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Abstract

Classical results in computability theory, notably Rice’s theorem, focus on the
extensional content of programs, namely, on the partial recursive functions that
programs compute. Later and more recent work investigated intensional gener-
alisations of such results that take into account the way in which functions are
computed, thus affected by the specific programs computing them. In this pa-
per, we single out a novel class of program semantics based on abstract domains
of program properties that are able to capture nonextensional aspects of pro-
gram computations, such as their asymptotic complexity or logical invariants,
and allow us to generalise some foundational computability results such as Rice’s
Theorem and Kleene’s Second Recursion Theorem to these semantics. In partic-
ular, it turns out that for this class of abstract program semantics, any nontrivial
abstract property is undecidable and every decidable over-approximation nec-
essarily includes an infinite set of false positives which covers all the values of
the semantic abstract domain.

Keywords: Computability Theory, Recursive Function, Rice’s Theorem,
Kleene’s Second Recursion Theorem, Program Analysis, Affine Program
Invariants

1. Introduction

Most classical results in computability theory focus on the so-called exten-

sional properties of programs, i.e., on the properties of the partial functions they
compute. Notably, the renowned Rice’s Theorem [1] states that any nontrivial
extensional property of programs is undecidable. Despite being very general,
Rice’s Theorem and similar results in computability theory, due to the require-
ment of extensionality, leave out several intensional properties which are of
utmost importance in the practice of programming. Essential intensional prop-
erties of programs include their asymptotic complexity of computation, their
logical invariants (e.g., relations between variables at program points), or any
event that might happen during the execution of the program while not affecting
its output.
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State-of-the-Art. A generalisation of well-established results of computability
theory to the realm of program complexity has been put forward by Asperti [2].
A first observation is that Blum’s complexity classes [3], i.e., sets of recursive
functions (rather than sets of programs) with some given (lower or upper) bound
on their (space and/or time) complexity, are not adequate for investigating the
decidability aspects of program complexity: in fact, viewed as program proper-
ties they are trivially extensional. Thus, a key idea in [2] is to focus on the so-
called complexity cliques, namely, sets of programs (i.e., program indices) closed
with respect to their extensional input/output behaviour and their asymptotic
complexity. Asperti [2] showed how this approach enables intensional versions
of Rice’s theorem, Rice-Shapiro theorem, and Kleene’s second recursion theo-
rem ([4, 5] are standard references for these foundational results) for complexity
cliques.

More recently, a different approach has been considered by Moyen and Si-
monsen in [6], where the classical definition of extensionality has been weakened
to a notion of partial extensionality. Roughly, a given set of programs is par-
tially extensional if it includes the set of all programs computing a given partial
recursive function. It is shown in [6] that if a set of programs and its com-
plement are partially extensional, then they cannot be recursive. Interestingly,
this result can be further generalised by replacing the extensionality with an
equivalence relation on programs satisfying some suitable structural conditions,
notably, the existence of a so-called intricated switching family. Moyen and
Simonsen [6] show how to derive within their framework intensional versions of
Rice’s Theorem — generalising Asperti’s result [2] — and Rice-Shapiro Theo-
rem.

Main Contributions. Along the lines traced by Asperti [2], we investigate whether
and how some fundamental extensional results of computability theory can be
systematically generalised to intensional aspects of computation, but rather than
focussing on specific intensional properties we deal with generic abstract program
semantics. More in detail, we distill two fundamental properties of abstract pro-
gram semantics in our approach: the strong smn property and the existence of
a universal fair program, roughly, an interpreter that preserves the abstract
semantics. We show that for abstract semantics satisfying the strong smn prop-
erty and admitting a universal fair program, a generalisation of Kleene’s second
recursion theorem can be proved. This, in turn, leads to a generalisation of
Rice’s theorem. Besides relying on a general abstract program semantics, in-
spired by Moyen and Simonsen’s approach [6], we also relax the extensionality
condition to partial extensionality. This weakening provides stronger impossi-
bility results as it allows us to show that every decidable over-approximation
necessarily contains an infinite set of false positives which covers all the values
of the underlying semantic abstract domain. On a different route, we establish
a precise connection with Moyen and Simonsen’s work [6] by showing that for
any abstract program semantics satisfying the strong smn property and a struc-
tural branching condition (roughly, expressing some form of conditional choice),
we can prove the existence of an intricated switching family, which turns out
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to be the crucial hypothesis in [6] for deriving an intensional version of Rice’s
theorem.

Therefore, on the one hand, we generalise the results in [2], going beyond
complexity cliques, and, on the other hand, we provide an explicit characterisa-
tion of a class of program semantics that admit intricated switching families so
that the results in [6] can be applied.

Finally, we show some applications of our intensional Rice’s theorem that
generalise some undecidability results for intensional properties used in static
program analysis. In particular, we focus on program analysis in Karr’s ab-
stract domain of affine relations between program variables [7]. By exploiting
an acute reduction to the undecidable Post correspondence problem, Müller-
Olm and Seidl [8] prove that for affine programs with positive affine guards it
is undecidable whether a given nontrivial affine relation holds at a given pro-
gram point or not. Here, we first show that this class of affine programs with
positive affine guards, modeled as control flow graphs, turns out to be Turing
complete since, by selecting a suitable program semantics, these programs can
simulate a URM. Then, this allows us to derive the undecidability result in [8]
as a consequence of our results.

Outline. The rest of the paper is structured as follows. In Section 2, we provide
some background and our basic notions. In Section 3, we introduce the strong
smn property, fair universal programs, and the branching condition that will
play a fundamental role in our results. In Section 4, we provide our generalisa-
tion of Kleene’s second recursion theorem and use it to derive our intensional
Rice’s theorem. We also establish an explicit connection with the notion of
intricated switching family given in [6]. Section 5 provides some applications
of our results to the analysis of affine programs. Section 6 discusses in detail
the relation with some of Asperti’s results [2] and with Rogers’ systems of in-
dices [9, 5]. Finally, Section 7 concludes and outlines some directions of future
work. This is a full and revised version of the conference paper [10].

2. Basic Notions

Given an n-ary partial function f : Nn → N, we denote by dom(f) the do-
main of f and by rng(f) , {f(~x) : ~x ∈ dom(f)} its range. We write f(~x) ↓
if ~x ∈ dom(f) and f(~x) ↑ if ~x /∈ dom(f). Moreover, λ~x. ↑ denotes the always
undefined function. We denote by Fn , Nn → N the class of all n-ary (possibly
partial) functions and by F ,

⋃

n Fn the class of all such functions. Addition-
ally, Cn ⊆ Fn denotes the subset of n-ary partial recursive functions (C stands
for computable) and C ,

⋃

n Cn the set of all partial recursive functions.

Assumption 2.1 (Turing completeness). Throughout the paper, we assume
a fixed Turing complete model and we denote by P the corresponding set of
programs. Moreover, we consider a fixed Gödel numbering for the programs
in P and, given an index a ∈ N, we write Pa for the a-th program in P . A

program can take a varying number n of inputs and we denote by φ
(n)
a ∈ Cn the
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n-ary partial function computed by Pa. By Turing completeness of the model

C = {φ
(n)
a | a, n ∈ N}.

The binary relation between programs that compute the same n-ary function
is called Rice’s equivalence and denoted by ∼n

R, i.e.,

a ∼n
R b

△

⇐⇒ φ(n)a = φ
(n)
b .

Classical Rice’s theorem [1] compares the extension of programs, i.e., the
functions they compute, and shows that unions of equivalence classes of pro-
grams computing the same function are undecidable. In Asperti’s work [2], by
relying on the notion of complexity clique, the asymptotic program complexity
can be taken into account. Our idea here is to further generalise the approach
in [2] by considering generic program semantics rather than program complexity.
Additionally, an equivalence relation on program semantics allows us to further
abstract and identify programs with different abstract semantics. This turns
out to be worthwhile in many applications, e.g., the precise time/space pro-
gram complexity is typically abstracted by considering asymptotic complexity
classes.

Definition 2.2 (Abstract semantics). An abstract semantics is a pair 〈π,≡π〉
where:

(1) π : N2 → F associates a program index a and arity n with an n-ary function

π
(n)
a ∈ Fn, called the semantics of a;

(2) ≡π ⊆ F × F is an equivalence relation between functions.

Given n ∈ N, the n-ary program equivalence induced by an abstract seman-
tics 〈π,≡π〉 is the equivalence ∼n

π ⊆ N× N defined as follows: for all a, b ∈ N,

a ∼n
π b

△

⇐⇒ π(n)
a ≡π π

(n)
b .

The notation for the case of arity n = 1 will be simplified by omitting

the arity, e.g., we will write φa and ∼π in place of φ
(1)
a and ∼1

π, respectively.
Abstract semantics can be viewed as a generalisation of the notion of system of
indices (or numbering), as found in standard reference textbooks [11, 5]. This
is discussed in detail later in Section 6.2. Let us now show how the standard
extensional interpretation of programs, complexity and complexity cliques can
be cast into our setting.

Example 2.3 (Concrete semantics). The concrete input/output semantics

can be trivially seen as an abstract semantics 〈φ,=〉 where φ
(n)
a is the n-ary

function computed by Pa and = is the equality between functions. Observe
that this concrete semantics induces an n-ary program equivalence which is
Rice’s equivalence ∼n

R.

Example 2.4 (Domain semantics). For a given set of inputs S ⊆ N, consider

〈φ,≡S〉 where φ
(n)
a is the n-ary function computed by Pa and for f, g : Nn → N,

we define f ≡S g
△

⇐⇒ dom(f) ∩ S = dom(g) ∩ S.
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Example 2.5 (Blum complexity). Let Φ : N2 → C be a Blum complexity [3],

i.e., for all a ∈ N and ~x ∈ Nn, (1) Φ
(n)
a (~x) ↓ ⇔ φ

(n)
a (~x) ↓ holds, and (2) for

all m ∈ N, the predicate Φ
(n)
a (~x) = m is decidable. Letting Θ(f) to denote the

standard Big Theta complexity class of a function f , the pair 〈Φ,≡Φ〉 defined
by

Φ(n)
a ≡Φ Φ

(n)
b

△

⇐⇒ Φ(n)
a ∈ Θ(Φ

(n)
b )

is an abstract semantics.

Example 2.6 (Complexity clique). Complexity cliques as defined by Asperti
in [2] can be viewed as an abstract semantics 〈π,≡π〉, that we will refer to as
the complexity clique semantics. For each arity n and program index a let us
define:

π(n)
a , λ~y.〈〈φ(n)a (~y),Φ(n)

a (~y)〉〉

where 〈〈 , 〉〉 : N2 → N is an effective bijective encoding for pairs and Φ : N2 → C
is a Blum complexity. The equivalence ≡π is defined as follows: for all a, b, n ∈
N,

π(n)
a ≡π π

(n)
b

△

⇐⇒ φ(n)a = φ
(n)
b ∧ Φ(n)

a ≡Φ Φ
(n)
b .

Classical Rice’s theorem states the undecidabilty of extensional program
properties. Following [6], we parameterise extensional sets by means of a generic
equivalence relation.

Definition 2.7 (∼-extensional set). Let ∼ ⊆ N×N be an equivalence relation
between programs whose equivalence classes are denoted, for a ∈ A, by [a]∼. A
set of indices A ⊆ N is called:

• ∼-extensional when for all a, b ∈ N, if a ∈ A and a ∼ b then b ∈ A;

• partially ∼-extensional when there exists a ∈ N such that [a]∼ ⊆ A;

• universally ∼-extensional when for all a ∈ N, [a]∼ ∩ A 6= ∅.

In words, a set A is∼-extensional if A is a union of∼-equivalence classes, par-
tially ∼-extensional if A contains at least a whole ∼-equivalence class, and uni-
versally ∼-extensional if A contains at least an element from each ∼-equivalence
class, i.e., its complement N r A is not partially ∼-extensional. Notice that if
A is not trivial (i.e., A 6= ∅ and A 6= N) and ∼-extensional then A is par-
tially ∼-extensional and not universally ∼-extensional. Let us observe that ∼R-
extensionality is the standard notion of extensionality so that classical Rice’s
theorem [1] states that if A is ∼R-extensional and not trivial then A is not
recursive.1

1In [6], the term “extensional” is replaced by “compatible” when one refers to generic
equivalence relations ∼.
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3. Fair and Strong smn Semantics

In this section, we identify some fundamental properties of abstract seman-
tics that will be later used in our intensional computability results. A first basic
property stems from the fundamental smn theorem and intuitively amounts to
requiring that the operation of fixing some parameters of a program is effective
and preserves its abstract semantics.

Definition 3.1 (Strong smn semantics). An abstract semantics 〈π,≡π〉 has
the strong smn (ssmn) property if, given m,n ≥ 1, there exists a total com-
putable function s : Nm+2 → N such that for all a, b ∈ N, ~x ∈ Nm:

λ~y.π(n+1)
a (φ

(m)
b (~x), ~y) ≡π π

(n)
s(a,b,~x). (1)

In such a case, the abstract semantics 〈π,≡π〉 is called strong smn.

The above definition requires property (1) which is slightly stronger than
one would expect. The natural generalisation of the standard smn property, in
the style, e.g., of [2], would amount to asking that, given m,n ≥ 1, there exists a
total computable function s : Nm+1 → N such that for any program index a ∈ N

and input ~x ∈ Nm, it holds λ~y.π
(m+n)
a (~x, ~y) ≡π π

(n)
s(a,~x).

The concrete semantics 〈φ,=〉 of Example 2.3 clearly satisfies this ssmn

property. In fact, the function λa, b, ~y.π
(n+1)
a (φ

(m)
b (~x), ~y) is computable (by

composition, relying on the existence of universal functions), hence the existence

of a total computable s : Nm+2 → N such that λ~y.π
(n+1)
a (φ

(m)
b (~x), ~y) ≡π π

(n)
s(a,b,~x)

holds, as prescribed by Definition 3.1, follows by the standard smn theorem. It
is easily seen that the same applies to the domain semantics of Example 2.4.

The reason for the stronger requirement (1) in Definition 3.1 is that, to deal
with generic abstract semantics, a suitable smn definition needs to embody a
condition on program composition (of a and b in Definition 3.1). Indeed, if
we consider the semantics based on program complexity (i.e., Examples 2.5 and
2.6), it turns out that whenever they enjoy the smn property in [2, Definition 11]
and, additionally, they satisfy the linear time composition hypothesis in [2, Sec-
tion 4] relating the asymptotic complexities of a program composition to those
of its components, then they are ssmn semantics according to Definition 3.1.
More details on the relationship with Asperti’s approach [2] will be given later
in Section 6.1.

It is worth observing that for a ssmn abstract semantics 〈π,≡π〉, there al-
ways exists a program whose denotation is equivalent to the always undefined
function, namely,

for any arity n ∈ N there exists a program index e0 ∈ N such that

π(n)
e0
≡π λ~y.↑ .

(2)

In fact, if b is a program index for the always undefined function λ~y.↑ then,

by (1), we have that λ~y.π
(n+1)
0 (φb(0), ~y) = λ~y.↑ ≡π π

(n)
s(0,b,0), so that we can

pick e0 , s(0, b, 0).
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It is also worth exhibiting an example of abstract semantics which is not
ssmn. Let πa(~x) be defined as the number of different variables accessed in
a computation of the program a on the input ~x. Then, let us observe that
the mere fact that πa is always a total function trivially makes the abstract
semantics 〈π,=〉 non-ssmn.

To generalise Kleene’s second recursion theorem, besides the ssmn property,
we need to postulate the existence of so-called fair universal programs, namely,
programs that can simulate every other program w.r.t. a given abstract seman-
tics. This generalises the analogous notion in [2, Definition 26], where this sim-
ulation is specific to complexity cliques and must preserve both the computed
function and its asymptotic complexity.

Definition 3.2 (Fair semantics). An index u ∈ N is a fair universal program

for an abstract semantics 〈π,≡π〉 and an arity n ∈ N if for all a ∈ N:

π(n)
a ≡π λ~y.π

(n+1)
u (a, ~y).

An abstract semantics is fair if it admits a fair universal program for every
arity.

Clearly, the concrete (Example 2.3) and domain (Example 2.4) semantics are
fair. In general, as noted in [2], the existence of a fair universal program may
not only depend on the reference abstract semantics, but also on the underlying
computational model. For instance, when considering program complexity, as
argued by Asperti [2, Section 6] by relying on some remarks by Blum [12], multi-
tape Turing machines seem not to admit fair universal programs. By contrast,
single tape Turing machines do have fair universal programs, despite the fact
that this is commonly considered a folklore fact and cannot be properly quoted.
Hereafter, when referring to the complexity-based semantics of Examples 2.5
and 2.6, we will implicitly use that they are ssmn and fair semantics.

4. Kleene’s Second Recursion Theorem and Rice’s Theorem

In this section, we show how some foundational results of computability
theory can be extended to a general abstract semantics. The first approach
relies on a generalisation of Kleene’s second recursion theorem, which is then
used to derive a corresponding Rice’s theorem. A second approach consists in
identifying conditions that ensure the existence of an intricated switching family
in the sense of [6], from which Rice’s theorem also follows.

4.1. Kleene’s Second Recursion Theorem

We show that Kleene’s second recursion theorem holds for any fair ssmn
abstract semantics. This generalises the analogous result proved by Asperti [2,
Section 5] for complexity cliques.

Theorem 4.1 (Intensional Second Recursion Theorem). Let 〈π,≡π〉 be
a fair ssmn abstract semantics. For any total computable function h : N → N

and arity n ∈ N, there exists an index a ∈ N such that a ∼n
π h(a).

7



Proof. Since 〈π,≡π〉 is a fair semantics (Definition 3.2), there exists u, n ∈ N

such that u is an abstract universal program for n-ary functions. Hence, for all
x ∈ N:

π
(n)
h(φx(x))

≡π λ~y.π
(n+1)
u (h(φx(x)), ~y) ≡π λ~y.π

(n+1)
u (h(ψU (x, x)), ~y),

where ψU is the standard unary universal function for the concrete semantics
φ, i.e., ∀p ∈ N. λy.ψU (p, y) = φp. Note that h ◦ λz.ψU (z, z) is computable
by composition of computable functions. Hence, there exists e such that φe =
h ◦ λz.ψU (z, z). Since 〈π,≡π〉 is a ssmn semantics (Definition 3.1), there exists
a total computable function s : N3 → N such that for all x ∈ N:

λ~y.π(n+1)
u (h(ψU (x, x)), ~y) ≡π λ~y.π

(n+1)
u (φe(x), ~y) ≡π π

(n)
s(u,e,x).

Since s is computable, by standard smn theorem, there exists m ∈ N such that
φm = λx. s(u, e, x). Hence, for all x ∈ N:

π
(n)
φm(x) ≡π π

(n)
h(φx(x))

.

If we set x = m we obtain:

π
(n)
φm(m) ≡π π

(n)
h(φm(m)).

Because φm = λx. s(u, e, x) is total, we can consider a = φm(m) and obtain:

π(n)
a ≡π π

(n)
h(a)

which amounts to a ∼n
π h(a).

As an example, this result, instantiated to the complexity semantics of Ex-
ample 2.5, entails the impossibility of designing a program transform that sys-
tematically modifies the asymptotic complexity of every program, even without
preserving its input-output behavior. The details are discussed below.

Example 4.2 (Fixpoints of Blum complexity semantics). Let 〈Φ,≡Φ〉 be
the Blum complexity semantics of Example 2.5. A program transform h : N→ N

is a total computable function which maps indices of programs into indices of
transformed programs. By applying Theorem 4.1, for any arity n ∈ N, we know
that there exists a program index a such that a ∼n

π h(a) holds. This means that
the program transform h does not alter the asymptotic complexity of, at least,
the program a.

Our second recursion theorem allows us to obtain an intensional version
of Rice’s theorem for fair and ssmn abstract semantics. Inspired by [6], we
generalise the statement to cover partially extensional properties.

Theorem 4.3 (Rice by fair and ssmn semantics). Let 〈π,≡π〉 be a fair

and ssmn semantics. If A ⊆ N is partially ∼n
π-extensional and not universally

∼n
π-extensional, for some arity n ∈ N, then A is not recursive.

8



A [a0]∼π[a1]∼π

Figure 1: A graphical representation of Theorem 4.3.

Proof. Since A is partially ∼n
π-extensional and not universally ∼n

π-extensional,
there are x0, x1 ∈ N such that [x0]∼n

π
∩ A = ∅ and [x1]∼n

π
⊆ A. Assume A

is recursive, hence its characteristic function χA is computable. Then, we can
define a function f : N→ N defined as follows:

f(x) ,

{

x0 if x ∈ A

x1 otherwise
= x0 · χA(x) + x1 · (1− χA(x)).

Observe that f is clearly total and computable. We can now apply our inten-
sional second recursion Theorem 4.1, and obtain that there exists a ∈ N such
that f(a) ∼π a. This easily leads to a contradiction that closes the proof. In
fact, there are two cases, either a ∈ A or a /∈ A.

1. If a ∈ A then f(a) = x0 ∼π a and thus, since [x0]∼π ∩A = ∅, we have the
contradiction a /∈ A.

2. Similarly, if a /∈ A then f(a) = x1 ∼π a and thus, since [x1]∼ ⊆ A, we
deduce the contradiction a ∈ A.

Fig. 1 provides a graphical representation of this result: if we can find two
program indices a0, a1 ∈ N such that A over-approximates the ≡π-equivalence
class [a1]∼π

and A does not intersect [a0]∼π
, then A cannot be recursive. Let

us illustrate some applications of Theorem 4.3.

Example 4.4 (Halting set). Let 〈φ,≡N〉 be the domain semantics of Exam-
ple 2.4 with S = N, hence f ≡N g when dom(f) = dom(g). The halting set
K , {a ∈ N | φa(a) ↓} can be proved to be non-recursive by resorting to The-
orem 4.3 for 〈φ,≡N〉. Let e0, e1 ∈ N be such that φe0 = λx. ↑ and φe1 = λx.1.
Since [e1]≡N

is the set of programs that compute total functions, we have that
[e1]≡N

⊆ K. Moreover, [e0]≡N
is the set of nonterminating programs for any

input, so that [e0]≡N
∩K = ∅. This means that 〈φ,≡N〉 satisfies the hypotheses

of Theorem 4.3, thus entailing that K is not recursive.

Example 4.5 (Complexity sets). Let 〈φ,=〉, 〈Φ,≡Φ〉 be, resp., the semantics
of Examples 2.3 and 2.5. As observed in Section 3, on a suitable computational
model such as single tape Turing machines, these are fair ssmn semantics, so
that Theorem 4.3 applies.

Let sort : N→ N be a total function that takes as input an encoded sequence
of numbers and outputs the encoding of the corresponding sorted sequence. It
turns out that by applying Theorem 4.3, the following sets can be proved to be
non-recursive:

9



(1) A , {a | Φa ∈ Θ(n logn) ∧ φa = sort},

(2) B , {a | Φa ∈ O(n log n)},

(3) C , {a | Φa ∈ Ω(n logn)}.

Let is, ms be different implementations of sort , i.e., φis = φms = sort, such
that Φis ∈ Θ(n2) and Φms ∈ Θ(n logn) — is and ms could be, resp., insertion
and merge sort. Recall that ∼R denotes the Rice equivalence induced by 〈φ,=〉
(i.e., a∼R b ⇔ φa = φb), and, in turn, let ∼ΦR = ∼Φ ∩ ∼R be the equivalence
induced by the complexity clique semantics of Example 2.6, which is a fair ssmn
semantics. Then, we have that:

(1) since [is]∼ΦR
∩A = ∅ and [ms]∼ΦR

⊆ A, by Theorem 4.3, A is non-recursive;

(2) since [is]∼Φ ∩B = ∅ and [ms]∼Φ ⊆ B, by Theorem 4.3, B is non-recursive;

(3) let e be any program index such that Φe ∈ Θ(1). Since [e]∼Φ ∩ C = ∅ and
[is]∼Φ ⊆ C, by Theorem 4.3, the set C is non-recursive.

It is worth remarking that in Example 4.5, n logn could be replaced by any
function, thus showing the undecidability of the asymptotic complexities “big O”
(case (2)) and “big Omega” (case (3)). Let us also point out that Example 4.4
shows how easily the halting setK can be proved to be non-recursive by applying
Theorem 4.3.

4.2. Branching Semantics

Let us investigate the connection between our results and the key notion of
intricated switching family used by Moyen and Simonsen [6] for proving their
intensional version of Rice’s theorem. Firstly, we argue that every ssmn abstract
semantics admits an intricated switching family whenever it is able to express a
suitable form of conditional branching. This allows us to derive an intensional
Rice’s theorem. Moreover, we show that for fair and ssmn semantics, the identity
can always play the role of intricated switching family.

Definition 4.6 (Branching and discharging semantics). An abstract se-
mantics 〈π,≡π〉 is branching if, given n ≥ 1, there exists a total computable
function r : N4 → N such that ∀a, b, c1, c2, x ∈ N with c1 6= c2:

λ~y.π
(n)
r(a,b,c1,c2)

(x, ~y) ≡π











λ~y.π
(n)
a (x, ~y) if x = c1

λ~y.π
(n)
b (x, ~y) if x = c2

λ~y.↑ otherwise.

Moreover, 〈π,≡π〉 is (variable) discharging if, for all n ≥ 1, there exists a total
computable function t : N→ N such that for all a, x ∈ N:

π(n)
a ≡π λ~y.π

(n+1)
t(a) (x, ~y).

10



Hence, intuitively, an abstract semantics is branching when it is able to
model the branching structure of conditional statements with multiple positive
guards, while the property of being variable discharging holds when one can
freely add fresh and unused variables without altering the abstract semantics.
Let us first recall the notion of recursive inseparability [13, Section 3] and of
intricated switching family from [6, Definition 5].2

Definition 4.7 (Recursively inseparable sets). Two sets A,B ⊆ N of pro-
gram indices are recursively inseparable if there exists no C ⊆ N such that
A ⊆ C and B ∩C = ∅.

Definition 4.8 (Intricated switching family [6, Definition 5]). Let ∼ ⊆
N × N be an equivalence relation on program indices. An intricated switching

family (ISF) w.r.t. ∼ is an indexed set of total computable functions {σa,b}a,b∈N,
with σa,b : N→ N, such that for all a, b ∈ N, the sets Aa,b = {x ∈ N | σa,b(x) ∼
a} and Ba,b = {x ∈ N | σa,b(x) ∼ b} are recursively inseparable.

Moyen and Simonsen [6, Theorem 3] show that if an equivalence ∼ admits
an ISF, then every partially ∼-extensional and not universally ∼-extensional set
is not recursive. A simplified version of their intensional result, tailored for our
setting, can be stated as follows.

Theorem 4.9 ([6, Theorem 3]). Let ∼ ⊆ N×N be an equivalence relation. If

A ⊆ N is partially ∼-extensional, not universally ∼-extensional and there exists

an ISF w.r.t. ∼ then A is not recursive.

Branching discharging and ssmn semantics can be shown to admit an intri-
cated switching family, in a way that, relying on Theorem 4.9 we can derive the
following intensional version of Rice’s Theorem.

Theorem 4.10 (Rice by branching, discharging and ssmn semantics).
Let 〈π,≡π〉 be a branching, discharging and ssmn semantics. If A ⊆ N is par-

tially ∼n
π-extensional and not universally ∼n

π-extensional for some arity n ∈ N,

then A is not recursive.

Proof. Let u ∈ N be an index for the standard unary universal program. Con-
sider the total computable functions r : N4 → N and t : N → N of, resp., the
branching and variable discharging properties. By ssmn property, there exists

2For the sake of simplicity, [6, Definition 5] is here instantiated to the case of recursive sets.
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a total computable function s : N4 → N such that ∀a, b, x ∈ N:

π
(n)
s(r(t(a),t(b),0,1),u,x,0) ≡π λ~y.π

(n+1)
r(t(a),t(b),0,1)(φ

(2)
u (x, 0), ~y) [by ssmn property]

= λ~y.π
(n+1)
r(t(a),t(b),0,1)(φx(0), ~y)

≡π











λ~y.π
(n+1)
t(a) (0, ~y) if φx(0) = 0

λ~y.π
(n+1)
t(b) (1, ~y) if φx(0) = 1

λ~y. ↑ otherwise

[by branching property]

≡π











π
(n)
a if φx(0) = 0

π
(n)
b if φx(0) = 1

λ~y. ↑ otherwise

[by variable discharging property]

For all a, b ∈ N, we define the total computable function

σa,b(x) , s(r(t(a), t(b), 0, 1), u, x, 0).

We claim that the family of functions {σa,b}a,b∈N is intricated w.r.t. ∼n
π (cf.

Definition 4.8). In fact, for all a, b ∈ N, let Aa,b , {x ∈ N | σa,b(x) ∼
n
π a} and

Ba,b , {x ∈ N | σa,b(x) ∼
n
π b}. We have four cases:

1. if π
(n)
a ≡π π

(n)
b , then Aa,b = Ba,b and therefore they are trivially recur-

sively inseparable;

2. if π
(n)
a 6≡π π

(n)
b and π

(n)
a 6≡π λ~x. ↑6≡π π

(n)
b we have Aa,b = {x ∈ N | φx(0) =

0} and Ba,b = {x ∈ N | φx(0) = 1}. Hence, the sets Aa,b and Ba,b are
recursively inseparable (cf. [14, Section 3.3]);

3. if π
(n)
b 6≡π π

(n)
a ≡π λ~x. ↑ we have Ba,b = {x ∈ N | φx(0) = 1} and

Aa,b = {x ∈ N | φx(0) 6= 1} = Ba,b. The mere fact that Ba,b is not
recursive (by classical Rice’s Theorem) thus implies that Aa,b and Ba,b

are not recursively separated;

4. if π
(n)
a 6≡π π

(n)
b ≡π λ~x. ↑ we can take a′ = b and b′ = a and conclude by

Case 3.

Since in all cases Aa,b and Ba,b are recursively inseparable, it turns out that
{σa,b}a,b∈N is an ISF w.r.t. ∼n

π and thus we conclude by Theorem 4.9.

Let us discuss more in detail the relationship with the approach in [6].
Firstly, let us show a lemma which will be fundamental to prove the follow-
ing results.

Lemma 4.11. Let ∼ be an equivalence relation on program indices. If every

set A partially ∼-extensional and not universally ∼-extensional is non-recursive
then the identity Id is an ISF w.r.t. ∼.
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Proof. Clearly, the identity Id , {(λx.x)a,b}a,b∈N is a family of total computable
functions. Moreover, for a, b ∈ N we have Aa,b = {x ∈ N : x ∼ a} = [a]∼ and
Ba,b = {x ∈ N : x ∼ b} = [b]∼. Therefore, every set C ⊆ N such that Aa,b ⊆ C
and Ba,b ∩ C = ∅, is partially ∼-extensional and not universally ∼-extensional
and thus, by hypothesis, not recursive. Hence, Aa,b and Ba,b are recursively
inseparable.

It turns out that a fair ssmn semantics always admits a canonical ISF,
namely, the identity Id , {(λx.x)a,b}a,b∈N.

Proposition 4.12. Let 〈π,≡π〉 be a fair and ssmn semantics. Then, the iden-

tity Id is an ISF w.r.t. ∼n
π, for all n ≥ 1.

Proof. Since 〈π,≡π〉 is a fair ssmn semantics, by Theorem 4.3, every par-
tially ∼n

π-extensional and not universally ∼n
π-extensional set A is non-recursive.

Therefore, we conclude by applying Lemma 4.11.

Let us point out that the identity function has not been exploited in [6], that
instead focuses on the standard switching family. It turns out that the identity
function plays a key role as ISF.

Proposition 4.13. Let ∼ ⊆ N × N be an equivalence relation. The following

statements are equivalent:

(1) Every set A ⊆ N partially ∼-extensional and not universally ∼-extensional
is non-recursive.

(2) The identity Id is an ISF w.r.t. ∼.

(3) There exists an ISF w.r.t. ∼.

Proof.

(1⇒ 2): by Lemma 4.11;

(2⇒ 3): trivial;

(3⇒ 1): by Theorem 4.9.

Therefore, the above result roughly states that the identity function is the
“canonical” ISF, meaning that if an ISF exists, then Id is an ISF as well. More-
over, the intensional Rice’s Theorem 4.9 of [6] provides a sufficient condition
(i.e., the existence of an ISF) for a partially and not universally extensional
set to be undecidable. Proposition 4.13 enhances Theorem 4.9 by showing that
such a sufficient condition is necessary as well, or, equivalently, that a partially
and not universally extensional set is undecidable iff there exists an ISF.

We conclude this section by discussing an alternative notion of branching,
which requires the preservation of a full conditional statement with positive and
negative guards.
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Definition 4.14 (Strongly branching semantics). An abstract semantics
〈π,≡π〉 is strongly branching if, given n ≥ 1, there exists a total computable
function r : N3 → N such that for all a, b, c, x ∈ N:

λ~y.π
(n)
r(a,b,c)(x, ~y) ≡π

{

λ~y.π
(n)
a (x, ~y) if x = c

λ~y.π
(n)
b (x, ~y) otherwise.

The condition above is an adaptation to our framework of a property that
is needed in order to exploit a so-called standard switching family as defined
in [6, Example 1]. Despite appearing to be more natural, the preservation of
conditionals with positive and negative conditions is a stronger requirement
than the one we considered in Definition 4.6. Indeed, it turns out that every
ssmn and strongly branching semantics is a branching semantics.

Proposition 4.15 (Strongly branching implies branching). If 〈π,≡π〉 is a
ssmn and strongly branching semantics, then 〈π,≡π〉 is a branching semantics.

Proof. Given an arity n, let r be the function of the strongly branching property

of Definition 4.14. By (2) there exists an index e0 ∈ N such that π
(n)
e0 ≡π λ~y.↑.

Now, we define the function σ : N4 → N such that for all a, b, c1, c2 ∈ N we have
σ(a, b, c1, c2) = r(a, r(b, e0, c2), c1). Note that σ is a total computable function,
by composition, and for all a, b, c1, c2, x ∈ N with c1 6= c2:

λ~y.π
(n)
σ(a,b,c1,c2)

(x, ~y) = λ~y.π
(n)
r(a,r(b,e0,c2),c1)

(x, ~y)

≡π

{

λ~y.π
(n)
a (x, ~y) if x = c1

λ~y.π
(n)
r(b,e0,c2)

(x, ~y) otherwise

[by branching property]

≡π











λ~y.π
(n)
a (x, ~y) if x = c1

λ~y.π
(n)
b (x, ~y) if x 6= c1 ∧ x = c2

λ~y.π
(n)
e0 (x, ~y) if x 6= c1 ∧ x 6= c2

[by branching property]

≡π











λ~y.π
(n)
a (x, ~y) if x = c1

λ~y.π
(n)
b (x, ~y) if x = c2

λ~y. ↑ otherwise

Thus, σ is the desired function for the branching property.

4.3. An Application to Static Program Verifiers

We adapt the general definition of static program verifier of Cousot et al. [15,
Definition 4.3] to our framework. Given a program property P ⊆ N to check,
a static program verifier is a total recursive function V : N → {0, 1}. It is
sound when for all p ∈ N, V(p) = 1 ⇒ p ∈ P , while V is precise if the reverse
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implication also holds, i.e., when V(p) = 1⇔ p ∈ P holds. Informally, soundness
guarantees that only false negatives are allowed, i.e., NrP is possibly a proper
subset of {p ∈ N : V(p) = 0}, while precise verifiers output true positives and
true negatives only (i.e., they decide P ).

Classical Rice’s theorem clearly entails the impossibility of designing a pre-
cise verifier for a nontrivial extensional property. However, one may wonder
whether there exist sound verifiers with “few” false negatives. By applying our
intensional Theorem 4.3, we are able to show that sound but imprecise veri-
fiers necessarily have at least one false negative for each equivalence class of
programs, even for intensional properties.

Example 4.16 (Constant value verifier). Assume we are interested in check-
ing if a program can output a given constant value, for instance, zero with the
aim of statically detecting division-by-zero bugs. Let V be a sound static verifier
for the set P=0 , {p ∈ N | 0 ∈ rng(φp)} of programs that output zero for some

input. The set N , {p ∈ N | V(p) = 0} is recursive since V is assumed to be a
total computable function. By soundness of V , we have that N r P=0 ⊆ N , so
that N includes, for example, the set of programs computing the constant func-
tion λx.1. Therefore, N is partially extensional, and, by Theorem 4.3, N has to
be universally extensional. This means that for any computable function f ∈ C
there exists a program p ∈ N that computes f such that V(p) = 0. Thus, when
0 ∈ rng(f) holds (e.g., for f = λx.0), V necessarily outputs a false negative for
p. Hence, V outputs infinitely many false negatives.

Example 4.17 (Complexity verifier). Consider a speculative sound static
verifier V for recognizing programs that meet some lower bound, for instance,
programs having a cubic lower bound PΩ(n3) , {p ∈ N | Φp = Ω(n3)}. Thus,

N , {p ∈ N | V(p) = 0} has to be recursive and if ∼Φ is the program equiva-
lence induced by the Blum complexity semantics 〈Φ,≡Φ〉 of Example 2.5 then,
by soundness of V , we have, for example, {p ∈ N | Φp = Θ(1)} ⊆ N . This
means that N is partially ∼Φ-extensional and, by Theorem 4.3, N is univer-
sally extensional, namely, V will output 0 for at least a program in each Blum
complexity class. For instance, even some programs with an exponential lower
bound will be wrongly classified by V as programs that do not meet a cubic
lower bound.

As shown by Cousot et al. [15, Theorem 5.4], precise static verifiers cannot
be designed (unless for trivial program properties). The examples above prove
that, additionally, we cannot have any certain information on an input program
p whenever the output of a sound (and imprecise) verifier for p is 0. In fact,
when this happens, p could compute any partial function (cf. Example 4.16) or
have any complexity (cf. Example 4.17).

5. On the Decidability of Affine Program Invariants

Karr’s abstract domain [7] consisting of affine equalities between program
variables, such as 2x− 3y = 1, is well known and widely used in static program
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analysis [16, 17, 18]. Karr [7] put forward an algorithm that infers for each
program point q of a control flow graph modelling an affine program P (i.e., an
unguarded program with non-deterministic branching and affine assignments)
a set of affine equalities that hold among the variables of P when the control
reaches q, namely, an affine invariant for P . Müller-Olm and Seidl [8] show
that Karr’s algorithm actually computes the strongest affine invariant for affine
programs (this result has been extended to a slightly larger class of affine pro-
grams in [19, Theorem 5.1]). Moreover, they design a more efficient algorithm
implementing this static analysis and they extend in [20] this algorithm for com-
puting bounded polynomial invariants, i.e., the strongest polynomial equalities
of degree at most a given d ∈ N. Later, Hrushovski et al. [21] put forward
a sophisticated algorithm for computing the strongest unbounded polynomial
invariants of affine programs, by relying on the Zariski closure of semigroups.

On the impossibility side, Müller-Olm and Seidl [8, Section 7] prove that for
affine programs allowing positive affine guards it is undecidable whether a given
nontrivial affine equality holds at a given program point or not. In practical ap-
plications, static analyses on Karr’s abstract domain of guarded affine programs
ignore non-affine Boolean guards, while for an affine guard b, the current affine
invariant i is propagated through the positive branch of b by the intersection
i ∩ b, that remains an affine subspace. By the aforementioned undecidability
result [8, Section 7], this latter analysis algorithm for guarded affine programs
turns out to be sound but necessarily imprecise, thus inferring affine invariants
that, in general, might not be the strongest ones. Müller-Olm and Seidl [8, Sec-
tion 7] prove their undecidability result by exploiting an acute reduction to the
undecidable Post correspondence problem, inspired by early reductions explored
in data flow analysis [22, 23]. In this section, we show that our Theorem 4.10
allows us to derive and extend this undecidability result by exploiting an orthog-
onal intensional approach. More precisely, we prove that any nontrivial (and
not necessarily affine) relation on the states of control flow graphs of programs
allowing: (1) zero, variable and successor assignments, resp., x := 0, x := y and
x := y+ 1, and (2) positive equality guards x = y? and x = v?, turns out to be
undecidable. Since these control flow graphs form a subclass of affine programs
with positive affine guards, the undecidability result of Müller-Olm and Seidl [8,
Section 7] is retrieved as a consequence.

Following the standard approach, we consider control flow graphs that con-
sist of program points connected by edges labeled by assignments and guards.
Variables are denoted by xi, with i ∈ N, and store values ranging in N, while
Karr’s abstract domain is designed for variables assuming values in Q. Clearly,
from a computability perspective, this is not a restriction since one can consider
a computable bijection between N and Q.

Definition 5.1 (Basic affine control flow graph). A basic affine control flow

graph (BACFG) is a tuple G = (N,E, s, e), where N is a finite set of nodes,
s, e ∈ N are the start and end nodes, and E ⊆ N ×Com×N is a set of labelled
edges, and the set Com of commands consists of assignments of type xn := 0,
xn := xm, xn := xm + 1, and equality guards of type xn = xm?, xn = v?, with
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v ∈ N.

Let us remark that BACFGs only include basic affine assignments and posi-
tive affine guards, in particular inequality checks such as xn 6= xm? and xn 6= v?
are not allowed. Thus, BACFGs are a subclass of affine programs with positive
affine guards considered in [8, Section 7].

As in dataflow analysis and abstract interpretation [16, 24, 22, 18], BACFGs
have a collecting semantics where, given a set of input states In, each program
point is associated with the set of states that occur in some program execution
from some state in In. A finite number of variables may occur in a BACFG, so
that a state of a BACFG G is a tuple (x1, . . . , xk) ∈ Nk, where k is the maximum
variable index occuring in G and k = 0 is a degenerate case for trivial BACFGs
with N0 = {•}. The collecting transfer function f(·)(·) : Com→ ℘(Nk)→ ℘(Nk)
for k ∈ N variables and with n,m ∈ [1, k] is defined as follows:

fxn:=0(S) , {(x1, . . . , xn−1, 0, xn+1, . . . , xk) | ~x ∈ S},

fxn:=xm
(S) , {(x1, . . . , xn−1, xm, xn+1, . . . , xk) | ~x ∈ S},

fxn:=xm+1(S) , {(x1, . . . , xn−1, xm + 1, xn+1, . . . , xk) | ~x ∈ S},

fxn=v?(S) , {~x ∈ S | xn = v},

fxn=xm?(S) , {~x ∈ S | xn = xm}.

A no-op command denoted by ǫ is syntactic sugar for x1 := x1, i.e., fǫ ,
fx1:=x1 = λS.S. Given k, k′ ∈ N and S ∈ ℘(Nk′

), the projection S ↾k∈ ℘(Nk) is
defined as follows:

S ↾k ,











S × Nk−k′

if 0 ≤ k′ < k

S if k′ = k

{(x1, . . . , xk) | ~x ∈ S} if k < k′

Definition 5.2 (Collecting semantics of BACFGs). Given a BACFG G =
(N,E, s, e) with k ∈ N variables and a set of input states S ⊆ Nk′

, with k′ ≤
k, the collecting semantics JGKS : N → ℘(Nk) is the least, w.r.t. pointwise set
inclusion, solution in ℘(Nk)|N | of the following system of constraints:

{

JGKS [s] ⊇ S ↾k for the start node s

JGKS [v] ⊇ fc(JGKS [u]) for each edge (u, c, v) ∈ E

Let us observe that, since the collecting transfer functions fc are additive on
the complete lattice 〈℘(Nk),⊆〉, by Knaster-Tarski fixpoint theorem, JGKS is well
defined. For ~x ∈ Nk′

, we write JGK~x instead of JGK{~x}. Notice that JGK(·) is an
additive function, so that, for any program point u ∈ N , JGKS [u] =

⋃

~x∈SJGK~x[u]
holds.

5.1. Turing Completeness of BACFGs

Let us recall that a ssmn abstract semantics needs an underlying Turing
complete concrete semantics of programs (cf. Assumption 2.1). A crucial ob-
servation is that BACFGs are Turing complete despite not including full (both
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positive and negative) Boolean tests. This is proved by showing that any pro-
gram of an Unlimited Register Machine (URM), which is a well-known Turing
complete computational model [4], can be simulated by a BACFG.

Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing

complete computational model.

Before getting into the technical details, it is worth providing, first, an in-
tuition of the proof of Theorem 5.3. Using the definition and notation of Cut-
land [4, Section 1.2], let us recall the four types of instructions of URMs:

• z(n): sets register rn to 0 (rn ← 0) and transfers the control to the next
instruction;

• s(n): increments register rn by 1 (rn ← rn + 1) and transfers the control
to the next instruction;

• t(m,n): sets register rn to rm (rn ← rm) and transfers the control to the
next instruction;

• j(m,n, p): if rm = rn and Ip is a proper instruction, then it jumps to the
instruction Ip; otherwise, it skips to the next instruction;

It turns out that all these URM instructions can be simulated by the BACFGs
depicted in Figures 2 and 3. While the BACFGs in Figure 2 are trivial, let us
describe more in detail how the BACFG in Figure 3 simulates a jump instruc-
tion j(m,n, p). Intuitively, a difficulty arises for simulating the negative branch
xn 6= xm?. Here, the BACFG at node qi initialises a fresh unused variable z with
both xn+1 and xm+1 and transfers the control to a node inci where z is incre-
mented infinitely many times. Thus, in the least fixpoint solution, at node inci
the variable z stores any value v > min(xm, xn), including z = max(xm, xn).
Suppose now that xn > xm holds: in this case, the guard xn = z? between nodes
inci and qi+1 eventually will be made true and at the node qi+1 the store will
retain the original values of all variables (xm and xn included), except for the
new variable z which will be ignored by the remaining nodes. The case xm > xn
is analogous. Therefore, it turns out that the node qi+1 will be reached if and
only if xm 6= xn holds, while qp will be reached if and only if xm = xn holds,
thus providing a simulation for the jump instruction j(m,n, p).

We next give a precise definition of a model of computation for BACFGs
which is able to simulate URMs. Firstly, let us formalise the operational se-
mantics of URMs. Given a URM program P = (I1, . . . , It) consisting of a
sequence of t instructions Ij , we denote its states by vectors ~x ∈ NkP , where kP
is the largest index of registers used by P (which is finite). A configuration of
a URM is a pair 〈~x, c〉 ∈ NkP × N representing the state of the (possibly used)
registers, and the current instruction Ic. Then, the operational semantics is as
follows:
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qi

qi+1

xn := 0

qi

qi+1

xn := xn + 1

qi

qi+1

xn := xm

Figure 2: BACFGs simulating: z(n) (left), s(n) (center), t(m, n) (right).

qi

inci

qi+1

qp

xm = xn? z := xm + 1

z := xn + 1

xn = z? xm = z?

z := z + 1

Figure 3: BACFG simulating a jump instruction j(m,n, p).

Definition 5.4 (Operational semantics ⇒ of URMs). Given a URM pro-
gram P = (I1, . . . , It), its operational semantics is given by the transition func-
tion ⇒: (NkP × N)→ (NkP × N) defined as follows: for all ~x ∈ NkP , 1 ≤ c ≤ t,

〈~x, c〉 ⇒































〈(x1, ..., xn−1, 0, xn+1, ..., xkP
), c+ 1〉 if Ic = z(n)

〈(x1, ..., xn−1, xn+1, xn+1, ..., xkP
), c+ 1〉 if Ic = s(n)

〈(x1, ..., xm−1, xn, xm+1, ..., xkP
), c+ 1〉 if Ic = t(m,n)

〈~x, q〉 if Ic = j(m,n, q) ∧ xm = xn

〈~x, c+ 1〉 if Ic = j(m,n, q) ∧ xm 6= xn

The URM halts when it reaches a configuration 〈~x, t+ 1〉.

Getting back to control flow graphs, let us point out that the collecting
semantics of BACFGs of Definition 5.2 can be expressed in terms of Kleene’s
iterates as follows.

Definition 5.5 (Kleene’s iterates of BACFGs). Let G = (N,E, s, e) be a
BACFG with kG variables. The corresponding initial state ⊥s

~x : N → ℘(NkG),
with ~x ∈ NkG , and transformer FG : (N → ℘(NkG)) → (N → ℘(NkG)) are
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defined as follows: for all v ∈ N and X ∈ N → ℘(NkG),

⊥s
~x[v] ,

{

{~x} if v = s

∅ otherwise

FG(X )[v] ,
⋃

(u,c,v)∈E

fc(X [u]) ∪ X [v]

The sequence ofKleene’s iterates of G starting from⊥s
~x is the infinite (pointwise)

ascending chain {F i
G(⊥

s
~x)}i∈N ⊆ N → ℘(NkG), where the powers of the function

FG are inductively defined in the usual way: F 0
G(X ) , X and F i+1

G (X ) ,
FG(F

i
G(X )).

Observe that the collecting semantics of Definition 5.2 coincides with the
least fixed point of FG above ⊥s

~x w.r.t. the pointwise inclusion order of the
complete lattice N → ℘(NkG) obtained by lifting 〈℘(NkG ),⊆〉. Moreover, since
FG is a Scott-continuous function (even more, FG preserves arbitrary least upper
bounds), by Kleene’s fixpoint theorem, it turns out that

∪i∈NF
i
G(⊥

s
~x)[v] = JGK~x[v].

Our key insight is that the states of our abstract computational model can be
represented as “differences” between consecutive Kleene’s iterates of FG.

Definition 5.6 (Operational semantics ∆ of BACFGs). Given a BACFG
G = (N,E, s, e), its operational semantics is given by the function ∆G : (N →
℘(NkG)) → (N → ℘(NkG)) defined as follows: for all X : N → ℘(NkG) and
v ∈ N ,

∆G(X )[v] ,
⋃

(u,c,v)∈E

fc(X [u]).

Thus, ∆G(X )[v] is the standard “meet-over-paths” of dataflow analysis,
namely, the join of the transfer functions fc(X) over all the edges (u, c, v) of G.

Lemma 5.7. Let G = (N,E, s, e) be a BACFG. For all n ∈ N, X : N →
℘(NkG), v ∈ N , we have that Fn

G(X )[v] = ∪0≤i≤n∆
i
G(X )[v].

Proof. We proceed by induction on n ∈ N.

• n = 0: F 0
G(X )[v] = X [v] = ∆0

G(X )[v] = ∪0≤i≤0∆
i
G(X )[v];

• n > 0:

Fn
G(X )[v] = FG(F

n−1
G (X ))[v]

=
⋃

(u,c,v)∈E

fc(F
n−1
G (X )[u]) ∪ Fn−1

G (X )[v] [by ind. hyp.]

= ∆G(∪0≤i≤n−1∆
i
G(X ))[v] ∪ (∪0≤i≤n−1∆

i
G(X )[v])

[by additivity of ∆G]

= ∪1≤i≤n∆
i
G(X )[v] ∪ (∪0≤i≤n−1∆

i
G(X )[v])

= ∪0≤i≤n∆
i
G(X )[v]

20



This closes the proof.

In the following, we describe an effective procedure τ to translate a URM
program P into a BACFG which simulates P .

Definition 5.8 (Transformer τ). Given a URM P = (I1, . . . , It), the pro-
cedure τ(P ) starts from N0 = {q1, . . . , qt, qt+1} and E0 = ∅ as, resp., sets of
nodes and edges. Then, for all the instructions Ii of P :

(i) If Ii ∈ {z(n), s(n), t(m,n) | n,m ∈ N} then τ(P ) adds an edge between
the nodes qi and qi+1 as depicted by the diagrams in Fig. 2. For instance,
if Ii = z(n) the edge (qi, xn := 0, qi+1) is added to the set E; the other
cases are analogous.

(ii) If Ii = j(m,n, q), for some m,n, q, then τ(P ) adds a new node inci and
the edges depicted by the diagram in Fig. 3. We shall use the variable z
as a syntactic shorthand for xkP+1, which is a fresh variable not used in
P .

Let N and E denote the final sets of, resp., nodes and edges obtained by
applying the above two steps (i)–(ii) for all the instructions of P . Then, τ(P )
returns a set of BACFGs {(N,E, qs, qe) | qs, qe ∈ N0}, where start and end
nodes freely range in N0 and each BACFG has kG ∈ {kP , kP + 1} variables.
Without loss of generality, we assume kG , kP + 1: In fact, if the program P
contains no jump and the extra-variable z is actually not used, then we can add
a useless edge involving the extra-variable z.

In the rest of this section, we prove that the BACFG G = (N,E, q1, qt+1) ∈
τ(P ) simulates the original URM program P . To prove our claim, we define
an equivalence relation between sets of states of a BACFG in τ(P ). Intuitively,
two sets X and X ′ are deemed equivalent if, for each node, X and X ′ induce
the same invariant on the first kP variables, except for the states inci whose
variable z is already greater than the variables occurring in the outgoing guards.

Definition 5.9 (Equivalence ≈). Let P = (I1, . . . , It) be a URM program
and G = (N,E, qs, qe) ∈ τ(P ). Then, given X ,X ′ : N → ℘(NkG), the relation
X ≈ X ′ is defined as follows:

(1) ∀i ∈ [1, t+ 1].X [qi]↾kP
= X ′[qi]↾kP

;

(2) ∀i ∈ [1, t], ∀m ∈ [1, kP ], ∀(inci, xm = z?, qi+1) ∈ E. {~x ∈ X [inci] | z ≤
xm} = {~x ∈ X

′[inci] | z ≤ xm}.

Let us point out that condition (2) is motivated by the observation that for
nodes of type inci, the states containing values of xm below z do not matter.
Clearly, observe that ≈ is an equivalence relation. Moreover, it turns out that
the operational semantic function ∆G of Definition 5.6 preserves this equiva-
lence ≈ .

Lemma 5.10. Let P = (I1, . . . , It) be a URM program and G = (N,E, qs, qe) ∈
τ(P ). Then, for all X ,X ′ : N → ℘(NkG), X ≈ X ′ ⇒ ∆G(X ) ≈ ∆G(X

′).
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Proof. Assume that X ≈ X ′. For all i ∈ [1, t+ 1] we have:

∆G(X )[qi] ↾kP

=
⋃

(u,c,qi)∈E

fc(X [u]) ↾kP

=
⋃

(qu,c,qi)∈E

fc(X [qu]) ↾kP
∪

⋃

(inci−1,xm=z?,qi)∈E

fxm=z?(X [inci−1]) ↾kP

=
⋃

(qu,c,qi)∈E

fc(X [qu]) ↾kP
∪

⋃

(inci−1,xm=z?,qi)∈E

fxm=z?({~x ∈ X [inci−1] | z ≤ xm}) ↾kP

[as X ≈ X ′]

=
⋃

(qu,c,qi)∈E

fc(X
′[qu]) ↾kP

∪
⋃

(inci−1,xm=z?,qi)∈E

fxm=z?({~x ∈ X
′[inci−1] | z ≤ xm}) ↾kP

=
⋃

(qu,c,qi)∈E

fc(X
′[qu]) ↾kP

∪
⋃

(inci−1,xm=z?,qi)∈E

fxm=z?(X
′[inci−1]) ↾kP

= ∆G(X
′)[qi] ↾kP

.

Moreover, for all i ∈ [1, t], m ∈ [1, kP ] such that (inci, xm = z?, qi+1) ∈ E:

{~x ∈ ∆G(X )[inci] | z ≤ xm}

= {~x ∈
⋃

(u,c,inci)∈E

fc(X [u]) | z ≤ xm}

= {~x ∈
⋃

(qi,c,inci)∈E

fc(X [qi]) | z ≤ xm} ∪ {~x ∈ fz:=z+1(X [inci]) | z ≤ xm}

= {~x ∈ fz:=xn+1(X [qi]) ∪ fz:=xm+1(X [qi]) | z ≤ xm}∪

{~x ∈ fz:=z+1(X [inci]) | z ≤ xm}

= {~x ∈ fz:=xn+1(X [qi]) | z ≤ xm} ∪ {~x ∈ fz:=z+1(X [inci]) | z ≤ xm},

for some n 6= m. Since X [qi] ↾kP
= X ′[qi] ↾kP

it follows that fz:=xn+1(X [qi]) =
fz:=xn+1(X

′[qi]). Also note that:

{~x ∈ fz:=z+1(X [inci]) | z ≤ xm}

= {~x ∈ fz:=z+1({~x ∈ X [inci] | z ≤ xm}) | z ≤ xm} [as X ≈ X ′]

= {~x ∈ fz:=z+1({~x ∈ X
′[inci] | z ≤ xm}) | z ≤ xm}

= {~x ∈ fz:=z+1(X
′[inci]) | z ≤ xm}.

Hence,

{~x ∈ ∆G(X )[inci] | z ≤ xm}

= {~x ∈ fz:=xn+1(X [qi]) | z ≤ xm} ∪ {~x ∈ fz:=z+1(X [inci]) | z ≤ xm}

= {~x ∈ fz:=xn+1(X
′[qi]) | z ≤ xm} ∪ {~x ∈ fz:=z+1(X

′[inci]) | z ≤ xm}

= {~x ∈ ∆G(X
′)[inci] : z ≤ xm}.

This therefore shows that ∆G(X ) ≈ ∆G(X
′).

Let us now show that each transition of a URM program can be simulated
by a finitely many applications, say k, of the function ∆. Moreover, when-
ever ∆ is applied less than k times, we obtain the empty set of states for all
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the nodes. Let us define the following concatenation operation for sequences:
(a1, . . . , ak) : a , (a1, . . . , ak, a). Concatenation will be used to deal with the
fact that our transformed BACFG has an additional variable w.r.t. the original
URM program.

Lemma 5.11. Let P = (I1, . . . , It) be a URM program. For all BACFGs

G = (N,E, qs, qe) ∈ τ(P ), ~x, ~x
′ ∈ NkP , s′ ∈ N, if 〈~x, s〉 ⇒ 〈~x′, s′〉 then there

exists k ∈ N such that:

(1) ∆k
G(⊥

qs
~x:0) ≈ ⊥

qs′
~x′:0;

(2) ∀i ∈ [1, k − 1], ∀j ∈ [1, t+ 1].∆i
G(⊥

qs
~x:0)[qj ] = ∅.

Proof. Assume that 〈~x, s〉 ⇒ 〈~x′, s′〉. We distinguish three cases.

(i) Let Is ∈ {z(n), s(n), t(m,n) | n,m ∈ N}. Consider the case Is = z(n) for
some n (the remaining cases are analogous), so that s′ = s + 1. For k = 1 we
have that:

∆G(⊥
qs
~x:0) = λv.

⋃

(u,c,v)∈E

fc(⊥
qs
~x:0[u])

= λv.

{

fxn:=0({~x : 0}) if v = qs+1

∅ otherwise
[by def. of G]

= λv.

{

~x′ : 0 if v = qs+1

∅ otherwise

= ⊥
qs′
~x′:0 [as s′ = s+ 1]

Thus, ∆G(⊥
qs
~x:0) ≈ ⊥

qs′
~x′:0, i.e., property (1) holds with k = 1. Property (2)

trivially holds since for k = 1, [1, k − 1] is the empty set.

(ii) Let Is = j(m,n, p) and assume that xm = xn holds, so that the next
instruction to execute is Iq, i.e., s

′ = p. For k = 1 we have that:

∆G(⊥
qs
~x:0) = λv.

⋃

(u,c,v)∈E

fc(⊥
qs
~x:0[u])

= λv.











fxm=xn?({~x : 0}) if v = qp

fz:=xm+1({~x : 0}) ∪ fz:=xn+1({~x : 0}) if v = incs

∅ otherwise

[by def. of G]

= λv.











{~x : 0} if v = qp

{~x : xm + 1} if v = incs

∅ otherwise

[as xm = xn]

Since s′ = p and ~x = ~x′, we have that:

• for all i ∈ [1, t+ 1],∆G(⊥
qs
~x:0)[qi] = ⊥

qp
~x:0[qi] = ⊥

qs′
~x′:0[qi];
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• for all i ∈ [1, t+ 1] and m ∈ [1, kP ] such that (inci, xm = z?, qi+1) ∈ E:

{~x ∈ ∆G(⊥
qs
~x:0)[inci] | z ≤ xm} = ∅ = {~x ∈ ⊥

qs′
~x′:0[inci] | z ≤ xm}.

Thus, ∆G(⊥
qs
~x:0) ≈ ⊥

qs′
~x′:0 holds, i.e., property (1) holds with k = 1. Moreover,

once again property (2) trivially holds because [1, k − 1] is empty.

(iii) The last possible case is Is = j(m,n, q) with xm 6= xn, so that the next
instruction to execute is Is+1, i.e., s

′ = s+1. We first prove, by induction, that
for all i ≥ 1:

i ≤ |xm − xn| ⇒

∆i
G(⊥

qs
~x:0) = λv.

{

fz:=xn+i({~x : 0}) ∪ fz:=xm+i({~x : 0}) if v = incs

∅ otherwise
(∗)

For the base case i = 1, we have that:

∆G(⊥
qs
~x:0)

= λv.
⋃

(u,c,v)∈E

fc(⊥
qs
~x:0[u])

= λv.

{

fz:=xn+1({~x : 0}) ∪ fz:=xm+1({~x : 0}) if v = incs

∅ otherwise
[by def. of G]

For the inductive case i > 1, assume that i ≤ |xm − xn| (if i > |xm − xn| the
implication (∗) trivially holds). We have that:

∆i
G(⊥

qs
~x:0)

= ∆G(∆
i−1
G (⊥qs

~x:0))

= ∆G

(

λv.

{

fz:=xn+i−1({~x : 0}) ∪ fz:=xm+i−1({~x : 0}) if v = incs

∅ otherwise

)

[by ind. hyp. for i− 1 ≤ |xm − xn|]

= λv.

{

fz:=z+1

(

fz:=xn+i−1({~x : 0}) ∪ fz:=xm+i−1({~x : 0})
)

if v = incs

∅ otherwise

[as (incs, z := z + 1, incs) is an edge of G and

xm 6= xn + i− 1 and xn 6= xm + i− 1 since i− 1 < |xm − xn|]

= λv.

{

fz:=xn+i({~x : 0}) ∪ fz:=xm+i({~x : 0}) if v = incs

∅ otherwise
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We have therefore shown the implication (∗). Now, note that for k = |xm−xn|+1
we have that:

∆
|xm−xn|+1
G (⊥qs

~x:0)

= ∆G(∆
|xm−xn|
G (⊥qs

~x:0))

= ∆G

(

λv.

{

fz:=xn+|xm−xn|({~x : 0}) ∪ fz:=xm+|xm−xn|({~x : 0}) if v = incs

∅ otherwise

)

[by (∗)]

= λv.











fz:=xn+|xm−xn|+1({~x : 0}) ∪ fz:=xm+|xm−xn|+1({~x : 0}) if v = incs

{~x : max(xm, xn)} if v = qs+1

∅ otherwise

[because max(xm, xn) = min(xm, xn) + |xm − xn|]

Since s′ = s+ 1 and ~x = ~x′, we have that:

• for all i ∈ [1, t+1], ∆
|xm−xn|+1
G (⊥qs

~x:0)[qi]↾kP
= ⊥

qs+1

~x:0 [qi]↾kP
= ⊥

qs′
~x′:0[qi]↾kP

;

• for all i ∈ [1, t+ 1] and m ∈ [1, kP ] such that (inci, xm = z?, qi+1) ∈ E:

{~x ∈ ∆
|xm−xn|+1
G (⊥qs

~x:0)[inci] | z ≤ xm} = ∅ = {~x ∈ ⊥
qs′
~x′:0[inci] : z ≤ xm}.

Therefore, ∆G(⊥
qs
~x:0) ≈ ⊥

qs′
~x′:0 holds. Furthermore, for all i ∈ [1, |xm − xn|], by

applying the implication (∗) we obtain:

∆i
G(⊥

qs
~x:0) =

{

fz:=xn+i({~x : 0}) ∪ fz:=xm+i({~x : 0}) if v = incs

∅ otherwise.

Thus, for all j ∈ [1, t + 1], ∆i
G(⊥

qs
~x:0)[qj ] = ∅ holds and this concludes the

proof.

Let us now generalise Lemma 5.11 to any number of execution steps ⇒n

performed by a URM program. In particular, we show that if the URM halts
then our abstract model will reach, after finitely many steps, a state that stores
the URM output in its end node. Likewise, whenever the URM diverges, the
state of the end node will be empty.

Proposition 5.12. Let P = (I1, . . . , It) be a URM program. Then, for all

G = (N,E, qs, qe) ∈ τ(P ), ~x, ~x
′ ∈ NkP , n ∈ N, if 〈~x, s〉 ⇒n 〈~x′, t+ 1〉 then there

exists n′ ∈ N such that:

(1) ∆n′

G (⊥qs
~x:0) ≈ ⊥

qt+1

~x′:0 ;

(2) ∀i ∈ [0, n′ − 1].∆i
G(⊥

qs
~x:0)[qt+1] = ∅.

Proof. We proceed by induction on n ∈ N.
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• Base case n = 0, so that 〈~x, s〉 = 〈~x′, t + 1〉. Therefore, for n′ = 0 the
property (1) holds because:

∆n′

G (⊥qs
~x:0) = ∆0

G(⊥
qt+1

~x′:0 ) [as n′ = 0, t+ 1 = s, ~x′ = ~x]

= ⊥
qt+1

~x′:0 [as ∆0
G = λx.x]

Moreover, the property (2) trivially holds becase [0, n′ − 1] is empty.

• Inductive case n > 0, so that 〈~x, s〉 ⇒ 〈~x′′, s′′〉 ⇒n−1 〈~x′, t+ 1〉. We have
that:

– by Lemma 5.11, and observing that s 6= t + 1, we know that there
exists m ∈ N such that: (1) ∆m

G (⊥qs
~x:0) ≈ ⊥

qs′′
~x′′:0; (2) ∀i ∈ [0,m −

1]. ∆i
G(⊥

qs
~x:0)[qt+1] = ∅.

– by inductive hypothesis there exists n′′ ∈ N such that: (i) ∆n′′

G (⊥
qs′′

~x′′:0) ≈
⊥

qt+1

~x′:0 ; (ii) ∀i ∈ [0, n′′ − 1]. ∆i
G(⊥

qs′′
~x′′:0)[qt+1] = ∅.

Therefore, it turns out that:

∆n′′+m
G (⊥qs

~x:0) = ∆n′′

G (∆m
G (⊥qs

~x:0))

≈ ∆n′′

G (⊥
qs′′
~x′′:0) [as ∆m

G (⊥qs
~x:0) ≈ ⊥

qs′′
~x′′:0, by Lemma 5.10]

≈ ⊥
qt+1

~x′:0 [by ind. hyp.]

thus showing (1) for n′′ +m. Moreover, for all i ∈ [0, n′′ − 1]:

∆i+m
G (⊥qs

~x:0) = ∆i
G(∆

m
G (⊥qs

~x:0))

≈ ∆i
G(⊥

qs′′
~x′′:0). [as ∆m

G (⊥qs
~x:0) ≈ ⊥

qs′′
~x′′:0, by Lemma 5.10]

Recall that, by inductive hypothesis, ∆i
G(⊥

qs′′
~x′′:0)[qt+1] = ∅, so that we

obtain that for all i ∈ [m,n′′ +m− 1], ∆i
G(⊥

qs
~x:0)[qt+1] = ∅ holds. Since,

by Lemma 5.11, we have that for all i ∈ [0,m − 1], ∆i
G(⊥

qs
~x:0)[qt+1] = ∅

holds, we conclude that for all i ∈ [0, n′′ +m − 1], ∆i
G(⊥

qs
~x:0)[qt+1] = ∅,

thus showing (2) for n′′ +m.

Proposition 5.13. Let P = (I1, . . . , It) be a URM program. Then, for all

G = (N,E, qs, qe) ∈ τ(P ), ~x ∈ NkP , n ∈ N:

if ∆n
G(⊥

qs
~x:0)[qt+1] 6= ∅ then ∃~x′ ∈ NkP , ∃n′ ∈ N. 〈~x, s〉 ⇒n′

〈~x′, t+ 1〉.

Proof. We proceed by induction on n ∈ N:

• n = 0: by hypothesis, ∆0
G(⊥

qs
~x:0)[qt+1] = ⊥

qs
~x:0[qt+1] 6= ∅, so that s = t+ 1

and, in turn, 〈~x, s〉 ⇒0 〈~x, t+ 1〉.

• n > 0: by hypothesis, we have that ∆n
G(⊥

qs
~x:0)[qt+1] 6= ∅. We consider

s 6= t + 1, otherwise, one can trivially pick n′ = 0. By construction,
there exist ~x′′, s′′ such that 〈~x, s〉 ⇒ 〈~x′′, s′′〉, and, by Lemma 5.11, there
exists m such that ∆m

G (⊥qs
~x:0) ≈ ⊥

qs′′
~x′′:0. Note that n ≥ m holds, since for
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all i ∈ [1,m − 1], ∆i
G(⊥

qs
~x:0)[qt+1] = ∅ holds. By Lemma 5.10, it follows

that ∆n−m
G (∆m

G (⊥qs
~x:0)) ≈ ∆n−m

G (⊥
qs′′
~x′′:0), By hypothesis and Definition 5.9,

we have that ∆n−m
G (∆m

G (⊥qs
~x:0))[qt+1] = ∆n−m

G (⊥
qs′′
~x′′:0)[qt+1] 6= ∅. We

conclude by applying the inductive hypothesis, that entails the existence
of m′ such that 〈~x, s〉 ⇒ 〈~x′′, s′′〉 ⇒m′

〈~x′, s′〉.

The next two results show that for a given URM program P = (I1, . . . , It),
the BACFG G = (N,E, q1, qt) ∈ τ(P ) simulates the operational semantics of P
starting from its first instruction I1.

Proposition 5.14. Let P = (I1, . . . , It) be a given URM program and G =
(N,E, q1, qt+1) ∈ τ(P ). Then, for all ~x, ~x′ ∈ NkP and n ∈ N:

if 〈~x, 1〉 ⇒n 〈~x′, t+ 1〉 then JGK~x:0[qt+1] ↾kP
= {~x′}.

Proof. By Proposition 5.12 there exists n′ such that ∆n′

G (⊥q1
~x:0) ≈ ⊥

qt+1

~x′:0 and for
all i ∈ [0, n′ − 1], ∆i

G(⊥
q1
~x:0)[qt+1] = ∅. Let us prove, by induction on i, that for

all i > n′, ∆i
G(⊥

q1
~x:0) ≈ λv.∅.

• i = n′ + 1:

∆n′+1
G (⊥q1

~x:0) = ∆G(∆
n′

G (⊥q1
~x:0))

≈ ∆G(⊥
t+1
~x′:0) [as ∆n′

G (⊥q1
~x:0) ≈ ⊥

t+1
~x′:0, by Lemma 5.10]

= λv.∅. [by def. of G]

• i > n′ + 1:

∆i
G(⊥

q1
~x:0) = ∆G(∆

i−1
G (⊥q1

~x:0))

≈ ∆G(λv.∅). [by ind. hyp. and Lemma 5.10]

= λv.∅

Thus, for all i 6= n′, we have that ∆i
G(⊥

q1
~x:0)[qt+1] = ∅. Therefore:

JGK~x:0[qt+1]↾kP
= ∪i∈NF

i(⊥q1
~x:0)[qt+1]↾kP

[by Kleene’s fixpoint theorem]

= ∪i∈N∆
i
G(⊥

q1
~x:0)[qt+1]↾kP

[by Lemma 5.7]

= ∆n′

G (⊥q1
~x:0)[qt+1]↾kP

[as ∀i 6= n′.∆i
G(⊥

q1
~x:0)[qt+1] = ∅]

= {~x′}. [as ∆n′

G (⊥q1
~x:0) ≈ ⊥

t+1
~x′:0]

This therefore closes the proof.

Proposition 5.15. Let P = (I1, . . . , It) be a given URM program and G =
(N,E, q1, qt+1) ∈ τ(P ). Then, for all ~x ∈ NkP :

if for all ~x′ ∈ NkP , n ∈ N, 〈~x, 1〉 6⇒n 〈~x′, t+ 1〉 then JGK~x:0[qt+1] = ∅.
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Proof. For all n′ ∈ N, by Proposition 5.13, we have that ∆n′

G (⊥q1
~x:0)[qt+1] = ∅

holds. As a consequence:

JGK~x:0[qt+1] = ∪i∈NF
i(⊥q1

~x:0)[qt+1] [by Kleene’s fixpoint theorem]

= ∪i∈N∆
i
G(⊥

q1
~x:0)[qt+1] [by Lemma 5.7]

= ∅.

We are now in position to prove the main result of this section.

Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing

complete computational model.

Proof. This follows from Propositions 5.14 and 5.15 and Turing completeness
of URMs [4, Theorem 4.7].

5.2. Concrete and Abstract Semantics

A key insight is that our concrete semantics is given by URM programs
that satisfy the Assumption 2.1 of Turing completeness, while BACFGs provide
the abstract semantics. Let us consider two Gödel numberings for URMs and
BACFGs, so that for an index a ∈ N, RM a and Ga denote, resp., the a-th URM
and BACFG programs. The concrete semantics 〈φ,=〉 for URMs is defined as
follows: for any index a ∈ N, arity n ∈ N, and input ~x ∈ Nn,

φ(n)a (~x) ,

{

y if RM a on input ~x halts with y stored on its 1st register

↑ otherwise.
(3)

On the other hand, the abstract semantics of BACFGs is defined as follows.

Definition 5.16 (State semantics of BACFGs). Let Q ⊆ ℘(Nt) be a pred-
icate on sets of states with t ∈ N variables. The state semantics 〈Q,=〉 of
BACFGs, for any index a ∈ N and arity n ∈ N, is given by the function

Q
(n)
a : Nn → {0, 1} defined as follows: for all input ~x ∈ Nn,

Q(n)
a (~x) ,











1 if JGaK~x[ea] 6= ∅ ∧ JGaK~x[ea]↾t ∈ Q

0 if JGaK~x[ea] 6= ∅ ∧ JGaK~x[ea]↾t 6∈ Q

↑ if JGaK~x[ea] = ∅,

where ea is the end node of the BACFG Ga.

Predicates of type Q ⊆ ℘(Nt) are also known as hyperproperties [25] in pro-
gram security and the state semantics of Definition 5.16 models the validity of a
given predicate Q at the end node of a BACFG. Note that, from a computabil-
ity perspective, it is not restrictive to focus on the end node, since this can be
arbitrarily chosen in a BACFG.

Theorem 5.17. The state semantics of BACFGs in Definition 5.16 is ssmn,

branching and discharging.
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s

sa sb

ea eb

e

x1 = c1? x1 = c2?

Ga Gb

Figure 4: The BACFG Gr(a,b,c1,c2), output of the function r.

We split the proof of Theorem 5.17 into three separate results that are given
below. In BACFGs, we write the command [xa, xa+i] := [xb, xb+i], for some
indices a, b and i ≥ 0, to denote a sequence of adjacent edges with commands
xa := xb, xa+1 := xb+1, . . . , xa+i := xb+i. Likewise, [xa, xa+i] := 0 denotes a
sequence of adjacent edges labeled with xa := 0, xa+1 := 0, . . . , xa+i := 0.

Proposition 5.18. The state semantics of BACFGs in Definition 5.16 is branch-

ing.

Proof. Let 〈Q,=〉 be the state semantics of Definition 5.16 for a given predicate
Q ⊆ ℘(Nt) on sets of states with t ∈ N variables. We define a total computable
function r : N4 → N as follows: given two indices a, b of BACFGs, say Ga =
(Na, Ea, sa, ea) and Gb = (Nb, Eb, sb, eb), and two values c1, c2 ∈ N, the function
r suitably renames the nodes of Ga and Gb to avoid clashes, and adds two fresh
nodes s (for start) and e (for end) whose in/outgoing edges are depicted by the
BACFG in Fig. 4, thus denoted by Gr(a,b,c1,c2).

Observe that in the BACFG Gr(a,b,c1,c2) with start and end nodes, resp., s
and e, with inputs ranging in Nn, for some n ∈ N, the maximum variable index
is k = max(ka, kb, n), where ka, kb are, resp., the maximum variable indices in
Ga and Gb. Moreover, for all inputs ~y = (y1, y2, . . . , yn) ∈ Nn and c1 6= c2, it
turns out that:

• if y1 = c1 then JGr(a,b,c1,c2)K~y [ea] = JGaK~y[ea] ↾k and JGr(a,b,c1,c2)K~y[eb] =
∅;

• if y1 = c2 then JGr(a,b,c1,c2)K~y[eb] = JGbK~y[eb] ↾k and JGr(a,b,c1,c2)K~y[ea] =
∅;

• otherwise, i.e. when y1 /∈ {c1, c2}, we have that JGr(a,b,c1,c2)K~y [ea] =
JGr(a,b,c1,c2)K~y [eb] = ∅.
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Consequently:

JGr(a,b,c1,c2)K~y[e] = JGr(a,b,c1,c2)K~y [ea] ∪ JGr(a,b,c1,c2)K~y[eb] =










JGaK~y [ea] ↾k if y1 = c1

JGbK~y [eb] ↾k if y1 = c2

∅ otherwise.

Hence, r is a total computable function such that for all a, b, c1, c2, x ∈ N with
c1 6= c2:

λ~y.Q
(n)
r(a,b,c1,c2)

(x, ~y)

= λ~y.











1 if JGr(a,b,c1,c2)Kx:~y[e] 6= ∅ ∧ JGr(a,b,c1,c2)Kx:~y[e] ↾t∈ Q

0 if JGr(a,b,c1,c2)Kx:~y[e] 6= ∅ ∧ JGr(a,b,c1,c2)Kx:~y[e] ↾t /∈ Q

↑ if JGr(a,b,c1,c2)Kx:~y[e] = ∅

= λ~y.















































1 if JGaKx:~y[ea] 6= ∅ ∧ JGaKx:~y[ea] ↾k↾t∈ Q ∧ x = c1

0 if JGaKx:~y[ea] 6= ∅ ∧ JGaKx:~y[ea] ↾k↾t /∈ Q ∧ x = c1

↑ if JGaKx:~y[ea] = ∅ ∧ x = c1

1 if JGbKx:~y[eb] 6= ∅ ∧ JGbKx:~y[eb] ↾k↾t∈ Q ∧ x = c2

0 if JGbKx:~y[eb] 6= ∅ ∧ JGbKx:~y[eb] ↾k↾t /∈ Q ∧ x = c2

↑ if JGbKx:~y[eb] = ∅ ∧ x = c2

↑ otherwise

= λ~y.















































1 if JGaKx:~y[ea] 6= ∅ ∧ JGaKx:~y[ea] ↾t∈ Q ∧ x = c1

0 if JGaKx:~y[ea] 6= ∅ ∧ JGaKx:~y[ea] ↾t /∈ Q ∧ x = c1

↑ if JGaKx:~y[ea] = ∅ ∧ x = c1

1 if JGbKx:~y[eb] 6= ∅ ∧ JGbKx:~y[eb] ↾t∈ Q ∧ x = c2

0 if JGbKx:~y[eb] 6= ∅ ∧ JGbKx:~y[eb] ↾t /∈ Q ∧ x = c2

↑ if JGbKx:~y[eb] = ∅ ∧ x = c2

↑ otherwise

= λ~y.











Q
(n)
a (x, ~y) if x = c1

Q
(n)
b (x, ~y) if x = c2

↑ otherwise

=











λ~y.Q
(n)
a (x, ~y) if x = c1

λ~y.Q
(n)
b (x, ~y) if x = c2

λ~y. ↑ otherwise

Therefore, r satisfies the branching property of Definition 4.6.

Proposition 5.19. The state semantics of BACFGs in Definition 5.16 is dis-

charging.
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s

sa

ea

[x1, xn] := [x2, xn+1]

xn+1 := xmax(n+1,ka+1,t)+1

Ga

Figure 5: The BACFG Gr(a), output of the function r, where irrelevant node names are
omitted.

Proof. Let 〈Q,=〉 be a state semantics for a predicateQ ⊆ ℘(Nt) on sets of states
with t ∈ N variables. Similarly to the proof of Proposition 5.18, let us define a
total computable function r : N→ N as follows: given an index a of a BACFG
Ga = (Na, Ea, sa, ea), where ka is the maximum variable index occuring in Ga,
the function r suitably renames the nodes of Ga to avoid clashes, and adds two
fresh nodes s and e whose in/outgoing edges are depicted by the BACFG in
Fig. 5.

Notice that in the BACFG Gr(a) with start and end nodes, resp., s and ea,
given n ≥ 1, for all input ~y = (y1, y2, . . . , yn) ∈ Nn and x ∈ N we have that
JGr(a)Kx:~y[ea] ↾t= JGaK~y[ea] ↾t: this happens because the command [x1, xn] :=
[x2, xn+1] left shifts the variables and the assignment xn+1 := xmax(n+1,ka+1,t)+1

guarantees that xn+1 is undefined. Hence, r is a total computable function such
that for all a, x ∈ N:

λ~y.Q
(n+1)
r(a) (x, ~y)

= λ~y.











1 if JGr(a)Kx:~y[ea] 6= ∅ ∧ JGr(a)Kx:~y[ea] ↾t∈ Q

0 if JGr(a)Kx:~y[ea] 6= ∅ ∧ JGr(a)Kx:~y[ea] ↾t /∈ Q

↑ if JGr(a)Kx:~y[ea] = ∅

= λ~y.











1 if JGaK~y [ea] 6= ∅ ∧ JGaK~y[ea] ↾t∈ Q

0 if JGaK~y [ea] 6= ∅ ∧ JGaK~y[ea] ↾t /∈ Q

↑ if JGaK~y [ea] = ∅

= λ~y.Q(n)
a (~y).

Thus, r is a function satisfying the discharging property of Definition 4.6.
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Proposition 5.20. The state semantics of BACFGs in Definition 5.16 is ssmn.

Proof. Let m,n ≥ 1 and 〈Q,=〉 be a state semantics for a given predicate
Q ⊆ ℘(Np) on sets of states with p ∈ N variables. We define a total computable
function s : Nm+2 → N which takes as input two indices a, b and am-dimensional
vector ~z ∈ Nm. Intuitively, to satisfy the ssmn property of Definition 3.1, the
output of s(a, b, ~z) should be a BACFG that simulates the computation of the

concrete semantics φ
(m)
b as defined in (3). Since this latter concrete semantics

is defined on URMs, it is enough to simulate the program RMb = (I1, . . . , It).
To this aim, recall that the total computable function τ of Definition 5.8 trans-
forms URMs into BACFGs having equivalent semantics. Roughly, the BACFG
Gs(a,b,~z) on input ~y ∈ Nn first simulates Gb′ = (Nb′ , Eb′ , q1, qt+1) ∈ τ(RMb) on

input ~z, and, then, simulates Ga = (Na, Ea, sa, ea) on input φ
(m)
b (~z) : ~y. Before

going into the details, recall that, in general, URMs set unused registers to 0,
so that, by a slight abuse of notation, we define the vector projection ~z ↾k∈ Nk,
for all ~z = (z1, . . . , zk′) ∈ Nk′

, as follows:

~z ↾k ,

{

(z1, . . . , zk′ , 0)↾k if 0 ≤ k′ < k

(z1, . . . , zk) if k ≤ k′

Let ka and kb be the maximum variable (or register) index occuring, resp., in
Ga and RMb. Recall the operational semantics ⇒ for URMs of Definition 5.4
and notice that:

φ
(m)
b (~z) =

{

z′1 if ∃~z′ ∈ Nkb .〈~z ↾kb
, 1〉 ⇒∗ 〈~z′, t+ 1〉

↑ otherwise.

Therefore, by Propositions 5.14 and 5.15, in order to simulate φ
(m)
b (~z) it is

enough to execute Gb′ on input ~z ↾kb
: 0. More in detail, the transform s(a, b, ~z)

will add the following commands:

1. [xkb+2, xkb+n+1] := [x1, xn], to safely store the original input ~y ∈ Nn; in
fact, the execution of JGb′K~z↾kb :0 will use the first kb + 1 variables only;

2. [x1, xmin(m,kb)] := [z1, zmin(m,kb)], so that the first min(m, kb) variables
contain ~z ↾kb

except for the 0-padding;

3. [xmin(m,kb)+1, xkb+1] := 0, to (possibly) add the missing 0-padding;

This allows us to execute Gb′ on input (~z ↾kb
: 0) : ~y. The next step is to

execute Ga on input φ
(m)
b (~z) : ~y. Therefore, we add the following commands:

4. [x2, xn+1] := [xkb+2, xkb+n+1], to restore the original input (~y) on the
variables starting from x2;

5. [xn+2, xmax(ka,p)] := [xkb+n+2, xkb+max(ka,p)], to ensure that all the re-
maining variables up to xmax(ka,p) are left undefined.

Finally, the BACFG Ga is executed. The resulting BACFG Gs(a,b,~z), with
start and end nodes s and ea, resp., is described by the graph in Fig. 6. Observe
that, by definition:
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• if φ
(m)
b (~z) ↑ then, by Proposition 5.15, JGs(a,b,~z)K~y[ea] = JGb′K~z [qt+1] = ∅;

• otherwise, by Proposition 5.14, JGs(a,b,~z)K~y [ea]↾p = JGaKφ(m)
b

(~z):~y
[ea]↾p.

Hence, we defined a total computable function s such that for all a, b ∈ N

and ~z ∈ Nm:

λ~y.Q
(n)
s(a,b,~z)(~y)

= λ~y.











1 if JGs(a,b,~z)K~y[ea] 6= ∅ ∧ JGs(a,b,~z)K~y [ea] ↾p∈ Q

0 if JGs(a,b,~z)K~y[ea] 6= ∅ ∧ JGs(a,b,~z)K~y [ea] ↾p /∈ Q

↑ if JGs(a,b,~z)K~y[ea] = ∅

= λ~y.















1 if φ
(m)
b (~z) ↓ ∧JGaKφ(m)

b
(~z):~y

[ea] 6= ∅ ∧ JGaKφ(m)
b

(~z):~y
[ea] ↾p∈ Q

0 if φ
(m)
b (~z) ↓ ∧JGaKφ(m)

b
(~z):~y

[ea] 6= ∅ ∧ JGaKφ(m)
b

(~z):~y
[ea] ↾p /∈ Q

↑ otherwise

= λ~y.Q(n+1)
a (φ

(m)
b (~z), ~y)

Hence, s is a function satisfying the ssmn property of Definition 3.1.

5.3. An Application to Affine Program Invariants

Consider a state semantics 〈Q,=〉 for some predicate Q ⊆ ℘(Nt). For all
n ≥ 1, let us define two sets A∀Q and A∃Q, by distinguishing two cases depending
on whether Q includes the empty set, that models nontermination, or not:

(1) If ∅ /∈ Q then:

A∀Q , {a ∈ N | ∀~y.Q
(n)
a (~y) = 1};

A∃Q , {a ∈ N | ∃~y.Q
(n)
a (~y) = 1}.

(2) If ∅ ∈ Q then:

A∀Q , {a ∈ N | ∀~y.Q
(n)
a (~y) ∈ {1, ↑}};

A∃Q , {a ∈ N | ∃~y.Q
(n)
a (~y) ∈ {1, ↑}}.

Hence, A∀Q (A∃Q) is the set of BACFGs such that Q holds at ea for any
(some) input state. It turns out that if the property Q is nontrivial then neither
A∀Q nor A∃Q can be recursive.

Corollary 5.21. If Q is not trivial then A∀Q and A∃Q are not recursive.

Proof. Observe that A∀Q is ∼Q-extensional. Thus, Theorem 5.17 enables ap-
plying our intensional Theorem 4.10 to the state semantics 〈Q,=〉 to derive
that A∀Q is not recursive. The same argument applies to the existential version
A∃Q.
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s

q1

qt+1

sa

ea

[xkb+2, xkb+n+1] := [x1, xn]

[x1, xmin(m,kb)] := [z1, zmin(m,kb)]

[xmin(m,kb)+1, xkb+1] := 0

Gb′

[x2, xn+1] := [xkb+2, xkb+n+1]

[xn+2, xmax(ka,p)] := [xkb+n+2, xkb+max(ka,p)]

Ga

Figure 6: The BACFG Gs(a,b,~z), output of the function s, where irrelevant node names are
omitted.
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Thus, Corollary 5.21 means that we cannot decide if a nontrivial predicate
Q holds at a given program point of a BACFG for all input states, neither
whether there exists an input state that will make Q true. Let us remark that
the predicates Q are arbitrary and include, but are not limited to, relational
predicates between program variables such as affine equalities of Karr’s abstract
domain. Let us define some noteworthy examples of predicates:

(i) Given a set of affine equalities aff = { ~aj · ~x = bj}
m
j=1, with ~aj ∈ Zt and

bj ∈ Z, Qaff , {S ∈ ℘(Nt) | ∀~v ∈ S.∀j ∈ [1,m]. ~aj · ~v = bj};

(ii) Given i ∈ [1, t] and c ∈ N, Q=c , {S ∈ ℘(Nt) | ∃~v ∈ S. vi = c};

(iii) Given a size k ∈ N, Qfink
, {S ∈ ℘(Nt) | |S| = k} and Qfin , ∪k∈NQfink

.

Therefore, it turns out that Corollary 5.21 for A∀Qaff entails the undecid-
ability result of Müller-Olm and Seidl [8, Section 7] discussed at the beginning
of Section 5. The predicate Q=c can be used to derive the undecidability of
checking if some variable xi may store a given constant c for affine programs
with positive affine guards, e.g., for c = 0 this amounts to the undecidability
of detecting division-by-zero bugs. Finally, with Qfin0

we obtain the undecid-
ability of dead code elimination, Qfin1 entails the well-known undecidability of
constant detection [22, 26], while the existential predicate Qfin encodes whether
some program point may only have finitely many different states.

6. Discussion of Related Work

In this section we discuss in detail the relation with some of Asperti’s results
[2] and with Rogers’ systems of indices [9, 5].

6.1. Relation with Asperti’s Approach

We show that our ssmn property in Definition 3.1 is a generalisation of the
smn property in Asperti’s approach [2], in a way that Kleene’s second recursion
theorem and Rice’s theorem for complexity cliques in [2] arise as instances of the
corresponding results in our approach. Let us first recall and elaborate on the
axioms for the complexity of function composition studied by Lischke [27, 28, 29]
and assumed in [2, Section 4].

Definition 6.1 (Linear time and space complexity composition). Con-
sider a given concrete semantics φ and a Blum complexity Φ. The pair 〈φ,Φ〉 has
the linear time composition property if there exists a total computable function
h : N2 → N such that for all i, j ∈ N:

(1) φh(i,j) = φi ◦ φj ,

(2) Φh(i,j) ∈ Θ(Φi ◦ φj +Φj).

If (2) is replaced by

(2′) Φh(i,j) ∈ Θ(max{Φi ◦ φj ,Φj})

then 〈φ,Φ〉 is said to have the linear space composition property.

35



Roughly speaking, the linear time composition property states that there
exists a program h(i, j) which computes the composition φi(φj(x)) in an amount
of time which is asymptotically equivalent to the sum of the time needed for
computing Pj on input x, eventually producing some output φj(x), and the
time form computing Pi on such value. On the other hand, the linear space
composition property aims at modeling the needed space, so that rather than
adding the complexities of Pi and Pj , their maximum is considered, since this
intuitively is the maximum amount of space needed for computing a composition
of programs.

By observing that Θ(max{Φi ◦φj ,Φj}) = Θ(Φi ◦φj +Φj) we can merge the
linear time and space properties of Definition 6.1 and extend them for n-ary
compositions as follows.

Definition 6.2 (Linear complexity composition). Given a concrete se-
mantics φ and a Blum complexity Φ, the pair 〈φ,Φ〉 has the linear complexity

composition property if, given n,m ≥ 1, there exists a total computable function
h : N2 → N such that for all i, j ∈ N:

φ
(m+n)
h(i,j) = λ~xλ~y. φ

(n+1)
i (φ

(m)
j (~x), ~y),

Φ
(m+n)
h(i,j) ∈ Θ(λ~xλ~y. (Φ

(n+1)
i (φ

(m)
j (~x), ~y)) + Φ

(m)
j (~x))).

We can now recall the smn property as defined in [2, Definition 11].

Definition 6.3 (Asperti’s smn property). Given a concrete semantics φ,
a Blum complexity Φ and m,n ≥ 1, the pair 〈φ,Φ〉 has the Asperti’s smn

property if there exists a total computable function s : Nm+1 → N such that
∀e ∈ N, ~x ∈ Nm:

λ~y.φ
(m+n)
e (~x, ~y) = φ

(n)
s(e,~x),

λ~y.Φ
(m+n)
e (~x, ~y) ∈ Θ(λ~y.Φ

(n)
s(e,~x)(~y)).

Informally, the smn property of Definition 6.3 states that the operation of
fixing parameters preserves both the concrete semantics and the asymptotic
complexity. Under these assumptions, we can show that Asperti’s complexity
clique semantics satisfies our ssmn property. The proof is a simple adaptation
of the one used in Section 3 to argue that the concrete semantics of Example 2.3
is ssmn.

Lemma 6.4. Let 〈π,≡π〉 be the complexity clique semantics of Example 2.6.

If 〈π,≡π〉 satisfies Asperti’s smn and linear complexity composition properties

then 〈π,≡π〉 is ssmn.

Proof. We have to show that given m,n ≥ 1, there exists a total computable
function s : Nm+2 → N such that for all a, b ∈ N, ~x ∈ Nm:

λ~y.π(n+1)
a (φ

(m)
b (~x), ~y) ≡π π

(n)
s(a,b,~x).
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We have that

λ~y.π(n+1)
a (φ

(m)
b (~x), ~y) =

= λ~y.〈〈φ(n+1)
a (φ

(m)
b (~x), ~y),Φ(n+1)

a (φ
(m)
b (~x), ~y)〉〉

[by definition of πa]

≡π λ~y.〈〈φ
(m+n)
h(a,b) (~x, ~y),Φ

(m+n)
h(a,b) (~x, ~y)〉〉

[with h : N2 → N total computable, by linear complexity composition]

≡π λ~y.〈〈φ
(n)
s′(h(a,b),~x)(~y),Φ

(n)
s′(h(a,b),~x)(~y)〉〉

[with s′ : Nm+1 → N total computable, by Asperti’s smn property]

= 〈〈φ
(n)
s′(h(a,b),~x),Φ

(n)
s′(h(a,b),~x)〉〉 = π

(n)
s′(h(a,b),~x)

The desired function s : Nm+2 → N can therefore be defined as s(a, b, ~x) ,
s′(h(a, b), ~x). Note that s is total computable since h and s′ are so.

This result, together with the observation that the notion of fairness (Defi-
nition 3.2) instantiated to the complexity clique semantics is exactly that of [2,
Definition 26], allows us to retrieve Kleene’s second recursion theorem and Rice’s
theorem for complexity cliques in [2] as instances of our corresponding results
in Section 4.1.

6.2. Relation with Systems of Indices

As mentioned in Section 2, our definition of abstract semantics resembles the
acceptable systems of indices [11, Definition II.5.1] or numberings [5, Exercise
2-10], firstly studied by Rogers [9]. In this section we discuss how such notions
compare.

Definition 6.5 (System of indices [11, Definition II.5.1]). A system of in-

dices is a family of functions {ψn}n∈N such that each ψn : N→ Cn is a surjective
map that associates program indices to n-ary partial recursive functions.

• {ψn}n∈N has the parametrization (or smn) property if for every m,n ∈ N

there is a total computable function s : Nm+1 → N such that ∀e ∈ N, ~x ∈
Nm:

λ~y.ψm+n
e (~x, ~y) = ψn

s(e,~x).

• {ψn}n∈N has the enumeration property if for every n ∈ N there exists
u ∈ N such that for all and e ∈ N and ~y ∈ Nn:

ψn
e = λ~y.ψn+1

u (e, ~y).

Any standard Gödel numbering associating a program with the function
it computes is a system of indices with the parametrization and enumeration
properties. Moreover, exactly as we did in Example 2.3, any system of indices
{ψn}n∈N can be viewed as an abstract semantics 〈π,=〉 with πa

n , ψn
a . In
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this context, the enumeration and parametrization properties correspond to our
fairness and ssmn conditions: fairness is exactly enumeration while ssmn follows
from parametrization and enumeration, as discussed in Section 3 for the concrete
semantics (cf. Example 2.3).

A system of indices is defined to be acceptable if it allows to get back and
forth with a given system of indices satisfying the parametrization and enumer-
ation properties through a pair of total computable functions.

Definition 6.6 (Acceptable system of indices [9, Definition 4]). Let
{ϕn}n∈N be a given system of indices with the parametrization and enumeration
properties. A system of indices {ψn}n∈N is acceptable if there exist two total
computable functions f, g : N→ N such that for all a, n ∈ N:

ψn
a = ϕn

f(a) and ϕn
a = ψn

g(a).

As shown in [11, Proposition II.5.3], it turns out that a system of indices is
acceptable if and only if it satisfies both enumeration and parametrization (a
proof of this characterization was first given by Rogers [9, Section 2]). Conse-
quently, an acceptable system of indices {ψn}n∈N can be viewed as an abstract
semantic 〈π,=〉, where πn

a = ψn
a , which, by this characterization of acceptabil-

ity, is ssmn and fair, and therefore, by Theorem 4.1 it enjoys Kleene’s second
recursion theorem, as already known from [11, Corollary II.5.4].

Under this perspective, a generic abstract semantics according to Defini-
tion 2.2 can be viewed as a proper generalisation of the notion of acceptable
system of indices, in the sense that the latter merely encodes a change of pro-
gram numbering and does not allow to take into account an actual abstraction
of the concrete input/output behaviour of programs.

7. Conclusion and Future Work

This work generalises some traditional extensional results of computabil-
ity theory, notably Kleene’s second recursion theorem and Rice’s theorem, to
intensional abstract program semantics that include the complexity cliques in-
vestigated by Asperti [2]. Our approach was also inspired by Moyen and Simon-
sen [6] and relies on weakening the classical definition of extensional program
property to a notion of partial extensionality w.r.t. abstract program semantics
that satisfy some structural conditions. As an application, we strengthened and
generalised a result by Müller-Olm and Seidl [8] proving that for affine programs
with positive affine guards it is undecidable whether an affine relation holds at
a given program point. Our results also shed further light on the claim that
these undecidability results hinge on the Turing completeness of the underlying
computational model, as argued in [6].

As future work, a natural question would be to investigate intensional ex-
tensions of Rice-Shapiro’s theorem that fit our framework based on abstract
semantics. This appears to be a nontrivial challenge. Generalisations of Rice-
Shapiro’s theorem have been given in [2, Section 5] and [6, Section 5.1]. A
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generalisation in the vein of the approach in [2] seems to be viable, but would
require structural assumptions on abstract program semantics that, while nat-
ural in [2] whose focus is on complexity properties, would be artificial for ab-
stract program semantics and would limit a general applicability. A further
stimulating research topic is to apply our approach to abstract semantics as de-
fined by abstract interpretation of programs [16], in particular for investigating
the relationship with the notion of abstract extensionality studied by Bruni et
al. [30]. Finally, while our framework relies on the assumption of an underly-
ing Turing complete computational model, in a different direction, one could
try to consider intensional properties for classes of programs indexing subrecur-
sive functions (e.g., primitive recursive functions), whose extensional properties
have been already studied (see, e.g., [31, 32]). Despite the fact that we suppose
that our approach will fall short on these program classes, as one cannot expect
to have a universal program inside the class itself or the validity of Kleene’s
second recursion theorem, we think that this represents an intriguing research
challenge.
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