 29

33 , and Max-SRTI cannot be approximated by a factor of 3
4 + ε for any ε > 0 unless

Vertex Cover can be approximated by a factor strictly smaller than two [36]. Note that,
as we will show in our work, SRTI-Existence is computationally hard in many cases, so
good polynomial-time or even fixed-parameter approximation algorithms for Max-SRTI
seem out of reach.

Perfect-SRTI was shown to be NP-hard even on bipartite graphs [19]. This holds also
for the more restrictive case when ties occur only on one side of the bipartition, and any
preference list is either strictly ordered or a tie of length two [24]. As SRTI-Existence is
NP-hard for complete graphs, all three problems considered in this paper are NP-hard on
complete graphs (as every stable matching is a maximal matching). This implies paraNP-
hardness for all parameters which are constant on cliques, including distance to clique,
cliquewidth, neighborhood diversity, the number of uncovered vertices, and modular width.

Following up on work by Bartholdi III and Trick [2], Bredereck et al. [3] showed NP-
hardness and polynomial-time solvability results for SRTI-Existence under several restric-
tions constraining the agents’ preference lists.

On a fairly general level, there is quite some work on employing methods of parameterized
algorithmics in the search for potential islands of tractability for in general NP-hard stable
matching problems [1, 5, 6, 26, 28]. More specifically, Marx and Schlotter [26] showed that
Max-SRTI is W[1]-hard when parameterized by the number of ties. They observed that it
is NP-hard even if the maximum length of a tie is constant but showed that Max-SRTI
is fixed-parameter tractable when parameterized by the combined parameter “number of
ties and maximum length of a tie”. Meeks and Rastegari [30] considered a setting where the
agents are partitioned into different types having the same preferences. They show that the
problem is FPT in the number of types. Mnich and Schlotter [31] defined Stable Marriage
with Covering Constraints, where the task is to find a matching which matches a given
set of agents, and minimizes the number of blocking pairs among all these matchings. They
showed the NP-hardness of this problem and investigated several parameters such as the
number of blocking pairs or the maximum degree of the acceptability graph.

1 In the following, we consider a slightly different formulation of these problems: We assume that the
input consists of the acceptability graph and rank functions. This is no restriction, as one can transform
a set of agents and a profile to an acceptability graph and rank functions and vice versa in linear time.

ISAAC 2019



44:4 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

Most importantly for our work, however, Adil et al. [1] started the research on structural
restrictions of the acceptability graph, which we continue and extend. Their result is an
XP-algorithm for the parameter treewidth; indeed, they did not show W[1]-hardness for this
parameter, leaving this as an open question. This open question was solved (also for the
bipartite case) by Gupta et al. [15], who further considered various variants (such as sex-equal
or balanced) of stable marriage with respect to two variants of treewidth.2 Moreover, Adil et
al. [1] showed that Max-SRTI is fixed-parameter tractable when parameterized by the size
of the solution (that is, the cardinality of the set of edges in the stable matching) and that
Max-SRTI restricted to planar acceptability graphs then is fixed-parameter tractable even
with subexponential running time.3

Our Contributions. We continue the study of algorithms for Max-SRTI and its variants
based on structural limitations of the acceptability graph. In particular, we extend the results
of Adil et al. [1] in several ways. For an overview on our results we refer to Figure 1. We
highlight a few results in what follows. We observe that Adil et al.’s dynamic programming-
based XP-algorithm designed for the parameter treewidth4 indeed yields fixed-parameter
tractability for the combined parameter treewidth and maximum degree. We complement
their XP result and the above mentioned results by showing that Max-SRTI is W[1]-hard for
the graph parameters treedepth, tree-cut width, and feedback vertex set. Notably, all these
graph parameters are “weaker” [22] than treewidth and these mutually independent results
imply W[1]-hardness with respect to treewidth; the latter was also shown in the independent
work of Gupta et al. [15].

For the two related problems Perfect-SRTI and SRTI-Existence, on the contrary
we show fixed-parameter tractability with respect to the parameter tree-cut width. These
results confirm the intuition that tree-cut width, a recently introduced [35] and since then
already well researched graph parameter [11, 12, 13, 20, 27] “lying between” treewidth
and the combined parameter “treewidth and maximum vertex degree”, is a better suited
structural parameter for edge-oriented problems than treewidth is. Moreover, we extend our
W[1]-hardness results to Perfect-SRTI and SRTI-Existence parameterized by treedepth
and to Perfect-SRTI parameterized by the feedback vertex number.

In summary, we provide a fairly complete picture of the (graph-)parameterized computa-
tional complexity landscape for the three studied problems – see Figure 1 for an overview of
our results. Among other things Figure 1 for the parameter tree-cut width depicts a surprising
complexity gap between Max-SRTI on the one side (W[1]-hardness) and Perfect-SRTI
and SRTI-Existence (fixed-parameter tractability) on the other side. Finally, Figure 1
leaves as an open question the parameterized complexity of SRTI-Existence with respect
to the parameter feedback vertex set number which we conjecture to be answered with
W[1]-hardness.

2 Indeed, without knowing the work of Gupta et al. [15] our work initially was strongly motivated by
Adil et al.’s [1] open question for treewidth. To our surprise, although the Adil et al. [1] paper has been
revised six months after the publication of Gupta et al. [15], it was not mentioned by Adil et al. [1] that
this open question was answered by a subset of the authors, namely Gupta et al. [15].

3 More precisely, Adil et al. state their result for the parameter “size of a maximum matching of the
acceptability graph”, which is only by a factor at most two greater than the size of a stable matching.

4 It only gives containment in XP for this parameter, and only this is stated by Adil et al. [1].
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treewidth

tree-cut width

treewidth + max. degreevertex cover

treedepth feedback vertex set

feedback edge set

Max Perfect ∃

Max Perfect ∃

Max Perfect ∃ Max Perfect ∃

Max Perfect ∃

Max Perfect ∃

Max Perfect ∃

W[1]-h W[1]-h W[1]-h

W[1]-h W[1]-h W[1]-h

Thm. 7 Cor. 8 Cor. 9

FPT FPT FPT

[1] [1] [1]

FPT FPT FPT

[1] [1] [1]

W[1]-h♦ FPT FPT

Thm. 10 Thm. 13 Thm. 13

FPT FPT FPT

Thm. 17 Thm. 17 Thm. 17

W[1]-h W[1]-h ?

Thm. 7 Cor. 8

Figure 1 Results for graph-structural parameterizations of Stable Roommates with Ties
and Incomplete Lists. Max means Max-SRTI, Perfect means Perfect-SRTI, and ∃ means
SRTI-Existence. The symbol ♦ indicates the existence of an FPT factor- 1

2 -approximation algorithm
(see Corollary 16). The arrows indicate dependencies between the different parameters. An arrow
from a parameter p1 to a parameter p2 means that there is a computable function f : N→ N such
that for any graph G we have p1(G) ≤ f(p2(G)). Consequently, fixed-parameter tractability for p1

then implies fixed-parameter tractability for p2, and W[1]-hardness for p2 then implies W[1]-hardness
for p1.

2 Preliminaries

For a positive integer n let [n] := {1, 2, 3, . . . , n} = {x ∈ N : x ≤ n}. We write vectors h in
boldface, and access their entries (coordinates) via h(e).

For a graph G and a vertex v ∈ V (G), let δG(v) be the set of edges incident to v.
If the graph G is clear from the context, then we may just write δ(v). For a subset of
edges M ⊆ E(G) and a vertex v ∈ V (G), we define δM (v) := δG(v) ∩M . We denote the
maximum degree in G by ∆(G), i.e., ∆(G) := maxv∈V (G) |δG(v)|. For a tree T rooted
at a vertex r and a vertex v ∈ V (T ), we denote by Tv the subtree rooted at v. For a
graph G and a subset of vertices X (a subset of edges F ), we define G − X (G − F )
to be the graph arising from G by deleting all vertices in X and all edges incident to a
vertex from X (deleting all edges in F ). For a graph G and a set of vertices X ⊆ V (G),
the graph arising by contracting X is denoted by G/X ; it is defined by replacing the
vertices in X by a single vertex. Thus, we have V (G/X) :=

(
V (G) \ X

)
∪ {vX} and

E(G/X) := {{v, w} ∈ E(G) : v, w /∈ X} ∪ {{v, vX} : {v, x} ∈ E(G) : v /∈ X,x ∈ X}. Unless
stated otherwise, n := |V (G)|, and m := |E(G)|.

We define the directed graph ←→G by replacing each edge {v, w} ∈ E(G) by two directed
ones in opposite directions, i.e. (v, w) and (w, v).

Note that the acceptability graph for a set of agents V and a profile P is always simple,
while a graph arising from a simple graph through the contraction of vertices does not need
to be simple.

ISAAC 2019



44:6 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

A parameterized problem consists of the problem instance I (in our setting the Stable
Roommate instance) and a parameter value k (in our case always a number measuring
some aspect in acceptability graph). An FPT-algorithm for a parameterized problem is
an algorithm that runs in time f(k)|I|O(1), where f is some computable function. That
is, an FPT algorithm can run in exponential time, provided that the exponential part of
the running time depends on the parameter value only. If such an algorithm exists, the
parameterized problem is called fixed-parameter tractable for the corresponding parameter.
There is also a theory of hardness of parameterized problems that includes the notion of
W[1]-hardness. If a problem is W[1]-hard for a given parameter, then it is widely believed
not to be fixed-parameter tractable for the same parameter.

The typical approach to showing that a certain parameterized problem is W[1]-hard is
to reduce to it a known W[1]-hard problem, using the notion of a parameterized reduction.
In our case, instead of using the full power of parameterized reductions, we use standard
many-one reductions that ensure that the value of the parameter in the output instance is
bounded by a function of the parameter of the input instance.

The Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [17] asserts that
there is a constant c > 1 such that there is no co(n) time algorithm solving the Satisfiability
problem, where n is the number of variables. Chen et al. [4] showed that assuming ETH,
there is no f(k) · no(k) time algorithm solving k-(Multicolored) Clique, where f is any
computable function and k is the size of the clique we are looking for. For further notions
related to parameterized complexity and ETH refer to [8].

2.1 Profiles and preferences
Let V be a set of agents. A preference list Pv for an agent v is a subset Pv ⊆ V \ {v}
together with an ordered partition (P 1

v , P
2
v , . . . , P

k
v ) of Pv. A set P i

v with |P i
v| > 1 is called a

tie. The size of a tie P i
v is its cardinality, i.e., |P i

v|. For an agent v ∈ V , the rank function is
rkv : Pv ∪ {v} → N ∪ {∞} with rkv(x) := i for x ∈ P i

v, and rkv(v) =∞.
We say that v prefers x ∈ Pv over y ∈ Pv if rkv(x) < rkv(y). If rkv(x) = rkv(y), then

v ties x and y. For a set V of agents, a set P = (Pv)v∈V of preference lists is called a
profile. The corresponding acceptability graph G consists of vertex set V (G) := V and edge
set E(G) := {{v, w} : v ∈ Pw ∧ w ∈ Pv}.

A subsetM ⊆ E(G) of pairwise non-intersecting edges is called a matching. If {x, y} ∈M ,
then we denote the corresponding partner y of x by M(x) and set M(x) := x if x is
unmatched, that is, if {y ∈ V (G) : {x, y} ∈M} = ∅. An edge {v, w} ∈ E(G) is blocking for
M if rkv(w) < rkv(M(v)) and rkw(v) < rkw(M(w)); we say that v, w constitutes a blocking
pair for M . A matching M ⊆ E(G) is stable if there are no blocking pairs, i.e., for all
{v, w} ∈ E(G), we have rkv(w) ≥ rkv(M(v)) or rkw(v) ≥ rkv(M(w)).

Note that the literature contains several different stability notions for a matching in the
presence of ties. Our stability definition is frequently called weak stability.5

2.2 Structural graph parameters
We consider the (graph-theoretic) parameters treewidth, tree-cut width, treedepth, feedback
vertex number, feedback edge number, vertex cover number, and the combined parameter
“treewidth + maximum vertex degree” (also called degree-treewidth in the literature).

5 Manlove [23] discusses other types of stability – strong stability and super-strong stability.
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A set of vertices S ⊆ V (G) is a feedback vertex set if G− S is a forest and the feedback
edge set is a subset F ⊆ E(G) of edges such that G− F is a forest. We define the feedback
vertex (edge) number fvs(G) (fes(G)) to be the cardinality of a minimum feedback vertex
(edge) set of G. A vertex cover is a set of vertices intersecting with every edge of G, and the
vertex cover number vc(G) is the size of a minimum vertex cover. The treedepth td(G) is the
smallest height of a rooted tree T with vertex set V (G) such that for each {v, w} ∈ V (G) we
have that either v is a descendant of w in T or w is a descendant of v in T .

Treewidth intuitively measures the tree-likeness of a graph. It can be defined via structural
decompositions of a graph into pieces of bounded size, which are connected in a tree-like
fashion, called tree decompositions.

Tree-Cut Width. Tree-cut width has been introduced by Wollan [35] as tree-likeness
measure between treewidth and treewidth combined with maximum degree. A family of
subsets X1, . . . , Xk of a finite set X is a near-partition of X if Xi ∩ Xj = ∅ for all i 6= j

and
⋃k

i=1 Xi = X. Note that Xi = ∅ is possible (even for several distinct i). A tree-cut
decomposition of a graph G is a pair (T,X ) which consists of a tree T and a near-partition
X = {Xt ⊆ V (G) : t ∈ V (T )} of V (G). A set in the family X is called a bag of the tree-cut
decomposition. Given a tree node t, let Tt be the subtree of T rooted at t. For a node
t ∈ V (T ), we denote by Yt the set of vertices induced by Tt, i.e. Yt :=

⋃
v∈V (Tt) Xv.

For an edge e = {u, v} ∈ E(T ), we denote by T
{u,v}
u and T

{u,v}
v the two connected

components in T − e which contain u respectively v. These define a partition

(
⋃

t∈T
{u,v}
u

Xt,
⋃

t∈T
{u,v}
v

Xt)

of V (G). We denote by cut(e) ⊆ E(G) the set of edges of G with one endpoint in
⋃

t∈T
{u,v}
u

Xt

and the other one in
⋃

t∈T
{u,v}
v

Xt.
A tree-cut decomposition is called rooted if one of its nodes is called the root r. For any

node t ∈ V (T ) \ {r}, we denote by e(t) the unique edge incident to t on the r-t-path in T .
The adhesion adhT (t) is defined as | cut(e(t))| for each t 6= r, and adhT (r) := 0.

The torso of a tree-cut decomposition (T,X ) at a node t, denoted byHt, can be constructed
from G as follows: If T consists of a single node, then the torso of t ∈ V (T ) is G. Else let
C1

t , . . . , C
`
t be the connected components of T − t. Let Zi :=

⋃
v∈V (Ci

t) Xv. Then, the torso
arises from G by contracting each Zi ⊆ V (G) for 1 ≤ i ≤ `.

The operation of suppressing a vertex v of degree at most two consists of deleting v
and, if v has degree exactly two, then adding an edge between the two neighbors of v. The
torso-size tor(t) is defined as the number of vertices of the graph arising from the torso Ht

by exhaustively suppressing all vertices of degree at most two.
The width of a tree-cut decomposition (T,X ) is defined as maxt∈V (T ){adh(t), tor(t)}. The

tree-cut width tcw(G) of a graph G is the minimum width of a tree-cut decomposition of G.

Nice tree-cut decompositions. Similarly to nice tree decompositions [21], each tree-cut
decomposition can be transformed into a nice tree-cut decomposition. Nice tree-cut decom-
positions have additional properties which help simplifying algorithm design. Besides the
definition of nice tree-cut decompositions, in the following we provide some of its properties.6

6 The properties used here are stated (without a proof) by Ganian et al. [11].
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44:8 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

I Definition 1 ([11]). Let (T,X ) be a tree-cut decomposition. A node t ∈ V (T ) is called
light if adh(t) ≤ 2 and all outgoing edges from Yt end in Xp, where p is the parent of t, and
heavy otherwise (see Figure 2 for an example).

I Theorem 2 ([11, Theorem 2]). Let G be a graph with tcw(G) = k. Given a tree-cut
decomposition of G of width k, one can compute a nice tree-cut decomposition (T,X ) of G of
width k with at most 2|V (G)| nodes in cubic time.

I Lemma 3 ([11, Lemma 2]). Each node t in a nice tree-cut decomposition of width k has at
most 2k + 1 heavy children.

In what follows, we will assume that a nice tree-cut decomposition of the input graph
is given. Computing the tree-cut width of a graph is NP-hard [20], but there exists an
algorithm, given a graph G and an integer k, either finds a tree-cut decomposition of width
at most 2k or decides that tcw(G) > k in time 2O(k2 log k)n2. Furthermore, Giannopoulou
et al. [14] gave a constructive proof of the existence of an algorithm deciding whether the
tree-cut width of a given graph G is at most k in f(k)n time, where f is a computable
recursive function. Very recently, Ganian et al. [13] performed experiments on computing
optimal tree-cut decompositions using SAT-solvers.

I Lemma 4. Let T be a forest. Then tcw(T ) = 1.

Proof. As clearly tcw(T ) ≤ tcw(T + F ) for any set of edges F , we may assume without loss
of generality that T is a tree.

We define Xt = {t} for all t ∈ V (T ), and consider the tree-cut decomposition (T,X ), and
pick an arbitrary vertex r to be the root of T .

As T is a tree, we have adh(t) = 1 for all t 6= r.
Furthermore, for each t ∈ V (T ), all vertices but t contained in the torso of t can be

suppressed, and thus tor(t) ≤ 1. J

I Lemma 5. Let G be a graph. Then tcw(G+ e) ≤ tcw(G) + 2 for any edge e.

Proof. Consider a tree-cut decomposition (T,X ) of G. This is also a tree-cut decomposition
of G+ e.

Clearly, the adhesion of any node of T can increase by at most 1.
The torso-size of a vertex can also increase by at most 2, as e can prevent at most both

of its endpoints from being suppressed. J

I Corollary 6. Let G be a graph, and k the feedback edge number. Then tcw(G) ≤ 2k + 1.

Proof. This directly follows from Lemmas 4 and 5. J

3 Hardness Results

All our hardness result are based on parameterized reductions from the Multicolored
Clique problem, a well-known W[1]-hard problem. The so-called vertex selection gadgets are
somewhat similar to those of Gupta et al. [15], however, the other gadgets in our reductions
are different. Here we only discuss the main dissimilarities of the reductions we present here
and the one of Gupta et al. [15]. We use one gadget for each edge whereas the reduction
presented therein uses a single gadget for all edges between two color classes. This subtle
difference allows us to bound not only treewidth of the resulting graph but rather both
treedepth and the size of a feedback vertex set. It is worth noting that it is not clear whether
the reduction of Gupta et al. [15] can, with some additional changes and work, yield hardness
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for these parameters as well or not. On the other hand, we use some consistency gadget
which is essentially a triangle (while the graph resulting from the reduction of Gupta et
al. [15] is bipartite). Furthermore, in our reduction all of the vertices have either strictly
ordered preferences or a tie between (the only) two agents they find acceptable. We defer
details and further comments to a full version of this paper due to space reasons.

I Theorem 7 (?). Max-SRTI parameterized by treedepth and feedback vertex set is W[1]-
hard. Moreover, there is no no(td(G)) time algorithm for Max-SRTI, unless ETH fails.

Note that such a maximum stable matching corresponding to a clique of size k leaves
only 2k(k − 1) vertices uncovered. Thus, by adding 2k(k − 1) vertices connected to all other
vertices, we also get the W[1]-hardness for Perfect-SRTI:

I Corollary 8 (?). Perfect-SRTI parameterized by treedepth and feedback vertex set is
W[1]-hard.

From this, we get the W[1]-hardness of SRTI-Existence for treedepth by adding for
each vertex a 3-cycle, ensuring that this vertex is matched (similarly to the 3-cycles cij , c′

ij ,
c′′

ij for the vertex cij in the consistency gadgets).

I Corollary 9 (?). SRTI-Existence parameterized by treedepth is W[1]-hard.

A different reduction partially using similar ideas and techniques yields the W[1]-hardness
of Max-SRTI for the parameter tree-cut width:

I Theorem 10 (?). Max-SRTI parameterized by tree-cut width is W[1]-hard.

4 Tractability Results

We present an FPT-algorithm for Perfect-SRTI and SRTI-Existence. Given a tree-cut
decomposition of the acceptability graph, we use dynamic programming to decide whether a
solution exists or not. In the dynamic programming table for a node t we store information
whether there exists a matching M for the set Yt of vertices from the bags of the subtree of
the tree-cut decomposition rooted in t. We allow that M is not stable in G but require that
the blocking pairs are incident to vertices outside Yt, and for some of the edges {v, w} in
cut(t), we require the endpoint v in Yt to be matched at least as good as he ranks w.

DP Tables. Before we describe the idea behind the table entries we store in our dynamic
programming procedure, we introduce the following relaxation of matching stability.

I Definition 11. Let (T,X ) be a nice tree-cut decomposition of G. For a node t ∈ V (T ),
the closure of t (clos(t)) is the set of vertices in Yt together with their neighbors, that is,
clos(t) := Yt ∪NG(Yt) . We say that a matching M on clos(t) for some t ∈ V (T ) complies
with a vector h ∈ {−1, 0, 1}cut(t) if the following conditions hold:

for each edge e ∈ cut(t), we have e ∈M if and only if he = 0;
for each e = {v, w} ∈ cut(t) with v ∈ Yt and he = 1, we have rkv(M(v)) ≤ rkv(w), i.e. v
ranks its partner (not being w by the previous condition) in M at least as good as w; and
every blocking pair contains a vertex from V (G) \ Yt not matched in M .

Intuitively, if we set ht(e) = 1 for an edge e = {v, x} in cut(t) with x ∈ Xt, then we are
searching for a matching M (in G[clos(t)]) for which we can guarantee that rkx(M(x)) ≤
rkx(v). Consequently, we know that e will not be blocking in an extension of such a matching.
Contrary, if we set ht(e) = −1, then we allow x to prefer v over its partner (in particular, x

ISAAC 2019
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Figure 2 An example of a graph G (left part of the picture) and its nice tree-cut decomposition
(T,X ) (not of minimal width). The vertices of G are the circles, while the nodes of T are the
rectangles. For a node t ∈ V (T ), the bag Xt contains exactly those vertices inside the rectangle. In
the right picture, the solid edges are the edges of T , while the dotted edges are from G. The nodes
t1 and t4 are light, while t2 (because there is an edge connecting a vertex in t2 to a vertex in r) and
t3 (because adh(t3) = 3) are heavy.

may remain unmatched). Thus, for an extension of such a matching in order to maintain
stability we have to secure that rkv(M(v)) ≤ rkv(x), since otherwise e will be blocking.
Observe that if a matching complies with h for a vector h ∈ {−1, 0, 1}cut(t) with h(e) = 1 for
some edge e ∈ cut(t), then it complies with ĥ ∈ {−1, 0, 1}cut(t) which is the same as h but
for e is set to −1 (formally, ĥ(f) = h(f) for f 6= e and ĥ(e) = −1). Clearly, any matching
complying with h complies with ĥ, since the latter is more permissive.

For a node t ∈ T its dynamic programming table is τt and it contains an entry for every
h ∈ {−1, 0, 1}cut(t). An entry τt[h] is a matching M ⊆ E(G[Yt]) ∪ cut(t) if M complies
with h. If no such matching for h exists, then we set τt[h] = ∅. Note that the size of the
table τt for a node t is upper-bounded by 3tcw(G).

I Example 12. The graph and tree-cut decomposition are depicted in Figure 2:
For t1 and h1({t1, v21}) = 0 and h1({v12, r2}) = 1, all stable matchings contain-

ing {t1, v21} and {v21, v22} are complying with h. For t2 and h2({v21, r1}) = 1 and
h2({v22, v11}) = −1, the matching M = {{v21, v22}} is complying with h2. For t3 and
any vector h3 with h3({v3, v12}) = 1, no matching complies with h3: In such a matching,
v3 must be ranked at least as good as rkv3(v12) = 1, but not to v12, which is impossible. For
t4 and h4({v42, v15}) = 0 = h4({v42, v13}), no matching complying with h4 exists, as such a
matching must match v42 to both v13 and v15.

I Theorem 13 (?). Perfect-SRTI and SRTI-Existence can be solved in 2O(k log k)nO(1)

time, where k := tcw(G).

Proof Sketch. Let (T,X ) be a nice tree-cut decomposition of G of width k. We will first
explain the algorithm for SRTI-Existence, and in the end we highlight how this algorithm
can be adapted to Perfect-SRTI. We compute the values τt[h] by bottom-up induction
over the tree T .

For a leaf t ∈ V (T ) and a vector h, we enumerate all matchings Mt on G[Xt ∪N(Yt)].
We check whether Mt complies with h. If we find such a matching, then we store one of
these matchings in τt[h], and else set τt[h] = ∅. As |Xt ∪N(Yt)| ≤ 2k, and G is simple, the
number of matchings is bounded by 2O(k log k).

The induction step, that is, computing the table entries for the inner nodes of the tree-cut
decomposition is the most-involved part and sketched below.
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For the root r ∈ V (T ), we have Yr = V (G) and cut(r) = ∅. Thus, a matching on
Yr = V (G) complying with hr ∈ {−1, 0, 1}∅ is just a stable matching (note that hr is
unique). Hence, G contains a stable matching if and only if τr[hr] 6= ∅.

The induction step is executed for each t ∈ V (T ) and each h ∈ {−1, 0, 1}cut(t), and
therefore at most n3k times. As each execution takes 2O(k log k)nO(1) time, the total running
time of the algorithm is bounded by 2O(k log k)nO(1).

To solve Perfect-SRTI, we store in any dynamic programming table τt only matchings
such that every vertex inside Yt is matched.

Induction Step. In what follows we sketch how to solve the induction step.

Input: The acceptability graph G, rank functions rkv for all v ∈ V (G), a tree-cut
decomposition (T,X ), a node t ∈ V (T ), a vector h ∈ {−1, 0, 1}cut(t), for
each child c of t and each hc ∈ {−1, 0, 1}cut(c) the value τc[hc].

Task: Compute τt[h].

Induction Step

Before we give the proof idea we first give the definition of light children classes. Intuitively,
two light children of a note t are in the same class if, with respect to t, they behave in a similar
way, that is, their neighborhood in Xt is the same and their table entries are compatible. In
order to properly define the later notion we first need to introduce few auxiliary definitions.
To simplify the notation, we assume that the edges of G are enumerated, that is, we have
E(G) = {e1, e2, . . . , em}. For a vector h ∈ {−1, 0, 1}cut(t), the i-th coordinate will always be
the coordinate of the edge with the i-th lowest index in cut(t).

I Definition 14. Let t ∈ V (T ) be a node. We define the signature sig(t) to be the set
{h ∈ {−1, 0, 1}cut(t) : τt[h] 6= ∅}.

Let c, d be light children of t. We write c♦d if and only if sig(c) = sig(d) and N(c) = N(d),
where we define N(c) := NG(Yc) for each c ∈ V (T ).

It follows immediately that ♦ is an equivalence relation on light children of t. Furthermore,
since each class of ♦ is identified by its signature and neighborhood in Xt, there are O(k2)
classes of ♦. Let C(c) denote the equivalence class of the light child c of t and let N(C) ⊆ Xt

be the set of neighbors of the class C of ♦ (i.e., N(C) is the set of neighbors N(Yc) ⊆ Xt for
c ∈ C). Furthermore, let sig(C) denote the signature of the class C and similarly let sigx(C)
denote the signature of C with respect to its neighbor x ∈ N(C).

I Observation 15. If C is a class with |C| ≥ 3 and (−1,−1) /∈ sig(C), then there is no stable
matching in G.

Proof Idea (Induction Step). Due to space reasons, we defer proof details to a full version
of this paper. First, we will guess which edges incident to heavy children are in the matching
M to be computed and which are not. Note that there are at most k(2k + 1) edges incident
to heavy children of t, since their adhesion is at most k. Thus, we fix a matching between
vertices in Xt and heavy children and what remains is to combine the guessed matching with
matchings in their graphs; note that we can also guess these, however, this results in (3k)O(k)

guesses. Instead of trying all of the possibilities we prove that it is possible to reduce the
number of heavy children matchings we try to extend to kO(k). It is worth noting that these
choices will result in some further constraints the matching in the light children must fulfill.

ISAAC 2019



44:12 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

Then for every class of the equivalence ♦ we guess whether its neighbor(s) in Xt are
matched to it (i.e., matched to a vertex in a child or two in this class) or not. Let N denote
the guessed matching. Note that there are kO(k) such choices, since each vertex v ∈ Xt is
“adjacent” to at most k+1 classes of ♦ (i.e., there are at most k classes such that v is adjacent
to a vertex in all of the children contained in this class) and choosing a class (or deciding not
to be adjacent to any light child) for every vertex in Xt yields the claimed bound. We show
that if a class of ♦ with N(C) = {x} is selected to be matched with its neighbor x, then
it is possible to match x to the best child in this class (the one containing the top choice
for x among these children); provided there exists a solution which is compatible with such a
choice. We do this by showing a rather simple exchange argument.

Having resolved heavy children and light children with only one neighbor in Xt it remains
to deal with children with two neighbors. We generalise the exchange argument we provide
for classes with one neighbor. Then, we prove that many combinations of N and a signature
of a class C allows us to reduce the number of children in C in which we have to search for
a partner of a vertex in N(C) to a constant (in fact, four). We call such classes the good
classes. However, there are classes where this is not possible (call these the bad classes).
Consequently, there are only 4k possibilities how to match vertices in Xt to good classes of
children. Finally, we characterise the bad classes and use this characterisation to show how
to reduce the question of existence of a (perfect) matching complying with h and obeying all
the constraints of heavy children to an instance of 2-SAT (similarly to Feder [9]). J

I Corollary 16 (?). A factor- 1
2 -approximation for Max-SRTI can be computed in

2O(k log k)nO(1) time, where k := tcw(G).

Using standard techniques and the polynomial-time algorithm for graphs of bounded
treewidth by Adil et al. [1], we obtain an FPT-algorithm for Max-SRTI (and therefore also
Perfect-SRTI and SRTI-Existence) parameterized by feedback edge number:

I Theorem 17 (?). Max-SRTI can be solved in 2fes(G)nO(1) time.

5 Conclusion

Taking the viewpoint of parameterized graph algorithmics, we investigated the line between
fixed-parameter tractability and W[1]-hardness of Stable Roommates with Ties and
Incomplete Lists. Studying parameterizations mostly relating to the “tree-likeness” of the
underlying acceptability graph, we arrived at a fairly complete picture (refer to Figure 1) of
the corresponding parameterized complexity landscape. There is a number of future research
issues stimulated by our work. First, we did not touch on questions about polynomial
kernelizability of the fixed-parameter tractable cases. Indeed, for the parameter feedback
edge number we believe that a polynomial kernel should be possible. Another issue is how tight
the running time for our fixed-parameter algorithm for the parameter tree-cut width k is; more
specifically, can we show that our exponential factor kO(k) is basically optimal or can it be
improved to say 2O(k)? Also the case of SRTI-Existence parameterized by feedback vertex
number remained open (see Figure 1). Based on preliminary considerations, we conjecture it
to be W[1]-hard. Clearly, there is still a lot of room to study Stable Roommates with
Ties and Incomplete Lists through the lens of further graph parameters. On a general
note, we emphasize that so far our investigations are on the purely theoretic and classification
side; practical algorithmic considerations are left open for future research.
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