
ar
X

iv
:2

10
5.

06
13

1v
2

 [
cs

.D
S]

 1
7

A
ug

 2
02

2

Further Improvements for SAT in Terms of Formula

Length

Junqiang Peng, Mingyu Xiao∗

School of Computer Science and Engineering,

University of Electronic Science and Technology of China, China

Abstract

In this paper, we prove that the general CNF satisfiability problem can be solved
in O∗(1.0638L) time, where L is the length of the input CNF-formula (i.e., the
total number of literals in the formula), which improves the previous result
of O∗(1.0652L) obtained in 2009. Our algorithm was analyzed by using the
measure-and-conquer method. Our improvements are mainly attributed to the
following two points: we carefully design branching rules to deal with degree-5
and degree-4 variables to avoid previous bottlenecks; we show that some worst
cases will not always happen, and then we can use an amortized technique to get
further improvements. In our analyses, we provide some general frameworks for
analysis and several lower bounds on the decreasing of the measure to simplify
the arguments. These techniques may be used to analyze more algorithms based
on the measure-and-conquer method.

Keywords: Satisfiability, Parameterized Algorithms,
Measure-and-Conquer, Amortized Analysis, Worst-Case Analysis

1. Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables
for which that formula evaluates to true. By SAT, we mean the problem of
propositional satisfiability for formulas in conjunctive normal form (CNF) [1].
SAT is the first problem proved to be NP-complete [2], and it plays an important
role in computational complexity, artificial intelligence, and many others [3].
There are numerous investigations on this problem in different fields, such as
approximation algorithms, randomized algorithms, heuristic algorithms, and
exact and parameterized algorithms. In this paper, we study parameterized
algorithms for SAT parameterized by the input length.

∗Corresponding author
Email addresses: jqpeng0@foxmail.com (Junqiang Peng), myxiao@gmail.com (Mingyu

Xiao)

Preprint submitted to Elsevier August 18, 2022

http://arxiv.org/abs/2105.06131v2

In order to measure the running time bound for SAT, there are three fre-
quently used parameters: the number of variables n, the number of clauses m,
and the input length L. The input length L is defined as the sum of the number
of literals in each clause. The number of variables n should be the most basic
parameter. The simple brute force algorithm to try all 2n possible assignments
of the n variables will get the running time bound of O∗(2n).1 After decades of
hard work, no one can break this trivial bound. The Strong Exponential Time
Hypothesis (SETH) conjectures that SAT cannot be solved in time O∗(cn) for
some constant c < 2 [4]. For a restricted version, the k-SAT problem (the
length of each clause in the formula is bounded by a constant k) can be solved
in O∗(c(k)n) time for some value c(k) < 2 depending on k. There are two major
research lines: one is deterministic local search algorithms like Schöning’s algo-
rithm [5, 6] and the other one is randomized algorithms based on PPZ [7] or
PPSZ [8, 9]. For example, 3-SAT can be deterministically solved in O∗(1.3279n)
time [6] and 4-SAT can be deterministically solved in O∗(1.4986n) time [6].

When it comes to the parameterm, Monien et al. [10] first gave an algorithm
with time complexity O∗(1.260m) in 1981. Later, the bound was improved
to O∗(1.239m) by Hirsch [11] in 1998, and then improved to O∗(1.234m) by
Yamamoto [12] in 2005. Now the best result is O∗(1.2226m) obtained by Chu,
Xiao, and Zhang [13].

The input length L is another important and frequently studied parameter.
It is probably the most precise parameter to describe the size of the input CNF-
Formula. From the first algorithm with running time bound O∗(1.0927L) by
Van Gelder [14] in 1988, the result was improved several times. In 1997, the
bound was improved to O∗(1.0801L) by Kullmann and Luckhardt [15]. Later,
the bound was improved to O∗(1.0758L) by Hirsch [11] in 1998, and improved
again by Hirsch [16] to O∗(1.074L) in 2000. Then Wahlström [17] gave an
O∗(1.0663L)-time algorithm in 2005. In 2009, Chen and Liu [18] achieved a
bound O∗(1.0652L) by using the measure-and-conquer method. In this paper,
we further improve the result to O∗(1.0638L). We list the major progress and
our result in Table 1.

It is also worth mentioning the maximum satisfiability problem (MaxSAT),
which is strongly related to the SAT problem. SAT asks whether we can give an
assignment of the variables to satisfy all clauses, while MaxSAT asks us to satisfy
the maximum number of clauses. For MaxSAT, researchers usually consider the
decision version of it: whether we can satisfy at least k clauses. Thus, k is
a natural parameter in parameterized algorithms. The current best result for
MaxSAT parameterized by k is O∗(1.325k) [19]. The three parameters n, m,
and L mentioned above are also frequently considered for MaxSAT. For the
number of variables n, similar to SAT, the bound O∗(2n) obtained by a trivial
algorithm is still not broken so far, and it is impossible to break under SETH.
In terms of the number of clauses m, very recently, the running time bound of

1The O∗ notation supervises all polynomial factors, i.e., f(n) = O∗(g(n)) means f(n) =
O(g(n)nO(1)).

2

Table 1: Previous and our upper bound for SAT

Running time bounds References
O∗(1.0927L) Van Gelder 1988 [14]
O∗(1.0801L) Kullmann and Luckhardt 1997 [15]
O∗(1.0758L) Hirsch 1998 [11]
O∗(1.074L) Hirsch 2000 [16]
O∗(1.0663L) Wahlström 2005 [17]
O∗(1.0652L) Chen and Liu 2009 [18]
O∗(1.0638L) This paper

MaxSAT was improved to O∗(1.2886m) [20]. When it comes to the length of
the formula L, the bound was also recently improved to O∗(1.0927L) [21].

Our algorithm, as well as most algorithms for SAT-related problems, is based
on the branch-and-search paradigm. The idea of the branch-and-search algo-
rithm is simple and practical: for a given CNF-formula F , we iteratively branch
on a variable or literal x into two branches by assigning value 1 or 0 to it. Let
Fx=1 and Fx=1 be the resulting CNF-formulas by assigning value 1 and 0 to
x, respectively. It holds that F is satisfiable if and only if at least one of Fx=1

and Fx=1 is satisfiable. To get a running time bound, we need to analyze how
much the parameter L can decrease in each branch. To break bottlenecks in
direct analysis, some references [17, 18] analyzed the algorithms based on new
measures and gave the relation between the new measures and L. The measure-
and-conquer method is one of the frequently used techniques. Our algorithm
in this paper will also adopt the measure-and-conquer method and deal with
variables from high degree to low degree. We compare our algorithm with the
previous algorithm [18] based on the measure-and-conquer method. The algo-
rithm in [18] carefully analyzed branching operations for variables of degree 4
and used a simple and uniform rule to deal with variables of degree at least 5.
Their bottlenecks are some cases to deal with degree-4 variables. Our algorithm
will carefully analyze the branching operation for degree-5 variables and use
simple rules for degree-4 variables. In the conference version of this paper [22],
we have shown that these modifications led to improvements. In this version,
we further show that the bottlenecks will not always happen, and we can use
an amortized technique to combine bottleneck cases with the following good
cases to get a further improved average bound. To do this, we also need to
modify some steps of the algorithm in the conference version [22] and carefully
design and analyze the branching operations for some special structures to sat-
isfy the requirement of amortization. Finally, we are able to improve the result
to O∗(1.0638L). In our algorithm, to simplify some case analyses and argu-
ments, we provide some general frameworks for analysis and establish several
lower bounds on the decreasing of the measure. The lower bounds may reveal
some structural properties of the problem, and the analysis framework may be
used to analyze more algorithms based on the measure-and-conquer method.

3

2. Preliminaries

Let V = {x1, x2, ..., xn} denote a set of n boolean variables. Each variable xi

(i ∈ {1, 2, ..., n}) has two corresponding literals : the positive literal xi and the
negative literal xi (we use x to denote the negation of a literal x, and x = x).
A clause on V consists of some literals on V . Note that we allow a clause to be
empty. A clause containing literal z1, z2, . . . , zq is simply written as z1z2 . . . zq.
Thus, we use zC to denote the clause containing literal z and all literals in clause
C. We also use C1C2 to denote the clause containing all literals in clauses C1

and C2. We use C to denote a clause that contains the negation of every literal
in clause C. That is, if C = z1z2...zq, then C = z1z2...zq. A CNF-formula on
V is the conjunction of a set of clauses F = C1 ∧ C2 ∧ ... ∧ Cm. When we say
a variable x is contained in a clause (resp., a formula), it means that the clause
(resp., at least one clause of the formula) contains the literal x or its negation
x.

An assignment for V is a map A : V → {0, 1}. A clause Cj is satisfied by
an assignment if and only if there exists at least one literal in Cj such that
the assignment makes its value 1. A CNF-formula is satisfied by an assignment
A if and only if each clause in it is satisfied by A. We say a CNF-formula is
satisfiable if it can be satisfied by at least one assignment. We may assign value
0 or 1 to a literal, which is indeed to assign a value to its variable to make the
corresponding literal 0 or 1.

A literal z is called an (i, j)-literal (resp., an (i+, j)-literal or (i−, j)-literal)
in a formula F if z appears i (resp., at least i or at most i) times and z appears
j times in the formula F . Similarly, we can define (i, j+)-literal, (i, j−)-literal,
(i+, j+)-literal, (i−, j−)-literal, and so on. Note that literal z is an (i, j)-literal
if and only if literal z is a (j, i)-literal. A variable x is an (i, j)-variable if the
positive literal x is an (i, j)-literal.

For a variable or a literal x in formula F , the degree of it, denoted by deg(x),
is the number of x appearing in F plus the number of x appearing in F , i.e.,
deg(x) = i + j for an (i, j)-variable or (i, j)-literal x. A d-variable (resp., d+-
variable or d−-variable) is a variable with the degree exactly d (resp., at least d
or at most d). The degree of a formula F is the maximum degree of all variables
in F . For a clause or a formula C, the set of variables whose literals appear in
C is denoted by var(C).

The length of a clause C, denoted by |C|, is the number of literals in C. A
clause is a k-clause or k+-clause if the length of it is k or at least k. We use
L(F) to indicate the length of a formula F . It is the sum of the lengths of
all clauses in F , which is also the sum of the degrees of all variables in F . A
formula F is called k-CNF formula if each clause in F has a length of at most
k.

In a formula F , a literal x is called a neighbor of a literal z if there is a clause
containing both z and x. The set of neighbors of a literal z in a formula F is
denoted by N(z,F). We also use N (k)(x,F) (resp., N (k+)(z,F)) to denote the
neighbors of z in k-clauses (resp., k+-clauses) in F , i.e., for any z′ ∈ N (k)(z,F)
(resp., z′ ∈ N (k+)(z,F)), there exists a k-clause (resp., k+-clause) containing

4

both z and z′. If we say a variable y appears in N(x,F), it means that literal
y or literal y is in N(x,F).

3. Some Techniques

3.1. Branch-and-Search Algorithms

Our algorithm is a standard branch-and-search algorithm, which first ap-
plies some reduction rules to reduce the instance as much as possible and then
searches for a solution by branching. The branching operations may exponen-
tially increase the running time. We will use a measure to evaluate the size of
the search tree generated in the algorithm. For the SAT problem, the number
of variables or clauses of the formula is a commonly used measure. More fun-
damentals of branching heuristics about the SAT problem can be found in [3].

Let µ be a measure of an instance. We use T (µ) to denote the number
of leaves of the search tree generated by the algorithm for any instance with
the measure being at most µ. For a branching operation that branches on the
current instance into l branches with the measure decreasing by at least ai in
the i-th branch, we get a recurrence relation

T (µ) ≤ T (µ− a1) + T (µ− a2) + · · ·+ T (µ− al).

The recurrence relation can also be simply represented by a branching vector
[a1, a2, . . . , al]. The largest root of the function f(x) = 1−

∑l
i=1 x

−ai , denoted
by τ(a1, a2, . . . , al), is called the branching factor of the recurrence. If the
maximum branching factor for all branching operations in the algorithm is at
most γ, then T (µ) = O(γµ). If the algorithm runs in polynomial time on each
node of the search tree, then the total running time of the algorithm is O∗(γµ).
More details about analyzing recurrences can be found in the monograph [23].

In the analysis, we need to find the largest branching factor in the algorithm.
Let a = [a1, a2, . . . , al] and b = [b1, b2, . . . , bl] be two branching vectors. If
τ(a1, a2, . . . , al) > τ(b1, b2, . . . , bl), then we say a covers b. Usually, it is hard
to compare two branching vectors directly. In this paper, we will frequently
use some special cases. If it holds that ai ≤ bi for all i = 1, 2 . . . , l, then the
branching factor of b is not smaller than that of a, i.e., a covers b. Let i and
j be positive reals such that 0 < i < j, for any 0 < ǫ < j−i

2 , it holds that
τ(i, j) > τ(i + ǫ, j − ǫ). For this case, we have that the branching vector [i, j]
covers [i+ ǫ, j − ǫ].

3.2. Shift

In some cases, the worst branch in the algorithm will not always happen.
In order to deal with this situation, one can use an amortization technique to
get improved results. This technique has been used in several previous papers,
see [24, 25, 26, 27]. In this paper, we will follow the notation “shift” in [27] to
implement the amortized analysis.

Consider two branching operations A and B with branching vectors a =
[a1, a2] and b = [b1, b2] (with recurrences T (µ) ≤ T (µ − a1) + T (µ − a2) and

5

T (µ) ≤ T (µ−b1)+T (µ−b2)) such that the branching operation B has a smaller
branching factor than A does, where a may be the bottleneck in the running
time analysis of the algorithm (a has the maximum branching factor among
all branching vectors). Suppose branching operation B is always applicable to
the sub-instance F1 generated by the first sub-branch of A. In this case, we
can get a better branching vector c = [a1 + b1, a1 + b2, a2] by combining the
branching operation A and the branching operation B applied to F1. Note that
the branching operation B may also be applicable to the sub-instances gener-
ated by several branching operations other than A. In order to ease such an
analysis without generating all combined branching vectors, we use a notion
of “shift” [27]. We transfer some amount from the measure decreases in the
recurrence for B to that for A as follows. We save an amount σ > 0 of mea-
sure decreases from B by evaluating the branching operation B with branching
vectors

[b1 − σ, b2 − σ],

which leads to a larger branching factor than its original branching vector. The
saved measure decrease σ will be included in the branching vectors for branching
operation A to obtain

[a1 + σ, a2].

The saved amount σ is also called a shift, where the best value for σ will be
determined so that the maximum branching factor is minimized. Clearly, we can
get branching vector [a1+ b1, a1+ b2, a2] by combining the above two branching
vectors. In our analysis, we will use one shift σ.

3.3. Measure and Conquer

The measure-and-conquer method [28] is a powerful tool for analyzing the
branch-and-search algorithms. The main idea of the method is to adopt a
new measure in the analysis of the algorithm. For example, instead of using the
number of variables as the measure, it may set weights to different variables and
use the sum of all variable weights as the measure. This method may be able to
catch more structural properties and then get further improvements. Nowadays,
the fastest exact algorithms for many NP-hard problems were designed by using
this method [27, 29, 30]. In this paper, we will also use the measure-and-conquer
method.

We introduce a weight to each variable in the formula according to the degree
of the variable, w : Z+ → R

+, where Z
+ and R

+ denote the sets of nonnegative
integers and nonnegative reals, respectively. Let wi denote the weight of a
variable with degree i. A variable with a lower degree will not receive a higher
weight. i.e., wi ≥ wi−1. In our algorithm, the measure of a formula F is defined
as

µ(F) =
∑

x

wdeg(x). (1)

6

In other words, µ(F) is the sum of the weight of all variables in F . Let ni

denote the number of i-variables in F . Then we also have that

µ(F) =
∑

i

wini.

One important step is to set the value of weight wi. Different values of wi

will generate different branching vectors and factors. We need to find a good
setting of wi so that the worst branching factor is as small as possible. We
will get the value of wi by solving a quasiconvex program after listing all our
branching vectors. However, we pre-specify some requirements of the weights
to simplify arguments. Some similar assumptions were used in the previous
measure-and-conquer analysis. We set the weight such that

w1 = w2 = 0,

0 < w3 < 2, w4 = 2w3, and

wi = i for i ≥ 5.

(2)

We use δi to denote the difference between wi and wi−1 for i > 0, i.e., δi =
wi − wi−1. By (2), we have

w3 = δ3 = δ4, (3)

and 2w5 > 5w3 ⇒ 2w5 − 4w3 > w3 ⇒ 2w5 − 2w4 > w3, which implies

2δ5 > w3. (4)

We also assume that

w3 ≥ δ5,

1 ≤ δi ≤ δi−1 for i ≥ 3, and

w3 − δ5 < 1.

(5)

Under these assumptions, it holds that wi ≤ i for each i. Thus, for any formula
F , it always holds that

µ(F) ≤ L(F). (6)

This tells us that if we can get a running time bound of O∗(cµ(F)) for a real
number c, then we also get a running time bound of O∗(cL(F)) for this prob-
lem. To obtain a running time bound in terms of the formula length L(F), we
consider the measure µ(F) and show how much the measure µ(F) decreases in
the branching operations of our algorithm and find the worst branching factor
among all branching vectors.

4. The Algorithm

We will first introduce our algorithm and then analyze its running time
bound by using the measure-and-conquer method. Our algorithm consists of
reduction operations and branching operations. When no reduction operations
can be applied anymore, the algorithm will search for a solution by branching.
We first introduce our reduction rules.

7

4.1. Reduction Rules

We have ten reduction rules. Most are well-known and frequently used in
the literature (see [17, 18] for examples). We introduce the reduction rules in
the order as stated, and a reduction rule will be applied in our algorithm only
when all the previous reduction rules do not apply to the instance.

R-Rule 1 (Elimination of duplicated literals). If a clause C contains duplicated
literals z, remove all but one z in C.

R-Rule 2 (Elimination of subsumptions). If there are two clauses C and D
such that C ⊆ D, remove clause D.

R-Rule 3 (Elimination of tautology). If a clause C contains two opposite lit-
erals z and z, remove clause C.

R-Rule 4 (Elimination of 1-clauses and pure literals). If there is a 1-clause
{x} or a (1+, 0)-literal x, assign x = 1.

Davis-Putnam Resolution, proposed in [31], is a classic and frequently used
technology for SAT. Let F be a CNF-formula and x be a variable in F . Assume
that clauses containing literal x are xC1, xC2, ..., xCa and clauses containing
literal x are xD1, xD2, ..., xDb. A Davis-Putnam resolution on x is to construct
a new CNF-formula DPx(F) by the following method: initially DPx(F) =
F ; add new clauses CiDj for each 1 ≤ i ≤ a and 1 ≤ j ≤ b; and remove
xC1, xC2, ..., xCa, xD1, xD2, ..., xDb from the formula. It is known that

Proposition 1 ([31]). A CNF-formula F is satisfiable if and only if DPx(F)
is satisfiable.

In the resolution operation, each new clause CiDj is called a resolvent. A
resolvent is trivial if it contains both a literal and the negation of it. Since
trivial resolvents will always be satisfied, we can simply delete trivial resolvents
from the instance directly. So when we do resolutions, we assume that all trivial
resolvents will be deleted.

R-Rule 5 (Trivial resolution). If there is a variable x such that the degree of
each variable in DPx(F) is not greater than that in F , then apply resolution on
x.

R-Rule 6 ([18]). If there are a 2-clause z1z2 and a clause C containing both
z1 and z2, then remove z2 from C.

R-Rule 7. If there are two clauses z1z2C1 and z1z2C2, where literal z2 appears
in no other clauses, then remove z1 from clause z1z2C1.

Lemma 1. Let F be a CNF-formula and F ′ be the resulting formula after
applying R-Rule 7 on F . Then F is satisfiable if and only if F ′ is satisfiable.

8

Proof. Let F be the original formula and F ′ be the formula after replacing clause
z1z2C1 with clause z2C1 in F . Clearly, if F ′ is satisfied, then F is satisfied. We
consider the other direction.

Assume that F is satisfied by an assignment A. We show that F ′ is also
satisfied. If z2C1 is satisfied by assignment A, then F ′ is satisfied by assignment
A. Next, we assume assignment A satisfies z1z2C1 but not z2C1. Then in A,
we have that z1 = 1 and z2 = 0. Since z2 is a (1, 1+)-literal and z1z2C2 is the
only clause containing z2, we know that all clauses will be satisfied if we replace
z2 = 0 with z2 = 1 in A. Thus, F ′ is still satisfied.

R-Rule 8 ([18]). If there is a 2-clause z1z2 and a clause z1z2C such that literal
z1 appears in no other clauses, remove the clause z1z2 from F .

R-Rule 9 ([18]). If there is a 2-clause z1z2 such that either literal z1 appears
only in this clause or there is another 2-clause z1z2, then replace z1 with z2 in
F and then apply R-Rule 3 as often as possible.

R-Rule 10 ([18]). If there are two clauses CD1 and CD2 such that |D1|, |D2| ≥
1 and |C| ≥ 2, then remove CD1 and CD2 from F , and add three new clauses
xC, xD1, and xD2, where x is a new 3-variable.

R-Rule 10 is like the Davis-Putnam resolution in reverse, and thus it is
correct.

Definition 1 (Reduced formulas). A CNF-formula F is called reduced, if none
of the above reduction rules can be applied on it.

Our algorithm will first iteratively apply the above reduction rules to get
a reduced formula. We will use R(F) to denote the resulting reduced formula
obtained from F . Next, we show some properties of reduced formulas.

Lemma 2. In a reduced CNF-formula F , all variables are 3+-variables.

Proof. If there is a 1-variable, then R-Rule 4 could be applied. For a 2-variable
in F , if it is a (2, 0)-variable or (0, 2)-variable, then R-Rule 4 could be applied;
if it is a (1, 1)-variable, R-Rule 5 could be applied.

Lemma 3. In a reduced CNF-formula F , if there is a 2-clause xy, then no
other clause in F contains xy, xy, or xy.

Proof. If there is a clause containing xy, then R-Rule 2 could be applied. If
there is a clause containing xy or xy, then R-Rule 6 could be applied.

Lemma 4. In a reduced CNF-formula F , if there is a clause xyC, then

(i) no other clause contains xy;

(ii) no other clause contains xy or xy if x is a 3-variable.

9

Proof. (i): If there is a clause containing xy, then either R-Rule 2 or R-Rule 10
can be applied.

(ii): Since x is a 3-variable and all (1+, 0)-literals are reduced by R-Rule 4, x
is actually a (1, 2)-variable or (2, 1)-variable. If there is a clause containing xy,
R-Rule 7 would be applicable. If there is a clause containing xy, then there is
only one non-trivial resolvent after resolving on x, which means R-Rule 5 would
be applicable.

Lemma 5. In a reduced CNF-formula F , if there is (1, 2+)-literal x (let xC be
the only clause containing x), then

(i) |C| ≥ 2;

(ii) var(C) ∩ var(N (2)(x, F)) = ∅, that is, if y ∈ N (2)(x, F), then y, y /∈ C.

Proof. (i): If |C| = 0, then R-Rule 4 could be applied; if |C| = 1, which means
xC is a 2-clause, then R-Rule 9 could be applied since x is a (1, 2+)-literal.

(ii): Assume that y is a literal in N (2)(x, F), in other words, there is a 2-
clause xy. Note that x is a (1, 2+)-literal. If y ∈ C, then R-Rule 7 could be
applied; if y ∈ C, then R-Rule 8 could be applied.

4.2. Branching Rules and the Algorithm

After getting a reduced formula, we will search for a solution by branching.
In a branching operation, we will generate two smaller CNF-formulas such that
the original formula is satisfiable if and only if at least one of the two new
formulas is satisfiable. The two smaller formulas are generated by specifying
the value of a set of literals in the original formula.

The simplest branching rule is that we pick up a variable or literal x from
F and branch into two branches Fx=1 and Fx=0, where Fx=1 and Fx=0 are the
formulas after assigning x = 1 and x = 0 in F , respectively. When the picked
literal x is a (1, 1+)-literal, we will apply a stronger branching. Assume that xC
is the only clause containing x. Then we branch into two branches Fx=1 & C=0

and Fx=0, where Fx=1 & C=0 is the resulting formula after assigning 1 to x and
0 to all literals in C in F . The correctness of this branching operation is also
easy to observe. Only when all literals in C are assigned 0 do we need to assign
1 to x. Generally, we always pick a variable or literal with the maximum degree
in the formula to branch.

The main steps of our algorithm are given in Algorithm 1. The algorithm
will execute one step only when all previous steps can not be applied. In Step 2,
the algorithm first reduces the formula by applying the reduction rules. Af-
terwards, in Steps 3-15, the algorithm deals with variables from high-degree to
low-degree by branching. In Step 3, the algorithm branches on variables with
degree ≥ 6. Steps 4-13 deal with 5-variables. Steps 14-15 deal with 4-variables.
If the maximum degree of the formula is 3, then we apply the algorithm by
Wahlström [32], which is Step 16 of our algorithm.

Before analyzing the algorithm, we compare our algorithm with the previous
algorithm by Chen and Liu [18]. We can see that they used a simple and uniform

10

Algorithm 1: SAT(F)

Input: a CNF-formula F
Output: 1 or 0 to indicate the satisfiability of F
Step 1. If F = ∅, return 1. Else if F contains an empty clause, return
0.

Step 2. If F is not a reduced CNF-formula, iteratively apply the
reduction rules to reduce it.

Step 3. If the degree of F is at least 6, select a variable x with the
maximum degree and return SAT(Fx=1)∨SAT(Fx=0).

Step 4. If there is a (1, 4)-literal x (assume that xC is the unique
clause containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).

Step 5. If there is a 5-literal x such that at least two 2-clauses contain
x or x, return SAT(Fx=1)∨SAT(Fx=0).

Step 6. If there are two 5-literals x and y contained in one 2-clause xy,
return SAT(Fx=1)∨SAT(Fx=0).

Step 7. If there is a 5-literal x contained in a 2-clause, return
SAT(Fx=1)∨SAT(Fx=0).

Step 8. If there is a 5-literal x such that N(x,F) and N(x,F) contain
at least two 4−-literals, return SAT(Fx=1)∨SAT(Fx=0).

Note: If there are still some 5-literals, they must be (2,3)/(3,2)-literals.
In the next two steps, we let x be a (2, 3)-literal and
xC1, xC2, xD1, xD2, and xD3 be the five clauses containing x or x.

Step 9. If there exist 5-literals y1 and y2 such that y1 ∈ C1, y1 ∈ D1,
y2 ∈ C2 and y2 or y2 ∈ D2, return SAT(Fy1=1)∨SAT(Fy1=0).

Step 10. If there exist 5-literals y1 and y2 such that y1 ∈ C1, y1 ∈ D1,
y2 ∈ C2, and y2 ∈ D2, pick a 5-literal z ∈ D3 (let R5(Fz=1) denote the
resulting formula after only applying R-Rule 5 on Fz=1) and return
SAT(R5(Fz=1))∨SAT(Fz=0).

Step 11. If there is a 5-literal x contained in at least one 4+-clause,
return SAT(Fx=1)∨SAT(Fx=0).

Step 12. If there is a clause containing both a 5-literal x and a
4−-literal, return SAT(Fx=1)∨SAT(Fx=0).

Step 13. If there are still some 5-literals, then F = F5 ∧ F≤4, where
F5 is a 3-CNF containing only 5-literals and F≤4 contains only
3/4-literals. We solve F5 by using the 3-SAT algorithm by Liu [6] (let
A(F5) denote the result) and return A(F5) ∧ SAT(F≤4).

Step 14. If there is a (1, 3)-literal x (assume that xC is the unique
clause containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).

Step 15. If there is a (2, 2)-literal x, return SAT(Fx=1)∨SAT(Fx=0).
Step 16. Apply the algorithm by Wahlström [32] to solve the instance.

branching rule to deal with variables of degree at least 5 and used careful and
complicated branching rules for 4-variables. Their bottlenecks contain one case
of branching on 5-variables and one case of dealing with 4-variables. We carefully

11

design and analyze the branching rules for 5-variables to avoid one previous
bottleneck and also simplify the branching rules for 4-variables. We use Steps 4-
13 to deal with different structures of 5-variables, while reference [18] just used
a single step like our Step 3 to deal with 5-variables. Steps 14-15 are simple
branching rules to deal with 4-variables, while reference [18] used complicated
rules to deal with 4-variables. To get further improvements, we may also check
some special structures and propose branching rules to deal with them so that
we can prove the worst case in our algorithm would not always happen.

We analyze the correctness of the algorithm. Step 2 applies reduction rules,
and their correctness has been proven previously. Step 3 deals with variables
with degree ≥ 6. Steps 4-13 deal with 5-variables by simple branching. After
Step 7, all clauses containing 5-literals are 3+-clause. After Step 8, there is at
most one 4−-literal in the neighbor set of x or x. In Step 10, there must be a
5-literal in D3 since |D3| ≥ 2, and there is at most one 4−-literal in it. Thus, the
condition of Step 10 holds. If Steps 1-12 do not apply, then F can be written as
F = F5 ∧ F≤4, where F5 is a 3-CNF with var(F5) be the set of 5-variables in
F and var(F5)∩ var(F≤4) = ∅. So we can do Step 13. Steps 14-15 deal with 4-
variables by branching. When the algorithm comes to the last step, all variables
must have a degree of 3, and we apply the algorithm by Wahlström [32] to deal
with this special case. The hard part is to analyze the running time bound,
which will be presented below.

5. The Analysis Framework

We use the measure-and-conquer method to analyze the running time bound
of our algorithm and adopt µ(F) defined in (1) as the measure to construct
recurrence relations for our branching operations. Before analyzing each detailed
step of the algorithm, we first introduce some general frameworks of our analysis
and prove some lemmas that will be used as lower bounds in the detailed step
analyses.

In each sub-branch of a branching operation, we assign value 1 or 0 to some
literals and remove some clauses and literals. If we assign value 1 to a literal
x in the formula F , then we will remove all clauses containing x from the
formula since all those clauses are satisfied. We also remove all x literals from
the clauses containing x since those literals get value 0. The assignment and
removing together are called an assignment operation. We may assign values to
more than one literal, and we do assignment operations for each literal.

Let S be a subset of literals. We use FS=1 to denote the resulting formula
after assigning 1 to each literal in S and doing assignment operations for each
literal in S. Note that FS=1 may not be a reduced formula, and we will apply
our reduction rules to reduce it. We use F ′

S=1 to denote the reduced formula
obtained from FS=1, i.e., F

′
S=1 = R(FS=1), and use F∗

S=1 to denote the first
formula during we apply reduction rules on FS=1 such that R-Rule 1-4 are not
applicable on the formula. We analyze how much we can reduce the measure in

12

each sub-branch by establishing some lower bounds for

∆∗
S = µ(F)− µ(F∗

S=1);

∆S = µ(F)− µ(F ′
S=1).

For the sake of presentation, we define

ξ
(1)
S = µ(F)− µ(FS=1);

ξ
(2)
S = µ(FS=1)− µ(F∗

S=1);

ξ
(3)
S = µ(F∗

S=1)− µ(F ′
S=1).

Thus, it holds that

∆∗
S = µ(F)− µ(F∗

S=1) = µ(F)− µ(FS=1) + µ(FS=1)− µ(F∗
S=1) = ξ

(1)
S + ξ

(2)
S

and

∆S = µ(F)− µ(F ′
S=1) = µ(F)− µ(F∗

S=1) + µ(F∗
S=1)− µ(F ′

S=1) = ∆∗
S + ξ

(3)
S .

In other words, ξ
(1)
S is the amount of measure of F reduced by only doing

assignment operations for each literal in S; ξ
(2)
S is the amount of measure of

FS=1 reduced by the first four reduction rules; ξ
(3)
S is the amount of measure

of F∗
S=1 reduced by iteratively applying the reduction rules until it becomes a

reduced formula.
We analyze the running time of our algorithm by analyzing the branching

vector/factor generated by each step. In each branching step, we will branch
into two sub-branches. Assume that all literals in S1 are assigned the value 1 in
the first sub-branch, and all literals in S2 are assigned the value 1 in the second
sub-branch. In the analysis, we will frequently use the following property.

Lemma 6. It holds that

(i) if we can show that ∆S1
≥ p and ∆S2

≥ q, then the branching vector
generated by this branching rule is covered by [p, q];

(ii) if we can show min(∆S1
,∆S2

) ≥ a and ∆S1
+∆S2

≥ b, then the branching
vector generated by this branching rule is covered by [a, b− a].

Next, we will analyze some lower bounds for ∆S1
,∆S2

and ∆S1
+∆S2

.

According to the assignment operation, we know that all variables of the
literals in S will not appear in FS=1. So we have a trivial bound

ξ
(1)
S ≥

∑

v∈S

wdeg(v).

To get better bounds, we first define some notations. Recall that in a formula
F , a literal x is called a neighbor of a literal z if there is a clause containing
both z and x. We use N(z,F) to denote the set of neighbors of a literal z in a
formula F and N (k)(x,F) (resp., N (k+)(z,F)) to denote the neighbors of z in
k-clauses (resp., k+-clauses) in F .

13

Definition 2. For a literal x in a reduced formula F and i ∈ N+, we define
the following notations:

• ni(x): the number of literals with degree i that appear in N(x,F), i.e.,
ni(x) = |{y : y ∈ N(x,F) and deg(y) = i}|;

• n′
i(x): the number of literals with degree i that appear in N (2)(x,F), i.e.,

n′
i(x) = |{y : y ∈ N (2)(x,F) and deg(y) = i}|;

• n′′
i (x): the number of literals with degree i that appear in N (3+)(x,F), i.e.,

n′′
i (x) = |{y : y ∈ N (3+)(x,F) and deg(y) = i}|;

• ti,1(x): the number of i-variables y such that only one of y and y appears
in N(x,F), i.e., ti,1(x) = |{var(y) : |{y, y} ∩N(x,F)| = 1}|;

• ti,2(x): the number of i-variables y such that both of y and y appear in
N(x,F), i.e., ti,2(x) = |{var(y) : |{y, y} ∩N(x,F)| = 2}|.

Example. Let F = (xy1z1) ∧ (xy2z1l1)∧ (xy3z4)∧ (xz2z3l2)∧ (xz4) ∧F1, where
x, z1, z2, z3, z4 are 5-variables, y1, y2, y3 are 4-variables, and l1, l2 are 3-variables.
Then, in this case, we have:

• n3(x) = n′′
3(x) = t3,1(x) = |{l1}| = 1;

• n4(x) = n′′
4(x) = t4,1(x) = |{y1, y2, y3}| = 3;

• n5(x) = n′′
5(x) = |{z1, z1, z3}| = 3;

• t5,1(x) = |{z3}| = 1 and t5,2(x) = |{z1}| = 1;

• n4(x) = |{z2, z3, z4}| = 3, n′
4(x) = |{z4}| = 1, and n′′

4(x) = |{z2, z3}| = 2.

In a reduced formula F , there is no 1-clause since R-Rule 4 is not applicable.
So for a literal x, it holds that

ni(x) = n′
i(x) + n′′

i (x).

By Lemma 4, for a literal x, we know that all literals in N(x,F) are different
from each other. So for any variable y, there is at most one literal y and at most
one literal y appearing in N(x,F), which implies that

ni(x) = ti,1(x) + 2ti,2(x).

Next, we give some lower bounds on ξ
(1)
S , ξ

(2)
S , and ∆∗

S1
+ ∆∗

S2
, which will

be used to prove our main results.
The following lemma shows how much the measure decreases after we do the

assignment operation to a single literal.

Lemma 7. Assume that F is a reduced CNF-formula with degree d. Let S =
{x}, where x is a literal with degree d in F . It holds that

ξ
(1)
S ≥ wd +

∑

3≤i≤d

ni(x)δi.

14

Proof. After assigning value 1 to literal x, all clauses containing x will be re-
moved from F , that is, all literals in N(x,F) will be removed from F . By
Lemma 4, all literals in N(x,F) are different from each other. For a variable
y, there are at most two literals of it (y and y) in N(x,F). So the degree of
variable y will decrease at most 2. Moreover, if y is a 3-variable, by Lemma
4, we know that y and y will not simultaneously appear in N(x,F) since there
are no other clauses containing xy (i.e., t3,2(x) = 0). So the degree of y will
decrease by at most 1 if y is a 3-variable.

Note that ξ
(1)
S expresses how much the measure of F decreases after the

assignment operation. So it holds that

ξ
(1)
S ≥ wd +

∑

3≤i≤d

ti,1(x)δi +
∑

4≤i≤d

ti,2(x)(δi + δi−1).

Since t3,2(x) = 0, can write it as

ξ
(1)
S = wd +

∑

3≤i≤d

ti,1(x)δi +
∑

3≤i≤d

ti,2(x)(δi + δi−1).

By δi ≥ δi−1 and δi ≥ δd for 3 ≤ i ≤ d, we have

ξ
(1)
S ≥ wd +

∑

3≤i≤d

ti,1(x)δi +
∑

3≤i≤d

ti,2(x)(δi + δi)

= wd +
∑

3≤i≤d

(ti,1(x) + 2ti,2(x))δi.

Note that ni(x) = ti,1(x) + 2ti,2(x) holds for 3 ≤ i ≤ d. We finally obtain

ξ
(1)
S = wd +

∑

3≤i≤d

ni(x)δi.

Lemma 8. Assume that F is a reduced CNF-formula with degree d. Let S =
{x}, where x is a (j, d− j)-literal in F . It holds that

ξ
(1)
S ≥ wd + jδd.

Proof. By Lemma 7 and δi ≥ δd for 3 ≤ i ≤ d, we get

ξ
(1)
S ≥ wdeg(x) +

∑

3≤i≤d

ni(x)δi ≥ wd + d
∑

3≤i≤d

ni(x)δd.

As x is a (j, d− j)-literal, there are j clauses containing literal x. Since there is
no 1-clause in F (all 1-clauses are reduced by R-Rule 4), literal x has at least j
neighbors, i.e.,

∑
3≤i≤d ni(x) ≥ j. We further obtain

ξ
(1)
S ≥ wd + jδd.

15

Lemma 9. Assume that F is a reduced CNF-formula with degree d. Let S =
{x}, where x is a literal in F . It holds that

ξ
(2)
S ≥ n′

3(x)w3 +
∑

4≤i≤d

n′
i(x)wi−1.

Proof. Recall that ξ
(2)
S expresses how much the measure decreases after applying

reduction Rule 1-4 on FS=1. All literals in N (2)(x,F) will be assigned value 1
since they will be contained in 1-clauses in FS=1 and R-Rule 4 is applied.

For a literal y ∈ N (2)(x,F), we know that there are no other clauses contain-
ing xy (i.e., y /∈ N(x,F)) by Lemma 3. So if var(y) is an i-variable in F , then
the degree of y in FS=1 is at least i− 1. Moreover, for a literal y ∈ N (2)(x,F)
such that var(y) is a 3-variable, by Lemma 4 we know that there are no other
clauses containing xy or xy (i.e., y, y /∈ N(x,F)). So the degree of y would still
be 3 in FS=1.

Since all variables corresponding to the literals in N(x,F) would not appear
in F ′

S=1 and these variables are different from each other by Lemma 3, we obtain

ξ
(2)
S ≥ n′

3(x)w3 +
∑

4≤i≤d

n′
i(x)wi−1.

After getting the lower bounds on ξ
(1)
S and ξ

(2)
S , we are going to establish

some lower bounds when we branch on a single literal x: ∆∗
S for the case S = {x}

and ∆∗
S1

+ ∆∗
S2

for the case that S1 = {x} and S2 = {x}. We first consider a
general lower bound on ∆∗

S1
+∆∗

S2
.

Lemma 10. Assume that F is a reduced CNF-formula of degree d. Let S1 = {x}
and S2 = {x}, where x is a d-variable in F . It holds that

∆∗
S1

+∆∗
S2

≥ 2wd + 2dδd + (n′
3(x) + n′

3(x))(2w3 − 2δd)

+
∑

4≤i≤d

(n′
i(x) + n′

i(x))(wi − 2δd).

Proof. By Lemma 7 and Lemma 9, we have

ξ
(1)
S1

≥ wd +
∑

3≤i≤d

ni(x)δi and ξ
(2)
S1

≥ n′
3(x)w3 +

∑

4≤i≤d

n′
i(x)wi−1.

We can get lower bounds of ξ
(1)
S2

and ξ
(2)
S2

by the same way, and then we have:

∆∗
S1

= ξ
(1)
S1

+ ξ
(2)
S1

≥ wd +
∑

3≤i≤d

ni(x)δi + n′
3(x)w3 +

∑

4≤i≤d

n′
i(x)wi−1;

∆∗
S2

= ξ
(1)
S2

+ ξ
(2)
S2

≥ wd +
∑

3≤i≤d

ni(x)δi + n′
3(x)w3 +

∑

4≤i≤d

n′
i(x)wi−1.

(7)

16

As
∑

3≤i≤d(n
′
i(x)+n′

i(x)) is the number of 2-clauses containing x or x and there

are d clauses containing x or x, we know that the number of 3+-clauses that
contains x or x is d−

∑
3≤i≤d(n

′
i(x) + n′

i(x)). Recall that n
′′
i (x) is the number

of literals with degree i that appear in N (3+)(x,F). We get

∑

3≤i≤d

(n′′
i (x) + n′′

i (x)) ≥ 2(d−
∑

3≤i≤d

(n′
i(x) + n′

i(x))). (8)

By (7) and summing ∆∗
S1

and ∆∗
S2

up, we have

∆∗
S1

+∆∗
S2

≥ wd +
∑

3≤i≤d

ni(x)δi + n′
3(x)w3 +

∑

4≤i≤d

n′
i(x)wi−1

+ wd +
∑

3≤i≤d

ni(x)δi + n′
3(x)w3 +

∑

4≤i≤d

n′
i(x)wi−1

= 2wd + (n′
3(x) + n′

3(x))w3 +
∑

4≤i≤d

(n′
i(x) + n′

i(x))wi−1

+
∑

3≤i≤d

(ni(x) + ni(x))δi.

Next, we first consider the lower bound on the term
∑

3≤i≤d(ni(x) + ni(x))δi
and then further analyze ∆∗

S1
+∆∗

S2
.

By δi ≥ δd for 3 ≤ i ≤ d and (8), we have

∑

3≤i≤d

(n′′
i (x) + n′′

i (x))δi ≥ (
∑

3≤i≤d

(n′′
i (x) + n′′

i (x)))δd

≥ 2(d−
∑

3≤i≤d

(n′
i(x) + n′

i(x)))δd.

With ni(x) = n′
i(x) + n′′

i (x) and ni(x) = n′
i(x) + n′′

i (x), we get

∑

3≤i≤d

(ni(x) + ni(x))δi =
∑

3≤i≤d

(n′
i(x) + n′

i(x))δi +
∑

3≤i≤d

(n′′
i (x) + n′′

i (x))δi

≥
∑

3≤i≤d

(n′
i(x) + n′

i(x))δi + 2(d−
∑

3≤i≤d

(n′
i(x) + n′

i(x)))δd

≥ 2dδd +
∑

3≤i≤d

(n′
i(x) + n′

i(x))(δi − 2δd).

Next we continue the previous analysis on ∆∗
S1

+∆∗
S2
. By applying the above

17

result, we have

∆∗
S1

+∆∗
S2

≥ 2wd + (n′
3(x) + n′

3(x))w3 +
∑

4≤i≤d

(n′
i(x) + n′

i(x))wi−1

+
∑

3≤i≤d

(ni(x) + ni(x))δi

= 2wd + (n′
3(x) + n′

3(x))w3 +
∑

4≤i≤d

(n′
i(x) + n′

i(x))wi−1

+ 2dδd +
∑

3≤i≤d

(n′
i(x) + n′

i(x))(δi − 2δd).

Expanding 3 ≤ i ≤ d to i = 3 and 4 ≤ i ≤ d in the last term and then combining
like terms, we get

∆∗
S1

+∆∗
S2

= 2wd + 2dδd + (n′
3(x) + n′

3(x))w3 +
∑

4≤i≤d

(n′
i(x) + n′

i(x))wi−1

+ (n′
3(x) + n′

3(x))(δ3 − 2δd) +
∑

4≤i≤d

(n′
i(x) + n′

i(x))(δi − 2δd)

≥ 2wd + 2dδd + (n′
3(x) + n′

3(x))(w3 + δ3 − 2δd)

+
∑

4≤i≤d

(n′
i(x) + n′

i(x))(wi−1 + δi − 2δd)

= 2wd + 2dδd + (n′
3(x) + n′

3(x))(2w3 − 2δd)

+
∑

4≤i≤d

(n′
i(x) + n′

i(x))(wi − 2δd).

In our algorithm, we apply a stronger branching for a (1, 4)/(1, 3)-literal x.
Assume xC is the unique clause containing literal x. The following two lemmas
show lower bounds on ∆S for the case S = {x}∪C and ∆S1

+∆S2
for the case

S1 = {x} ∪C and S2 = {x}.

Lemma 11. Assume that F is a reduced CNF-formula of degree d = 4 or 5.
Let x be a (1, d− 1)-literal and xC be the unique clause containing x in F . Let
S1 = {x} ∪C and S2 = {x}. It holds that

∆S1
+∆S2

≥ 2wd + 3w3 + (2d− 3)δd

and
min(∆S1

,∆S2
) ≥ wd +min(2w3, (d− 1)δd).

Proof. We first consider ∆S1
. By Lemma 5, we know that |C| ≥ 2 and var(C)∩

var(N (2)(x,F)) = ∅. So, after assigning value 1 to all literals in S1, all 2-
clauses containing x in F would become 1-clauses in FS1=1 and the degree of
each variable in these 1-clauses is the same as that in F . Then, by applying

18

R-Rule 4, all variables in these 1-clauses get assignments. Thus, all variables in
var(C) ∪ var(N (2)(x,F)) would not appear in F ′

S1=1. Since all variables in C
are 3+-variables and w3 ≤ wi for i ≥ 3, we preliminarily have

∆S1
≥

∑

v∈S1

wdeg(v) +
∑

3≤i≤d

n′
i(x)wi

≥ wd + |C|w3 +
∑

3≤i≤d

n′
i(x)wi

≥ wd + 2w3 +
∑

3≤i≤d

n′
i(x)wi.

(9)

Note that when we assign value 1 to a literal y ∈ C, the neighbors of y would
also be removed from the formula, which may further decrease the measure
if y is not in N (2)(x,F) (Otherwise, for a literal l ∈ N(y,F) ∪ N (2)(x,F), it
will get assignment by applying R-Rule 4 and the decrease of measure will be
counted in

∑
3≤i≤d n

′
i(x)wi). So we define Nc = {z : z ∈

⋃
y∈C N(y,F) and z /∈

N (2)(x,F)}. As δd ≤ δi for i ≤ d, we further get

∆S1
≥ wd + 2w3 +

∑

3≤i≤d

n′
i(x)wi + |Nc|δd

≥ wd + 2w3 + (
∑

3≤i≤d

n′
i(x))w3 + |Nc|δd.

For ∆S2
, by Lemma 7 and δd ≤ δi for 3 ≤ i ≤ d, we have

∆S2
≥ wd +

∑

3≤i≤d

ni(x)δi ≥ wd + (
∑

3≤i≤d

ni(x))δd.

Let p =
∑

3≤i≤d n
′
i(x) and q =

∑
3≤i≤d n

′′
i (x). Note that p is also the number

of 2-clauses containing x and 0 ≤ p ≤ d − 1. Since there are d − 1 clauses
containing x, it holds that q ≥ 2(d− 1− p). Recall that ni(x) = n′

i(x) + n′′
i (x)

for i ∈ N+, we have

∑

3≤i≤d

ni(x) = p+ q ≥ p+ 2(d− 1− p) = 2d− 2− p.

So

∆S1
≥ wd + 2w3 + pw3 + |Nc|δd and ∆S2

≥ wd + (2d− 2− p)δd.

Summing them up, we get

∆S1
+∆S2

≥ 2wd + 2w3 + (|Nc|+ 2d− 2)δd + p(w3 − δd).

Note that since 0 ≤ p ≤ d− 1, it holds that ∆S2
≥ wd + (d− 1)δd.

Next, let us consider the following two cases.

19

Case 1. x is contained in at least one 2-cluase, i.e., p ≥ 1. We have

∆S1
+∆S2

≥ 2wd + 2w3 + (2d− 2)δd + w3 − δd = 2wd + 3w3 + (2d− 3)δd.

For this case, we also have ∆S1
≥ wd + 3w3, ∆S2

≥ wd + (d − 1)δd, and
min(∆S1

,∆S2
) ≥ wd + min(3w3, (d − 1)δd) ≥ 2w3 since that 2w3 < (d − 1)δd

holds for d = 4 and d = 5.
Case 2. All clauses containing x are 3+-clauses, i.e., N (2)(x,F) = ∅ and

p = 0. This implies |Nc| ≥ 1 since
⋃

y∈C N(y,F) 6= ∅. Note that w3 < 2δd holds
for d = 4 and d = 5. We have

∆S1
+∆S2

≥ 2wd + 2w3 + (1 + 2d− 2)δd = 2wd + 2w3 + (2d− 1)δd

≥ 2wd + 3w3 + (2d− 3)δd.

For this case, we also have ∆S1
≥ wd + 2w3, ∆S2

≥ wd + (d − 1)δd, and
min(∆S1

,∆S2
) ≥ wd + min(2w3, (d − 1)δd) ≥ 2w3 since that 2w3 < (d − 1)δd

holds for d = 4 and d = 5.

As shown in Algorithm 1, we consider several cases for 5-litreals. The fol-
lowing lemma is a corollary based on Lemma 7 in order to get tighter bounds
on ∆S1

+∆S2
for the case S1 = {x} and S2 = {x} where x is a 5-variable.

Lemma 12. Assume that F is a reduced CNF-formula of d = 5. Let S1 = {x}
and S2 = {x}, where x is a (2, 3)/(3, 2)-literal in F . If all clauses containing x
or x are 3+-clauses, it holds that

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 +
∑

3≤i≤5

(ni(x) + ni(x))δi + (t5,2(x) + t5,2(x))(δ4 − δ5).

Proof. From the proof of Lemma 7, we have

ξ
(1)
S ≥ w5 +

∑

3≤i≤5

ti,1(x)δi +
∑

4≤i≤5

ti,2(x)(δi + δi−1)

= w5 +
∑

3≤i≤5

(ni(x) − 2ti,2(x))δi +
∑

4≤i≤5

ti,2(x)(δi + δi−1)

= w5 +
∑

3≤i≤5

ni(x)δi −
∑

3≤i≤5

2ti,2(x)δi +
∑

4≤i≤5

ti,2(x)(δi−1 + δi).

As mentioned before, t3,2(x) = 0 holds, so we have

ξ
(1)
S ≥ w5 +

∑

3≤i≤5

ni(x)δi −
∑

4≤i≤5

2ti,2(x)δi +
∑

4≤i≤5

ti,2(x)(δi−1 + δi)

= w5 +
∑

3≤i≤5

ni(x)δi +
∑

4≤i≤5

ti,2(x)(δi−1 − δi).

Since δi−1 − δi = 0 when i = 4, we have

ξ
(1)
S1

≥ w5 +
∑

3≤i≤5

ni(x)δi + t5,2(x)(δ4 − δ5).

20

Similarly, we can get

ξ
(1)
S2

≥ w5 +
∑

3≤i≤5

ni(x)δi + t5,2(x)(δ4 − δ5).

Summing ξ
(1)
S1

and ξ
(1)
S2

up, we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 +
∑

3≤i≤5

(ni(x) + ni(x))δi + (t5,2(x) + t5,2(x))(δ4 − δ5).

The following lemma is a corollary of Lemma 12, which will also be used in
our analysis to simplify the arguments.

Lemma 13. Assume that F is a reduced CNF-formula of d = 5. Let S1 = {x}
and S2 = {x}, where x is a (2, 3)/(3, 2)-literal in F . If all clauses containing x
or x are 3+-clauses,

∑
3≤i≤5(ni(x)+ni(x)) ≥ g, and

∑
3≤i≤4(ni(x)+ni(x)) ≥ h,

then it holds that

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + gδ5 + h(w3 − δ5) + (t5,2(x) + t5,2(x))(δ4 − δ5).

Proof. By Lemma 12 we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 +
∑

3≤i≤5

(ni(x) + ni(x))δi + (t5,2(x) + t5,2(x))(δ4 − δ5)

= 2w5 +
∑

3≤i≤4

(ni(x) + ni(x))δi + (n5(x) + n5(x))δ5

+ (t5,2(x) + t5,2(x))(δ4 − δ5).

Let g′ =
∑

3≤i≤5(ni(x)+ni(x)) ≥ g and h′ =
∑

3≤i≤4(ni(x)+ni(x)) ≥ h. Since
δ3 = δ4 = w3 and n5(x) + n5(x) = g′ − h′, we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + h′w3 + (g′ − h′)δ5 + (t5,2(x) + t5,2(x))(δ4 − δ5)

= 2w5 + g′δ5 + h′(w3 − δ5) + (t5,2(x) + t5,2(x))(δ4 − δ5).

Note that δ5 > 0 and w3 − δ5 > 0, so it holds that

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + gδ5 + h(w3 − δ5) + (t5,2(x) + t5,2(x))(δ4 − δ5).

6. Step Analysis

Equipped with the above lower bounds, we are ready to analyze the branch-
ing vector of each step in the algorithm.

21

6.1. Step 2

Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction
rules to reduce it.

In this step, we only apply reduction rules to reduce the formula. However,
it is still important to show that the measure will never increase when applying
reduction rules, and reduction operations use only polynomial time.

Lemma 14. For any CNF-formula F , it holds that

µ(R(F)) ≤ µ(F).

Proof. It suffices to verify that each reduction rule would not increase the mea-
sure of the formula.

R-Rules 1-8 simply remove some literals, which would not increase the mea-
sure of the formula.

Next, we consider R-Rule 9 and 10. Note that now R-Rule 4 and 5 are not
applicable, and then all variables in F are 3+-variables. The reason is below.
If there is a 1-variable, we could apply R-Rule 4. For a 2-variable in F , if it
is a (2, 0)-variable or (0, 2)-variable, R-Rule 4 would be applicable; if it is a
(1, 1)-variable, R-Rule 5 would be applicable.

For R-Rule 9, without loss of generalization, we assume the degree of z1 is i
and the degree of z2 is j such that 3 ≤ i ≤ j. After applying this rule, the degree
of z2 will become i+ j−2 since we replace z1 with z2 and clause z1z2 is removed
by R-Rule 3. Next, we show that µ(R(F)) − µ(F) = wi+j−2 − wi − wj ≤ 0
holds.

By (2), (5) and (3), we know that:
if i = 3, then

w3+j−2 − w3 − wj = wj+1 − wj − w3 = δj+1 − w3 ≤ δ4 − w3 = 0;

if i = 4, then

w4+j−2 − w4 − wj = wj+2 − wj − w4 = δj+2 + δj+1 − w4 ≤ δ6 + δ5 − w4 < 0;

if i ≥ 5, then

wi+j−2 − wi − wj = (i+ j − 2)− i− j = −2 < 0.

For R-Rule 10, two clauses CD1 and CD2 in F are replaced with three
clauses xC, xD1 and xD2. We introduce a 3-variable x and also decrease the
degree of each literal in C by 1. The introduction of x increases the measure
of the formula by w3. On the other hand, since all variables are 3+-variable
in F and |C| ≥ 2, the removing of clause C decreases the measure at least
2min{δi|i ≥ 3} = 2. Since w3 < 2, we know that

µ(R(F))− µ(F) = w3 − 2min{δi|i ≥ 3} = w3 − 2 < 0.

22

Lemma 15. For any CNF-formula F , we can apply the reduction rules in
polynomial time to transfer it to R(F).

Proof. Each application of any one of the first eight reduction rules removes
some literal from the formula, and then it decreases L(F) at least by 1. For
R-Rule 9, after replacing z1 with z2, the clause z1z2 will be removed by R-Rule
3. So each application of it decreases L(F) by at least 2.

It is easy to see that each application of R-Rule 10 increases L(F) by at most
1. In the proof of Lemma 14, we have shown that the measure µ(F) decreases
at least by 2−w3 in this step. Since w3 is a constant less than 2, let w3 = 2− ǫ
for a constant ǫ, then µ(F) decreases by at least ǫ after applying R-Rule 10.

In order to make the proof clear, we define a new measure M(F) = L(F) +
2µ(F)/ǫ. It is easy to see that M(F) is bounded by a polynomial of L(F). For
R-Rule 1-9, it decreases M(F) by at least 1. For R-Rule 10, it increases M(F)
by at most 1. Assume the resulting CNF-formula after applying R-Rule 10 is
F ′. It holds that L(F)− L(F ′) ≥ −1 and µ(F)− µ(F ′) ≥ ǫ. Sod we have

M(F)−M(F ′) = L(F)− L(F ′) + 2(µ(F)− µ(F ′))/ǫ ≥ −1 + 2 = 1.

Since each reduction rule decreases M(F) at least by 1, it must stop in polyno-
mial time if we iteratively apply the reduction rules.

6.2. Step 3

Step 3. If the degree of F is at least 6, select a variable x with the maximum
degree and return SAT(Fx=1)∨SAT(Fx=0).

In this step, we branch on a variable x of degree at least 6. The two sub-
branches are: S1 = {x}; S2 = {x}. We have the following result:

Lemma 16. The branching vector generated by Step 3 is covered by

[w6 + δ6, w6 + 11δ6]. (10)

Proof. Since R-Rule 4 is not applicable, both x and x are (1+, 1+)-literals in F .
By Lemma 8 and δd = δ6 for d ≥ 6, we get that

∆S1
≥ ξ

(1)
S1

≥ wd + jδd ≥ w6 + δ6

since x is a (j, d− j)-literal with j ≥ 1. Similarly, we have ∆S2
≥ w6 + δ6.

By Lemma 10, w3 > δd and wi > 2δd for 4 ≤ i ≤ d, we have that

∆S1
+∆S2

≥ ∆∗
S1

+∆∗
S2

≥ 2wd + 2dδd + (n′
3(x) + n′

3(x))(2w3 − 2δd)

+
∑

4≤i≤d

(n′
i(x) + n′

i(x))(wi − 2δd)

≥ 2w6 + 12δd.

Since δd = δ6 for d ≥ 6, we obtain

∆S1
+∆S2

≥ 2w6 + 12δ6.

23

As min(∆S1
,∆S2

) ≥ w6 + δ6 and ∆S1
+∆S2

≥ 2w6 +12δ6, by Lemma 6, we
know that the branching vector generated by this step is covered by

[w6 + δ6, w6 + 11δ6].

6.3. Step 4

Step 4. If there is a (1, 4)-literal x (assume that xC is the unique clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).

After Step 3, the degree of F is at most 5. In this step, the algorithm will
branch on a (1, 4)-literal x. The two sub-branches are: S1 = {x}∪C; S2 = {x}.
We have the following result:

Lemma 17. The branching vector generated by Step 4 is covered by

[w5 + 2w3, w5 + w3 + 7δ5]. (11)

Proof. By Lemma 11, we get

∆S1
+∆S2

≥ 2w5 + 3w3 + 7δ5 and min(∆S1
,∆S2

) ≥ w5 + 2w3.

By (4), we have 2w3 ≤ 4δ5. Thus min(∆S1
,∆S2

) ≥ w5 +2w3. By Lemma 6,
we know that the branching vector of this step is covered by

[w5 + 2w3, w5 + w3 + 7δ5].

6.4. Step 5

Step 5. If there is a 5-literal x such that at least two 2-clauses contain x or
x, return SAT(Fx=1)∨SAT(Fx=0).

Note that after Step 4, x is either a (2, 3)-literal or (3, 2)-literal. In this step,
the two sub-branches are: S1 = {x}; S2 = {x}. We have the following result:

Lemma 18. The branching vector generated by Step 5 is covered by

[w5 + 2δ5, w5 + 4w3 + 4δ5]. (12)

Proof. Since x is a (j, 5 − j)-literal with 2 ≤ j ≤ 3, by Lemma 8, we have

∆S1
≥ ξ

(1)
S1

≥ w5 + 2δ5.

Similarly, we can get ∆S2
≥ w5 + 2δ5.

By Lemma 10, w5 ≥ w4 ≥ 2w3, and
∑

3≤i≤5 n
′
i(x) + n′

i(x) ≥ 2, we have

∆S1
+∆S2

≥ ∆∗
S1

+∆∗
S2

≥ 2w5 + 2 · 5δ5 + (n′
3(x) + n′

3(x))(2w3 − 2δ5)

+
∑

4≤i≤5

(n′
i(x) + n′

i(x))(wi − 2δ5).

24

Note that w5 ≥ w4 = 2w3 by (2). We can get wi−2δ5 ≥ 2w3−2δ5 for 3 ≤ i ≤ 4.
So we have

∆S1
+∆S2

≥ 2w5 + 10δ5 +
∑

3≤i≤5

(n′
i(x) + n′

i(x))(2w3 − 2δ5).

Since there are at least two 2-clauses containing literal x or x, it holds that∑
3≤i≤d(n

′
i(x) + n′

i(x)) ≥ 2. We further obtain

∆S1
+∆S2

≥ 2w5 + 10δ5 +
∑

3≤i≤5

(n′
i(x) + n′

i(x))(2w3 − 2δ5)

= 2w5 + 10δ5 + (
∑

3≤i≤5

(n′
i(x) + n′

i(x)))(2w3 − 2δ5)

≥ 2w5 + 10δ5 + 2(2w3 − 2δ5)

= 2w5 + 4w3 + 6δ5

Since min(∆S1
,∆S2

) ≥ w5 + 2δ5, by Lemma 6, the branching vector of this
step is covered by

[w5 + 2δ5, w5 + 4w3 + 4δ5].

6.5. Step 6

Step 6. If there are two 5-literals x and y contained in one 2-clause xy,
return SAT(Fx=1)∨SAT(Fx=0).

After Step 5, a 5-variable can be contained in at most one 2-clause. In this
step, if there is a 2-clause xy containing two 5-variables, we pick one of the
5-variables, say x, and branch on it. The two sub-branches are: S1 = {x};
S2 = {x}.

This case will not be the bottleneck case in our algorithm. We will show
that after branching some bottleneck cases, we can always get this step. This
implies we can use the shift technique here. We will save a shift σ > 0 from
the branching vector of this step that will be included in some bad branching
vectors. The value of σ will be decided later. We have the following result for
this step.

Lemma 19. The branching vector generated by Step 6 is covered by

[w5 + 3δ5 − σ, 2w5 + 2w3 + 3δ5 − σ] (13)

Proof. Assume that x is a (j, 5−j)-literal, where j = 2 or 3. Since x is contained
in only one 2-clause and there is no 1-clause now, we have that

∑
i≥3 ni(x) ≥

2j − 1. By Lemma 7, we get

∆S1
≥ ξ

(1)
S1

≥ w5 + (
∑

3≤i≤5

ni(x))δ5 ≥ w5 + (2j − 1)δ5.

25

Next, we analyze ∆S2
. By Lemma 7, we first get

ξ
(1)
S2

≥ w5 +
∑

3≤i≤5

ni(x)δi.

We look at FS2=1, which is the formula after assigning 1 to x in F . By Lemma 3,
we know that in FS2=1, var(y) is a variable of degree at least 4 and there is
a 1-clause {y}. Let P = {z : z ∈ N(y,F) and z ∩ {x, x} = ∅} and Q = {z :
z ∈ N(y,FS2=1) and deg(z) ≥ 3}. By applying R-Rule 4, we will assign 1 to y
and remove the literals in N(y,FS2=1), which will further reduce the measure.

Thus, we have ξ
(2)
S2

≥ w4 + |Q|δ5 since δ5 ≤ δ4 ≤ δ3. We get that

∆S2
≥ ξ

(1)
S2

+ ξ
(2)
S2

≥ w5 +
∑

3≤i≤5

ni(x)δi + w4 + |Q|δ5.

If there is a literal z such that z ∈ P and z /∈ Q, then z must be a neighbor
of x in F with a degree of at most 4 by Lemma 3. In other words, it holds
that n3(x) + n4(x) ≥ |P | − |Q|. Since x is a (5 − j, j)-literal not contained any
2-clause or 1-clause, we have that

∑
3≤i≤5 ni(x) ≥ 2(5 − j) = 10 − 2j, which

implies n5(x) ≥ 10− 2j − (n3(x) + n4(x)). With n3(x) + n4(x) ≥ |P | − |Q| and
δ3 = δ4 = w3, we further get

∆S2
≥ w5 +

∑

3≤i≤5

ni(x)δi + w4 + |Q|δ5

≥ 2w5 + (n3(x) + n4(x))w3 + (|Q| − 1 + n5(x))δ5

≥ 2w5 + (n3(x) + n4(x))w3 + (|Q| − 1 + 10− 2j − (n3(x) + n4(x)))δ5

= 2w5 + (n3(x) + n4(x))(w3 − δ5) + (|Q|+ 9− 2j)δ5

≥ 2w5 + (|P | − |Q|)(w3 − δ5) + (|Q|+ 9− 2j)δ5

= 2w5 + (9 − 2j)δ5 + |P |(w3 − δ5) + |Q|(2δ5 − w3).

Note that in F , literal y is also a (2,3)/(3,2)-literal contained in exactly one
2-clause xy (since Step 5 has been applied). There is another clause containing
y and two different literals z1 and z2, where {z1, z2} ∩ {x, x} = ∅ by Lemma 3.
So |P | ≥ 2 holds. With 2δ5 > w3, we get

∆S2
≥ 2w5 + (9− 2j)δ5 + 2(w3 − δ5) ≥ 2w5 + 2w3 + (7− 2j)δ5.

It is easy to see that the case of j = 2 covers the case of j = 3. For j = 2, we
get a branching vector

[∆S1
,∆S2

] = [w5 + 3δ5, 2w5 + 2w3 + 3δ5].

After saving a shift σ from each branch, we get the following branching
vector

[w5 + 3δ5 − σ, 2w5 + 2w3 + 3δ5 − σ].

26

6.6. Step 7

Step 7. If there is a 5-literal x contained in a 2-clause, return SAT(Fx=1)∨
SAT(Fx=0).

In this Step, if there is a 5-literal x contained in a 2-clause xy, then y must be
a 4−-variable. We branch on x. The two sub-branches are: S1 = {x}; S2 = {x}.
We have the following result:

Lemma 20. The branching vector generated by Step 7 is covered by

[w5 + w3 + 2δ5, w5 + w3 + 6δ5]. (14)

Proof. Note that there is at most one 2-clause containing x or x after Step 5. All
clauses containing x are 3+-clauses except clause xy and all clauses containing
x are 3+-clauses. So it holds that

∑

3≤i≤5

ni(x) ≥ 3 and
∑

3≤i≤5

ni(x) ≥ 4

since both x and x are (2, 3)/(3, 2)-literals.
As y is a 4−-variable, n3(x) + n4(x) ≥ 1 holds. With Lemma 7 and w3 =

δ3 = δ4, we have

∆S1
≥ ξ

(1)
S1

≥ w5 +
∑

3≤i≤5

ni(x)δi

= w5 + (n3(x) + n4(x))w3 + n5(x)δ5

≥ w5 + w3 + 2δ5.

For ∆S2
, by Lemma 7 again and δ3 = δ4 ≥ δ5, we get

∆S2
≥ ξ

(1)
S2

≥ w5 +
∑

3≤i≤5

ni(x)δi ≥ w5 + (
∑

3≤i≤5

ni(x))δ5 ≥ w5 + 4δ5.

By the condition of this step, we have

∑

3≤i≤4

n′
i(x) = 1 and n′

5(x) + n′
5(x) = 0.

With Lemma 10 and w4 = 2w3, we have

∆S1
+∆S2

≥ ∆∗
S1

+∆∗
S2

≥ 2w5 + 2 · 5δ5 + (n′
3(x) + n′

3(x))(2w3 − 2δ5)

+
∑

4≤i≤5

(n′
i(x) + n′

i(x))(wi − 2δ5)

≥ 2w5 + 10δ5 + (2w3 − 2δ5)

= 2w5 + 2w3 + 8δ5.

27

Since min(∆S1
,∆S2

) ≥ w5 + 3δ5 and ∆S1
+ ∆S2

≥ 2w5 + 2w3 + 8δ5, by
Lemma 6, the branching vector of this step is covered by

[w5 + w3 + 2δ5, w5 + w3 + 6δ5].

Lemma 21. After Step 7, if we branch on a 5-literal x and the two sub-branches
are S1 = {x} and S2 = {x}, then it holds that:

∑

3≤i≤5

(ni(x) + ni(x)) ≥ 10 and min(∆S1
,∆S2

) ≥ w5 + 4δ5.

Proof. Note that after Step 7, all clauses containing x or x are 3+-clauses. So
it holds that ∑

3≤i≤5

(ni(x) + ni(x)) ≥ 5 · 2 = 10.

We also have
∑

3≤i≤5 ni(x) ≥ 4 since x is a (2, 3)/(3, 2)-literal. By Lemma 7
and δ3 = δ4 ≥ δ5, we have

∆S1
≥ ξ

(1)
S ≥ w5 +

∑

3≤i≤5

ni(x)δi ≥ w5 + (
∑

3≤i≤5

ni(x))δ5 ≥ w5 + 4δ5.

We can also get ∆S2
≥ w5 + 4δ5 in a similar way. Thus the lemma holds.

The above lemma shows some properties after Step 7. We will use it in
the next several subsections, and we focus on analyzing the lower bound of
∆S1

+∆S2
to get the branching vectors of Step 8-12.

6.7. Step 8

Step 8. If there is a 5-literal x such that N(x,F) and N(x,F) contain at
least two 4−-literals, return SAT(Fx=1)∨SAT(Fx=0).

After Step 7, all clauses containing x or x are 3+-clauses. In this step, we
branch on a variable x such that there are at least two literals of 4−-variables
in N(x,F) and N(x,F). The two sub-branches are: S1 = {x}; S2 = {x}. We
have the following result:

Lemma 22. The branching vector generated by Step 8 is covered by

[w5 + 4δ5, w5 + 2w3 + 4δ5]. (15)

Proof. By lemma 21 and the condition of this case, we have

∑

3≤i≤5

(ni(x) + ni(x)) ≥ 10 and
∑

3≤i≤4

(ni(x) + ni(x)) ≥ 2.

By Lemma 13, we have

∆S1
+∆S2

≥ ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + 10δ5 + 2(w3 − δ5) = 2w5 + 8δ5 + 2w3.

28

As min(∆S1
,∆S2

) ≥ w5 +4δ5 by Lemma 21, by Lemma 6 we know that the
branching vector of this step is covered by

[w5 + 4δ5, w5 + 2w3 + 4δ5].

Lemma 23. Let F be a reduced CNF-formula. After Step 8, if Fx=1 6= F ′
x=1

for a (2, 3)/(3, 2)-literal x ∈ F , then it holds that

µ(F)− µ(F ′
x=1) ≥ w3 − 1.

In other words, if we can apply reduction rules on Fx=1, the measure would
decrease by at least w3 − 1.

Proof. R-Rules 1-8 only remove some literals, and so applying any one of them
decreases the measure by at least δ5.

After Step 7, all clauses containing variable x are 3+-clauses, some 2-clauses
would be generated in Fx=1, and so R-Rule 9 may be applicable in Fx=1 if R-
Rules 1-8 do not apply. After Step 8, there is at most one 4−-variable in N(x,F)
and N(x,F), so all 2-clauses in Fx=1 contain at least one 5-variable. Thus
applying R-Rule 9 decreases the measure by at least min{w5 +wi−w5+i−2|3 ≤
i ≤ 5} = w3 − 1.

For R-Rule 10, we claim that if R-Rule 1-9 are not applicable on Fx=1, then
R-Rule 10 is also not applicable. The reason is as follows. If there exists two
clauses CD1 and CD2 in Fx=1 such that R-Rule 10 is applicable on Fx=1, then
there must be two clauses C′D′

1 and C′D′
2 in F such that C ⊆ C′, D1 ⊆ D′

1, and
D2 ⊆ D′

2 since Fx=1 is obtained by removing some literals and clauses from F .
This implies we could apply R-Rule 10 on F , which contradicts the condition
that F is reduced.

Thus, it holds that either Fx=1 = F ′
x=1 or µ(F) − µ(F ′

x=1) ≥ min(δ5, w3 −
1) = w3 − 1 by the assumption in (5).

Recall that after Step 8, any 5-literal x must be a (2, 3)/(3, 2)-literal. We
assume xC1, xC2, xD1, xD2, and xD3 are the five clauses containing x or x in
the analysis of Step 9 and Step 10.

6.8. Step 9

Step 9. If there exist 5-literals y1 and y2 such that y1 ∈ C1, y1 ∈ D1,
y2 ∈ C2 and y2 or y2 ∈ D2, return SAT(Fy1=1)∨SAT(Fy1=0).

In this step, the two sub-branches are: S1 = {y1}; S2 = {y1}. We have the
following result:

Lemma 24. The branching vector generated by Step 9 is covered by

[w5 + 4δ5, w5 + δ4 + 6δ5]. (16)

29

Proof. Note that x, x ∈ N(y1), and so var(y1) is a 5-variable, otherwise we can
do Step 8. This implies t5,2(y1) ≥ 1.

By Lemma 12, we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 +
∑

3≤i≤5

(ni(y1) + ni(y1))δi + (t5,2(y1) + t5,2(y1))(δ4 − δ5)

≥ 2w5 +
∑

3≤i≤5

(ni(y1) + ni(y1))δ5 + (t5,2(y1) + t5,2(y1))(δ4 − δ5)

≥ 2w5 + 10δ5 + (δ4 − δ5)

= 2w5 + δ4 + 9δ5.

Since R-Rule 10 is not applicable, literal y1 would not appear in C2, D2 and
D3. We look at FS1=1, which is the resulting formula after we assign value 1 to
y1. In FS1=1, x becomes a 3-variable, the three clauses containing x or x will
be xC2, xD2, and xD3, and y2 ∈ C2.

Case 1. If y2 ∈ D′
2, then R-Rule 7 is applicable. Applying any one of

R-Rules 1-7 decreases the measure by at least δ5 since each of them removes at
least one literal.

Case 2. If y2 ∈ D′
2, then R-Rule 5 is applicable. Resolution on x decreases

the measure by w3.

So it holds that ξ
(2)
S1

+ ξ
(3)
S1

≥ min(δ5, w3) = δ5 and we have

∆S1
+∆S2

≥ ξ
(1)
S1

+ ξ
(1)
S2

+ (ξ
(2)
S1

+ ξ
(3)
S1

) ≥ 2w5 + δ4 + 10δ5.

With min(∆S1
,∆S2

) ≥ w5 + 4δ5 by Lemma 21, by Lemma 6 we have that
the branching vector of this step is covered by

[w5 + 4δ5, w5 + δ4 + 6δ5].

6.9. Step 10

Step 10. If there exist 5-literals y1 and y2 such that y1 ∈ C1, y1 ∈ D1,
y2 ∈ C2, and y2 ∈ D2, pick a 5-literal z ∈ D3 (let R5(Fz=1) denote the resulting
formula after we only apply R-Rule 5 on Fz=1) and return SAT(R5(Fz=1))
∨SAT(Fz=0).

After Step 7, all clauses containing 5-literals are 3+-clauses so |D3| ≥ 2.
After Step 8, there is at most one 4−-literal in D3. So there must exist a 5-
litreal z ∈ D3, we branch on this litreal and the two sub-branches are: S1 = {z};
S2 = {z}. Note that we will first apply R-Rule 5 on FS1=1. We have the
following result:

Lemma 25. The branching vector generated by Step 10 is covered by

[w5 + 4δ5, w5 + w4 + 6δ5]. (17)

30

Proof. By Lemma 13 with g ≥ 10 (since x is not contained in any 2-clause after
Step 7), we get

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + 10δ5.

Note that literal z would not appear in C1 and C2, otherwise Step 9 would
be applied. We look at FS1=1, which is the resulting formula after we assign
value 1 to z. In FS1=1, x becomes a 4-variable and the four clauses containing
x or x are xC1, xC2, xD1, and xD2. Since y1 ∈ C1, y2 ∈ C2, y1 ∈ D1, and
y2 ∈ D2, we can apply R-Rule 5 on x. This decreases the measure by w4. Thus

ξ
(3)
S1

≥ w4 and we have

∆S1
+∆S2

≥ ξ
(1)
S1

+ ξ
(1)
S2

+ ξ
(3)
S1

≥ 2w5 + 10δ5 + w4.

With min(∆S1
,∆S2

) ≥ w5 + 4δ5 by Lemma 21, by Lemma 6 we have that the
branching vector of this step is covered by

[w5 + 4δ5, w5 + w4 + 6δ5].

For the sake of presentation, we define an auxiliary Gx for each literal x as
follows.

Definition 3 (Clause-clause incidence graph). Let x be a literal in a formula
F . Assume the clauses containing x are xC1, xC2, . . . , xCa and the clauses
containing x are xD1, xD2, . . . , xDb. A clause-clause incidence graph of literal
x, denoted by Gx, is a bipartite graph with bipartition (X,Y) where X is the set
of clauses Ci(1 ≤ i ≤ a) and Y is the set of clauses Dj(1 ≤ j ≤ b), and there
is an edge between Ci ∈ X(1 ≤ i ≤ a) and Dj ∈ Y (1 ≤ j ≤ b) if and only if Ci

and Dj contain the literal of the same variable in F .

Example. Let F be a formula and xC and xD be two clauses in F . If y ∈ C
and y or y ∈ D, then in Gx, there is an edge between vertex C and vertex D.

Lemma 26. After Step 10, for any (2, 3)-literal x, there is no matching of size
at least 2 in Gx.

Proof. If there exists a matching of size 2 in Gx, then there exists two literals
y1 ∈ C1 and y2 ∈ C2 such that two of y1, y1, y2, and y2 appear in two of D1,
D2, and D3 separately. Thus we would be able to do Step 9 or Step 10.

Lemma 27. After Step 10, for any (2, 3)-literal x, in Gx if all vertices have a
degree of at most 2, then there are at least two vertices of degree 0 in Gx.

Proof. If there is at most one vertex of degree 0, then after deleting the degree-0
vertices, we get a graph with 4 vertices such that each vertex has a degree of at
least 1 and at most 2. For any case, this graph has a matching of size 2, which
contradicts Lemma 26.

31

6.10. Step 11

Step 11. If there is a 5-literal x contained in at least one 4+-clause, return
SAT(Fx=1)∨ SAT(Fx=0).

In this step, we branch on a 5-literal x contained in at least one 4+-clause.
The two sub-branches are: S1 = {x}; S2 = {x}. The branching vector of this
step leads to one of the worst branching factors. But we will prove that the
shift σ > 0 saved in Step 6 (Section 6.5) can be used in this step to get an
improvement. We have the following result:

Lemma 28. The branching vector generated by Step 11 is covered by

[w5 + 4δ5, w5 + w3 + 6δ5] or [w5 + 4δ5, w5 + 7δ5 + σ]. (18)

Proof. Let m4 ≥ 1 be the number of 4+-clauses containing literal x or x, then
the number of 3-clauses containing x or x is 5−m4. We have

∑

3≤i≤5

(ni(x) + n′
i(x)) ≥ 2(5−m4) + 3m4 ≥ 10 +m4.

Next, we consider several cases. By Lemma 21, we have min(∆S1
,∆S2

) ≥
w5 + 4δ5 for all the following cases. So we focus on analyzing ∆S1

+∆S2
.

Case 1. There is a variable y such that both y and y appear in N(x,F) or
N(x,F).

Note that after Step 8, there is at most one 4−-literal in N(x,F) or N(x,F),
and so we have t5,2(x)+ t5,2(x) ≥ 1. By Lemma 13 with g = 10+m4 and h = 1,
we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + (10 +m4)δ5 + 1 · (δ4 − δ5) ≥ 2w5 + w3 + 10δ5.

By Lemma 6, the branching vector of this case is covered by

[w5 + 4δ5, w5 + w3 + 6δ5].

Case 2. There are 4−-literals in N(x,F) or N(x,F), i.e.,
∑

3≤i≤4(ni(x) +
ni(x)) ≥ 1. By Lemma 13 with g = 10 +m4 and h = 1, we have

∆S1
+∆S2

≥ ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + (10 +m4)δ5 + 1 · (w3 − δ5)

≥ 2w5 + w3 + 10δ5.

By Lemma 6, the branching vector of this case is covered by

[w5 + 4δ5, w5 + w3 + 6δ5].

Case 3. There are no 4−-literals in N(x,F) or N(x,F) and no variables
y such that both y and y appear in N(x,F) or N(x,F), i.e.,

∑
3≤i≤4(ni(x) +

ni(x)) = 0 and t5,2(x) + t5,2(x) = 0.
Case 3.1. There are at least two 4+-clauses containing x or x, i.e., m4 ≥ 2.

By Lemma 13 with g = 10 +m4, we have

∆S1
+∆S2

≥ ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + (10 +m4)δ5 ≥ 2w5 + 12δ5.

32

Since w3 < 2δ5, the branching vector of this case is covered by that of Case 1.
Case 3.2. There is only one 4+-clause containing variable x, i.e., m4 = 1.

Similar to case 2.1, by Lemma 13 with g = 10 +m4, we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + (10 +m4)δ5 = 2w5 + 11δ5.

Next, we consider F ′
x=1 and F ′

x=0.
Case 3.2.1. Some reduction rules can be applied on Fx=1 or Fx=0.
By Lemma 23 the total measure will further decreases by at least w3−1 and

we have ∆S1
+∆S2

≥ 2w5 + 11δ5 + w3 − 1. Since δ5 ≥ 1, the branching vector
of this case is covered by that of Case 1.

Case 3.2.2. F ′
x=1 = Fx=1 and F ′

x=0 = Fx=0.
We show that we can apply Step 6 (Section 6.5) on either F ′

x=1 or F ′
x=0 to

use the saved shift σ. Look at Gx and consider the following two cases.
(1) There is a vertex of degree at least 3 in Gx. Recall that the five clauses

containing literal x are xC1, xC2, xD1, xD2, and xD3. If there is a vertex in Gx

with degree at least 3, the corresponding clause of this vertex must be C1 or
C2, w.l.o.g, let us assume that the clause is C1. By the condition of Case 3 and
F being reduced, for a literal y ∈ C1, at most one of y and y will appear in
D1, D2, D3. So if C1 is a degree-3 vertex in Gx, it must contain at least three
different literals. By the condition of Case 3.2, we know xC1 is the unique 4+-
clause containing variable x, and so |C2| = 2. By Lemma 26, in Gx the degree
of vertex C2 is 0. There are no 4−-literals in C2 by the condition of Case 3.
Thus, in F ′

x=0, clause C2 contains two 5-variables, and so we can apply Step 6
on F ′

x=0.
(2) All vertices in Gx have a degree of at most 2. By Lemma 27 there are at

least two vertices in Gx with degree 0. By the condition of Case 3, there are no
4−-literals in those clauses, and then we will get some 2-clause containing two
5-literals in F ′

x=1 or F ′
x=0 and we can further apply Step 6 on F ′

x=1 or F ′
x=0.

Thus, we further get

∆S1
+∆S2

≥ ξ
(1)
S1

+ ξ
(1)
S2

+ σ = 2w5 + 11δ5 + σ.

Note that min(∆S1
,∆S2

) ≥ w5 +4δ5. By Lemma 6, the branching vector of
this case is covered by

[w5 + 4δ5, w5 + 7δ5 + σ].

In summary, the branching vector is covered by

[w5 + 4δ5, w5 + w3 + 6δ5] or [w5 + 4δ5, w5 + 7δ5 + σ].

6.11. Step 12

Step 12. If there is a clause containing both a 5-literal x and a 4−-literal,
return SAT(Fx=1)∨SAT(Fx=0).

33

After Step 11, all clauses containing x or x are 3-clauses. In this step, we
branch on a 5-literal x such that there is one 4−-literal in N(x,F). The two
sub-branches are: S1 = {x}; S2 = {x}. Similar to Step 11, the shift σ > 0 saved
in Step 6 (Section 6.5) will be used in this step. We have the following result:

Lemma 29. The branching vector generated by Step 12 is covered by

[w5 + 4δ5, w5 + 4δ5 + 2w3] or [w5 + 4δ5, w5 + w3 + 5δ5 + σ]. (19)

Proof. By the condition of this step, we have
∑

3≤i≤4(ni(x)+ni(x)) ≥ 1. Next,
we consider two cases. For all of the following cases, we have min(∆S1

,∆S2
) ≥

w5 + 4δ5 by Lemma 21. So we focus on ∆S1
+∆S2

.
Case 1. There is a variable y such that both y and y appear in N(x,F) or

N(x,F).
Note that after Step 8, there is at most one 4−-literal in N(x,F) or N(x,F),

and so we have t5,2(x) + t5,2(x) ≥ 1. By Lemma 13 and δ4 = w3, we have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + 10δ5 + 1 · (w3 − δ5) + 1 · (δ4 − δ5) = 2w5 + 8δ5 + 2w3.

By Lemma 6, the branching vector of this case is covered by

[w5 + 4δ5, w5 + 4δ5 + 2w3].

Case 2. There are no variables y such that both y and y appear in N(x,F)
or N(x,F).

By Lemma 13, we first have

ξ
(1)
S1

+ ξ
(1)
S2

≥ 2w5 + 10δ5 + 1 · (w3 − δ5) = 2w5 + w3 + 9δ5.

Similar to Step 11, we consider F ′
x=1 and F ′

x=0.
Case 2.1. Some reduction rules can be applied on Fx=1 or Fx=0.
By Lemma 23 the total measure will further decreases by at least w3−1 and

we have ∆S1
+∆S2

≥ 2w5 + 9δ5 + 2w3 − 1. By Lemma 6, the branching vector
of this case is covered by

[w5 + 4δ5, w5 + 5δ5 + 2w3 − 1].

Since δ5 ≥ 1, this branching vector is covered by that of Case 1.
Case 2.2. F ′

x=1 = Fx=1 and F ′
x=0 = Fx=0.

We look at the auxiliary graph Gx. In Gx, all the vertices have a degree of at
most 2 since all clauses containing x or x are 3-clauses and no variables y such
that both y and y appear in N(x,F) or N(x,F). With Lemma 27, there are
at least two vertices with degree 0 in Gx. Let the set of corresponding clauses
of them be E. Since there may be at most one clause in E that contains a
4−-literal, there must exist a 2-clause containing two 5-literals in F ′

x=1 or F ′
x=0,

and thus we can apply Step 6 on F ′
x=1 or F ′

x=0. So we further get

∆S1
+∆S2

≥ 2w5 + w3 + 9δ5 + σ.

34

By Lemma 6, the branching vector of this case is covered by

[w5 + 4δ5, w5 + w3 + 5δ5 + σ].

In summary, the branching vector of this step is covered by

[w5 + 4δ5, w5 + 4δ5 + 2w3] or [w5 + 4δ5, w5 + w3 + 5δ5 + σ].

6.12. Step 13

Step 13. If there are still some 5-literals, then F = F5 ∧ F≤4, where F5 is
a 3-CNF containing only 5-literals and F≤4 contains only 3/4-literals.

In this step, the literals of all 5-variables form a 3-SAT instance F5. We
apply the O∗(1.3279n)-time algorithm in [6] for 3-SAT to solve our problem,
where n is the number of variables in the instance. Since w5 = 5, we have that
n = µ(F5)/w5 = µ(F5)/5. So the running time for this part will be

O∗(1.3279µ(F5)/w5) = O∗(1.0584µ(F5)).

6.13. Step 14

Step 14. If there is a (1, 3)-literal x (assume that xC is the unique clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).

After Step 13, all literals in F are 4−-literals. In this step, we branch on a
(1, 3)-literal x. The two sub-branches are: S1 = {x}; S2 = {x}. We have the
following result:

Lemma 30. The branching vector generated by Step 14 is covered by

[w4 + 2w3, w4 + 6δ4]. (20)

Proof. By Lemma 11, we have

∆S1
+∆S2

≥ 2w4 + 3w3 + 5δ4 = 2w4 + 8w3 and min(∆S1
,∆S2

) ≥ w4 + 2w3.

By Lemma 6, the branching vector of this step is covered by

[w4 + 2w3, w4 + 6δ4].

6.14. Step 15

Step 15. If there is a (2, 2)-literal x, return SAT(Fx=1)∨SAT(Fx=0).
In this step, the two sub-branches are: S1 = {x}; S2 = {x}. We have the

following result:

Lemma 31. The branching vector generated by Step 15 is covered by

[w4 + 2δ4, w4 + 6δ4]. (21)

35

Proof. Since both x and x are (2, 2)-literals, by Lemma 8 we have

∆S1
≥ ξ

(1)
S1

= w4 + 2δ4 and ∆S2
≥ ξ

(1)
S2

≥ w4 + 2δ4.

By Lemma 10, we have

∆S1
+∆S2

≥ ∆∗
S1

+∆∗
S2

≥ 2w4 + 2 · 4δ4 + (n′
3(x) + n′

3(x))(2w3 − 2δ4)

+ (n′
4(x) + n′

4(x))(w4 − 2δ4)

= 2w4 + 8δ4.

By Lemma 6, we know that the branching vector is covered by

[w4 + 2δ4, w4 + 6δ4].

6.15. Step 16

Step 16. Apply the algorithm by Wahlström [32] to solve the instance.
All variables are 3-variables in this step. We apply the O∗(1.1279n)-time

algorithm by Wahlström [32] to solve this special case, where n is the number
of variables. For this case, we have that n = µ(F)/w3. So the running time of
this part is

O∗((1.12791/w3)µ(F)).

7. The Final Result

Each of the above branching vectors above will generate a constraint in our
quasiconvex program to solve the best value for w3, w4, and σ. Let αi denote
the branching factor for branching vector (i) where 10 ≤ i ≤ 21. We want to
find the minimum value α such that α ≥ αi and α ≥ 1.12791/w3 (generated
by Step 16) under the assumptions (2) and (5). By solving this quasiconvex
program, we get that α = 1.0638 by letting w3 = 1.94719, w4 = 2w3 = 3.89438,
and σ = 0.86108. Note that α = 1.0638 is greater than 1.0584, which is the
branching factor generated in Step 13. So 1.0638 is the worst branching factor
in the whole algorithm. By (6), we get the following result.

Theorem 1. Algorithm 1 solves the SAT problem in O∗(1.0638L) time.

We also show the whole weight setting in Table 2 and the branching vector
of each step under the setting in Table 3.

From Table 3, we can see that we have four bottlenecks (marked by *):
Steps 7, 14, 15, and 16. In fact, Steps 14, 15, and 16 have the same branching
vector [4w3, 8w3] under the assumption that w4 = 2w3 (for Step 14, the worst
branching vector in [32] is [4, 8]). The branching factor for these three steps will
decrease if the value of w3 increases. On the other hand, the branching factor
for Step 7 will decrease if the value of w3 decreases. We set the best value of w3

to balance them. If we can either improve Step 7 or improve Steps 9, 10, and 11
together, then we may get a further improvement. However, the improvement
is very limited, and several other bottlenecks will appear.

36

Table 2: The weight setting

w1 = w2 = 0 σ = 0.86108
w3 = 1.94719 δ3 = 1.94719
w4 = 3.89438 δ4 = 1.94719
w5 = 5 δ5 = 1.10562
wi = i(i ≥ 6) δi = 1(i ≥ 6)

Table 3: The branching vector and factor for each step

Steps Branching vectors Factors

Step 3 (Section 6.2) [w6 + δ6, w6 + 11δ6] 1.0636

Step 4 (Section 6.3) [w5 + 2w3, w5 + w3 + 7δ5] 1.0620

Step 5 (Section 6.4) [w5 + 2δ5, w5 + 4w3 + 4δ5] 1.0624

Step 6 (Section 6.5) [w5 + 3δ5 − σ, 2w5 + 2w3 + 3δ5 − σ] 1.0633

Step 7 (Section 6.6) [w5 + w3 + 2δ5, w5 + w3 + 6δ5] 1.0638 *

Step 8 (Section 6.7) [w5 + 4δ5, w5 + 2w3 + 4δ5] 1.0636

Step 9 (Section 6.8) [w5 + 4δ5, w5 + δ4 + 6δ5] 1.0629

Step 10 (Section 6.9) [w5 + 4δ5, w5 + w4 + 6δ5] 1.0584

Step 11 (Section 6.10)
[w5 + 4δ5, w5 + w3 + 6δ5]
[w5 + 4δ5, w5 + 7δ5 + σ]

1.0629
1.0629

Step 12 (Section 6.11)
[w5 + 4δ5, w5 + 4δ5 + 2w3]

[w5 + 4δ5, w5 + w3 + 5δ5 + σ]
1.0636
1.0635

Step 13 (Section 6.12) O∗((1.32791/w5)µ) 1.0584

Step 14 (Section 6.13) [w4 + 2w3, w4 + 6δ4] 1.0638 *

Step 15 (Section 6.14) [w4 + 2δ4, w4 + 6δ4] 1.0638 *

Step 16 (Section 6.15) O∗((1.12791/w3)µ) 1.0638 *

8. Concluding Remarks

In this paper, we show that the SAT problem can be solved in O∗(1.0638L)
time, improving the previous bound in terms of the input length obtained more
than ten years ago. Nowadays, improvement becomes harder and harder. How-
ever, SAT is one of the most important problems in exact and parameterized
algorithms, and the state-of-the-art algorithms are frequently mentioned in the
literature. For the techniques, although our algorithm, as well as most previous
algorithms, is based on case analyses, we introduce a general analysis framework
to get a neat and clear analysis. This framework can even be used to simplify the
analysis for other similar algorithms based on the measure-and-conquer method.

37

Acknowledgements

This work was supported by the National Natural Science Foundation of
China (Grant No. 61972070). An initial version of this paper was presented
at the 24th international conference on theory and applications of Satisfiability
testing (SAT 2021) [22].

References

[1] S. A. Cook, D. G. Mitchell, Finding hard instances of the satisfiability prob-
lem: A survey, in: D. Du, J. Gu, P. M. Pardalos (Eds.), Satisfiability Prob-
lem: Theory and Applications, Proceedings of a DIMACS Workshop, Pis-
cataway, New Jersey, USA, March 11-13, 1996, Vol. 35 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, DIMACS/AMS,
1996, pp. 1–17. doi:10.1090/dimacs/035/01.

[2] S. A. Cook, The complexity of theorem-proving procedures, in: M. A.
Harrison, R. B. Banerji, J. D. Ullman (Eds.), Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, ACM, 1971, pp. 151–158. doi:10.1145/800157.805047.

[3] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfi-
ability, Vol. 185 of Frontiers in Artificial Intelligence and Applications, IOS
Press, 2009.

[4] R. Impagliazzo, R. Paturi, On the complexity of k-sat, J. Comput. Syst.
Sci. 62 (2) (2001) 367–375. doi:10.1006/jcss.2000.1727.

[5] U. Schöning, A probabilistic algorithm for k-sat and constraint satisfac-
tion problems, in: 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, IEEE Com-
puter Society, 1999, pp. 410–414. doi:10.1109/SFFCS.1999.814612.

[6] S. Liu, Chain, generalization of covering code, and deterministic algorithm
for k-sat, in: I. Chatzigiannakis, C. Kaklamanis, D. Marx, D. Sannella
(Eds.), 45th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, Vol.
107 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
pp. 88:1–88:13. doi:10.4230/LIPIcs.ICALP.2018.88.

[7] R. Paturi, P. Pudlák, F. Zane, Satisfiability coding lemma, Chic. J. Theor.
Comput. Sci. 1999 (1999).
URL http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html

[8] R. Paturi, P. Pudlák, M. E. Saks, F. Zane, An improved
exponential-time algorithm for k -sat, J. ACM 52 (3) (2005) 337–364.
doi:10.1145/1066100.1066101.

38

https://doi.org/10.1090/dimacs/035/01
https://doi.org/10.1145/800157.805047
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.4230/LIPIcs.ICALP.2018.88
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
https://doi.org/10.1145/1066100.1066101

[9] D. Scheder, PPSZ is better than you think, in: 62nd IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, IEEE, 2021, pp. 205–216.
doi:10.1109/FOCS52979.2021.00028.

[10] B. Monien, E. Speckenmeyer, O. Vornberger, Upper bounds for covering
problems, Methods of operations research 43 (1981) 419–431.

[11] E. A. Hirsch, Two new upper bounds for SAT, in: H. J. Karloff (Ed.), Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 25-27 January 1998, San Francisco, California, USA, ACM/SIAM,
1998, pp. 521–530.
URL http://dl.acm.org/citation.cfm?id=314613.314838

[12] M. Yamamoto, An improved O(1.234m)-time deterministic algorithm for
SAT, in: X. Deng, D. Du (Eds.), Algorithms and Computation, 16th In-
ternational Symposium, ISAAC 2005, Sanya, Hainan, China, December
19-21, 2005, Proceedings, Vol. 3827 of Lecture Notes in Computer Science,
Springer, 2005, pp. 644–653. doi:10.1007/11602613_65.

[13] H. Chu, M. Xiao, Z. Zhang, An improved upper bound for SAT, Theor.
Comput. Sci. 887 (2021) 51–62. doi:10.1016/j.tcs.2021.06.045.

[14] A. Van Gelder, A satisfiability tester for non-clausal propositional calculus,
Inf. Comput. 79 (1) (1988) 1–21. doi:10.1016/0890-5401(88)90014-4.

[15] O. Kullmann, H. Luckhardt, Deciding propositional tautologies: Algo-
rithms and their complexity, preprint 82 (1997).

[16] E. A. Hirsch, New worst-case upper bounds for SAT, J. Autom. Reason.
24 (4) (2000) 397–420. doi:10.1023/A:1006340920104.

[17] M. Wahlström, An algorithm for the SAT problem for formulae of lin-
ear length, in: G. S. Brodal, S. Leonardi (Eds.), Algorithms - ESA 2005,
13th Annual European Symposium, Palma de Mallorca, Spain, October
3-6, 2005, Proceedings, Vol. 3669 of Lecture Notes in Computer Science,
Springer, 2005, pp. 107–118. doi:10.1007/11561071_12.

[18] J. Chen, Y. Liu, An improved SAT algorithm in terms of formula
length, in: F. K. H. A. Dehne, M. L. Gavrilova, J. Sack, C. D. Tóth
(Eds.), Algorithms and Data Structures, 11th International Symposium,
WADS 2009, Banff, Canada, August 21-23, 2009. Proceedings, Vol. 5664
of Lecture Notes in Computer Science, Springer, 2009, pp. 144–155.
doi:10.1007/978-3-642-03367-4_13.

[19] J. Chen, C. Xu, J. Wang, Dealing with 4-variables by resolution: An
improved maxsat algorithm, Theor. Comput. Sci. 670 (2017) 33–44.
doi:10.1016/j.tcs.2017.01.020.

39

https://doi.org/10.1109/FOCS52979.2021.00028
http://dl.acm.org/citation.cfm?id=314613.314838
http://dl.acm.org/citation.cfm?id=314613.314838
https://doi.org/10.1007/11602613_65
https://doi.org/10.1016/j.tcs.2021.06.045
https://doi.org/10.1016/0890-5401(88)90014-4
https://doi.org/10.1023/A:1006340920104
https://doi.org/10.1007/11561071_12
https://doi.org/10.1007/978-3-642-03367-4_13
https://doi.org/10.1016/j.tcs.2017.01.020

[20] M. Xiao, An exact maxsat algorithm: Further observations and fur-
ther improvements, in: L. D. Raedt (Ed.), Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 1887–1893.
doi:10.24963/ijcai.2022/262.

[21] V. Alferov, I. Bliznets, New length dependent algorithm for maximum satisfiability problem,
in: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Virtual Event, February 2-9, 2021, AAAI Press, 2021, pp. 3634–3641.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16479

[22] J. Peng, M. Xiao, A fast algorithm for SAT in terms of formula length, in:
C. Li, F. Manyà (Eds.), Theory and Applications of Satisfiability Testing -
SAT 2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021,
Proceedings, Vol. 12831 of Lecture Notes in Computer Science, Springer,
2021, pp. 436–452. doi:10.1007/978-3-030-80223-3_30.

[23] F. V. Fomin, D. Kratsch, Exact Exponential Algorithms, Texts in
Theoretical Computer Science. An EATCS Series, Springer, 2010.
doi:10.1007/978-3-642-16533-7.

[24] Y. Iwata, A faster algorithm for dominating set analyzed by the po-
tential method, in: D. Marx, P. Rossmanith (Eds.), Parameterized
and Exact Computation - 6th International Symposium, IPEC 2011,
Saarbrücken, Germany, September 6-8, 2011. Revised Selected Papers, Vol.
7112 of Lecture Notes in Computer Science, Springer, 2011, pp. 41–54.
doi:10.1007/978-3-642-28050-4_4.

[25] J. Chen, I. A. Kanj, G. Xia, Labeled search trees and amortized analysis:
Improved upper bounds for np-hard problems, Algorithmica 43 (4) (2005)
245–273. doi:10.1007/s00453-004-1145-7.

[26] S. Gaspers, Exponential Time Algorithms - Structures, Measures, and
Bounds, VDM, 2010.

[27] M. Xiao, H. Nagamochi, Exact algorithms for maximum independent set,
Inf. Comput. 255 (2017) 126–146. doi:10.1016/j.ic.2017.06.001.

[28] F. V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach
for the analysis of exact algorithms, J. ACM 56 (5) (2009) 25:1–25:32.
doi:10.1145/1552285.1552286.

[29] M. Xiao, H. Nagamochi, An exact algorithm for TSP in degree-3 graphs via
circuit procedure and amortization on connectivity structure, Algorithmica
74 (2) (2016) 713–741. doi:10.1007/s00453-015-9970-4.

[30] J. M. M. van Rooij, H. L. Bodlaender, Exact algorithms for
dominating set, Discret. Appl. Math. 159 (17) (2011) 2147–2164.
doi:10.1016/j.dam.2011.07.001.

40

https://doi.org/10.24963/ijcai.2022/262
https://ojs.aaai.org/index.php/AAAI/article/view/16479
https://ojs.aaai.org/index.php/AAAI/article/view/16479
https://doi.org/10.1007/978-3-030-80223-3_30
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-28050-4_4
https://doi.org/10.1007/s00453-004-1145-7
https://doi.org/10.1016/j.ic.2017.06.001
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1007/s00453-015-9970-4
https://doi.org/10.1016/j.dam.2011.07.001

[31] M. Davis, H. Putnam, A computing procedure for quantification theory, J.
ACM 7 (3) (1960) 201–215. doi:10.1145/321033.321034.

[32] M. Wahlström, Faster exact solving of SAT formulae with a low num-
ber of occurrences per variable, in: F. Bacchus, T. Walsh (Eds.), The-
ory and Applications of Satisfiability Testing, 8th International Confer-
ence, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings, Vol.
3569 of Lecture Notes in Computer Science, Springer, 2005, pp. 309–323.
doi:10.1007/11499107_23.

41

https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/11499107_23

	1 Introduction
	2 Preliminaries
	3 Some Techniques
	3.1 Branch-and-Search Algorithms
	3.2 Shift
	3.3 Measure and Conquer

	4 The Algorithm
	4.1 Reduction Rules
	4.2 Branching Rules and the Algorithm

	5 The Analysis Framework
	6 Step Analysis
	6.1 Step 2
	6.2 Step 3
	6.3 Step 4
	6.4 Step 5
	6.5 Step 6
	6.6 Step 7
	6.7 Step 8
	6.8 Step 9
	6.9 Step 10
	6.10 Step 11
	6.11 Step 12
	6.12 Step 13
	6.13 Step 14
	6.14 Step 15
	6.15 Step 16

	7 The Final Result
	8 Concluding Remarks

