Deterministic Size Discovery and Topology
Recognition in Radio Networks with Short Labels

Adam Ganczorz &
Institute of Computer Science, University of Wroctaw, Poland

Tomasz Jurdzinski &
Institute of Computer Science, University of Wroctaw, Poland

Mateusz Lewko &

Institute of Computer Science, University of Wroctaw, Poland

Andrzej Pelc =

Département d’informatique, University of Québec en Outaouais, Gatineau, Canada

—— Abstract

We consider the fundamental problems of size discovery and topology recognition in radio networks
modeled by simple undirected connected graphs. Size discovery calls for all nodes to output the
number of nodes in the graph, called its size, and in the task of topology recognition each node has
to learn the topology of the graph and its position in it.

We do not assume collision detection: in case of a collision, node v does not hear anything (except
the background noise that it also hears when no neighbor transmits). The time of a deterministic
algorithm for each of the above problems is the worst-case number of rounds it takes to solve it.
Nodes have labels which are (not necessarily different) binary strings. Each node knows its own
label and can use it when executing the algorithm. The length of a labeling scheme is the largest
length of a label.

For size discovery, we construct a labeling scheme of length O(loglog A) (which is known to
be optimal, even if collision detection is available) and we design an algorithm for this problem
using this scheme and working in time O(log® n), where n is the size of the graph. We also show
that time complexity O(log2 n) is optimal for the problem of size discovery, whenever the labeling
scheme is of optimal length O(loglog A). For topology recognition, we construct a labeling scheme
of length O(log A), and we design an algorithm for this problem using this scheme and working in
time O (DA + min(A?, n)), where D is the diameter of the graph. We also show that the length of
our labeling scheme is asymptotically optimal.
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Size Discovery and Topology Recognition with Short Labels

1 Introduction

Information about the topology of the network or some of its parameters, such as size,
often determines the efficiency and sometimes the feasibility of many network algorithms.
For example, graph exploration with stop performed in rings with non-unique labels is
impossible without knowing some upper bound on the size of the ring. On the other hand,
optimal broadcasting algorithms in wireless networks with distinct labels are faster when the
topology of the network is known [21]. Hence, the problems of size discovery and topology
recognition are fundamental in network computing. Size discovery calls for all nodes to output
the number of nodes in the underlying graph, called its size, and in the task of topology
recognition each node has to output an isomorphic copy of the graph with its position in
it marked. More formally, in topology recognition, every node v of the graph G modeling
the network must output a graph G’ and a node v’ in this graph, such that there exists an
isomorphism f : G — G’, for which f(v) =v'.

The model. We consider size discovery and topology recognition in radio networks modeled
by simple undirected graphs. Throughout this paper G = (V, E) denotes the graph modeling
the network, n denotes the number of its nodes, D its diameter, and A its maximum
degree. We use square brackets to indicate sets of consecutive integers: [i,j] = {3,...,j} and
[i] = [1,4].

As usually assumed in the algorithmic literature on radio networks, nodes communicate
in synchronous rounds, starting in the same round. In each round a node can either transmit
the same message to all its neighbors, or stay silent and listen. At the receiving end, a node
v hears a message from a neighbor w in a given round, if v listens in this round, and if w
is its only neighbor that transmits in this round. If more than one neighbor of a node v
transmits in a given round, there is a collision at v. Two scenarios concerning collisions
were considered in the literature. The availability of collision detection means that node v
can distinguish collision from silence which occurs when no neighbor transmits. If collision
detection is not available, node v does not hear anything in case of a collision (except the
background noise that it also hears when no neighbor transmits). In this paper we do not
assume collision detection. The time of a deterministic algorithm for each of the above
problems is the worst-case number of rounds it takes to solve it.

If nodes are anonymous then neither size discovery nor topology recognition can be
performed, as no communication in the network is possible. Indeed, without any labels, in
every round either all nodes transmit or all remain silent, and so no message can be received.
Hence we consider labeled networks. A labeling scheme for a given network represented
by a graph G = (V, E) is any function £ from the set V of nodes into the set S of finite
binary strings. The string £(v) is called the label of the node v. Note that labels assigned
by a labeling scheme are not necessarily distinct. The length of a labeling scheme L is the
maximum length of any label assigned by it. Every node knows a priori only its label, and
can use it as a parameter for the size discovery or topology recognition algorithm.

Our goal is to construct short labeling schemes for size discovery and topology recognition
in arbitrary radio networks, and to design efficient deterministic algorithms for each of these
tasks, using such schemes. Such short schemes in the context of radio networks were studied
for size discovery in [19], and for topology recognition in [18]. In [19] the authors worked in
the model with collision detection. They constructed labeling schemes of length O(loglog A)
and a size discovery algorithm using this scheme and working in time O(Dn?log A). They
also proved that labels of size Q(loglog A) are necessary to solve the size discovery problem
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in this model. In [18], the authors studied topology recognition without collision detection,
similarly as we do in the present paper, but restricted attention only to tree networks. They
constructed labeling schemes of length O(loglog A) and a topology recognition algorithm
working for arbitrary trees, using these schemes. Moreover, they showed that labels of size
Q(loglog A) are necessary to solve the topology recognition problem for trees.

Solving distributed network problems with short labels can be seen in the framework of
algorithms with advice. In this paradigm that has recently got growing attention, an oracle
knowing the network gives advice to nodes not knowing it, in the form of binary strings, and
a distributed algorithm cooperating with the oracle uses this advice to solve the problem
efficiently. The required size of advice (maximum length of the strings) can be considered
as a measure of the difficulty of the problem. Two variations are studied in the literature:
either the binary string given to nodes is the same for all of them [17] or different strings
may be given to different nodes [8, 7, 11, 12], as in the case of the present paper. If strings
may be different, they can be considered as labels assigned to nodes by a labeling scheme.
Such labeling schemes permitting to solve a given network task efficiently are also called
informative labeling schemes. One of the famous examples of using informative labeling
schemes is to answer adjacency queries in graphs [2].

Several authors have studied the minimum amount of advice (i.e., label length) required
to solve certain network problems (see the subsection Related work). The framework of
advice or labeling schemes permits us to quantify the amount of information used to solve
a network problem, such as size discovery or topology recognition, regardless of the type
of information that is provided. It should be noticed that the scenario of the same advice
(label) given to all nodes would be trivial in the case of radio networks: no communication
could occur, and hence the advice would have to contain the size of the network for size
discovery, and would not help for topology recognition, as nodes would not be able to find
their position in the network without communicating.

Our results. It turns out that the optimal length of labeling schemes, both for size discovery
and for topology recognition, depends on the maximum degree A of the graph. For size
discovery, we construct a labeling scheme of length O(loglog A), which is optimal, in view
of [19], and we design an algorithm for this problem using this scheme and working in time
O(log?® n), where n is the size of the graph. We also show that time complexity O(log?n) is
optimal for the problem of size discovery, whenever the labeling scheme is of optimal length
O(loglog A). Hence, without collision detection we achieve the same optimal length of the
labeling scheme, as was done in [19] with collision detection, and for this optimal scheme our
size discovery algorithm is exponentially faster than that in [19].

For topology recognition, we construct a labeling scheme of length O(log A), and we design
an algorithm for this problem using this scheme and working in time O (DA + min(A2?, n)),
where D is the diameter of the graph. We also show that the length of our labeling scheme is
asymptotically optimal, by proving that topology recognition in the class of arbitrary radio
networks requires labeling schemes of length Q(log A). (In fact we prove a stronger result
that this lower bound holds even in the model with collision detection.) If the optimal length
of a labeling scheme sufficient to solve a problem is considered a measure of the difficulty
of the problem, our result shows, in view of the labeling scheme of length O(loglog A) for
topology recognition in trees [18], that this task is exponentially more difficult in arbitrary
radio networks than in radio networks modeled by trees.
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Related work. There is a vast literature concerning distributed algorithms for various tasks
in radio networks. These tasks include, e.g., broadcasting [5, 15], gossiping [5, 14] and leader
election [6, 22]. In some cases [5, 14], the authors use the model without collision detection,
in others [16, 22], the collision detection capability is assumed.

Many authors use the framework of algorithms with advice (or equivalently informative
labeling schemes) to investigate the amount of information needed to solve a given network
problem. In [10], the authors compare the minimum size of advice required to solve two
information dissemination problems, using a linear number of messages. In [11], it is shown
that advice of constant size permits to carry out the distributed construction of a minimum
spanning tree in logarithmic time. In [2], optimal labeling schemes are constructed in order
to answer adjacency queries in graphs. In [9], the advice paradigm is used to solve online
problems.

In the model of radio networks, apart from the previously mentioned papers [19] studying
size discovery and [18] studying topology recognition in the framework of short labeling
schemes, other authors studied the tasks of broadcast and multi-broadcast [20, 8, 7, 23],
and convergecast [4] in this framework. While [8, 7] assume that short labels are given
to anonymous nodes, [20] adopts a different approach. The authors study radio networks
without collision detection for which it is possible to perform centralized broadcasting in
constant time, i.e., when the topology of the network is known and all nodes have different
labels. They investigate how many bits of additional information (i.e., not counting the
labels of nodes) given to nodes are sufficient for performing broadcast in constant time in
such networks, if the topology of the network is not known to the nodes.

The task of topology recognition was also investigated in models other than the radio
model: in [12] the authors use the LOCAL model, and in [24] the model used is the congested
clique.

2 Preliminaries

As our algorithms use recent results showing that there exist constant-length labeling schemes
for the broadcast problem, we recall these results, adjust them to our needs and introduce an
auxiliary notion called the broadcast tree. Then, using the existence of an efficient broadcast
algorithm with constant-length labels, we give a lemma allowing to “encode” a given message
M in labels of the neighborhood of some path. This path is associated with an efficient
algorithm that collects the whole message in a single node and broadcasts it to the whole
network.

We use the constant-length labeling schemes for the broadcast problem [8, 7]. In this
problem, a source node s has a message which must be communicated to all other nodes.
First, we recall the result regarding fast broadcast with constant-length labels from [7].

» Theorem 1 ([7]). There exists a labeling scheme of length O(1) and an algorithm EXECUTOR
using it which solves the broadcast problem in time O(D logn + log? n).

We say that a node v is informed in some round ¢ of a broadcast algorithm if v knows
the broadcast message in round ¢. Otherwise, v is uninformed in round ¢. We assume that
feedback messages in the execution of EXECUTOR are distinct from the broadcast message
(this can be easily ensured by adding a special sign to the broadcast message).

» Definition 2 (Broadcast Tree). Let G = (V, E) be a graph with the source node s € V.
For each node v € V \ {s}, the parent of v, denoted parent(v), is the first node which
successfully transmits the broadcast message to v during the execution of EXECUTOR in G.

The broadcast tree Trxzeuror(q) i the tree with the root s and the set of edges (v, parent(v))
for each v # s.
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The level of a node v € V, denoted level(v), in the broadcast tree Texpcuror(a) 18 equal to
the natural number i such that v receives the broadcast message from parent(v) for the first
time in round i of the execution of EXECUTOR on G.

In our algorithms for the size discovery problem, we will use the following properties of
the algorithm EXECUTOR from [7].

» Lemma 3. The broadcast algorithm EXECUTOR described in Theorem 1 satisfies the

following properties:

(1) Assume that the level of a node v in the broadcast tree Trypcuror(c) 5 equal to i and the
level of parent(v) in this tree is j < i. Then, parent(v) has a child with level k for each
k€ [j+ 1,4 such that k mod 3 =1.

(2) The mazimum value of the levels of nodes of the broadcast tree Tpxpouror(a) 5 larger
than t — 3, where t is the number of rounds of the execution of EXECUTOR.

(3) Each node v can determine the level of parent(v) and its own level in the broadcast tree

TEXEC‘UTOR (G) .

We say that an algorithm A solves the acknowledged broadcast problem in T' rounds iff it
solves the broadcast problem, and moreover, all nodes of the graph know after T' rounds that
broadcast has been completed. Below, we show that EXECUTOR can be easily transformed
into an acknowledged broadcast algorithm.

» Corollary 4. Algorithm EXECUTOR can be transformed into algorithm EXECACK such that
EXECACK solves the acknowledged broadcast problem on every graph G, using O(1)-bit
labels and working in at most 3t rounds, where t = O(D logn + log? n) is the number of
rounds of the execution of EXECUTOR on G.
after an execution of EXECACK on G, each node knows the number of levels of the broadcast
tree Texpcuror(a), as well as its own level and the level of its parent in Trxpcuror(a)-

Now, we make an observation regarding the length of labels sufficient to store (in a
distributed way) an arbitrary message M initially unknown to all nodes, and subsequently
make the message M known to all nodes.

» Lemma 5. Let EXECACK be the acknowledged broadcast algorithm which satisfies Corol-
lary 4. Then, an arbitrary message M of size m (initially unknown to nodes) can be
made known to all nodes of graph G in O(t) rounds using O(1 + m/t)-bit labels, where
t=0(Dlogn + log? n) is the number of rounds of the execution of EXECACK on G.

3 Optimal Labeling Schemes

In this section we construct labeling schemes of optimal length for the size discovery and for
the topology recognition problems, together with algorithms using these optimal schemes for
these tasks. For the task of size discovery we will later show, in Section 5, a faster algorithm,
in fact the fastest possible algorithm to solve the size discovery problem using a labeling
scheme of optimal length.

3.1 Size discovery

In Sections 3.1.1-3.1.3 we design a general labeling scheme of length O(loglog A) and a
size discovery algorithm using this scheme, based on the broadcast algorithm working with
constant-length labels [7].
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3.1.1 log A-degree subtrees of a tree

We prove a general lemma stating that, given a tree T with maximum degree A and 3 bits of
“local memory” at each node, and given a binary string M of length [log(n + 1)] + 2, there
exists a subtree 7" of T' with maximum degree [log A| + 1, such that M can be split into
the 3-bit local memories of the nodes of T".

» Lemma 6. Let T = (V, E) be a tree with mazimum degree A, size n and the root r € V.
Let M be a binary string of length [log(n + 1)] + 1. Then, there exists a subtree T' of T
rooted at v and an assignment of binary strings to nodes of T’ such that:

(a) the number of children of each node of T is at most |log A] + 1,

(b) the string assigned to each node of T' has length at most 3,

(c) the string assigned to the oot of T' has length 2,

and the concatenation of all strings assigned to nodes of T' is M.

3.1.2 Labeling scheme

In this section we describe the labeling scheme COMPACTLABELS which combines the so-called
A-learning primitive from [19], the construction of a broadcast tree with help of the algorithm
EXECUTOR from Theorem 1, and the limited-degree subtree described in Lemma 6.

The labels will consist of the ROOT bit and three disjoint blocks: A-block, BroadcastTree-
block and Message-block.

A-block and the root bit. First, we choose a node r with the largest degree A in the graph
G, and mark r using the one-bit flag ROOT. That is, ROOT, = 1 and ROOT, = 0 for each
v E T

Then, we describe O(loglog A)-bit strings called A-blocks which will be used to learn
the value of A by the node r. The root r is assigned the pair (z,0), where x is the binary
representation of the integer |log A| + 1. This integer is the size of the binary encoding of A.
Then we choose |log A| + 1 neighbors of 7 and assign them consecutive natural numbers in
the range [1, [log A| 4+ 1]. The A-block of the ith chosen node is equal to the pair (a;,b;)
where a; is the binary representation of ¢ € [|log A| + 1] of length |log(|log A 4+1)|+1, with
leading zeros, and b; is the ith bit of the binary representation of A. The A-blocks of other
nodes are equal to the tuple (0,0). As the value of log A can be encoded on O(loglog A)
bits, the length of A-blocks is O(loglog A).

BroadcastTree-block. We apply Corollary 4 to construct the broadcast tree Texpcuror
of the graph with root (source vertex) r and assign O(1)-bit labels to nodes, used by
the acknowledged broadcast algorithm EXECACK working in O(D logn + log? n) rounds
(Corollary 4).

Message-block. Let M be the binary representation of the size n of the graph. The
message-block is the concatenation of two blocks: INDEX and MESSAGE.

We apply Lemma 6 in order to construct a subtree T” of Trxgcuror Such that the degree of
T’ is not larger than |log A ] +1 and each node of 7" is assigned a substring of M of length at
most 3. To each node v of T” apart from the root we assign a natural number k,, such that the
numbers assigned to the children of any node are consecutive integers starting from 0. For a
node v of T’ the block INDEX of fixed length O(loglog A) is the binary representation of the
integer k, € [1, [log A]] + 1 (with leading zeros), where v is chosen as the child with number
k, of its parent. The substring of length at most 3 assigned to each node of 7" according
to Lemma 6 is the block MESSAGE of this node. The concatenation of these substrings of



A. Ganczorz, T. Jurdzinski, M. Lewko, and A. Pelc

M forms the string M and substrings are assigned to nodes of T’ in post-order, i.e., the
substring assigned to a given node v is situated in M after the substrings assigned to the
children of v in T”, and substrings are assigned to the children w in increasing order of k.
The blocks INDEX and MESSAGE of nodes outside of tree T" are the string (0).

Conceptually, the label of a node is the concatenation of the root bit, the A-block, the
Broadcast Tree-block and the Message-block. In order to mark separations between the
different blocks, we use the standard trick: the bit 1 is coded as 10, the bit 0 is coded as 01
and separations are coded as 00. This does not change the complexity of the label length,
hence our labeling scheme has length O(loglog A).

3.1.3 A simple size discovery algorithm

In this section we describe a simple size discovery algorithm using the above labeling scheme
and working in time O(D logn + log? n). We will show in Section 5 how to improve this
algorithm to get the optimal time O(log? n).

We first design the size discovery algorithm AUXILIARYSD, which uses the labeling scheme
described in the previous section. The algorithm AUXILIARYSD is a composition of three
procedures, A-learning, Ack-broadcast, and Size-learning, corresponding to the three
blocks of the labels described above: A-block, BroadcastTree-block and Message-block.
Procedure A-learning.

This procedure lasts [log A] + 1 rounds. In the ith round, the node with A-block (a;,b;) for
1 > 0 transmits the message with two bits: 0 and b;. In each round all nodes except the root
r (i.e., the node with the ROOT bit equal to 1) ignore messages with the value of the first bit
equal to 0 and r stores consecutive bits b;. The root r also knows the value of |logA| +1
stored in its label, so it will know the number of rounds of the A-Learning procedure.
Procedure Ack-broadcast

We execute algorithm EXECACK from Corollary 4 with the source vertex r, the labels from
the BroadcastTree-block and the broadcast message equal to the binary string encoding the
value of A. As we use the algorithm solving the acknowledged broadcast problem, all nodes
know the number of the last round of this procedure.

Procedure Size-learning

The goal of this procedure is to learn the binary representation M of the size n of the graph
that is distributedly stored in nodes of the subtree T’ of the broadcast tree Trxscuror, as
described in the previous section.

Let L be the number of levels of the broadcast tree Tgxpcuror. LThe procedure
Size-learning is split into phases 1,..., L such that the strings MESSAGE stored in nodes
from the level L — i + 1 are transmitted to their parents in phase i, together with messages
containing strings MESSAGE received by those nodes from their subtrees. Each phase lasts
[log A| + 1 rounds. At the beginning of the phase ¢, each node v of T" of level L — i + 1
reconstructs its message from all messages received in previous rounds and its own string
MESSAGE. As the labeling scheme uses post-order encoding, the node v first concatenates
the messages of its children in 7" in the order of numbers assigned to them and then adds its
own string MESSACE at the end of the string to get M, the part of M stored in its subtree.
Assume that the node v of level L — ¢ 4+ 1 has INDEX that is the binary representation of the
integer k, € [1, [log A] 4 1]. Then, v transmits M, in the round k, of phase 1.

» Lemma 7. The algorithm AUXILIARYSD solves the size discovery problem using a label-
ing scheme of length O(loglog A), and it works in time O(Tgxpcuror(n, D) -log A), where
Texscuror(n, D) = O(D log n+1log? n) is the time of the broadcast algorithm EXECUTOR from
Theorem 1.
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Now, we combine Lemma 7 with Lemma 5 to construct an improved version of AUXIL-
IARYSD, called GENERALSD. The goal is to get rid of the additional log A multiplicative
factor in the time complexity of a size discovery algorithm based on the broadcast algorithm
EXECUTOR.

Given a graph G, we first compute the number ¢ of rounds of the execution of EXECUTOR
on G. If tg < logn, then we use the labeling scheme and the algorithm from Lemma 7. As
the number of levels of the tree Tgxpcuror 1S not larger than the number of rounds of the
algorithm, the number of rounds of the size discovery algorithm is O(tg log A) = O(log? n).

If t¢ > logn, we use the constant-length labeling scheme and the broadcasting algorithm
EXECACK from Lemma 5, with the binary representation of the size n of the graph as the
message M. Thus, we obtain an algorithm which solves the size discovery problem in time
O(Dlogn + log? n) using a labeling scheme of length O (1 + %) = O(1).

Finally, in order to make the nodes of the graph aware of the chosen variant of the
algorithm, we add one bit to all labels which contains the information whether or not
tg < logn. Given the value of this bit, the nodes work according to instructions of the
former or the latter algorithm described above. Thus, we obtain the following result.

» Theorem 8. The algorithm GENERALSD solves the size discovery problem using a labeling
scheme of length O(loglog A), and works in time O(D logn + log® n).

3.2 Topology recognition

In this section we design a topology recognition algorithm working for any graph of maximum
degree A using a labeling scheme of length O(log A). We will later prove that this length
is optimal. Our algorithm works in time O (DA + min(n, A?)). First, in Section 3.2.1 we
focus on constructing a BFS tree of the graph and efficient broadcast/gathering algorithms
working in this tree. Then, in Section 3.2.2, the main topology recognition algorithm is
presented, using the broadcast and gathering subroutines from Section 3.2.1.

3.2.1 Broadcast-gathering primitive

In this section we describe a labeling scheme of length O(log A) and algorithms for the
(acknowledged) broadcast and gathering problems using this scheme. Both algorithms work
in time O(DA). We would like to emphasize that, although the broadcast problem can be
solved more efficiently (cf. [7]) than the solution given here, our aim is to build the broadcast
schedule associated with the gathering algorithm. Notice that the gathering problem requires
a labeling scheme of lengths (log A), e.g., if the communication graph’s topology is a star.

Consider a graph G = (V, E) of maximum degree A and diameter D, with a root node
r € V. In the gathering problem, each node v € V has some message M, and the root r has
to learn all messages M,,.

Denote by layer(v) the distance from r to a node v. We say that v is at layer ¢ if
layer(v) = i. Let V; be the set of nodes at layer i. The neighborhood of a node v in G
is denoted by N (v) and the set of neighbors of v at layer 4 is denoted by N;(v). We fix
an arbitrary strict total ordering on nodes denoted by <. For each node v, its label £(v)
is equal to the tuple (r,, leaf(v), ay, by, gy, A), where r,, is the 1-bit flag indicating whether
v is the root node r, leaf(v) is the bit indicating whether v has any neighbors on higher
layers than layer(v), a, is the bit used for acknowledged broadcast, while both b, and g,,
called broadcast-label and gather-label, are special integer values used for broadcast and
gathering respectively, described in more detail below. More precisely, the label £(v) is the
concatenation of bits r,, leaf(v), a,, and binary representations of integers b,, g, and A.
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The idea of the broadcast/gather labels and algorithms. For the broadcast problem, we
split the nodes of each layer ¢ into subsets Xo, ..., Xa_1, where X; is a maximal set of nodes
of layer i not belonging to Uk<j X}, such that the sets of neighbors of X; at layer i 41 are

pairwise disjoint, exluding the neighbors of nodes from | J, . j X}. For v € X; we set b, = j.

We observe that all nodes from X; can transmit in the same round in order to deliver the
broadcast message to all their neighbors at layer ¢ 4+ 1, excluding the neighbors of the nodes
from J, . i X This fact makes possible to deliver the broadcast message from layer i to
layer i + 1 in A rounds. For each node v at layer ¢ + 1, the first node which successfully
transmits the broadcast message to v becomes parent(v) and v becomes its child.

For the gathering problem, we assign distinct gather-labels in the range [0, A — 1] to the
children of each node. This assignment is required to satisfy also the following additional
restriction. If u at layer ¢ + 1 is a neighbor of v at layer ¢ and v is not a child of v, then the
gather-label of u is not assigned to any child of v. With this restriction, the nodes at level ¢
with a given value of the gather-label can transmit successfully messages to their parents in
the same round. Thanks to this property, the values/messages stored in the nodes from the
layer ¢ > 0 can be gathered in their parents at layer ¢ — 1 in O(A) rounds.

More details, formal statement of the above mentioned properties and the final broadcast
and gathering algorithms are described in the appendix, Section A.1.

3.2.2 Topology recognition algorithm

In order to solve the topology recognition problem, we choose an arbitrary node as the root
r and assign to each node v the label which is the concatenation of two binary strings: the
label £(v) used by our broadcast-gathering primitive and the binary representation of a
natural number C(v) called the color of v which is the color of v in some fixed distance-two
vertex coloring of the graph G with the set of colors equal to [1, A2]. Given these labels, we
execute the following four-stage algorithm ToOPREC:

Stage 1. First, the acknowledged broadcast ACKBRBFS is executed with the modification
that each node v transmits the concatenation of the consecutive substrings g, of the

labels of nodes of the path from the root r to v, including g,. This concatenation will be
denoted by ID(v).

Stage 2. Then, in the block of A? rounds, each node v such that C(v) =i € [1, A?] transmits
in the round ¢ of the block, sending the string ID(v), and each node stores received
messages in its local memory.

» Remark. If A% > n then log A > %log n. In this case, in order to reduce the number of
rounds of Stage 2 to min(A2,n), we extend the labeling by assigning to each node a unique
identifier in the range [1,n] of length O(logn) = O(log A). Then, Stage 2 consists of n
rounds, where the node with the identifier ¢ transmits in round ¢ of the stage.

Stage 3. Next, we execute the gathering algorithm GATHERBF'S, where the message M, of
a node v is equal to the set of IDs received by v in Stage 2, together with its own ID. The
set of these messages, over all nodes v, permits each node to reconstruct the topology of
the graph and situate itself in it.

Stage 4. Finally, we execute the broadcast algorithm BROADCASTBF'S, where the message
M is equal to the set of messages of all nodes gathered at the root r in Stage 3.

» Theorem 9. The algorithm TOPREC solves the topology recognition problem on every
graph, using a labeling scheme of length O(log A). It works in time O(DA + min(n, A?)).
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4 Lower Bound on Lengths of Labels for Topology Recognition

In this section, we show that any algorithm for topology recognition in the class of general
graphs requires a labeling scheme of length Q(log A), and hence our algorithm TOPREC
from the previous section uses a labeling scheme of optimal length. The optimal length of a
labeling scheme for topology recognition is thus exponentially larger than that sufficient to
solve the easier problem of size discovery. In fact, we will prove a stronger result: the above
lower bound holds even in the model with collision detection. Hence, till the end of this
section we assume that collision detection is available.

The proof is divided into two parts. We first show the lower bound Q(logn) on the
length of labeling schemes for topology recognition in graphs of degree 2°°8™) Second, we
generalize this result for graphs of arbitrary degree A, to get the lower bound Q(log A).

In our proof, we exploit the fact that each node in the graph G has to learn its degree.
Intuitively, if the set { deg(v) | v € V' } of node degrees in G is larger than the set { L(v) | v €
V'} of node labels then some two nodes u,v € V, such that deg(u) # deg(v) A L(u) = L(v)
have to learn their degrees through their communication histories H. We will construct a
family of graphs such that the labels have to be of length 2(log A) so that nodes with the
same labels and different degrees could have different communication histories.

We now formally define a communication history of a node for a given topology recognition
algorithm executed on a given graph. Intuitively, this is a record of what the node learns
during the execution of the algorithm (assuming collision detection).

» Definition 10 (Communication history). Let G = (V, E) be a graph and let L denote a
labeling scheme on G. Consider a topology recognition algorithm A executed on G and let i
be a round of this algorithm. For each node v € V, we define H;(v) inductively such that
Hi(v) denotes the communication history of v at the end of the ith round of A.
Ho(v) =0, for all v.
If
v transmits in the ith round, or
v listens and more than one neighbor of v transmits in the ith round (a collission),
we append the special character #, denoting “no message”, to v’s history, i.e., H;(v) =
[,Hi—l(v)a #];
If v listens and none of its neighbors transmits in the ith round (silence), we append € to
v’s history, i.e., H;(v) = [Hi—1(v),€].
If v listens and successfully receives a message m € {0,1}* in the ith round (exactly one
neighbor of v transmits m), we append m to v’s history, i.e., H;(v) = [H;—1(v), m].
H(v) denotes the communication history of v at the end of the last round of the execution of

A on G.

4.1 The Lower Bound for Graphs with Large Degrees

In this section we define a family G of graphs of arbitrarily large size n with maximum
degree A = 220°27) quch that a labeling scheme of length Q(logn) is necessary to solve the

topology recognition problem on each suffciently large graph from this family.

1/2 is an even natural number.

1/2

Let n be a sufficiently large natural number such that n
We construct an n-node graph G,, = (V, E). The graph is composed of n'/# components,
each component is composed of n'/2 nodes. Let C; denote the set of nodes from the ith
component. Every node is connected with every node from a different component, i.e., for
every C;,C; (i # j) and every pair of nodes u € C;,v € C; we have (u,v) € E. Let C(v)

denote the component to which a node v belongs.
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We now describe the set of edges connecting nodes of a component C; composed of
k = n'/? nodes. We divide nodes of C; into two sets A and B, each of size k/2. Let a; € A
denote the jth node from A, and let b; € B denote the jth node from B. Then, we connect
a; with the first j nodes from B: (a;,b1),(aj,b2),...,(a;j,b;) € E. This concludes the
construction of GG,,. Observe that each G,, is connected. Note also that for any component,
the set of different degrees of nodes in this component has size k/2. The degree of each node
is in the range [n — k + 1,n — k/2], since each component has size n'/2. Note that nodes
of different degrees that have equal labels and equal communication histories cannot learn
that they have different degrees. The family G consists of all graphs G,,, such that n'/2 is an
even natural number.

aj a2 as

by by b3

Figure 1 An illustration of the graph Gs¢ from the family G. The left picture depicts one
component, the right picture depicts the whole graph. Blue edges connect nodes from different
components. For clarity, only some of the inter-component edges are presented (each pair of nodes
from different components should be connected by an edge).

Observe that, for each natural number n, there is at most one graph of size n in the
family G. Below, we make a simple but useful observation regarding lack of information
received by most of the nodes in graphs from G if at least two nodes transmit in a round.

» Fact 11. If at least two nodes u # v transmit in the ith round then, for every node w such
that C(w) # C(u) A C(w) # C(v), w does not hear any message in the ith round.

We now define the canonical history, for a given graph G from the family G and a
given topology recognition algorithm A executed on G. The canonical history is a specific
communication history, which will be common to many nodes of G in the early stages of
the execution of a topology recognition algorithm. It has the property that a node with the
canonical history receives a message in a round i iff every node in the whole graph receives
this message in this round.

» Definition 12 (Canonical history). Fiz a graph G from the family G, with a given labeling
scheme L, and a topology recognition algorithm A executed on G. With respect to G, L and
A, we define the canonical history H; at the end of the ith round as follows:

Ho=10.
7:22» = [?/-zi,l,m], if there is exactly one node in G that transmits the message m in the ith
round.

~

H; = [Hi—1,#, if at least two nodes of G transmit in round i,

~

H; = [Hi—1,¢], if no node of G transmits in round i.

We then define the set of components sharing the canonical history.
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» Definition 13. Fiz a graph G from the family G, with a given labeling scheme L, and a
topology recognition algorithm A executed on G. We say that a node v has the canonical
history H; if Hi(v) = H; at the end of the ith round of the execution of A on G. A component
C; has the canonical history at the end of the ith round if every node from that component
has the canonical history at the end of this round.

Let é; denote the set of components of G that have the canonical history ﬁi at the end of
the ith round:

Ci = {Cj | Yoec, Hi(v) = Hi }

High-level idea of the proof of the lower bound. A node with the canonical history does
not have any information that distinguishes it from other nodes with the canonical history,
apart from its label. In topology recognition, nodes with different degrees must make different
decisions (as each node has to situate itself in the graph), and there are at least %\/ﬁ different
degrees in each component of a graph G,, € G. The communication history of all nodes at
the beginning is equal to the canonical history. We show that, in every round, nodes from
at most two components can change their histories from the canonical to a non-canonical
one. Using this fact we show that some nodes change their histories from the canonical
one to non-canonical after at least %\/ﬁ rounds. We also show that a node makes such a
change (from the canonical to non-canonical history) in round i iff at least one node from its
component (call it a trigger) transmits a message in that round and that nodes from at most
one other component transmit messages in that round. Using these properties we show that,
for each label [, at most two nodes with the label [ can be triggers. On the other hand, we
need a trigger in each component, so %\/ﬁ different labels are needed which implies that the
length of the labeling scheme is Q(logn).

» Corollary 14. Any algorithm solving the topology recognition problem in all graphs from
the family G requires a labeling scheme of length Q(logn) on G,,.

4.2 The Lower Bound for Graphs with Arbitrary Degrees

In this section we show that, for all positive integers A < n, there exists a graph Ha
of maximum degree ©(A) and of size O(n), such that any algorithm solving the topology
recognition problem in Ha ,, requires a labeling scheme of length Q(log A). In order to prove
this lower bound we use the family G of graphs G,, of maximum degrees 22(°8™) where n is
the size of the graph, constructed in Section 4.1.

Choose arbitrary positive integers A < n. We construct a ©(n)-node graph Ha , from
O(n/A) isomorphic copies of a graph G}, from G, for some k = O(A). Let k be the smallest
natural number such that k¥ > A and vk is a natural even number. Let G’y denote the
graph obtained by the following slight modification of the graph Gj: add a new special node
s connected to all other nodes of Gy. Let Ggi), for all i = 1,2,...,[ %], denote the ith
isomorphic copy of the graph G’y. All these copies are pairwise disjoint.

The graph Ha , contains the above [ %] disjoint isomorphic copies Gf) of G'y, for all
i=1,2,...,[}]. Moreover, we ensure connectivity of Ha , in the following way. Let s;
denote the special node of ng‘). We connect every s; with s;;1 for each i =1,2,...,[ %] —1
by an edge, as well as sy with s;. Thus the special nodes of all graphs ng‘) are connected
in a ring. As the graph G/, is connected, the graph Ha ,, is connected as well. Moreover,
HA ., has maximum degree ©(A) and size ©(n).
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» Theorem 15. For all sufficiently large positive integers A < n, there exists a graph of size
O(n) and of mazimum degree O(A) such that any topology recognition algorithm for this
graph requires a labeling scheme with more than AY* distinct labels.

The following corollary of Theorem 15 is the main result of this section.

» Corollary 16. For all positive integers A < n, there exists a graph of mazximum degree
O(A) and of size O(n), such that any algorithm solving the topology recognition problem on
this graph requires a labeling scheme of length Q(log A).

The above corollary shows that algorithm TOPREC solves the topology recognition
problem using a labeling scheme of optimal length.

5 Fast Algorithm for Size Discovery Problem

We finally design an algorithm for size discovery that is much faster than algorithm GENER-
ALSD and also solves the size discovery problem using a labeling scheme of optimal length
O(loglog A). We also prove that this algorithm is the fastest possible among size discovery
algorithms using such an optimal labeling scheme.

In Section 5.1, we describe a size discovery algorithm with time complexity O(log®n)
using a labeling scheme of optimal length O(loglog A). In Section 5.2, we show that this
time complexity is asymptotically optimal for labeling schemes of length O(loglog A).

5.1 The algorithm

In this section, we design the algorithm FASTSD, which solves the size discovery problem
in time O(log® n) using a labeling scheme with asymptotically optimal length O(loglog A).
Actually, if the diameter of the graph is Q(logn), constant-length labels are sufficient.

In Section 5.1.1, we generalize the recent labeling schemes for broadcast to the multi-
source broadcast problem. Then, in Section 5.1.2, we give the idea of our new size discovery
algorithm, using the multi-source broadcast algorithm. Finally, in Section A.2, we give details
of our algorithm.

5.1.1 Multi-source broadcast

For the purpose of faster size discovery, we need a generalization of the result from [7]
regarding the multi-source broadcast problem. Let G = (V, E) be a graph and let a non-
empty set S C V be the set of sources. Assuming that all nodes from S know the broadcast
message M, the goal of multi-source broadcast is to deliver the message M to all nodes of G.
Let the distance from a node v € V to S C V be the minimum of distances from v to s in G,
over all s € S. Moreover, let the diameter Dg of G with respect to S be the maximum of
distances from v to S, over all v € V.

We construct the multi-source broadcast algorithm MBROADCAST through a simple
modification of the broadcast algorithm EXECUTOR from [7]. The labeling scheme for the
(single-source) broadcast algorithm from [7] is based on the probabilistic broadcast algorithm
from [3]. As one can see in Section 6.3 of [7] (Lemmas 9 and 10), the probabilistic analysis
depends merely on the length of a shortest path from a node which knows the broadcast
message initially to a considered node v. More precisely, the only differences with respect
to EXECUTOR concern the definition of the sets FRONTIER; and DOMj, i.e., the set of
uninformed nodes that have an informed neighbor before round 1 and the set of informed
nodes that is a minimal dominating set of FRONTIER;. As there is exactly one informed
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node s at the beginning in the broadcast problem, we have DOM; = {s} and FRONTIER,
is equal to the set of neighbors of s, in the labeling scheme used by EXECUTOR. For the
multi-source broadcast problem, we

set FRONTIER, = {v|(s,v) € E and v ¢ S},

choose a subset of S that is a minimum dominating set of FRONTIER; and let this

chosen subset of S be DOM;.

Then, the analysis from [7] works also for the multi-source broadcast problem and it
implies a multi-source broadcast algorithm MBROADCAST using a constant-length labeling
scheme and working in time O(Dg logn + log® n).

» Corollary 17. Algorithm MBROADCAST solves the multi-source broadcast problem using a
labeling scheme of length O(1), and works in time O(Dglogn + log?n), where S is the set
of sources.

Given the above multi-source broadcast algorithm, we can describe our faster size discovery
algorithm. For this purpose we introduce a few auxiliary notions.

Let Tgrs be a BFES tree of the graph, where the root of the tree is an arbitrary node s.
Moreover, let V; be the set of nodes at distance ¢ from the root, called the layer i of Tppgs.
Thus, in particular, Vo = {s}.

5.1.2 The idea of the O(log® n)-time size discovery algorithm

If the diameter D of the graph G is O(logn), we simply apply GENERALSD which gives the

desired O(log2 n) time bound. Otherwise, we conceptually split the graph G into subgraphs

of small diameter and then distribute information about the value of n in these subgraphs
separately. Still, we have to assure that collisions caused by edges connecting different
subgraphs do not prevent successful execution of our subroutines in the considered subgraphs.

For brevity, we introduce the notation lg n = [log(n + 1)], i.e., lg n is the length of the

binary representation of the natural number n. We say that a layer V; is green iff |i/lg n] is

an even number; i.e., the layers [jlg n, (j + 1)lg n — 1] are green for each even number j > 0.

The nodes from layers [jlg n, (j + 1)lg n — 1] for even j form the jth stripe X;. Thus, we

have the Oth, 2nd, 4th stripe and so on. Moreover, two consecutive stripes X; and X; o

are “separated” by nodes from the layers Vi 1)ig n» Vij+1)ig nt15- - -5 V(j+2)1g n—1 Which do

not belong to any stripe. Nodes from each stripe are called green. Moreover, nodes from the
last layer V(;i1)1g n—1 of the jth stripe for each even j are called super-green.
Our algorithm FASTSD (an abbreviation of Fast Size Discovery) either executes GENER-

ALSD (if D = O(logn)) with appropriate labels or it consists of two stages:

Stage 1: In each stripe separately and in parallel, we execute an algorithm which ensures
that, at the end of the stage, all super-green nodes from the stripe (i.e., nodes from the
last layer (j + 1)lg n + 1 of the stripe j) learn the value of n at the end of the stage. We
perform this task in two phases. For the first phase, we choose a minimal set U; of nodes
from the first layer of the stripe (called a minimal BFS-cover) such that each super-green
node in the stripe j is reachable from this set Uj, i.e., there is a BFS-path from a node of
U; to this node. Then, for each element of u € U; we choose a path of length lg n such
that it is a shortest path from w to the last layer (j + 1)lg n — 1 of the stripe j. Moreover,
we guarantee that those paths are conflict-free, i.e., there are no edges connecting nodes
on different layers of different paths from the chosen family of paths. For each such path,
the value of n is then encoded in 1-bit parts along the nodes of the path. In Phase 1 we
“collect” these 1-bit parts in appropriate nodes from the BFS-cover U; and, in Phase 2, we
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use the multi-source broadcast algorithm MBROADCAST with U; as the the set of sources
and D = logn in order to broadcast the size n to super-green nodes (i.e., the nodes on
the layer (j + 1)lg n — 1). As the consecutive stripes are “separated” by logn layers, we
can execute Phase 1 separately in each stripe without the risk that interferences between
nodes from different stripes cause any problem.

Stage 2: Execute the multi-source broadcast algorithm MBROADCAST (see Corollary 17)
with S equal to the set of all super-green nodes, i.e., S composed of the nodes from the
layers (j + 1)lg n — 1, where j is even and (j + 1)lg n — 1 is not larger than the height of
the BFS tree and Dg = 2lg n. The broadcast message in the execution of MBROADCAST
is equal to the binary encoding of n, known to the nodes from S after Stage 1. As each
node of the graph is at distance < 2lg n from some super-green node, all nodes learn the
value of n in Stage 2.

5.2 Lower bound on time complexity of size discovery

We leverage a powerful technical result from [1], originally proved as a part of a proof of the
Q(log2 n) lower bound on time complexity of broadcast in radio networks, to show that time
complexity of FASTSD is asymptotically optimal.

Let G = (U UV, E) be a bipartite graph, where U,V are the parts of the bipartition of
G, i.e., UNV =0, and there are no edges between nodes inside U nor inside V, such that
|U| = |V| = n and there is no isolated vertex in U UV. A bipartite broadcast schedule for G
is a sequence Uy, ..., U of subsets of U such that, if one executes a k-round radio network
algorithm in G with the set of transmitters in the ith round equal to U; for each i € [k], then

every node from V receives (at least) one message during this execution of the algorithm.

The number of subsets & is called the size of the bipartite broadcast schedule for G.

» Theorem 18 ([1]). There exists a constant ¢ > 0 such that, for each sufficiently large
natural number n, there exists a bipartite graph G with sides of size n such that the size of
each bipartite broadcast schedule for G is larger than clog® n.

Equipped with Theorem 18, we are ready to prove the lower bound Q(log2 n) on the time
complexity of the size discovery problem with short labels.

» Theorem 19. The time complezity of any algorithm solving the size discovery problem

on all graphs with size at most n, using labeling schemes of length smaller than ilog n, is
Q(log®n).

Since O(loglog A) is o(logn) for any graph, and in view of the lower bound (loglog A)
from [19] on the length of labeling schemes permitting size discovery, Theorems 25 and 19
give the following corollary.

» Corollary 20. Algorithm FASTSD solves the size discovery problem on all graphs using a
labeling scheme of asymptotically optimal length O(loglog A), and it works in time O(log? n),
which is aymptotically optimal for size discovery algorithms using asymptotically optimal
labeling schemes.

6 Conclusion

We constructed labeling schemes of asymptotically optimal length for size discovery and
topology recognition in arbitrary radio networks without collision detection. We also designed
algorithms to solve these problems using these optimal schemes.
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In the case of size discovery, we showed that our algorithm using the labeling scheme

of optimal length O(loglog A) has also asymptotically optimal time among size discovery
algorithms using optimal schemes for this problem. The main open problem left by our
research is the following: What is the time of the fastest topology recognition algorithm

using a labeling scheme of optimal length O(log A)?
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A Appendix

A.1 Details of the Broadcast-gathering primitive
Assignment of broadcast-labels and gather-labels

Assignment of the values b,, and construction of a BFS-tree. For each layer i, we assign
the values b, as follows. First, we take any maximal subset X of V; such that the sets of
neighbors at layer i + 1 of elements of this set are pairwise disjoint. All nodes from A1 (v)
will be called children of v, for each v € Xy. Then, we construct sets X7, Xs5,..., Xa_1 as
follows. Assume that the sets X, ..., X;_; are already constructed for j > 0. We define X
as a maximal subset of nodes v at layer i such that

(a) ’U¢X0U"'UXJ‘,1,

(b) for each pair of nodes v # u such that v,u € X;, we have

Nit1(v) N Niga(u) \ (U U Ni+1($)> =0.

k=0x€ Xk

If a node v € X; has a neighbor u in V;44, such that no node from Xy, is in NV;(u) for all
k < j, we say that v is the parent of w and wu is a child of v. Observe that the set of edges
determined by this parent-child relationship will form a BFS tree of the graph, denoted Tps.
As we show in the full version of the paper, all nodes at layer i belong to XoU---U Xa. We
set b, < k for each node v € X, where the sets Xg,..., XA are as above.

For the acknowledged broadcast, we choose some arbitrary leaf node with the highest
value of layer(v) and a path P of length layer(v), such that P starts at r and ends at v in
the tree Tprs obtained through parent-child relationships described above. The value of a,,
is set to 1 for each node u on the path P while the value a,, is set to 0 for each node w
outside of P.

Assignment of the values g,,. As mentioned before, the bit g, of each node v will be used
in our gathering algorithm. The value g, of the root node r is equal to 0. Then we assign
values g, layer by layer, assigning the values to nodes at layer 4 in phase i. In the ith phase,
we order nodes at layer ¢ — 1 according to the ordering determined by the values of b,, from
the smallest to the largest and, among nodes with the same value of b,, according to the
ordering <. Let v; be the jth node at layer ¢ — 1 in this order. We give the value g, to
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each child u of v; in the BFS-tree Tgrg, as follows. For a node v at layer ¢ — 1, we order its
children at layer ¢ (i.e., its neighbors at layer ¢ which have not been assigned gather-labels yet)
according to <, and assign to each of them the smallest non-negative integer not assigned
earlier to any neighbor of v at layer 3.

Below, we state some properties relevant for the gathering algorithm.

» Lemma 21. The integers g, have the following properties:

(a) g0 € [0,A—1],

(b) gu # gu for each u # v such that parent(u) = parent(v),

(c) if parent(v) # parent(u) and g, = g, for some u # v at the same layer, then u and
parent(v) are not connected by an edge.

Since the label £(v) of any node is a concatenation of three bits and three representations
of integers at most A, our labeling scheme has length O(log A).

The properties of the labeling scheme facilitate the construction of a broadcast algorithm,
acknowledged broadcast algorithm and a gathering algorithm, called BROADCASTBF'S,
ACKBRBFS and GATHERBF'S respectively (see the full version of the paper), with the
following properties.

» Lemma 22. The algorithms BROADCASTBF'S, ACKBRBF'S and GATHERBF'S solve the
broadcast problem, the acknowledged broadcast problem and the gathering problem, respectively,
using a labeling scheme of length O(log A), and work in time O(DA).

A.2 Details of algorithm FastSD

We say that a path P = (z1,...,2k) in a graph G with a fixed source node s is a BFS-path
if, for each consecutive nodes x; and x;11 on P, the layer of z;,; is by one larger than the
layer of x;. In other words, each edge of the path increases the distance from the source node
s by one. Thus, in particular, we do not use edges connecting nodes from the same layer.
We say that v is BF'S-reachable from w if there exists a BFS-path from u to v.

In order to implement Stage 1 of FASTSD, we first build a BFS-cover of stripe X; by the
nodes from the first layer Vjiogp of the stripe, for each even j (see Figure 2).

» Definition 23 (BFS-cover). For an even natural number j, the set of nodes Uj C Viiogn
is a BFS-cover of the stripe X; = Uggllg)lg n-t Vi if, for each node v € Viji1yig n—1, there
exists a BES-path ug,u1, ..., Uy n—1 = v such that u; € Vjig nyi for each i € [0,lg n — 1],
and vy € U;. In other words, the path ug,...,uyy n—1 Starts at some node from the given

BFS-cover U; and each edge of the path goes to the layer with larger index.

We say that a BFS-cover U; of the stripe X is a minimal BF'S-cover of the stripe X if no
proper subset U’ of U; is a BFS-cover of X;. A set of BFS-paths P, ..., Py is conflict-free
if, for each i # j, there is no edge (z;,z;) in the graph such that x; € P;, z; € P;, z; and x;
belong to different layers.

» Lemma 24. Let U; = {u1,...,ux} be a minimal BFS-cover of the stripe X;. Then, there
exists a set of conflict-free BFS-paths {P1,..., Py} such that, for each i € [k]:

P; starts at u;,

the final node of P; is a super-green node of the stripe X,

Let M = M[1]M[2]--- M[lg n] be the binary representation of n. In order to facilitate
implementation of Stages 1 and 2 of FASTSD, we construct labels of nodes in a given (green)
stripe X in the following way (see Figure 2):
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1. A minimal BFS-cover U = {uy,...,ux} of the stripe X is chosen, along with the set of
conflict-free paths P = {Py,..., Py} of length lg n, such that P; starts at u; and ends at
a node in the last layer of X (i.e., at a supergreen node).

2. The set Xgrs C X is determined such that x € Xgrg if x is BFS-reachable from some
element of the BFS-cover U. (Observe that, although each node from the last layer of a
stripe is BFS-reachable from U by the definition of a BFS-cover, it might be the case
that nodes on smaller layers of the stripe are not reachable from U.)

3. The label of each node v is a concatenation of the following strings:

a. a 4-bit string composed of flags REACH,,, SUPER-GREEN,,, COVER,,, PATHS,, indicating
whether v is green and it belongs to Xpps of its stripe X, whether v is super-green,
whether v belongs to the chosen BFS-cover U of its stripe, and whether v belongs to
one of the chosen cover-free paths P = {Py,..., Py} of its stripe, respectively;

b. M,: a one-bit string defined as follows. If v is the 7th node of a path P, from the above
set of conflict-free paths, then M, is equal to M[i]; otherwise, the value of M, is 0;

c. B,: the constant-length label assigned to v by the labeling scheme for the multi-source
broadcast algorithm MBROADCAST, with the graph G’ = (V/, E’), where V' = Xgps,
E’ is the set of edges of G connecting nodes from Xprg, and the set of sources S is
equal to U.

d. S2,: the constant-length label assigned to v by the labeling scheme for the multi-source
broadcast algorithm MBROADCAST, with the communication graph G, where the
set of sources S is equal to the set of all super-green nodes (i.e., such nodes v that
SUPER-GREEN,, = 1).

Layer jlogn for even j

Layer (j + 1) logn — 1, super-green nodes

Figure 2 An example illustrating the notions and terms from the construction of FASTSD. The
edges denote paths of length %lg n. The set {u,v} is a minimal BFS-cover — the red edges show
that each node from the layer (j + 1)lg n — 1 is reachable from {u,v} by a BFS-path. The blue
edges form a set of conflict-free BFS-paths described in Lemma 24. The node w is an example of a
node which is not active in Phase 2 of Stage 1, since w ¢ Xprs. However, w is at distance < 2lg n
from some super-green node from the layer (j — 1)lg n — 1 (stripe j — 2) and therefore w receives a
message with the size of the graph in Stage 2.

Using the above described labels, Stage 1 for a stripe X is implemented as follows:
Phase 1: collecting the value of n at all nodes from the BFS-cover U.
Round 1: each super-green node v from P (i.e., each v such that SUPER-GREEN,, = 1
and PATHS, = 1) sends M,,.
Rounds 2,3, ...,lg n: each node v with PATHS,, = 1 which received a message M in

the previous round sends the concatenation of its bit M, and the received message M.
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Phase 2: broadcast of the value of n inside Xgps.
Using the labels B,, all nodes with REACH, = 1 execute the multi-source broadcast
algorithm MBROADCAST, where the set of sources S is equal to U and the graph is
G' = (V',E'), V' = Xprs (determined by the flags COVER, ) and E’ is the set of edges of
G connecting nodes from Xpps.

Stage 2 is an execution of the multi-source broadcast algorithm MBROADCAST on the whole
graph G using the labels S2,, and thus with the source set S consisting of all super-green
nodes (i.e., the nodes v with SUPER-GREEN,, = 1).

» Theorem 25. Algorithm FASTSD solves the size discovery problem in time O(log2 n) using
a labeling scheme of length O(loglog A).
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