
ar
X

iv
:1

91
0.

11
59

4v
1

 [
cs

.L
O

]
 2

5
O

ct
 2

01
9

Temporal Logics with Language Parameters

Jens Oliver Gutsfeld, Markus Müller-Olm, and Christian Dielitz

Institut für Informatik, Westfälische Wilhelms-Universität Münster
Einsteinstraße 62, 48149, Münster, Germany

{jens.gutsfeld, markus.mueller-olm, c.dielitz}@uni-muenster.de

Abstract. Computation Tree Logic (CTL) and its extensions CTL∗ and
CTL+ are widely used in automated verification as a basis for common
model checking tools. But while they can express many properties of
interest like reachability, even simple regular properties like “Every other
index is labelled a” cannot be expressed in these logics. While many
extensions were developed to include regular or even non-regular (e.g.
visibly pushdown) languages, the first generic framework, Extended CTL,
for CTL with arbitrary language classes was given by Axelsson et. al.
and applied to regular, visibly pushdown and (deterministic) context-free
languages. We extend this framework to CTL∗ and CTL+ and analyse
it with regard to decidability, complexity, expressivity and satisfiability.

1 Introduction

Temporal logics like LTL, CTL and CTL∗ are widely used for verification pur-
poses through satisfiability checking and model checking. Their usefulness is
based on their simple logical structure, their ability to capture useful properties
like reachability and their low (polynomial) model checking complexity for fixed
formulae. However, as noticed already in the seminal paper by Wolper [23], classi-
cal temporal logics are unable to express even basic regular properties like Every
other index fulfills ϕ for a specification ϕ. Several temporal logics were developed
to express (subsets of) ω-regular properties. Nevertheless, these formalisms are
not sufficient to specify properties like A sequence of n requests should be fol-
lowed by n acknowledgements that are not ω-regular.While new temporal logics
have also been developed for these types of properties, they are commonly ad hoc
constructions for a single language class in the sense that there is no straightfor-
ward way to extend them to even larger language classes or alternatively restrict
their expressive power to a fragment related to a smaller language class in order
to improve the model checking complexity. Therefore, Axelsson. et. al [1] devel-
oped a framework called Extended Computation Tree Logic that systematically
presents variants of CTL parameterised by languages of finite words. They con-
sider regular languages, visibly pushdown languages, deterministic context-free
languages and context-free languages. They extensively study the satisfiability
problem and the model checking problem for different classes of system models
(Kripke Transition Systems, Visibly Pushdown Systems and Pushdown Systems)
and provide precise complexity results and expressivity comparisons. In particu-
lar, they prove that Extended CTL cannot express the classical LTL property of

http://arxiv.org/abs/1910.11594v1

fairness regardless of the choice of the formal language parameter. As a result,
they suggest to lift their framework to extended variants of CTL∗ and CTL+,
a lesser known logic that has the same expressive power as CTL, but is more
succinct [7,22]. In this paper, we carry out this suggestion for both logics and
also develop a parameterised variant of LTL with the model checking algorithm
for the latter inducing the algorithms for the former. We obtain completeness
results for model checking our logics against the model classes mentioned before
in almost all cases and also for the satisfiability problem. However, unlike for
Extended CTL, no extension beyond the visibly pushdown languages considered
is decidable for any of these new logics.

In Section 2, we introduce some automata models. Section 3 introduces our
extended variants of LTL, CTL∗ and CTL+ and establishes some basic properties
of them. Afterwards, we characterise LTL[U] formulae by alternating automata
(Section 4). Later, in Section 5, we establish inclusion and separation theorems
for several logics. Then, in Section 6 and Section 7, we address the satisfiability
and model checking problems for our logics. Finally, we summarise this paper
and discuss related work.

Acknowledgements We thank Laura Bozzelli for the extended version of
[2] and Christoph Ohrem and Bastian Köpcke for valuable discussions.

2 Preliminaries

Let AP be a finite set of atomic propositions and Γ be a set of actions. A Kripke
Transition System (KTS) is a tuple K = (S,→, λ) where S is a set of states,
→⊆ S×Γ×S is a transition relation and λ : S → 2AP is a labelling function. We
also write s

a
−→ s′ to denote (s, a, s′) ∈→. Every KTS has an initial state s0 ∈ S.

A path is a maximal sequence of alternating states and actions π = s0a0s1a1 . . .
such that si

ai−→ si+1. By π
i, we denote the suffix siaisi+1ai+1 . . . and by π(i), we

denote the state si. W.l.o.g., we assume that every state has at least one successor
and thus every path is infinite. For every state, we denote by Paths(s) the paths
starting in s. We also define Paths(K) = Paths(s0). For a path π = s0a0s1a1 . . . ,
we define the corresponding trace to be π̂ = (λ(s0)a0)(λ(s1)a1) We then lift
Paths(s) to Traces(s) and Paths(K) to Traces(K) in the obvious manner. We
also denote the actions a0 . . . an by Actions(π, n).

A Pushdown System is a tuple P = (P, Γ,∆, λ, I) consisting of a finite,
non-empty set of control locations P , a finite, non-empty stack alphabet Γ ,
a transition relation ∆ ⊆ (P × Γ) × Σ × (P × Γ ∗), a labelling function λ :
P ×Γ → 2AP , and a non-empty set of initial configurations I ⊆ P ×Γ . We write
(p, γ)

σ
−→ (p′, ω) to denote ((p, γ), σ, (p′, ω)) ∈ ∆. By slight abuse of notation, we

also write (p, γ)
σ
−→ (p′, ω) ∈ ∆. For simplicity, we assume that ∆ is total, i.e. for

every (p, γ), there are σ, p′, ω with (p, γ)
σ
−→ (p′, ω) ∈ ∆ and that in every rule

|ω| ≤ 2. A rule (p, γ)
σ
−→ (p′, ω) ∈ ∆ is a call rule if |ω| = 2, an internal rule if

|ω| = 1 and a return rule if |ω| = 0. In the following, we will always identify a
PDS with the KTS consisting of its configuration graph.

2

A PDS is called a Visibly Pushdown System (VPS) if its input alphabet Σ
can be divided into disjoint partitions Σcall, Σint and Σret such that every rule
for an input symbol from the set Σcall is a call rule (and analogously for the
other two sets). An alphabet thus partitioned is called a pushdown alphabet. A
Büchi Pushdown System (BPDS) BP is a PDS with an additional set F ⊆ P
of final states. A path of a BPDS BP is accepting if it visits some state p ∈ F
infinitely often. A word is accepted if there is an accepting path for it. We denote
by LΓ (BP) the set of configurations from which BP has an accepting path and
by L(BP) the set of words accepted by BP. Pushdown Automata and Visibly
Pushdown Automata, which we abbreviate by PDA and VPA respectively, are
defined analogously, with the only difference being that we only consider finite
runs over finite input words and a word is accepted if an accepting state is reached
after the last input symbol. We call an automaton deterministic (signified by
prepending a D to the model class) if there is a unique transition for every input
symbol, top of stack symbol and control location. We also consider deterministic
and non-deterministic finite automata (DFA and NFA) which we define as PDA
with only internal transitions. For all these models, the size of the automaton,
denoted |A| for an automaton A, is the sum of its number of states and number
of transitions. For PDSs, we will make use of the following Theorem:

Theorem 1 ([18]). The emptiness of LΓ (P) for a BPDS P can be checked in
time polynomial in the size of P. Indeed, there is an NFA A with L(A) = LΓ (P)
with size polynomial in the size of P.

We call the languages accepted by DFA regular languages (REG) and those
accepted by VPA visibly pushdown languages (VPL). The languages accepted
by the corresponding models working on infinite words are called ω-regular and
ω-visibly pushdown languages (ω-REG and ω-VPL respectively). Following [1],
we call a class U of finite word automata reasonable iff it contains automata
recognising the languages Σ and Σ∗ and for any A ∈ U and B of the same
automaton type with L(A) = L(B), B ∈ U (closure under equivalences). All
types of finite word automata in this paper are reasonable classes of automata.

Let DIR = {↓, ↓a}. An Alternating Jump Automaton (AJA) [2] is a 5-Tuple
(Q,Σ, δ, q0, Ω) where Q is a finite set of states, Σ is a finite pushdown alphabet,
δ : Q×Σ → B

+(DIR×Q×Q) is a transition function, q0 ∈ Q is an initial state,
and Ω : Q→ N is a colouring function. Here, B+(X) denotes the set of positive
boolean formulae over X .1

Let A = (Q,Σ, δ, q0, Ω) be an AJA and w = α1α2 · · · ∈ Σω an infinite word.
In order to define executions of AJA, we need two types of successor relations
of indices on w. The direct successor is simply succ(↓, i) = i + 1. The abstract
successor succ(↓a, i) is the index of the input symbol to be read on the same
recursion level for a call or internal action, if it exists. In all other cases, it is
⊤. Formally, succ(↓a, i) = min{j > i | |v|Σcall

= |v|Σret
for v = αi . . . αj−1} if it

exists and αi ∈ Σcall ∪Σint, where |v|X is the number of occurences of symbols

1 Note that the model of AJA introduced in [2] allows further directions that are not
needed in this paper.

3

fromX in w. Otherwise, succ(↓a, i) = ⊤. The AJA A processes the input word w
by reading it from left to right starting in its initial state q0. Then, whenever A is
in a state q and reads a symbol αi, it guesses a set of targets T ⊆ (DIR×Q×Q)
which satisfies δ(q, αi). Afterwards, it creates a copy of itself for each (d, q′, q′′) ∈
T , which then moves to the state q′ if j=succ(d, αi) 6= ⊤ and reads the symbol
αj next or otherwise transitions into state q′′ and processes the next symbol
αi+1. Formally, an execution of A on w is an infinite tree T (A, w) with the root
node ǫ and the following properties: 1) each node of T (A, w) is associated with
a pair (i, q) ∈ N × Q which indicates that a copy of A is currently in state q
and reads the input symbol αi next. For a node v the associated pair is denoted
by p(v) and p(ǫ) = (1, q0). 2) For each node v within the tree with p(v) = (i, q)
there exists a set of targets T = {(d1, q1, q′1) . . . (dk, qk, q

′
k)} ⊆ DIR×Q×Q that

satisfies δ(q, αi) such that for each child node vh of v with 1 ≤ h ≤ k we have
p(vh) = (i + 1, q′h) if succ(dh, wi) = ⊤ and p(vh) = (succ(dh, wi), qh) otherwise.
A branch β=v0v1... of T (A, w) is an infinite sequence of nodes with v0 = ǫ and
where vi is the parent of vi+1 for each i ∈ N0. The set of colours which appear
infinitely often throughout a branch is defined as:

C(β) =
{

Ω(q) | for infinitely many j ∈ N0 , there is i ∈ N0 with p(vj) = (i, q)}

The execution tree T (A, w) is accepting iff for each branch β the smallest colour
in C(β) is even (parity condition).

Theorem 2 ([2]). For every AJA A, one can construct in exponential time a
BVPS A′ with size exponential in the size of A such that L(A) = L(A′).

For simplicity, we define an Alternating Büchi Automaton (ABA) to be an AJA
with parity 2 in which only internal transitions are used (i.e. all input symbols
belong to Σint). We likewise define a non-deterministic Büchi Automaton (BA)
to be an ABA which uses only disjunctions, but no conjunctions. In ABA, we
allow ε-transitions which can trivially be eliminated. By the well-known Miyano-
Hayashi construction, we obtain the following Theorem:

Theorem 3 ([17]). The emptiness problem for ABA is PSPACE-complete. Ev-
ery ABA A can be converted to a BA A′ with L(A) = L(A)′ such that the size
of A′is exponential in the size of A.

3 Logics

3.1 Extended LTL

Let U be a reasonable class of automata. For a fixed set AP of atomic proposi-
tions, an LTL[U] formula is given by the following grammar:

ϕ ::= ap | ¬ϕ | ϕ ∧ ϕ | ϕ UA ϕ.

The semantics of an LTL[U] formula for a path π is given as follows:

4

– π |= ap iff ap ∈ λ(π(0))
– π |= ¬ϕ iff π 6|= ϕ
– π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

– π |= ϕ1UAϕ2 iff ∃k : πk |= ϕ2 and ∀j < k : πj |= ϕ1 and Actions(π, k) ∈
L(A)

We denote by L(ϕ) the set of traces of paths fulfilling ϕ. For a KTS K, we define
K |= ϕ iff Traces(K) ⊆ L(ϕ). For LTL[U] (and later logics), we denote by |ϕ|
the sum of the number of operators in the syntax tree of ϕ and the size of the
automata A occuring in ϕ. For simplicity, we often write UL for some language
L and use this as an abbreviation for UA where A is the minimal automaton
with L(A) = L. We also write LTL[REG] and LTL[VPL] to emphasise that it is
not relevant whether a deterministic or non-deterministic automaton is used for
the respective language class, while we use the specific class of automata (e.g.
LTL[DVPA] or LTL[NFA]) otherwise. If no parameter is given for a modality, the
languageΣ∗ is assumed. We can define ∨, ⇒, true and false in the obvious man-
ner. We define ϕ1RAϕ2 ≡ ¬(¬ϕ1UA¬ϕ2), Xϕ ≡ true UΣϕ, GAϕ ≡ falseRAϕ
and FAϕ ≡ true UAϕ . The explicit semantics of RA is as follows: π |= ϕ1RAϕ2

iff ∀i : Actions(π, i) /∈ L(A) or πi |= ϕ2 or ∃j < i : πj |= ϕ1.
We define an LTL[U] formula to be in Negation Normal Form (NNF) if

negations occur only in front of atomic propositions. In order to convert LTL[U]
formulae to NNF, we assume RA to be a first class modality and ∨ to be a
first class operator of LTL[U]. The equivalence ¬(ϕ1 UA ϕ2) ≡ (¬ϕ1) RA(¬ϕ2)
combined with the classical equivalences for LTL can be used to obtain:

Theorem 4. Every LTL[U] formula can be converted into an LTL[U] formula
in NNF for every U .

In LTL[U], we can express the example properties mentioned in the introduction
in a straightforward manner after choosing an appropriate language class and
automaton. Given a DFAA accepting all finite words of even length, the property
Every other index fulfills ϕ can then be expressed by the LTL[DFA] formula GAϕ.
Likewise, for a VPA A recognising the language reqngrantn (if req is marked
a call and grant a return symbol), the LTL[VPA] formula work UA complete
states that an agent takes n requests and then grants the same number before
completing its work. Unlike Extended CTL, LTL[U] can also express the classical
fairness property GFq which, using additional automata, can also be refined by
requirements that certain prefixes of a fair path must be contained in a language.

3.2 Extended CTL∗ and CTL+

Let U be a reasonable class of automata. A CTL∗[U] formula ϕ is given by the
following grammar:

ϕ ::= ap | ¬ϕ | ϕ ∧ ϕ | ϕ UA ϕ | Eϕ

A CTL+[U] formula ψ is given by the following grammar:

ϕ ::= ψ UA ψ | ¬ϕ | ϕ ∧ ϕ

5

ψ ::= ap | ¬ψ | ψ ∧ ψ | Eϕ

The semantics of all operators except existential quantification is inherited from
LTL[U] in the obvious manner. For the quantifier, we define: π |= ∃ϕ iff ∃π′ ∈
Paths(π(0)) : π′ |= ϕ. We use the same abbreviations as for LTL[U] and ad-
ditionally define Aϕ ≡ ¬E¬ϕ. To compare our logics with the logics in [1], we
define CTL[V ,W] to be the sub-logic of CTL∗[V ∪W] in which all modalities
are quantified, quantifiers appear only in front of modalities and additionally, in
UA, A ∈ V and in RA, A ∈W .

Extended CTL∗ allows us to express all properties expressible in Extended
LTL and Extended CTL. In particular, we can combine linear time and branching
time properties, e.g. to refine Extended CTL properties by fairness which itself
is not expressible in Extended CTL.

4 Automata for LTL[U]

4.1 LTL[REG] formulae to Büchi automata

In this section, we show how LTL[REG] formulae can be translated to ABA. Our
translation is inspired by the classical translation of LTL into ABA [20] which
has also been refined for other extensions with regular modalities [8].

Theorem 5. For every LTL[REG] formula ϕ in NNF, there is an ABA A with
L(A) = L(ϕ) with size linear in |ϕ|.

Proof. Let ϕ be an LTL[REG] formula. The proof is by structural induction over
ϕ with the induction hypothesis that for every subformula ψ of ϕ, there is an
ABA A with L(A) = L(ψ) and |A| ∈ O(|ψ|).

Case ϕ = ap ∈ AP . Clearly, the automaton A = ({q0}, 2AP × Σ, δ, q0, {q0})
with δ(q0, (X, σ)) = true for all σ ∈ Σ and X ⊆ AP with ap ∈ X ful-
fills the claim.

Case ϕ = ¬ap. Similar to the previous case.
Case ϕ = ψ1 ∨ ψ2. Let Ai = (Qi, 2AP×Σ, δi, qi0, F

i) be the ABA with L(Ai) =
L(ψi) for i ∈ {1, 2} given by the induction hypothesis. W.l.o.g. let Q1∩Q2 =
∅. The idea in this case is to shift the semantics for the ∨ operator directly
into the transition function. The ABA A = (Q, 2AP× Σ, δ, q0, F) accepting
the language L(ϕ) consists of a state set Q = Q1 ∪Q2 ∪ {q0} and the set of
accepting states F = F 1∪F 2. It starts from a new initial state q0 from which
it is able to transition into both automata A1 and A2 using a disjunctive
ε-transition.

Case ϕ = ψ1 ∧ ψ2. Similar to the previous case.
Case ϕ = ψ1UXψ2. Again, the induction hypothesis yields the ABAAi = (Qi, 2AP×

Σ, δi, qi0, F
i) with L(Ai) = L(ψi) for i ∈ {1, 2}. Furthermore let X =

(Q′, Σ, δ′, q′0, F
′) be the NFA used in the formula. It is assumed that Q1, Q2

and Q′ are pairwise disjoint. Intuitively, we translate the formula just like
a basic LTL formula, but additionally run the NFA to guess an accepting

6

path, requiring ϕ1 to hold until the accepting state is hit and then requir-
ing ϕ2 to hold. Formally, let Aϕ = (Q, Σ̂, δ, F) where Q = Q1 ∪ Q2 ∪ Q′,

δ = δ1 ∪ δ2 ∪ δ̂′, q0 = q′0 and F = F1 ∪F2. Finally, we set and δ̂′(q
′, (X, σ)) =

δ1(q
1
0 , (X, σ)) ∧

∨

q′′∈δ′(q′,σ) q
′′ for all q′ ∈ Q′ and δ̂′(q′, ε) = q20 for q′ ∈ F ′.

Case ϕ = ψ1R
Xψ2. Once more, the ABA Ai = (Qi, 2AP × Σ, δi, qi0, F

i) with
L(Ai)=L(ψi) for i ∈ {1, 2} are provided by the induction hypothesis. Again
let X = (Q′, Σ, δ′, q′0, F

′) be the NFA used in the formula and let Q1, Q2

as well as Q′ be pairwise disjoint. Let Aϕ = (Q, 2AP × Σ, δ, F) where Q =

Q1 ∪ Q2 ∪ Q′, δ = δ1 ∪ δ2 ∪ δ̂′, q0 = q′0 and F = F1 ∪ F2 ∪ Q′. Finally, we

set δ̂′(q′, ε) = q10 ∧ q20 and δ̂′(q′, (X, σ)) = δ2(q
2
0 , (X, σ)) ∧

∧

q′′∈δ′(q′,σ) q
′′ for

final states q′ ∈ F . For non-final states q′ /∈ F , we set δ̂′(q′, ε) = q10 and

δ̂′(q′, (X, σ)) = (
∧

q′′∈δ′(q′,σ) q
′′). For this modality, we have to distinguish

several cases: if ϕ1∧ϕ2 is fulfilled at a final state, the whole formula is fulfilled
there. On the other hand, it suffices to require only ϕ1 to hold if the state
currently under consideration in the NFA is non-accepting. If ϕ1 , we require
ϕ2 to hold unless the current state is non-accepting, in which case we do not
require any formulae to hold. However, unless ϕ2 is released from holding by
one of these cases, we always have to pursue all possible successors in the
NFA lest we miss paths which reach an accepting state and thus require ϕ2

to hold. All accepting states of the automata Ai stay accepting in order to
reflect the semantics of ψi. Moreover, all states of the NFA X are declared
accepting as paths on which ϕ1 never holds, but ϕ2 holds on any accepting
state of X are allowed by the semantics of the Release operator. ⊓⊔

4.2 Automata for LTL[VPL]

Just as for LTL[REG], we construct alternating automata for LTL[VPL], this
time using AJA instead of ABA.

Theorem 6. Every LTL[VPL] formula ϕ can be translated into an AJA A with
L(ϕ)=L(A) and |A| ∈ O

(

|ϕ|2
)

.

Proof. Let ϕ be an LTL[VPL] formula over a finite proposition set AP and a
set of actions Σ. The proof is done by structural induction over ϕ, with the
induction hypothesis that for every subformula ψ of ϕ there is an AJA A with
L(A) = L(ψ) and |A| ∈ O

(

|ϕ|2
)

. Atomic propositions and logical operators are
handled just as in Theorem 5. A formula ¬ϕ can be handled by complementing
the AJA for ϕ which is possible by shifting the parity without any blowup and
dualising the transition function. Thus, we do not require NNF here. Notice that
this would not have been possible for LTL[REG] in the proof of Theorem 5 since
complementing an ABA induces a quadratic blowup and this would altogether
lead to an exponential blowup. Hence, it only remains to consider formulae of
the form ϕ = ψ1UXψ2. Here, just as in [21], we can use an AJA to simulate the
stack of the VPA X by introducing a flag in order to indicate whether a call
should ever be returned from and enforcing this with the acceptance condition,

7

and following the execution after the return, where needed, via a conjunctive
copy. We can otherwise linearly follow the trace and require φ1 to hold unless
we find an accepting state in the VPA X and φ2 holds. ⊓⊔

5 Expressivity

In this section, we compare the expressive power of several logics to each other.
For two logics L,L′, we write L ≤ L′ if every formula ϕ in L has a matching
formula ϕ′ in L′ such that for all KTSs K, K |= ϕ iff K |= ϕ′. This induces
the expressivity relation < in the obvious way. Furthermore, we write L ≤lin L

′

(resp. L ≤exp L′ or L ≤poly L′) to denote that the translation of formulae in L
to formulae in L′ involves linear (resp. exponential or polynomial) blowup. The
following inclusions are immediate:

Theorem 7. 1. LTL[U] ≤lin CTL∗[U]
2. CTL[U, V] ≤lin CTL+[W] if U ⊆W and V ⊆W
3. CTL+[U] ≤lin CTL∗[U]

Furthermore, it was shown in [1] that CTL[U, V] cannot express the basic fair-
ness property GFq regardless of the automata classes chosen. This immediately
implies:

Theorem 8. CTL∗[W] 6≤ CTL[U, V] for arbitrary classes U, V,W .

In order to discuss some model theoretic properties needed for some of the em-
beddings of our logics, we introduce the logic PDL-∆[U] [1]. For a set Π of
atomic programs, PDL-∆[U] is defined by the following rules:

– Every atomic proposition ap is a formula.
– If ϕ1 and ϕ2 are formulae, then so are ϕ1 ∧ ϕ2 and ¬ϕ1.
– If ϕ is a formula, then ϕ? is a test where the set of tests is denoted Test.
– A regular expression over Π ∪ Test is a program.
– If α is a program and ϕ is a formula, then 〈α〉ϕ is a formula.
– An automaton A of type U over the alphabet Σ ∪ Test is an ω-program.
– For every ω-program A, ∆A is a formula.

A formula of PDL-∆[U] is evaluated over a structure M = (S,R, v) where
S is a set of states, R : Π → 2S×S is a transition relation that assigns to
atomic programs the state transitions that are possible using them and v : S →
2AP assigns atomic propositions to states. We can interpret M as a KTS by
interpreting atomic programs as actions. The relation R is extended to tests as
follows: R(ϕ?) = {(s, s) |M, s |= ϕ}. Moreover, for programs α, R(α) = {(s, s′) |
∃w = w1 . . . wm ∈ L(α) : ∃s0 . . . sm ∈ S : s = s0∧s′ = sm∧(si−1, si) ∈ R(wi) for
all 1 ≤ i ≤ m}. Furthermore, we have for each automaton A over the alphabet
Π ∪ Test a unary relation Rω(A) such that s ∈ Rω(A) iff there is an infinite
word w = w0w1 · · · ∈ L(A) and a sequence of states s0s1 . . . such that s0 = s
and (si, si+1) ∈ R(wi) for all i ≥ 0. We note that if A is a VPS, Test is assumed
to belong to the internal symbols.

The semantics of PDL-∆[U] for a structure M and a state s ∈ S is then
given as follows:

8

1. M, s |= ap iff ap ∈ v(s)
2. M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

3. M, s |= ¬ϕ iff M, s 6|= ϕ
4. M, s |= 〈α〉ϕ iff there is s′ ∈ S such that (s, s′) ∈ R(α) and s′ |= ϕ
5. M, s |= ∆A iff s ∈ Rω(A)

Theorem 9. Let c ∈ {∗,+}.

1. CTLc[REG] <exp PDL-∆[REG].
2. CTLc[VPL] <exp PDL-∆[VPL].

Proof. For the innermost existential formula Eψ of a CTLc[REG] formula ϕ, we
build the corresponding ABA Aψ and dealternate it using the Miyano-Hayashi
construction to obtain an equivalent BA A′ with exponentially more states.
We can thus replace Eψ by the formula ψ′ ≡ ∆A′. Inductively, we always
temporarily replace such a formula by a fresh atomic proposition and then,
after the dealternation, replace this proposition by the test (ψ′?) in the new
automaton. This way, we can integrate the BAs into each other. This translation
is exponential due to the dealternation. For CTLc[V PL], the proof is analogous,
replacing ABA by AJA (and using Theorem 2 for the dealternation). ⊓⊔

For PDL-∆[U], we make use of the following model-theoretic results:

Theorem 10 ([1]).

1. PDL−∆[REG] has the finite model property.
2. PDL−∆[VPL] has the visibly pushdown model property, i.e. every satisfiable

formula has a model that is a VPS.

Due to the embedding of Theorem 9 and the fact that there is already a satisfi-
able CTL[VPA, VPA] formula with no finite model [1], we obtain:

Corollary 1. Let c ∈ {∗,+}.

1. CTLc[REG] has the finite model property.
2. There is a satisfiable CTLc[VPL] formula with no finite model. CTLc[VPL]

has the visibly pushdown model property.

Corollary 2. Let c ∈ {∗,+}. CTLc[REG] < CTLc[VPL]

Theorem 11. LTL < LTL[REG] < LTL[VPL] < LTL[DPDA].

Proof. In every case, the relation ≤ is clear. LTL < LTL[REG] follows from
Wolper’s classical argument [23] that LTL cannot express that a proposition
occurs on every other index. For every formula ϕ of LTL[REG], there is an ABA
recognising L(ϕ). Thus, L(ϕ) is ω-regular. On the other hand, the language

of Fanbn(G{c}∗ false) is not ω-regular. The last strict inclusion follows from
the fact that LTL[DPDA] satisfiability checking is undecidable, but the same
problem is decidable for the other fragments (see Section 6). ⊓⊔

9

By considering the class of linear KTS (which only have one path), we get:

Corollary 3. CTLc[VPL] < CTLc[DPDA] for c ∈ {∗,+}.

Theorem 12. LTL[U] and CTL[V,W] have incomparable expressivity for arbi-
trary classes U , V and W

Proof. Since LTL[U] formulae are invariant under trace equivalence, but CTL[V,
W] formulae are not (regardless of the choice of V and W), there can be no em-
bedding of CTL[V, W] into LTL[U]. On the other hand, if LTL[U] < CTL[V,W]
held for some classes U, V,W , then the LTL formula ϕ ≡ FG¬q would be ex-
pressible in CTL[V]. Note that this formula is equivalent to Aϕ on structures.
Since CTL[V] is closed under negation, the formula ψ ≡ EGFq would then also
be expressible in CTL[V,W]. This contradicts Lemma 4.3 of [1]. ⊓⊔

6 Satisfiability

In this section, we tackle the satisfiability problem for our logics. For this pur-
pose, we call a formula ϕ of a temporal logic satisfiable if there is a KTS K such
that K |= ϕ. We obtain exhaustive decidability and complexity classifications in
all cases. Unfortunately, unlike for Extended CTL, satisfiability is undecidable
for all our logics for language classes going beyond VPL.

Theorem 13. LTL[DPDA] satisfiability checking is undecidable.

Proof. For two DCFL L1,L2, let L̂i = {wt̂ | w ∈ Li} where t̂ is a fresh symbol.

The formula F L̂1true ∧ F L̂2true is satisfiable iff L1 ∩ L2 is non-empty. ⊓⊔

Corollary 4. CTLc[DPDA] satisfiability checking is undecidable for c ∈ {∗,+}.

For regular languages, the complexity of the satisfiability problem for LTL[REG]
does not increase beyond the complexity of the satisfiability problem for LTL.

Theorem 14. LTL[REG] satisfiability checking is PSPACE-complete.

Proof. Membership in PSPACE can be shown by applying the emptiness test to
the ABA for a formula ϕ. Hardness follows from the corresponding hardness of
LTL satisfiability checking. ⊓⊔

For visibly pushdown languages, the problem remains decidable but the com-
plexity increases because we can express hard problems about VPAs.

Theorem 15. LTL[VPL] satisfiability checking is EXPTIME-complete.

Proof. Membership in EXPTIME follows from the fact that we can build an AJA
characterising L(φ) for an LTL[VPL] formula φ and test it for emptiness in EXP-
TIME. For hardness, we reduce from the LTL[VPL] model checking problem for
a formula φ against a finite KTS K = (S,→, λ) which is shown to be EXPTIME-
complete later in this paper. For any s ∈ S, we introduce a fresh atomic propo-
sition as and write ψs ≡

∨

(s,t,s′)∈δ(X
{t}(as′ ∧

∧

a∈λ(s′) a∧
∧

a′ /∈λ(s′) ¬a
′)). Then

ϕ′ = as0 ∧
∧

a∈λ(s0)
a ∧

∧

a′ /∈λ(s0)
¬a′ ∧ G(

∧

s∈S(as ⇒ ψs)) ∧ ¬ϕ is satisfiable iff
there is a path in K violating ϕ. ⊓⊔

10

q0start q1

σ ∈ Σ

t̂

t̂

Fig. 1. Structure generating words with arbitrary prefixes

For the satisfiability problem of branching time logics, we follow the approach
of [1] and use established results for the satisfiability problem of PDL-∆[U].

Theorem 16. 1. PDL−∆[REG] satisfiability is EXPTIME-complete.
2. PDL−∆[VPL] satisfiability is 2EXPTIME-complete.

Using our embeddings into PDL-∆[U], we then obtain the following result:

Theorem 17. Let c ∈ {∗,+}.

1. CTLc[REG] satisfiability checking is 2EXPTIME-complete.
2. CTLc[V PL] satisfiability checking is 3EXPTIME-complete.

Proof. By Theorem 9, we have an exponential translation of CTLc[U] into PDL-
∆[U] for U ∈ {REG, VPL}. Furthermore, PDL-∆[REG] satisfiability checking is
EXPTIME-complete, implying a 2EXPTIME upper bound for CTLc[REG]. The
lower bound already holds for ordinary CTL+[10]. Since the satisfiability test
for PDL−∆[V PL] is possible in 2EXPTIME, we obtain a 3EXPTIME upper
bound and the lower bound follows from the corresponding lower bound for
CTL[DVPA,DVPA∪ NFA] [1]. ⊓⊔

The last theorem shows that parameterisation by regular languages does not
increase the complexity of the satisfiability problem for either CTL∗ or CTL+.
While the use of VPL increases the complexity exponentially, this already holds
for Extended CTL. From this point of view, the additional expressive power of
our logics is obtained for free in this case as well. Finally, the lower bound for
CTLc satisfiability and the complexity of PDL-∆[U] satisfability imply that there
is no polynomial translation of CTLc[U] into that logic. Since there is a linear
translation of CTL[U,V] into PDL-∆[U ∪ V], a possible translation of Extended
CTL+ into Extended CTL (if any) must involve an exponential blowup:

Corollary 5. 1. CTLc[U] 6≤poly PDL−∆[U] for U ∈ {REG, VPL}.
2. CTL+[U] 6≤poly CTL[U, U] for U ∈ {REG, VPL}.

7 Model Checking

7.1 Finite Kripke Models

We begin with the discussion of DPDAs. Just as the satisfiability problem, the
model checking problem is not decidable for this class:

Theorem 18. LTL[DPDA] model checking against KTS is undecidable.

11

Proof. The formula ¬(FL1 t̂end∧FL2 t̂true) is fulfilled by the structure in Figure 1
iff L1 ∩ L2 is empty for two deterministic context-free languages L1,L2. ⊓⊔

Since the argument in the last proof can be reused for the other logic, we obtain:

Corollary 6. CTLc[DPDA] model checking against finite KTS is undecidable
for c ∈ {∗,+}.

As a direct consequence, there can be no embedding of CTL+ equipped with
DPDA into corresponding CTL variants, which is surprising because the basic
logics CTL+ and CTL have the same expressive power [7]:

Corollary 7. CTL+[DPDA] 6< CTL[DPDA,DPDA].

Proof. CTL+[DPDA] model checking against a Kripke model is undecidable,
but CTL[DPDA, DPDA] model checking is P-complete [1]. ⊓⊔

The last result shows that there is no generic translation from Extended CTL+

into Extended CTL that is uniform for all types of automata.
For regular languages, the complexity of model checking is not increased

beyond the complexity of standard LTL for Extended LTL.

Theorem 19. LTL[REG] model checking against finite KTS is PSPACE-complete
and in P for a fixed formula.

Proof. We can check in PSPACE if the language of a KTS is a subset of the
language of the automaton constructed in Theorem 5. PSPACE-hardness follows
trivially from the PSPACE-hardness of LTL model checking. If the formula is
fixed, the size of the ABA is constant as well as the size of the BA obtained by
the Miyano-Hayashi construction. The emptiness test after synchronisation with
the KTS is possible in polynomial time. ⊓⊔

As for satisfiability, switching to VPLs increases the complexity to EXPTIME:

Theorem 20. LTL[VPL] model checking against finite KTS is EXPTIME-complete
and in P for a fixed formula.

Proof. We reduce the problem of model checking an LTL formula ϕ against a
VPS A = (Q,Γ,∆, λ) which is EXPTIME-complete [18]2. For this, we define a
KTS KA = (Q × Γ,→, λ) as a particular regular overapproximation of A. The
KTS KA follows the evolution of the configuration heads (q, γ) in evolutions of
A. It can do so precisely for call and internal steps but guesses the topmost stack
symbol in the configuration reached after a return step. In order to recover the
actual executions of A an adequately defined DVPA A′ is used in the formula.
In order to allow A′ to do so, the KTS KA makes visible in the actions the
symbol pushed onto the stack for a call rule in a corresponding call-symbol and

2 In [18], the lower bound was established for LTL model checking against a PDS, but
this can easily be adopted by transforming the PDS and the formula in the standard
way.

12

the stack symbol guessed as target of a return step in a corresponding return-

symbol. Then, for ψA′ ≡ GA′

false and ϕ′ ≡ ψA′ ⇒ ϕ, we have KA |= ϕ′ iff
A |= ϕ since ψA′ holds iff a path of KA corresponds to a proper path of A.

The upper bound follows from Theorem 2 since we can build an AJA for
¬ϕ′ and test it against KA (Theorem 2). The complexity for the fixed formula
follows analogously to the case of LTL[REG]. ⊓⊔

Using our results for LTL[REG], we can derive a model checking algorithm for
CTLc[REG]:

Theorem 21. For c ∈ {∗,+}, CTLc[REG] model checking against finite KTS
is PSPACE-complete. For a fixed formula, it is in P .

Proof. For the PSPACE-hardness proof, recall that a classical result of complex-
ity theory states that the problem of deciding for n different DFA whether their
intersection is non-empty is PSPACE-complete [11]. This problem can easily be
reduced to CTLc[DFA] model checking in polynomial time: for DFA A1 . . .An,
the formula E(FA1true ∧ . . .FAntrue) can be checked against the structure
given in Figure 1 to test the intersection under consideration for emptiness.

The model checking proceeds just like the classical CTL∗ model checking
algorithm [6]: we pick an innermost existential subformula Eψ, replace it by a
fresh atomic proposition p, check all states of the input KTS with the LTL[REG]
model checking algorithm for ¬ψ, mark all states fulfilling the latter with ¬p and
all others with p. Inductively, we obtain a pure LTL[REG] formula which we can
check against the KTS. Since every step can be done in polynomial space and
we perform at most |ϕ| steps for an input formula ϕ, we obtain the PSPACE
upper bound. The second part follows from Theorem 19 since our CTLc[REG]
model checking algorithm applies the LTL[REG] algorithm a bounded number
of times for fixed formulae. ⊓⊔

Note that CTL∗ model checking against finite KTS is already PSPACE-complete,
in contrast to CTL+ model checking which is ∆p

2-complete [14].
Just as the CTLc[REG] model checking algorithm is derived from the LTL[REG]

model checking algorithm, the CTLc[VPL] is derived from the LTL[VPL] algo-
rithm:

Corollary 8. For c ∈ {∗,+}, CTLc[VPL] model checking against finite KTS is
EXPTIME-complete. For a fixed formula, it is in P .

Proof. For the lower bound, we proceed as for LTL[DVPA] in Theorem 20. The
model checking problem for LTL against VPS A is EXPTIME complete for
the fixed formula ϕ ≡ G(¬fin) if we introduce checkpoints, i.e. DFA accepting
configurations of A(q,γ) for every head (q, γ) [18]. Each transition for (q, γ) is
then conditional on the DFA A(q,γ) accepting the current configuration. This
restriction can be modelled by a DVPA representing A(q,γ) and checked by a G-
formula as before if we encode the transitions in the transition labels of KA. We
obtain a universally quantified conjunction of GBfalse formulae and ϕ which is
a CTL+[DVPA] formula and completes the reduction. The upper bound follows
as in the previous theorem, replacing LTL[REG] by LTL[VPL]. ⊓⊔

13

7.2 Visibly Pushdown Systems

For VPS, we again make use of our approach based on alternating automata,
but lift it by employing classical results of pushdown model checking.

Theorem 22. LTL[REG] model checking against VPS is EXPTIME-complete
and in P for a fixed formula.

Proof. Let ϕ be a LTL[REG] formula, P be a VPS andA be the ABA for ϕ. From
A, we obtain an BA A′ by the Miyano-Hayashi construction with exponential
blowup. Synchronizing A′ with P , we obtain a Büchi VPS P ′ which we can test
for emptiness in polynomial time. All in all, we obtain an EXPTIME-algorithm.
The lower bound holds already for LTL. If the size of the formula is fixed, the
complexity follows with the same argument as before since the only non-bounded
complexity term is induced by the polynomial time emptiness test. ⊓⊔

This time, the complexity is not increased by switching to VPL.

Theorem 23. LTL[VPL] model checking against VPS is EXPTIME-complete
and in P for a fixed formula.

Proof. We proceed as in the proof of Theorem 22, but this time, we dealternate
an AJA A for a LTL[VPL] formula ϕ to obtain a Büchi VPS A′ with an exponen-
tial blowup. Since VPS can be synchronised, we can again test the synchronised
Büchi VPS for emptiness and obtain an EXPTIME algorithm. The argument
for the fixed formula is the same as above. ⊓⊔

Our AJA for LTL[VPL] can be used to extend the classical CTL∗ model checking
algorithm for PDS [18] to CTL∗[VPL]:

Theorem 24. CTL∗[VPL] model checking against VPS is 2EXPTIME-complete
and EXPTIME-complete for a fixed formula.

Proof. Hardness follows from 2EXPTIME-hardness of checking a CTL∗ formula
against a VPS P [3]. For inclusion, notice that we can construct an AJA for ϕ
of polynomial size by Theorem 6 for the negation of any innermost LTL[V PL]
formula preceded by an existential quantifier. For this automaton, we obtain a
non-deterministic Büchi VPS recognising the same language. From this VPS,
we can construct an NFA Aψ that accepts all configurations from which the
synchronised product of that automaton and P has an accepting run. Using
determinisation with another exponential blowup, we can assume Aψ to be de-
terministic and then complement it in linear time to obtain an automaton that
accepts configurations fulfilling the existential formula. We can then replace the
existential formula Eψ by a fresh atomic proposition aψ and synchronise P with
the automaton via a regular valuation such that a configuration is labelled aψ
if it fulfills Eψ. Inductively, we obtain a pure LTL[VPL] formula and check
that formula against P . This algorithm works in 2EXPTIME and thus estab-
lishes the desired upper bound. If the size of the formula is fixed, the problem is
EXPTIME-hard (already for pure CTL [3]) and the upper bound follows as the
NFA we determinise has bounded size and the determinisation thus produces a
DFA of exponential instead of doubly exponential size. ⊓⊔

14

Since the lower bounds hold already for pure CTL∗, we directly obtain the
following result for regular languages:

Corollary 9. CTL∗[REG] model checking against VPS is 2EXPTIME-complete
and EXPTIME-complete for a fixed formula.

Of course, our algorithm can also be applied to CTL+[VPL] formulae. However,
we do not obtain completeness in all cases since the exact complexity of CTL+

model checking on VPS (and PDS) - even without language parameters - is an
open question.

Corollary 10. For U ∈ {DFA, DVPA}, CTL+[U] model checking against VPS
is in 2EXPTIME and EXPTIME-hard. Moreover, it is EXPTIME-complete
for a fixed formula. For U ∈ {NFA, VPA}, it is 2EXPTIME-complete and
EXPTIME-complete for a fixed formula.

Proof. The 2EXPTIME upper bound follows from Theorem 24 and EXPTIME-
hardness holds already for CTL model checking against VPS for a fixed for-
mula [3]. For a fixed formula, the model checking algorithm of Theorem 24
works in exponential time because the dealternised AJA has constant size and
the determinisation of the NFA only takes exponential time. The 2EXPTIME-
hardness of CTL+[NFA] and thus also CTL+[VPA] model checking follows from
the 2EXPTIME-hardness of CTL[DFA, NFA] [1]. ⊓⊔

7.3 Pushdown Systems

For PDS, we can immediately lift the results for VPS when it comes to regular
languages since PDS can also trivially be synchronised with BA and therefore
we proceed as in the proofs of the corresponding statements for VPS to obtain:

Theorem 25. LTL[REG] model checking against PDS is EXPTIME-complete.

Theorem 26. CTL∗[REG] model checking against PDS is 2EXPTIME-complete.

Corollary 11. CTL+[DFA] model checking against PDS is in 2EXPTIME,
EXPTIME-hard and EXPTIME-complete for a fixed formula. CTL+[NFA] model
checking is 2EXPTIME-complete and EXPTIME-complete for a fixed formula.

However, going beyond regular languages makes the model checking problem
undecidable:

Theorem 27. LTL[VPL] model checking against PDS is undecidable,

Proof. In [1], it is shown that model checking a formula of type ϕ ≡ EFAtrue for
a particular VPA A against a PDS is undecidable and ϕ holds iff the LTL[VPL]
formula GAfalse does not hold. ⊓⊔

Corollary 12. CTLc[VPL] model checking against PDS is undecidable where
c ∈ {∗,+}.

Intuitively, the difference between PDS and VPS stems from the fact that VPS
can be synchronised with VPS, while PDS cannot.

15

8 Conclusion and Related Work

We introduced extended variants of LTL, CTL∗ and CTL+. We compared their
expressive power and provided tight bounds for their model checking and satisfi-
ability problems. We further showed that, in most cases, these problems are not
more costly than the corresponding problems for extended CTL or alternatively
the corresponding problems for the base logics without parameters, despite the
gain in expressive power. However, we also proved that the ability to use just two
FA modalities leads to undecidability when the language parameter includes the
deterministic context-free languages. Thus, the robust decidability of Extended
CTL is not preserved when the base logic is more expressive.

Our comprehensive complexity analysis for both satisfiability and model
checking explains why we did not restrict the language classes for the U and
R modality separately as for Extended CTL in [1]. Indeed, a close inspection of
the proofs shows that hardness of the model checking problem holds already if
either modality is equipped with the respective language class and the other with
no class at all, except for the case of CTL+[V PL] on VPS/PDS. Thus, a more
fine-grained analysis would not generally lead to improved complexity bounds.
The same holds for the satisfiability problem except for CTLc[VPL] where the
complexity might change if weaker (or deterministic) classes are used for the
release-operator. We leave these questions for future work.

For related work, we first mention the classical work extending temporal
logics by regular operators [23,12,5] which are automata or regular expressions.
Another approach are variants of Propositional Dynamic Logic [9,19,13]. These
approaches have been extended to VPL [4,21,16]. However, none of these works
analyse the model checking problem for different types of system models or
provide a generic framework for different language classes. Furthermore, to our
knowledge, CTL+ has not yet been analysed with regard to formal language
extensions and has not been checked against VPS or PDS. Variants of CTL∗ and
CTL+ obtained by restricting the paths referenced by existential and universal
quantifiers to sets defined by ω-languages have been considered in [15]. This
approach differs from ours in many respects: their logics collapse to CTL∗ and
CTL+ when the same label is given for every transition while ours do not, they
only consider the model checking problem for KT and they obtain decidable
model checking problems for ω-context-free languages, while the use of context-
free languages leads to undecidability for our logics.

References

1. Axelsson, R., Hague, M., Kreutzer, S., Lange, M., and Latte, M. Extended
computation tree logic. In LPAR (Yogyakarta) (2010), vol. 6397 of Lecture Notes
in Computer Science, Springer, pp. 67–81.

2. Bozzelli, L. Alternating automata and a temporal fixpoint calculus for visibly
pushdown languages. In CONCUR 2007 - Concurrency Theory, 18th International
Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings
(2007), pp. 476–491.

16

3. Bozzelli, L. Complexity results on branching-time pushdown model checking.
Theor. Comput. Sci. 379, 1-2 (2007), 286–297.

4. Bozzelli, L., and Sánchez, C. Visibly linear temporal logic. J. Autom. Reason-
ing 60, 2 (2018), 177–220.

5. De Giacomo, G., and Vardi, M. Y. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013 (2013),
pp. 854–860.

6. Demri, S., Goranko, V., and Lange, M. Temporal Logics in Computer Sci-
ence: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2016.

7. Emerson, E. A., and Halpern, J. Y. Decision procedures and expressiveness
in the temporal logic of branching time. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California,
USA (1982), pp. 169–180.

8. Faymonville, P., and Zimmermann, M. Parametric linear dynamic logic. In
Proceedings Fifth International Symposium on Games, Automata, Logics and For-
mal Verification, GandALF 2014, Verona, Italy, September 10-12, 2014. (2014),
pp. 60–73.

9. Fischer, M. J., and Ladner, R. E. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci. 18, 2 (1979), 194–211.

10. Johannsen, J., and Lange, M. Ctl+ is complete for double exponential time. In
Automata, Languages and Programming, 30th International Colloquium, ICALP
2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings (2003),
pp. 767–775.

11. Kozen, D. Lower bounds for natural proof systems. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977 (1977), pp. 254–266.

12. Kupferman, O., Piterman, N., and Vardi, M. Y. Extended temporal logic
revisited. In CONCUR 2001 - Concurrency Theory, 12th International Conference,
Aalborg, Denmark, August 20-25, 2001, Proceedings (2001), pp. 519–535.

13. Lange, M. Model checking propositional dynamic logic with all extras. J. Applied
Logic 4, 1 (2006), 39–49.

14. Laroussinie, F., Markey, N., and Schnoebelen, P. Model checking ctl+ and
FCTL is hard. In Foundations of Software Science and Computation Structures,
4th International Conference, FOSSACS 2001 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April
2-6, 2001, Proceedings (2001), pp. 318–331.

15. Latte, M., and Lange, M. Branching-time logics with path relativisation. J.
Comput. Syst. Sci. 80, 2 (2014), 375–389.

16. Löding, C., Lutz, C., and Serre, O. Propositional dynamic logic with recursive
programs. J. Log. Algebr. Program. 73, 1-2 (2007), 51–69.

17. Miyano, S., and Hayashi, T. Alternating finite automata on omega-words.
Theor. Comput. Sci. 32 (1984), 321–330.

18. Schwoon, S. Model checking pushdown systems. PhD thesis, Technical University
Munich, Germany, 2002.

19. Streett, R. S. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control 54, 1/2 (1982), 121–141.

20. Vardi, M. Y. Alternating automata: Unifying truth and validity checking for tem-
poral logics. In Automated Deduction - CADE-14, 14th International Conference

17

on Automated Deduction, Townsville, North Queensland, Australia, July 13-17,
1997, Proceedings (1997), pp. 191–206.

21. Weinert, A., and Zimmermann, M. Visibly linear dynamic logic. Theor. Com-
put. Sci. 747 (2018), 100–117.

22. Wilke, T. Ctl+ is exponentially more succinct than CTL. In Foundations of
Software Technology and Theoretical Computer Science, 19th Conference, Chennai,
India, December 13-15, 1999, Proceedings (1999), pp. 110–121.

23. Wolper, P. Temporal logic can be more expressive. Information and Control 56,
1/2 (1983), 72–99.

18

	Temporal Logics with Language Parameters

