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Abstract

This paper proves the decidability of the emptiness problem for two models which
recognize graphs: graph-walking automata, and tilings of graphs by star subgraphs
(star automata). Furthermore, it is proved that the non-emptiness problem for
graph-walking automata (that is, whether a given automaton accepts at least one
graph) is NEXP-complete. For star automata, which generalize nondeterministic
tree automata to the case of graphs, it is proved that their non-emptiness problem
is NP-complete.

1 Introduction

The main result of this paper is the decidability of the emptiness problem for graph-
walking automata and its computational complexity.

A graph-walking automaton is a model of a robot in a maze. It has finitely many
states, and it deterministically walks on graphs with labelled nodes and labelled edge
end-points. The automaton decides by which edge to move depending on the label of the
current node and on its current state. The automaton can also decide to accept or to
reject, and so it defines a graph language: the set of graphs it accepts.

Graph-walking automata were first introduced by Michael Rabin, who stated the con-
jecture that for each graph-walking automaton, even if it is additionally allowed to use
finitely many pebbles, there is a graph that it cannot fully explore. Budach [3] proved this
conjecture for graph-walking automata without pebbles. Later Fraigniaud et al. [4] gave
an easier proof of this fact. Rollik [11] proved that not only pebbles, but even co-operation
of several interacting automata would not help to traverse every graph, thus proving Ra-
bin’s conjecture. Kunc and Okhotin [8] showed that every graph-walking automaton can
be transformed to an automaton which halts on every input, to an automaton which ac-
cepts only at the initial node, and to a reversible automaton, which all accept the same
set of graphs. Later Martynova and Okhotin [9] reduced the number of states needed for
these transformations, and obtained asymptotically tight lower bounds.
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Overall, graph-walking automata have been studied for a long time, and it is natural
to ask whether their emptiness problem is decidable, and if it is, then in which complexity
class it lies.

There are several results on decidability and computational complexity of the empti-
ness problem for simpler kinds of finite automata that traverse an input object: for deter-
ministic two-way finite automata (2DFA), the emptiness problem is PSPACE-complete
(this follows from the work of Kozen [7, Lemma 3.2.3]), whereas for deterministic tree-
walking automata the analogous problem is EXP-complete, as proved by Bojańczyk [1].

Another kind of finite automata are nondeterministic automata that recognize a given
object by tiling it with neighbourhoods of states. Such are one-way nondeterministic
finite automata (NFA), for which the non-emptiness problem is NL-complete (this is one
of the classical problems presented by Jones [6]). For trees, such are nondeterministic tree
automata, whose emptiness problem is P-complete, as shown by Veanes [13].

Tiling models were also considered for graphs. Thomas [12] introduced graph accep-
tors : in this model, a graph is accepted, if it can be covered with tiles (subgraphs) from
a fixed finite set, so that each node is in the inner part of some tile, states in overlapping
tiles are the same, and some further constraints on the number of occurrences of every
tile hold. For this general model, Thomas proved undecidability of the emptiness problem
by recognizing the set of rectangular grids and simulating a Turing machine on the grids.
Thomas also considered elementary acceptors : a special case in which every tile is a star,
that is, a node with all its neighbours. For elementary acceptors, Thomas proved that
the language of grids cannot be recognized. However, the decidability of the emptiness
problem for elementary acceptors remains open.

Besides the emptiness problem for graph-walking automata, another problem consid-
ered in this paper is the emptiness problem for star automata, that is, for elementary
acceptors of Thomas without additional constraints on the number of occurrences of tiles.
Star automata are at the same time a special case of the model by Thomas, and a gener-
alization of nondeterministic tree automata to graphs.

In this paper, it is proved that the non-emptiness problem for graph-walking automata
is decidable, and furthermore, NEXP-complete, while for star automata this problem is
decidable and NP-complete.

The basic definitions of automata are given in Section 2. Graph-walking automata and
star automata are defined over a signature, which is an alphabet for graphs. A signature
defines finite sets of possible node labels and possible labels of edge end-points (called
directions). Also, for each node label, there is a set of directions used in all nodes with
this label.

The decidability of the emptiness problem and upper bounds on its complexity are
obtained for graph-walking automata and for star automata using similar methods. A
simpler problem called signature non-emptiness is considered first: does there exist at
least one graph over a given signature? Its decidability is proved in Section 3 by reducing
it to finding a non-negative integer solution to a certain system of linear equations. From
this, it is inferred that the non-emptiness problem for signatures can be solved in NP.
Furthermore, if a signature is non-empty, that is, if there is at least one graph over
this signature, then the number of nodes in the smallest such graph does not exceed
2mrmin{rr, k2r−2}, where m is the number of node labels in the signature, 2r is the
number of directions, and k is the maximum degree of a node.

It turns out that both checking non-emptiness of a graph-walking automaton and
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checking non-emptiness of a star automaton can be reduced to checking non-emptiness of
a certain signature, which is constructed for a given automaton.

For star automata, such a reduction is presented in Section 4. It gives a proof that the
non-emptiness problem for star automata is in NP. Also it gives an upper bound sn2kkn

2−1

on the number of nodes in the smallest accepted graph, where n is the number of states
in the star automaton, s is the number of stars, and k is the number of directions in the
signature.

In Section 5, a graph-walking automaton is reduced to a signature. The reduction
proves that its non-emptiness problem is in NEXP, as well as gives an upper bound
m4n(k+1)kk4n−1 on the number of nodes in the smallest accepted graph, where n is the
number of states, k is the number of directions, and m is the number of node labels.

In Section 6, all the above non-emptiness problems are proved to be hard in their
complexity classes. NP-hardness of the signature non-emptiness problem is obtained by
reducing 3-colourability to this problem. This also gives NP-hardness for non-emptiness
of star automata. To prove NEXP-hardness of non-emptiness of graph-walking automata,
it is shown that a graph-walking automaton can recognize the set of graphs containing
a rectangular grid of exponential size in the number of its states. On this grid, the
computation of a nondeterministic Turing machine is then simulated.

Note that the complexity classes for related problems, such as whether a graph-walking
automaton accepts all graphs over its signature (the universality problem), or whether the
intersection of languages of two automata is empty, can be inferred from the result for the
non-emptiness problem. Indeed, since every graph-walking automaton can be transformed
to an automaton that halts on every input, and the transformation given by Kunc and
Okhotin [8] can be done in polynomial time, the emptiness problem for graph-walking
automata is equivalent to the universality problem. As for the intersection emptiness
problem, Martynova and Okhotin [10] obtained a transformation for the intersection of
two graph-walking automata, which can be done in polynomial time too. Thus, the
universality problem and the intersection emptiness problem for graph-walking automata
are both co-NEXP-complete.

2 Graph-walking and star automata

In this section, graph-walking automata and star automata are formally defined. All defi-
nitions for graph-walking automata are inherited from the paper by Kunc and Okhotin [8].
Star automata are a variant of elementary acceptors by Thomas [12] without constraints
on the number of tiles, and are given in a different notation for uniformity with graph-
walking automata.

Graph-walking automata are defined over a signature. A signature specifies the sets of
labels of nodes and edge end-points in the graphs, and thus defines the set of all labelled
graphs that can be used as inputs for a graph-walking automaton.

Definition 1 ([8]). A signature S is a quintuple S = (D,−,Σ,Σ0, (Da)a∈Σ), where:

• D is a finite set of directions, which are labels attached to edge end-points;

• a bijection − : D → D provides an opposite direction, with −(−d) = d for all d ∈ D;

• Σ is a finite set of node labels;
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• Σ0 ⊆ Σ is a subset of possible labels of the initial node;

• Da ⊆ D, for every a ∈ Σ, is the set of directions used in nodes labelled with a.

Graphs are defined over a signature like strings are defined over an alphabet.

Definition 2. A graph over a signature S = (D,−,Σ,Σ0, (Da)a∈Σ) is a quadruple
(V, v0,+, λ), where:

• V is a finite set of nodes;

• v0 ∈ V is the initial node;

• edges are defined by a partial function +: V ×D → V , such that if v+ d is defined,
then (v + d) + (−d) is defined and equals v; also denote v − d = v + (−d);

• node labels are assigned by a total mapping λ : V → Σ, such that

i. v + d is defined if and only if d ∈ Dλ(v), and

ii. λ(v) ∈ Σ0 if and only if v = v0.

The set of all graphs over the signature S is denoted by L(S).

The function + defines the edges of the graph. If u+d = v, then the nodes u and v in
the graph are connected with an edge with its end-points labelled with directions d (on
the side of u) and −d (on the side of v). Multiple edges and loops are possible: if v+d = v
and d 6= −d, then it is a loop at the node v with two ends labelled with directions d and
−d. If v + d = v and d = −d, then it is a loop at the node v with one end, labelled with
d.

A graph-walking automaton is defined similarly to a 2DFA, with an input graph instead
of an input string.

Definition 3. A (deterministic) graph-walking automaton (GWA) over a signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• F ⊆ Q× Σ is a set of acceptance conditions;

• δ : (Q× Σ) \ F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da for
all q and a where δ is defined.

When an automaton operates on a graph, at every moment it knows its current state
and sees only the label of the current node. The transition function gives the new state
and the direction to one of the neighbouring nodes, in which the automaton moves. If
the current pair of a state and a node label is in F , then the automaton accepts. If the
pair is not in F and no transition is defined for it, then the automaton rejects. It may
also continue walking indefinitely, it this case it is said to loop.

Formally, an automaton’s configuration on a graph G = (V, v0,+, λ) is a pair (q, v),
with q ∈ Q and v ∈ V . A computation of an automaton A on a graph G is the following
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uniquely defined sequence of configurations. The computation starts in the initial config-
uration (q0, v0). For every configuration (q, v) in the computation, if δ(q, λ(v)) is defined
and equals (q′, d), then the next configuration after (q, v) is (q′, v+d). Otherwise, the con-
figuration (q, v) is the last one in the computation; if (q, λ(v)) ∈ F , then the automaton
accepts in the configuration (q, v), otherwise it rejects. If the computation is an infinite
sequence, then the automaton is said to loop.

A graph-walking automaton A defines the language L(A), this is the set of graphs it
accepts.

The methods used in this paper to prove the decidability of the emptiness problem
for graph-walking automata and to determine its computational complexity can also be
applied to another related model. These are star automata, which are defined as follows.

Definition 4. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature and let some linear order
be fixed on the set of directions D. A star automaton A∗ over the signature S is a pair
(Q, T ), where

• Q is a finite set of states;

• T is a finite set of stars, where a star is a sequence of the form (a, q, q1, . . . , q|Da|),
where a is a node label, q is used for the state in the current node, q1, . . . , qDa are
used for states in the neighbours of the current node in all directions from Da.

A graph G is accepted by the star automaton A∗, if there is a choice of states (q(v))v∈V
in all nodes such that the following condition holds for each node v ∈ V . Let a be the
label of the node v, let d1, . . . , dDa be the directions from Da listed in the order. Then, the
star in the node v is the sequence s(v) = (a, q(v), q(v + d1), . . . , q(v + d|Da|)). And every
such star should belong to the set of automaton’s stars T . Such a sequence (q(v))v∈V is
called a computation of the star automaton A∗ on the graph G. There can be several
computations.

3 The non-emptiness problem for signatures is in NP

In this section, the decidability of the non-emptiness problem for signatures is proved;
more precisely, an NP-algorithm that solves this problem is constructed. Furthermore,
for non-empty signatures, an upper bound on the number of nodes in the minimal graph
over a given signature is obtained.

It turns out that to prove that a signature is non-empty it is not necessary to find an
actual graph. It is sufficient to find only a collection of nodes without the edge structure
of the graph; such a collection is described by a vector with every coordinate giving the
number of nodes with a certain label. A vector can be turned into a graph if it satisfies
a few conditions.

Definition 5. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature. A vector of non-negative
integers (xa)a∈Σ, where xa is the number of nodes with the label a, is called balanced, if
it satisfies the following two balance conditions:

1. an initial node exists and is unique:
∑

a0∈Σ0
xa0 = 1,
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2. for each direction d ∈ D, such that d 6= −d, all nodes together need the same
number of edges by d and by −d:∑

a∈Σ: d∈Da

xa =
∑

a∈Σ: −d∈Da

xa.

The next lemma shows that every balanced vector gives rise to a graph, and hence
one can work with balanced vectors instead of graphs.

Lemma 1. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature. Let xa, for each node label
a ∈ Σ, be a non-negative integer.

A graph over the signature S with exactly xa nodes labelled with a, for all a ∈ Σ, exists
if and only if the vector (xa)a∈Σ is balanced.

Furthermore, there is an algorithm that, given a signature S and a balanced vector
(xa)a∈Σ, constructs a graph over S with exactly xa nodes with each label a ∈ Σ, and does
so in time linear in the sum of sizes of the signature and of the constructed graph.

Proof. For every graph G over S, let (xa)a∈Σ be the vector of quantities of nodes for all
labels. It is claimed that the vector (xa)a∈Σ is balanced. The first balance condition holds,
because every graph has exactly one initial node. Now to the second condition. Let d ∈ D
be one of the directions, with d 6= −d. Then, every edge v + d = u in the graph links the
two edge end-points: in the direction d at the node v, and in the direction −d at the node
u. Thus, the total number

∑
a∈Σ: d∈Da

xa of edge end-points labelled with d in the graph
equals the number

∑
a∈Σ: −d∈Da

xa of edge end-points labelled with −d, and the second
balance condition holds.

Conversely, let (xa)a∈Σ be a balanced vector. A graph G = (V, v0,+, λ) with exactly
xa nodes for each node label a is constructed by the following algorithm.

• First, the set of nodes V and the labelling function λ are defined: for each node
label a ∈ Σ in the signature, xa new nodes labelled with a are added to the set V .

• The initial node is the node with a label from the set Σ0, the first balance condition
states that such a node exists and is unique.

• Now the edges shall be defined so, that each node v labelled with a will have edges
exactly in the directions from Da. For each direction d ∈ D, let Id be the set of all
nodes v with d ∈ Dλ(v).

For such directions d ∈ D, that d = −d, the algorithm makes loops: for every node
v ∈ Id it adds a loop v + d = v.

For each pair of opposite directions d 6= −d, the algorithm takes nodes from Id
and I−d, and links them with (d,−d)-edges. By the second balance condition,
|Id| = |I−d|, thus, every node gets all the edges it needs.

Now, to check whether a signature is non-empty, that is, whether there is at least one
graph over this signature, one can just check whether there is at least one balanced vector
for this signature.
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For a signature S = (D,−,Σ,Σ0, (Da)a∈Σ), balanced vectors (xa)a∈Σ with the minimal
possible sum of coordinates will be called minimal balanced vectors.

How large could be the sum of the coordinates of a minimal balanced vector? The
next theorem gives an upper bound on this sum, that is, on the minimal number of nodes
in the graph over a signature.

Theorem 1. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a non-empty signature, and assume that
|D| > 2 and that Da is non-empty for all a ∈ Σ. Let r = 1

2
|D|, m = |Σ| and k =

maxa∈Σ |Da|.
Then, there is a graph over the signature S with at most 2mrmin{rr, k2r−2} nodes.

Note that the bound 2mrk2r−2 can be useful for signatures with many directions, but
with a small maximum degree of nodes. Later on, such signatures will be produced by the
reductions of the emptiness problems for graph-walking automata and for star automata
to the emptiness problem for signatures.

First, the conditions and the claims of Theorem 1 are reformulated in the language of
linear algebra.

By Lemma 1, to prove Theorem 1 it is sufficient to prove that there is such a balanced
vector (xa)a∈Σ that

∑
a∈Σ xa 6 2mrmin{rr, k2r−2}.

Let n be the number of pairs of opposite directions {d,−d}, with d,−d ∈ D and
d 6= −d, in the signature S. It is convenient to rewrite n linear equations in the second
balance condition as one vector equation. Let {d1,−d1, . . . , dn,−dn} be all such directions
in D that d 6= −d, here the directions di and −di are opposite, for i = 1, . . . , n.

For each node label a ∈ Σ, the contribution of one node labelled with a to the balance
of directions in a graph is given by a column vector va of height n. The i-th element of
the vector va, for i ∈ {1, . . . , n}, is defined as follows:

va,i =


1 if di ∈ Da,−di /∈ Da

−1 if − di ∈ Da, di /∈ Da

0 if di /∈ Da,−di /∈ Da or di ∈ Da,−di ∈ Da

(1)

Thus, the i-th element of the vector va is the contribution of an a-labelled node to the
difference of the number of directions di and −di in a graph.

Then, the second balance condition for the vector of quantities of labels (xa)a∈Σ can
be written in the following form: ∑

a∈Σ

xava = 0

If n = 0, then all directions are of the form d = −d, and one initial node with the
loops is a correct graph. Let n > 1. As n 6 r, it is sufficient to prove an upper bound
2mnmin{nn, k2n−2}. Let (xa)a∈Σ be a balanced vector with the minimal possible sum
of the coordinates. Among the initial node labels, only one has a non-zero coefficient.
Fix this initial label a0 and let the vector −va0 be denoted by b. Then, the coefficients
for other initial labels are zeros and

∑
a∈(Σ\Σ0) xa =

(∑
a∈Σ xa

)
− 1. Then, to prove the

theorem, it is sufficient to find such a non-negative integer solution (xa)a∈(Σ\Σ0) to the
equation

∑
a∈(Σ\Σ0) xava = b, that

∑
a∈(Σ\Σ0) xa 6 2mnmin{nn, k2n−2} − 1.

Some vectors va for different non-initial labels can coincide. Let v1, . . . , v` be all vectors
from the set { va | a ∈ (Σ \ Σ0) } without repetitions and without a zero vector. Note
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that ` < m. Then, it is sufficient to find a non-negative integer solution (xi)
`
i=1 to the

equation
∑`

i=1 xivi = b, with
∑`

i=1 xi 6 2`nmin{nn, k2n−2}.
What is known about vectors v1, . . . , v`? These are column vectors of height n, with

all elements in {0, 1,−1}. Each vector has at most k non-zero elements, since each node
label a ∈ Σ has at most k directions in Da. To apply the methods of linear algebra,
these vectors are considered over the field of real numbers: v1, . . . , v` ∈ Rn. Therefore,
Theorem 1 is reduced to the following lemma.

Lemma 2. Let v1, . . . , v` ∈ {0, 1,−1}n be distinct non-zero column vectors of height n,
where n > 1; let b ∈ {0, 1,−1}n be a column vector. Let k be the maximum number of
non-zero elements in the vector. Then, if the linear equation

∑`
i=1 xivi = b has at least

one non-negative integer solution, then there exists such a non-negative integer solution
(xi)

`
i=1, that

∑`
i=1 xi 6 2`nmin{nn, k2n−2}.

The proof of Lemma 2 will use a classical bound on matrix determinants, as well as
its corollaries. Hadamard obtained the following upper bound for matrices of −1 and 1.

Theorem A (Hadamard [5]). Let n > 1 be an integer and let A be an n × n matrix,
with all elements in {−1, 1}. Then, |detA| 6 n

n
2 .

Hadamard also proved that if n is a power of 2, then the bound n
n
2 is achieved on

some matrices.
The upper bound by Hadamard can be generalized from the case of elements in {−1, 1}

to any real numbers with absolute value not greater than 1. This is established in the
following corollary. Also, I include a trivial upper bound for matrices with a small number
of non-zeros in columns.

Corollary 1. Let n > 1 be an integer and let A be an n × n matrix, with all elements
real and not exceeding 1 in absolute value. Then, |detA| 6 n

n
2 .

If for some integer k, with k > 1, it is known that each column in the matrix A, maybe
except one, has at most k non-zero elements, then |detA| 6 kn−1.

Proof. First, the upper bound n
n
2 is proved for matrices without conditions on the number

of non-zero elements. Among all n×n matrices with all elements real and not exceeding 1
in absolute value, let A be the one with the maximum absolute value of the determinant.
It can be assumed that detA > 0, because otherwise one can multiply the first column by
−1 and negate the determinant. The determinant of A is given by the following formula.

detA =
∑
σ∈Sn

(−1)sign(σ)

n∏
i=1

ai,σ(i).

If all elements of A are in {−1, 1}, then |detA| 6 n
n
2 by the bound by Hadamard (Theo-

rem A). Now let aij be any element in A with absolute value less than 1. The formula for
the determinant can be represented as detA = baij + c, where b and c do not depend on
aij. If b is positive, then aij can be changed to 1, making the determinant of A greater;
otherwise, aij can be replaced with −1, without decreasing the determinant. Thus, all
elements with absolute value less than 1 can be replaced one by one without decreasing
the determinant, and so the Hadamard’s bound |detA| 6 n

n
2 holds for the matrix A.

Now to the second part of the corollary. Let the matrix A have at most k non-zero
elements in each column, maybe except one column. By induction on n it is proved that
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the determinant of every such matrix is at most kn−1. For a 1×1 matrix, the determinant
does not exceed 1 in absolute value. For an n×n matrix, with n > 1, as the absolute value
of the determinant does not change when the columns in the matrix are permuted, one can
assume that the last column has the greatest number of non-zero elements. By expanding
along the first column, the determinant equals a sum of not more than k determinants of
(n − 1) × (n − 1) matrices with the same properties, which by induction hypothesis are
not greater than kn−2 in absolute value. And these matrices are taken with coefficients
not greater than 1 in absolute value. Thus, |detA| 6 k · kn−2 = kn−1.

The upper bounds on determinants are used to estimate the coefficients in linear
equations.

Lemma 3. Let n > 1 be an integer, let v1, . . . , vt ∈ {0, 1,−1}n, with t > 1, be column
vectors of height n, which are linearly independent in Rn. Let k be the maximum number
of non-zero elements in a vector, and let N = min{nn

2 , kn−1}. Let some vector u ∈ Rn,
with the maximum absolute value of its elements c, be represented as a linear combination:
α1v1 + . . .+ αtvt = u.

Then, |αi| 6 cN, for all i ∈ {1, . . . , t}. Furthermore, if all elements in the vector u
are integers, then all coefficients αi, for i ∈ {1, . . . , t}, are rational, and after multiplying
the equation by their least common denominator one obtains the equation β1v1 + . . . +
βtvt + βt+1u = 0, with all coefficients βi, for i ∈ {1, . . . , t+ 1}, integer and not exceeding
cN in absolute value.

Proof. If u is a zero vector, then all coefficients in the linear combination are zeros. Now
let u be not a zero vector. The vectors v1, . . . , vt are linearly independent, so the system
of equations x1v1 + . . .+xtvt = u has at most one solution. Thus, the solution (α1, . . . , αt)
is unique. To solve this system of equations using Cramer’s rule, one needs the matrix of
coefficients V = (v1, . . . , vt) to be square.

Since the vectors v1, . . . , vt are linearly independent, t 6 n. First, consider the case of
t < n. The matrix (v1, . . . , vt, u) has the column rank t, because the columns v1, . . . , vt
are linearly independent, and the column u is their linear combination. It is known that
the column rank equals the row rank, so there are t linearly independent rows in the
matrix (V, u), all other rows are their linear combinations. That is, in the system of
equations x1v1 + . . . + xtvt = u, all equations are linear combinations of some t linearly
independent equations. Taking only these t linearly independent equations one obtains a
system x1v

′
1 + . . . + xtv

′
t = u′, with all vectors of height t. The set of solutions has not

changed, so (α1, . . . , αt) remains the only solution. Let V ′ = (v′1, . . . , v
′
t) be the matrix of

coefficients of the new system of equations, it is a non-degenerate square matrix. If t = n,
then the matrix V is already square and non-degenerate; in this case let V ′ = V , u′ = u.

Now the new system of equations can be solved by Cramer’s rule. Let V ′i =
(v′1, . . . , v

′
i−1, u

′, v′i+1, . . . , v
′
t) be the matrix, obtained from V ′ by replacing of the i-th

column with the column vector u′, for each i = 1, . . . , t. Then, Cramer’s rule claims that

the unique solution to the system is αi =
detV ′

i

detV ′ , for i = 1, . . . , t.
Now one needs to estimate the determinants of the matrices V ′ and V ′i , for i = 1, . . . , t.

The matrix V ′ has all its elements in {0, 1,−1}. Also, each column of V ′ has at most
k non-zeros. So Corollary 1 gives |detV ′| 6 min{nn

2 , kn−1} = N . Since all elements
of V ′ are integers and the matrix is non-degenerate, detV ′ is a non-zero integer. Now
consider the matrix V ′i , for some i = 1, . . . , t. Let V ′′i be the matrix obtained from V ′i by
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dividing the i-th column, which equals u, by c. Then, all elements of V ′′i are not greater
than 1 in absolute value. And each column has at most k non-zero elements, maybe,
except the i-th column. By Corollary 1, the determinant of V ′′i is estimated as follows:
|detV ′′i | 6 min{nn

2 , kn−1} = N . Thus, the determinant of the matrix V ′i , which has one
column multiplied by c, is bounded like this: |detV ′i | 6 cN .

So, |αi| = |detV ′
i

detV ′ | 6 |detV ′i | 6 cN , for all i = 1, . . . , t. If all elements of the vector u are
integers, then all the determinants detV ′i are integers as well. Then all αi, for i = 1, . . . , t,
are rational. And after muliplying the equation by their least common denominator,
which is not greater than |detV ′| in absolute value, one gets all new coefficients βi, for
i = 1, . . . , t + 1, not greater in absolute value than max{|detV ′1 |, . . . , |detV ′t |, |detV ′|} 6
cN .

Now it is time to prove the lemma, to which Theorem 1 has been reduced.

Proof of Lemma 2. Let N = min{nn
2 , kn−1} be the upper bound from Corollary 1 on the

determinants of n× n matrices with real elements not exceeding 1 in absolute value, and
with at most k non-zero elements in each column, maybe, except one.

Let (x1, . . . , x`) be a non-negative integer solution to the system of linear equa-
tions

∑`
i=1 xivi = b, with the minimum sum

∑`
i=1 xi, and among these, with the min-

imum number of coordinates greater than N . The goal is to prove, that
∑`

i=1 xi 6
2`nmin{nn, k2n−2}.

Step 1 is to prove that all vectors vi, for i = 1, . . . , `, with xi > N , are linearly
independent over the field R.

For the sake of a contradiction, suppose that these vectors are linearly dependent.
Then a linear dependence involving the least number of vectors is chosen. The vectors
v1, . . . , v` are rearranged, so that the vectors from the dependence go in the beginning: let
v1, . . . , vt+1 be the vectors from this minimal linear dependence. It is known that t > 2,
because all vectors v1, . . . , v` are distinct and there is no zero vector among them.

The vectors v1, . . . , vt are linearly independent, whereas v1, . . . , vt+1 are linearly de-
pendent. Then, the vector vt+1 is uniquely represented as a linear combination of the
others: vt+1 = α1v1 + . . .+ αtvt, where α1, . . . , αt ∈ R.

The vector vt+1 has all its elements integer and the maximum absolute value of its
elements is 1; the vectors v1, . . . , vt satisfy all conditions of Lemma 3. Thus, by Lemma 3,
all coefficients α1, . . . , αt are rational, and after multiplying the linear combination by their
least common denominator one gets the new linear combination β1v1 + . . .+βt+1vt+1 = 0,
with all coefficients integer and not exceeding N in absolute value.

Since the chosen linear dependence has the minimal number of vectors, βi 6= 0, for all
i = 1, . . . , t + 1. If

∑t+1
i=1 βi < 0, then the dependence β1v1 + . . . + βt+1vt+1 = 0 can be

multiplied by −1, so one can assume, that
∑t+1

i=1 βi > 0.
Consider the case when

∑t+1
i=1 βi > 0. Then, let (y1, . . . , y`) be a vector defined by

yi = xi−βi, for i = 1, . . . , t+1, and yi = xi, for i = t+2, . . . , `. Then,
∑`

i=1 yivi = b, that is,
(y1, . . . , y`) is another solution to the system of equations. All yi are non-negative integers,
because x1, . . . , xt+1 are greater than N , and β1, . . . , βt+1 are integer and not greater than
N in absolute value. And,

∑`
i=1 yi <

∑`
i=1 xi. This contradicts the minimality of the sum

of the coordinates in the solution (x1, . . . , x`).
Now let

∑t+1
i=1 βi = 0. Then one can similarly subtract (β1, . . . , βt+1) from (x1, . . . , xt+1)

several times until some coefficient among the first t + 1 becomes not greater than N .
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Such subtractions will not break the equation, will not make any coordinate negative, will
not change the sum of the coordinates in the solution, but will decrease the number of
coordinates which are greater than N . This contradicts the minimality of the number of
such coordinates among the solutions with the minimal sum of the coordinates.

Step 1 is done. Now it is known that all vectors among v1, . . . , v` which have the corre-
sponding coefficients in the solution (x1, . . . , x`) greater than N are linearly independent.
Let these vectors be put first, so that they are v1, . . . , vt.

Step 2 is to prove that x is the desired solution, that is, that
∑`

i=1 xi 6
2`nmin{nn, k2n−2}.

The sum to be estimated is:
∑`

i=1 xi =
∑t

i=1 xi +
∑`

i=t+1 xi. The second sum is

bounded by
∑`

i=t+1 xi 6 (`− t)N , as it has all coefficients not greater than N . If the first
sum is non-empty (t > 0), then the first t variables are bounded as follows. The system of
equations is rewritten in the following way: x1v1 + . . .+ xtvt = b− (xt+1vt+1 + . . .+ x`v`).
Here the vectors v1, . . . , vt are linearly independent, whereas the sum on the right-hand
side is a column vector of height n, with all elements not greater than `N in absolute value
(if t > 0, then

∑`
i=t+1 xi < `N). By applying Lemma 3, with u = b−(xt+1vt+1+. . .+x`v`),

one obtains |xi| 6 `N2, for all i = 1, . . . , t. As t 6 n,

∑̀
i=1

xi =
t∑
i=1

xi +
∑̀
i=t+1

xi 6 t`N2 + (`− t)N 6 n`N2 + `N 6

6 2`nN2 = 2`nmin{nn, k2n−2}.

Theorem 1, which has just been proved, gives the upper bound 2mrmin{rr, k2r−2} on
the number of nodes in the minimal graph over a non-empty signature, which depends
on its parameters: on the number of node labels m = |Σ|, on the number of directions
2r = |D| and on the maximum possible degree of a node k = max{ |Da| | a ∈ Σ }.
This bound, and also Lemma 1, that allows one to work with balanced vectors instead
of graphs, help to construct an NP-algorithm, that solves the non-emptiness problem for
signatures.

Theorem 2. There is an NP-algorithm that takes a signature as an input and determines
whether there is at least one graph over this signature or not.

Proof. The size of an input S = (D,−,Σ,Σ0, (Da)a∈Σ) is not less than |Σ| + |D|. In the
degenerate case of |D| 6 1, it is sufficient to check for one-node graphs. Any initial labels
a0 with Da0 empty form correct graphs; any such non-initial labels can be omitted.

With the trivial cases removed, by Theorem 1, if a graph over the signature S exists,
then there is a graph with at most exponentially many nodes in |D| and |Σ|. Then, by
Theorem 1 and by Lemma 1, the signature is non-empty if and only if there exists a
balanced vector (xa)a∈Σ, with the sum of coordinates not greater than this exponential
upper bound.

Thus, the nondeterministic algorithm guesses a vector (xa)a∈Σ, with sum of the coor-
dinates not greater than exponential, and writes it down in polynomial time. It remains
to check whether the guessed vector is balanced: that is, whether only one label among
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the initial node labels has a non-zero coefficient, and whether for each pair of opposite
directions (d,−d) ∈ D, with d 6= −d, the following equation holds:∑

a∈Σ: d∈Da

xa =
∑

a∈Σ: −d∈Da

xa.

This can all be checked in polynomial time, because the number of terms in these sums
is polynomial, and each term is not greater than exponential.

If the algorithm guessed the vector, which is balanced, then the signature is non-empty
and the algorithm answers “yes”. Otherwise, it answers “no”.

In fact, the non-emptiness problem for signatures is NP-complete, this is shown later
in Section 6.

4 Reducing a star automaton to a signature

This section proves the decidability of the emptiness problem for star automata. An
NP-algorithm is constructed, which, for a given star automaton, determines whether it
accepts at least one graph. Moreover, an upper bound on the number of nodes in the
smallest accepted graph is proved in this section.

It turns out that the emptiness problem for star automata can be reduced in polyno-
mial time to the emptiness problem for signatures, which was proved to be in NP.

Theorem 3. There exists a polynomial-time algorithm that takes as an input a signature
S = (D,−,Σ,Σ0, (Da)a∈Σ) with k directions and a star automaton A∗ = (Q, T ) over S
with n states and s stars, and computes a signature S ′ = (D′,−,Σ′,Σ′0, (D′a′)a′∈Σ′) with
kn2 directions and with s node labels, with the following property. There exists a bijective
function f that maps a graph G over S and a computation C = (q(v))v∈V of the automaton
A∗ on this graph to a graph G′ = f(G,C) over the signature S ′, which has the same set
of nodes and the same edge structure as the graph G (the only difference between G and
G′ is in node labels and in directions).

Proof. Node labels and directions of the new signature S ′ will contain information on
old node labels and directions, and also some additional information that encodes the
computation of the star automaton A∗ on a graph. More precisely, node labels will
additionally encode stars in nodes that appear in the computation, whereas directions
will encode the states of the star automaton at the two ends of an edge.

The new signature S ′ is constructed as follows.

• Node labels are all the stars of the automaton A∗, that is, Σ′ = T .

• Initial node labels are all the stars of A∗, in which the first component is an initial
node label from the old signature, that is, Σ′0 = { (a, q, q1, . . . , q|Da|) ∈ T | a ∈ Σ0 }.

• The set of directions is D′ = D ×Q×Q, where the direction (d, q1, q2) means that
in the old graph the direction d was here, and in the encoded computation the state
at the current node is q1 and the state at the opposite end of the edge is q2.

• The relation of the opposite direction is: −(d, q1, q2) = (−d, q2, q1), for all (d, q1, q2) ∈
D′.
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Figure 1: Left: computation of a star automaton A∗ on a graph G. Right: augmented
graph G′ that encodes both G and this computation.

• For each star t = (a, q, q1, . . . , q|Da|) ∈ Σ′, where d1, . . . , d|Da| are ordered directions
from Da, the set of directions for the node label t is defined by D′t = { (di, q, qi) |
i = 1, . . . , |Da| }.

Such a signature S ′ can be computed from S and A∗ in polynomial time. There are
exactly kn2 directions and exactly s node labels in the signature S ′.

It will be proved now, that there is a one-to-one correspondence between graphs over S ′

and pairs (G,C) of a graph over S and a computation of A∗ on this graph. An example of
such a correspondence is shown in Figure 1. For a star automaton A∗ with stars (a, q, p, p),
(a, p, p, q), (b, p, q, p, q), (a0, q, p), its computation on a graph G is given on the left. On
the right, there is a graph G′ that encodes stars in node labels and states at the two ends
of an edge in directions.

Let G = (V, v0,+, λ) be a graph over S, and let C = (q(v))v∈V be a computation of the
star automaton A∗ on this graph. Then the graph f(G,C) = G′ = (V ′, v′0,+, λ

′) over the
signature S ′ that encodes the graph G and the computation C is constructed as follows.

• The set of nodes and the initial node are the same: V ′ = V , v′0 = v0.

• The edges in the graph G′ connect the same nodes as in G, but all the directions
are augmented with the states at the ends of an edge. If v + d = u in the graph G,
then v+ (d, q(v), q(u)) = u in the graph G′, and these are all edges in G′. Then, the
ends of each edge are labelled with opposite directions.

• The node labels in G′ are stars in nodes. For each node v ∈ V with some label
λ(v) = a, the node label in the graph G′ is λ′(v) = (a, q(v), q(v+d1), . . . , q(v+d|Da|)),
where d1, . . . , d|Da| are ordered directions from Da. Then, λ′(v) ∈ T = Σ′, because
(q(v))v∈V is a computation. And the directions in G′, used at the node v, are all
the directions from Dλ′(v). And only the initial node has an initial label.
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This transformation maps different pairs (G,C) to different graphs G′, because no
information is lost. Conversely, for each graph G′ over the signature S ′ there is a unique
corresponding pre-image (G,C), where G is obtained by dropping some information from
all labels, and node labels explicitly give states and stars in a computation. Each edge in
G′ checks that the states at the nodes it connects are consistent with the stars.

Now the results proved for signatures in the previous section will be transferred to
star automata.

Corollary 2. The non-emptiness problem for star automata, that is, whether a given star
automaton accepts at least one graph or not, can be solved in NP.

Proof. By Theorem 3, for a star automaton A∗ that works over some signature S, one
can construct in polynomial time such a signature S ′ of polynomial size, that graphs over
S ′ are bijectively mapped to the computations of A∗ on graphs over S.

A graph is accepted by the star automaton A∗ if there exists at least one computation
of A∗ on it. Thus, to check whether the star automaton is non-empty, one can just
check whether the signature S ′ is non-empty. By Theorem 2, the latter can be done in
nondeterministic polynomial time.

The upper bound on the number of nodes in the minimal graph over a signature
(Theorem 1) can be transferred to star automata as well.

Corollary 3. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature with k > 2 directions, and
with |Da| > 1 for all a ∈ Σ. Let A∗ = (Q, T ) be a star automaton with n states and with
s stars over this signature. If A∗ accepts at least one graph, then the accepted graph with
the minimal number of nodes has at most sn2kkn

2−1 nodes.

Proof. Let A∗ accept at least one graph. The signature S ′ is constructed from the signa-
ture S and from the star automaton A∗ by Theorem 3. The graphs over S ′ correspond to
the computations of A∗ on graphs over S with the same number of nodes.

Then, the number of nodes in the minimal accepted graph for A∗ equals the number
of nodes in the minimal graph over the signature S ′. This signature has kn2 direc-
tions and s node labels, the maximum degree of a node does not exceed k (because the
function f from Theorem 3 does not change the edge structure of a graph). Then, The-
orem 1 gives the following upper bound on the number of nodes in the minimal graph:

2s1
2
kn2 min{(1

2
kn2)

1
2
kn2

, kkn
2−2}. It can be bounded by a simpler expression:

2s
1

2
kn2 min

{
(
1

2
kn2)

1
2
kn2

, kkn
2−2
}
6 skn2kkn

2−2 = sn2kkn
2−1.

5 Reducing a graph-walking automaton to a signa-

ture

In Section 4, the emptiness problem for star automata was reduced to the emptiness
problem for signatures. In this section such a reduction is made for the emptiness problem
for graph-walking automata.
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Note that whereas a computation of a star automaton is a way to choose states in
nodes, and the graph is accepted by a star automaton if there is at least one computation
on this graph, graph-walking automata are different. In a graph-walking automaton, the
computation on a graph is a sequence of configurations (q, v) of the automaton on a
graph, where q is the current state, and v is the node which the automaton visits at the
moment. This sequence in defined uniquely for each graph. The graph is accepted if the
computation is accepting, that is, ends with an accepting configuration.

One way to reduce a graph-walking automaton to a signature is to simulate it by a
star automaton. The next theorem shows that if some set of graphs is recognized by a
graph-walking automaton, then this set of graphs can be defined by some star automaton.
There is an analogous result for trees: star automata on trees are nondeterministic tree
automata, graph-walking automata on trees are deterministic tree-walking automata, and,
as noted by Bojańczyk and Colcombet [2], the inclusion of the class of languages defined
even by nondeterministic tree-walking automata into the class defined by tree automata
is a folklore result.

Theorem 4. For every n-state graph-walking automaton A = (Q, q0, F, δ) over some
signature S = (D,−,Σ,Σ0, (Da)a∈Σ) with k directions and m node labels, there exists
a star automaton A∗ = (P, T ) with (k + 1)n states and at most m(k + 1)n(k+1) stars,
defined over the same signature S, which accepts exactly the same graphs as A. The star
automaton A∗ has size exponential in the size of A and is constructed in exponential time.

This theorem is given without a proof, because the next theorem gives a direct reduc-
tion of a graph-walking automaton to a signature that provides a better upper bound on
the number of nodes in the minimal accepted graph.

Theorem 5. There exists an algorithm that takes as an input some n-state graph-walking
automaton A = (Q, q0, F, δ) over some signature S = (D,−,Σ,Σ0, (Da)a∈Σ) with k di-
rections and m node labels, and computes such a signature S ′ = (D′,−,Σ′,Σ′0, (D′a′)a′∈Σ′)
with k4n directions and with not more than m4nk node labels, that the following condition
holds.

There exist two functions f and g. The function f : L(A) → L(S ′) injectively
maps graphs over S, accepted by the automaton A, to graphs over S ′, and the function
g : L(S ′) → L(A) is a surjection, such that g(f(G)) = G. If G′ = f(G) or G = g(G′),
then the graphs G and G′ have the same sets of nodes and the same edge structure, only
node labels and directions are different.

The size of the resulting signature is exponential in the size of the input, and the
algorithm works in time exponential in the size of the input.

Proof. New node labels and directions of the signature S ′ encode node labels and di-
rections of the signature S and some additional information about the behavior of the
automaton A in the vicinity of the node or edge end-point.

The new directions are D′ = D × 2Q × 2Q = { (d,Qin, Qout) | d ∈ D; Qin, Qout ⊆ Q }.
Every new direction (d,Qin, Qout) is an old direction d with two sets of states attached:
Qin encodes the states in which the automaton came in its computation on a graph to
the current edge end-point moving in the direction −d, whereas Qout consists of states, in
which the automaton comes to the opposite end of the edge, moving in the direction d.

The opposite direction is −(d,Qin, Qout) = (−d,Qout, Qin), for each (d,Qin, Qout) ∈ D′.
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Figure 2: Left: the accepting computation of some graph-walking automaton A on some
graph G over the signature S. Right: the graph G′ over the signature S ′ that encodes the
graph and the accepting computation.

Each node label in S ′ contains an old node label and all information about the new
directions in the node. But not every combination of new directions at a node makes a
new label. The goal is to ensure that each graph over S ′ encodes a graph over S that is
accepted by A, along with an accepting computation of A on this graph. For this, some
combinations that cannot appear in accepting computations of the automaton A will be
left out.

The set of node labels Σ′ is a subset of

Σ̂′ = { (a,E) | a ∈ Σ, E = {(d,Qin,d, Qout,d)}d∈Da , where Qin,d, Qout,d ⊆ Q for all d ∈ Da }.

It will be specified later, which elements of the set Σ̂′ are in Σ′ and which are not.
The set of directions of a new node label (a,E) is D′(a,E) = E. The label (a,E) is

initial if and only if the label a is initial. Note that for each node label a ∈ Σ, there is only
one direction (d,Qin,d, Qout,d) with the first component d in the set E, for each direction
d ∈ Da.

Figure 2 gives an example of how a graph G over S accepted by the automaton A
can be converted to a graph G′ over the signature S ′ by adding to each direction the
information on the states in which the automaton crosses the edge, and by adding to each
node label the information contained in all new directions at the node.

To complete the definition of the signature S ′, it remains to say, which pairs (a,E)

from the set Σ̂′ are in the set Σ′, that is, are node labels of S ′. Some pairs (a,E), which
represent situations that cannot occur in any accepting computations of A, will be left
out, and leaving them out will ensure that every graph over the signature S ′ encodes some
graph G and an accepting computation of A on G.

A pair (a,E) is in Σ′ if and only if the following conditions hold.
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1. The sets Qin,d and Qin,e cannot intersect for directions d 6= e, where d, e ∈ Da. If
the label a is initial, then for each d ∈ Da it is prohibited to have q0 ∈ Qin,d.

Indeed, the automaton A cannot come to the node in the state q twice in the
accepting computation, otherwise it will repeat a configuration and loop. By similar
reasons the automaton cannot return to the initial node in the state q0 in the
accepting computation.

Denote by Qin the set of all states in which the automaton A visits the node,
according to the information in the node label (a,E). If a /∈ Σ0, then Qin =
(
⋃
d∈Da

Qin,d), if a ∈ Σ0, then Qin = (
⋃
d∈Da

Qin,d) ∪ {q0}.

2. For each state q1 ∈ Qin, either a transition δ(q1, a) or acceptance (q1, a) ∈ F should
be defined. If the transition δ(q1, a) = (q2, d) for some q2 and d is defined, then this
transition should be encoded, that is q2 ∈ Qout,d should hold.

Indeed, if the automaton A in the accepting computation visits some node in the
state q1, then it either accepts, or makes a transition, it cannot reject.

3. For each d ∈ Da and for each state q2 ∈ Qout,d, there must be a way to move from
the current node in the state q2 in the direction d. That is, there should exist a
state q1 ∈ Qin, with δ(q1, a) = (q2, d).

4. For every two distinct states p1, q1 ∈ Q1, with the transitions at the label a defined,
the transitions should be distinct: δ(p1, a) 6= δ(q1, a).

Indeed, the automaton in the accepting computation cannot come to the same
configuration twice, otherwise it loops.

The signature S ′ has k4n directions. There are at most m4kn node labels, as in a label
(a,E) there are m ways to choose an old label a, and 4n ways to choose sets Qin,d and
Qout,d for each direction d ∈ Da.

All the directions with their opposite directions, and all the labels from Σ̂′ with their
sets of directions can be written down in time linear in their length, that is, exponential
in the length of the input. Checking whether a label (a,E) ∈ Σ̂′ satisfies all conditions,
can be done in linear time in the length of the label.

The signature S ′ has been constructed, and it remains to prove the correspondence
between the graphs over S accepted by the automaton A, and all the graphs over S ′, and
to construct the functions f and g which define this correspondence.

Let the automaton A accept some graph G = (V, v0,+, λ) over the signature S. Then,
the graph f(G) = G′ = (V ′, v′0,+, λ

′) over the signature S ′ is constructed as follows.

• The set of nodes and the initial node are the same: V ′ = V , v′0 = v0.

• The edges in G′ are the same as in G, but with additional information encoded in
the directions. Let some edge e with directions (d,−d) connect the nodes u and v
in the graph G, that is, u+ d = v in G. Let Qin ⊆ Q be a set of states in which the
automaton A in its computation comes to the node u from the node v by the edge
e, let Qout ⊆ Q be a set of states, in which the automaton A arrives to the node v
from the node u by the edge e. Then, the corresponding edge in G′ is defined by
u+ (d,Qin, Qout) = v and v + (−d,Qout, Qin) = u. These are all edges in G′.
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• The node labels in G′ are the node labels from G, but with added information on the
new directions. Let a node v in G have label a, and accordingly edges in directions
from Da. These directions in the graph G′ are augmented with the information
about the automaton’s moves, forming the set E of new directions. Then the node
label of the node v in the graph G′ is (a,E). The label (a,E) is in Σ′, because it
encodes the moves of the automaton in the accepting computation (and only labels
encoding situations impossible in accepting computations were not included in Σ′).
The node v has edges in directions from E = D′(a,E). And only the initial node has
an initial label, because the new labels’ being initial depends only on the component
a of (a,E).

Now it remains to check, that each graph over S ′ corresponds to some graph over S
that is accepted by A.

What is the general form of a graph G′ over S ′? In the first components of directions
and node labels, it encodes some graph g(G′) = G over S (and this is a definition of g).
Then g(f(G)) = G by definition. The other components of directions and node labels
encode some information about moves of the automaton. It will be shown that all moves
from the computation of the automaton A on a graphGmust be encoded, and that looping
or rejecting cannot be encoded. Then, for each graph G′ over S ′, the corresponding graph
G = g(G′) must be accepted by the automaton A. Note that, besides all moves from the
accepting computation, the graph G′ may additionally encode some cycles of transitions
that do not intersect with the accepting computation. So an accepted graph G over S
may have several pre-images G′, such that g(G′) = G.

It remains to prove that each graph G′ over the signature S ′ must encode all moves
the automaton A makes in its computation on the graph G = g(G′), and possibly some
moves not in this computation, and that the computation of A on G must be accepting.

Fix a graph G′ over the signature S ′, let G = g(G′), and let C = C0, C1, . . . , CN be the
computation of the automaton A on the graph G, where CN is the last configuration, or
N = ∞ if the automaton loops. It should be proved that C is accepting and is encoded
in G′.

This is proved by induction on i that either the configuration Ci is accepting, or the
next configuration Ci+1 exists and it is different from all previous configurations, and the
move from configuration Ci to Ci+1 is encoded in G′.

Let i ∈ {0, 1, 2, . . . , N}, and let the claim be proved for all j < i.
Denote the i-th configuration by (q, v). Let (a,E) be the label of the node v in G′.

Then, one can define Qin for the label (a,E) as in the conditions on Σ′. If i = 0, then
a ∈ Σ0 and q = q0 ∈ Qin. Otherwise, the move from Ci−1 to Ci is encoded in G′,
and q ∈ Qin as well. Then, by the second condition, as q ∈ Qin, either (q, a) ∈ F , or
δ(q, a) = (r, d), for some r ∈ Q, d ∈ D, and the transition is encoded as r ∈ Qout,d. In the
latter case r will be in Qin,−d for the node v + d. It remains to check that Ci is different
from all previous configurations. If i = 0, then this is true. Now, let (p, u) be the previous
configuration, with δ(p, λ(u)) = (q, d) and with u + d = v. Then q ∈ Qin,−d for the label
(a,E) of the node v. The first condition gives that the automaton could not have entered
the node v in the state q from another direction earlier in the computation, and that (q, v)
cannot be the initial configuration. And if the previous direction is the same, then the
4-th condition prohibits entering (q, v) earlier from a previous state other than p. Then,
only (p, u) can be the previous configuration for (q, v), and, by the induction hypothesis,
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(p, u) is unique in C0, . . . , Ci−1. Then, (q, v) is unique in C0, . . . , Ci.
Thus, the computation of A on G is encoded in G′, this computation cannot loop,

cannot reject, so it is accepting.

Using Theorem 5 that reduces graph-walking automata to signatures, one can solve
the non-emptiness problem for graph-walking automata in nondeterministic exponential
time.

Corollary 4. The problem of whether a given graph-walking automaton accepts at least
one graph is in NEXP.

Proof. First, the algorithm from Theorem 5 is applied to a given signature S and to a
given graph-walking automaton A over this signature, and it constructs a signature S ′,
such that there exist functions f : L(A) → L(S ′) and g : L(S ′) → L(A). Then, L(A) is
non-empty if and only if L(S ′) is non-empty. The size of the signature S ′ is exponential
in the size of S and A, and this signature is constructed in exponential time. Checking
whether L(S ′) is non-empty can be done in nondeterministic polynomial time in the size
of S ′, that is, in nondeterministic exponential time in the sum of sizes of S and A.

Actually, the non-emptiness problem for graph-walking automata is NEXP-complete,
that will be proved in Section 6.

An upper bound on the number of nodes in the minimal graph accepted by a graph-
walking automaton can be derived from the analogous bound for signatures.

Corollary 5. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature with k > 2 directions, with
m node labels, and with |Da| > 1 for each a ∈ Σ. Let A = (Q, q0, F, δ) be a graph-walking
automaton over S with n states. Then, if A accepts at least one graph, then the number
of nodes in the smallest accepted graph is at most m4n(k+1)kk4n−1.

Proof. Let A accept at least one graph. By Theorem 5, there is a signature S ′, and
functions f : L(A) → L(S ′) and g : L(S ′) → L(A) that do not change the number of
nodes in a graph. So the minimal number of nodes for graphs over S accepted by A is
equal to the minimal number of nodes in graphs over S ′.

The signature S ′ has k4n directions, at most m4kn node labels, and the maximum
degree of a node at most k. The latter is because f preserves edge structure of graphs.
Then, by Theorem 1, the minimal graph over the signature S ′ has the number of nodes
at most

m4nkk4n min
{(1

2
k4n
) k4n

2 , kk4n−2
}
6 m4nkk4nkk4n−2 = m4n(k+1)kk4n−1.

6 Computational complexity of emptiness problems

It has been proved that the non-emptiness problems for signatures and for star automata
are both in NP, and that the non-emptiness problem for graph-walking automata is in
NEXP. In this section, all these problems are proved to be complete in their complexity
classes.

NP-hardness of the non-emptiness problem for signatures is proved by a reduction of
graph 3-colourability to this problem.
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Figure 3: From 3-colourability to signature non-emptiness: mapping a graph with a
colouring to a graph over a signature.

Theorem 6. The problem of whether there is at least one graph over a given signature is
NP-hard.

Proof. The 3-colourability problem for a connected graph G = (V,E) is to check whether
its nodes can be coloured in {1, 2, 3}, so that every edge connects differently coloured
nodes.

For an input graph G, one should construct such a signature SG in polynomial time,
that there exists a graph over SG if and only if the graph G can be coloured correctly.

The signature SG will be constructed so, that graphs over it correspond to correct
colourings of the graph G = (V,E).

Nodes of G can have any of the three colours, and for each node and for each colour
there is a corresponding node label. Furthermore, for every edge with two distinct colours
on its ends, there is a separate node label representing this edge with these colours, that
is, an unordered pair of two coloured nodes.

Σ =
{

(v, i)
∣∣ v ∈ V, i = 1, 2, 3

}
∪
{
{(u, i), (v, j)}

∣∣ (u, v) ∈ E, i, j ∈ {1, 2, 3}, i 6= j
}
.

The condition of the colouring to be correct is checked by not having labels of the form
{(u, i), (v, i)}, representing edges with the same colour at both ends.

Fix any node v0 ∈ V , and let all labels (v0, i), with i = 1, 2, 3, be initial.
The set of directions is organized so that for every edge (u, v) in the graph G, node

labels (u, i) and (v, j), which correspond to the nodes u and v in the graph G, would
require a connection through an intermediate node that corresponds to the edge (u, v) in
G, and which gathers information on the colours of the nodes u and v.

D = {±(u, i, v) | u, v ∈ V, (u, v) ∈ E, i = 1, 2, 3 }.

The opposite direction to +(u, i, v) is given by −(u, i, v), for all u, v ∈ V with (u, v) ∈
E, and for all i = 1, 2, 3.

Each node of a graph over this signature which represents one of the nodes of G should
be connected with the nodes representing all the edges coming out of this node.

D(u,i) = {+(u, i, v) | v ∈ V, (u, v) ∈ E }, for all u ∈ V, i = 1, 2, 3.

D{(u,i), (v,j)} = {−(u, i, v),−(v, j, u)}, for all u, v ∈ V, (u, v) ∈ E, i, j ∈ {1, 2, 3}, i 6= j

It remains to prove that the signature SG is as desired, that is, there is a graph over
SG if and only if there is a correct 3-colouring of G.
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First of all, if a coloring c : V → {1, 2, 3} exists, then a graph Gc over SG representing
this colouring is constructed with the set of nodes V ∪E, where each node v ∈ V has label
(v, c(v)), each node (u, v) ∈ E has label {(u, c(u)), (v, c(v))}. For every edge (u, v) ∈ E
in the graph G, the graph Gc has edges from u to (u, v) and from (u, v) to v, with the
appropriate directions, as illustrated in Figure 3.

Conversely, let Ĝ be any graph over the signature SG. It is claimed that in this case
there exists a correct 3-colouring of G, and moreover, Ĝ = Gc for some correct 3-colouring
c of G.

First, it is proved that for each node v ∈ V of the graph G, there is exactly one node
in Ĝ with a label of the form (v, i), for some i. Consider the shortest simple path from
v0 to v in G (it exists because G is connected); the proof is by induction on the length
of this path. The base case is a path of length 0: here the node corresponding to v0

exists because Ĝ must have an initial node, and it is unique because the initial node is
unique. For the induction step, let u be the next to the last node on the path, with
(u, v) ∈ E. By the induction hypothesis, in Ĝ, there is a unique node of the form (u, i),
for some i. This node emits a unique edge in the direction +(u, i, v), which must lead to
a node labelled with {(u, i), (v, j)}, for some j, which in turn emits a unique edge in the
direction −(v, j, u) that ends in a node labelled with (v, j)—so this node exists. If there

were another node in Ĝ labelled with (v, k), for any k, then, by the same reasoning, it
would be connected to some node labelled with (u, `) through some intermediate node;
this node must be the same as the above node labelled with (u, i), because such a node
is unique. However, there is a unique path simulating the edge (u, v), hence this node
labelled with (v, k) must coincide with the above node labelled with (v, j).

Therefore, Ĝ has the set of nodes V ∪ E, which replicates the structure of G, with
every edge split by an intermediate node. Then, it must be Gc for some colouring c. This
colouring is correct, because each intermediate node checks that the colours at both ends
of the corresponding edge are distinct. Then, correct colourings of the graph G correspond
to graphs over SG.

Note that the intermediate nodes that split the edges of G are necessary, because node
labels cannot accumulate information on the colours of all the neighbours of a node, as
this would require an exponential number of node labels.

The non-emptiness problem for star automata is NP-complete as well. Its membership
in NP was established above, and its NP-hardness follows from the NP-hardness of non-
emptiness of signatures.

Theorem 7. The problem of checking whether a given star automaton accepts at least
one graph is NP-hard.

Proof. Non-emptiness for signatures was proved in Theorem 6 to be NP-hard. Now the
NP-hardness of the non-emptiness problem for star automata is proved by reducing the
non-emptiness problem for signatures to it, as follows.

Let S be a given signature. Consider the automaton A∗ over it, that has one state,
and, for each node label, has a star with this state at the centre and with this state at
all rays. This star automaton accepts all graphs, so its non-emptiness is equivalent to
non-emptiness of the signature S. And this automaton A∗ has size polynomial in the size
of S.
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Now it is time to prove the NEXP-completeness of the non-emptiness problem for
graph-walking automata. It was proved in Corollary 4, that this problem is in NEXP. For
NEXP-hardness it will be proved that a signature and a graph-walking automaton can
define a set of graphs containing a square grid of size exponential in the number of states
of the automaton and in the size of the signature. And then a nondeterministic Turing
machine working in exponential time will be simulated on such grids.

Theorem 8. The problem of whether there is at least one graph accepted by a given
graph-walking automaton is NEXP-hard.

Proof. Fix some NEXP-complete problem and some nondeterministic Turing machine M
that solves this problem in exponential time. It can be assumed that the Turing machine
is one-tape with the tape infinite to the right, and that the machine never moves to the
left from the first position of the tape, in which an input string begins. The number of
states, the number of transitions in the transition function, the sizes of the input aphabet
and of the work alphabet are constant, as the Turing machine M is fixed.

The problem whether a given string w over the input alphabet is accepted by the
Turing machine M is NEXP-complete. So to prove the theorem it is enough to reduce in
polynomial time this problem about M to the non-emptiness problem for a graph-walking
automaton. That is, such a deterministic polynomial-time algorithm is needed, that for
a given string w it constructs a signature Sw and a graph-walking automaton Aw so that
a graph accepted by Aw will exist if and only if there exists an accepting computation of
the machine M on the string w.

Let f : N → N be a polynomial-time computable function that, for each length ` of
an input string, gives a number f(`), bounded by a polynomial in `, such that f(`) >
max{`, 2}, and that the Turing machine M halts on every string of length at most ` in
not more than 2f(`) − 1 steps. Then, each computation of M on each string of length at
most ` can be written on a grid of length 2f(`) × 2f(`).

The signature Sw = (D,−,Σ,Σ0, (Da)a∈Σ) depends only on the length of w and is
constructed as follows.

Let n = f(|w|), so that each computation of M on a string w can be written on a
grid of size 2n × 2n; the number n = f(|w|) can be computed in polynomial time and is
polynomial in the length of w.

The signature Sw is composed of three parts: D = D1∪D2∪D3, Σ = Σ1∪Σ2∪Σ3, all
sets here are disjoint. And for each node label a ∈ Σi, it should hold that Da ⊆ Di, for
i ∈ {1, 2, 3}. In every graph over Sw all nodes are divided into three sets: V = V1∪V2∪V3,
where Vi consists of the nodes with labels in Σi, for i = 1, 2, 3. There are two special pairs
of opposite directions: +d ∈ D1 and −d ∈ D2, and +d′ ∈ D2 and −d′ ∈ D3. For every
other direction, the opposite direction lies in the same set. Thus, nodes in V1 and nodes
in V2 can be connected only by (+d,−d)-edges; similarly, nodes in V2 and nodes in V3 can
be connected only by (+d′,−d′)-edges. A node from V1 and a node from V3 cannot be
connected with an edge.

The idea is that nodes with labels in Σ2 form a grid on which the Turing machine
working on w will be simulated. Each node label from Σ2 will have both directions −d
and +d′. Labels from Σ1 will allow the nodes in V1 to form only a full binary tree of
height 2n that emits exactly 22n edges in the direction +d from its leaves, thus ensuring
that in every graph the number of nodes in V2 is exactly 22n. Labels from Σ3 will be used
to attach a chain of length 2n to every node with label in Σ2, with the chain consisting

22



of zeros and ones. The automaton Aw will check that nodes in V2 form a 2n × 2n grid,
and that chains attached to these nodes correctly encode the row number and the column
number in the grid for each node. Next, the automaton Aw will check that some accepting
computation of the Turing machine M on the string w is encoded on the grid. Figure 4
shows a graph over some signature Sw with n = 2, that defines a correct grid on nodes
with labels in Σ2.

The only initial node label in the signature Sw is a0 ∈ Σ1. The first part
Σ1 and D1 should be defined so that the nodes with labels in Σ1 can form only
one graph: a full binary tree of height 2n with 22n leaves. The set of node
labels is Σ1 = {a0, a1, b1, a2, b2, . . . , a2n, b2n}, and the set of directions is D1 =
{±`1,±r1,±`2,±r2, . . . ,±`2n,±r2n} ∪ {+d}. Here the label a0 is initial, it is used for
the root of a tree (level 0), the labels ai and bi are used for left and right children of the
i-th level. The node label a0 has the set of directions Da0 = {+`1,+r1}, that is, the root
has two edges to the two nodes of level 1. Labels ai and bi, for i ∈ {1, . . . , 2n− 1}, have
the sets of directions Dai = {−`i,+`i+1,+ri+1} and Dbi = {−ri,+`i+1,+ri+1}. So the i-th
level generates twice as many nodes on level i+1. The node labels of the last level 2n (for
the leaves of the tree) have sets of directions Da2n = {−`2n,+d} and Db2n = {−r2n,+d},
that is, each leaf emits one edge in the direction +d, which is used for connection with
nodes in V2.

Thus, in every graph over the signature S the initial node is labelled with a0 ∈ Σ1 and
all nodes in V1 form a full binary tree with 22n leaves and each leaf emits an edge in the
direction +d.

The part Σ3, D3 is constructed to allow only chains of nodes of length 2n with one
direction −d′ in each chain, with zeros and ones in nodes. This part of the signature
is defined by Σ3 = {01, . . . , 02n} ∪ {11, . . . , 12n}, D3 = {±d1, . . . ,±d2n−1} ∪ {−d′}. And
D01 = D11 = {−d′,+d1}; D0i = D1i = {−di−1,+di}, for i ∈ {1, . . . , 2n − 1}; and
D02n = D12n = {−d2n−1}.

Then, each node in V2 has a chain attached to it in the direction +d′. Every such chain
consists of nodes with labels in Σ3, has length 2n and encodes a number from 0 to 22n− 1
in a sequence of zeros and ones in nodes. Let some node v in a graph have a label in Σ2.
Then, the coordinates of v are the pair of numbers (iv, jv), for iv, jv ∈ {0, . . . , 2n − 1},
where the number iv is defined by the first n bits in the chain of nodes in V3 attached to
v, and the number jv is defined by the second n bits. The number iv is meant to be the
number of the row in the grid where v is located, and jv is meant to be the number of the
column. Note that the coordinates of the node v are by definition just a pair of numbers,
encoded in a chain, even if these numbers do not correspond to the actual position of the
node v in a grid.

Now to the main part of the signature: Σ2 and D2. There are 6 directions in D2: two
of them, −d and +d′, are used for connection with V1 and V3, and 4 directions are used
for a grid: ±1 are horizontal (+1 is right, −1 is left), and ±2 are vertical (+2 is up, −2 is
down), so D2 = {±1,±2}∪{−d,+d′}. The set of node labels is Σ2 = Pos×Alph×Head,
that is, each node label in Σ2 is of the form (pos , alph, head). The first component pos
gives the type of a position of a node in a grid: in one of 4 corners, on the side or in the
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Figure 4: A graph that defines a correct 2n × 2n grid, for n = 2. The graph has three
levels: the tree on the nodes in V1 at the top, the grid on the nodes in V2 in the middle,
and chains on nodes in V3 at the bottom, which encode the coordinates of nodes in the
grid (the upper two bits encode the row number, and the lower two bits encode the column
number).
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centre. So there are 9 variants of the first component of a node label:

Pos = {LU,CU,RU,

LC,CC,RC,

LD,CD,RD},

where the first letter of pos gives the type of horizontal position (L, C or R), and the
second letter gives the type of vertical position (D, C or U). The set of directions Da for
each node label a ∈ Σ2 depends only on the component pos of the label a: the directions
−d and +d′ are always in Da; the direction +1 is in Da if the node is not at the right
border of a grid, that is, if pos /∈ {RU,RC,RD}; the direction −1 is in Da if and only if
pos /∈ {LU,LC,LD}; similarly +2 ∈ Da if and only if pos /∈ {LU,CU,RU}; and −2 ∈ Da

if and only if pos /∈ {LD,CD,RD}.
The components alph and head of node labels in Σ2 will be used for simulating con-

figurations of the Turing machine M on rows of a grid. Let Γ be the work alphabet of M ,
it contains the input alphabet, the new blank symbol and maybe some other symbols; let
Q be a finite set of states of the Turing machine. Then, Alph = Γ, that is, the component
alph gives one of the symbols in the work alphabet of M , and Head = Q ∪ {0}, where
0 /∈ Q, that is, the component head gives either a state of the Turing machine M if the
head is simulated at the current position, or head = 0 if there is no head in this position.

This signature Sw is constructed in time linear in n.
Now a graph-walking automaton Aw over the signature Sw should be constructed, so

that it accepts only graphs, in which nodes in V2 form a correct grid, and the components
alph and head of the labels in these nodes encode a correct accepting computation of the
Turing machine M on the string w. The work of the automaton Aw on a graph is divided
into two phases: checking the grid and checking the encoding of the Turing machine’s
computation on that grid.

In the first phase the automaton does not distinguish the components alph and head
in labels in Σ2, its actions on a node labelled with (pos , alph, head) ∈ Σ2 depend only on
the component pos.

The goal of the first phase is to check that nodes with labels in Σ2 form a 2n × 2n

grid on directions ±1 and ±2, and that the coordinates (iv, jv) of each node v in V2 are
numbers of its row and its column in a grid. For convenience, the automaton also checks
that the leftmost path in the tree on nodes in V1 leads to a node in V2 with coordinates
(0, 0). If all these conditions hold for a graph, then this graph is said to define a correct
grid.

The automaton checks whether a graph defines a correct grid as follows.

1. At the beginning, the automaton checks that the leftmost path in the tree on nodes
with labels in Σ1 leads to a node with a label in Σ2 that has coordinates (0, 0). The
automaton starts at the initial node at the root of the tree, then it moves to the left
child until it comes to a node with label in Σ2. Then it checks that all nodes in the
attached chain contain zeros. This can be done with a constant number of states.

2. The automaton checks, for each node v with label in Σ2, that the component pos of
the label agrees with coordinates (iv, jv) given in the chain of nodes from V3 attached
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to the node v. For that, it should be checked that pos = XY , where

X =


L if jv = 0

C if 0 < jv < 2n − 1

R if jv = 2n − 1

Y =


D if iv = 0

C if 0 < iv < 2n − 1

U if iv = 2n − 1

.

When the automaton visits some node v ∈ V2, it can check this condition for the
node v using a constant number of states and return to the node. Indeed, it needs
just to check several conditions of the form that all bits of the first or the second n
bits of a chain are all zeros or are all ones.

To do such a check for each node in V2, the automaton needs to visit somehow all
nodes in V2. This can be done by traversing the tree on nodes in V1. This tree can
be traversed with a constant number of states. The leaves in this tree correspond to
nodes in V2, each leaf is connected by a (+d,−d) edge to some node in V2, and each
node in V2 is connected to some leaf. Thus, the automaton checks for each leaf in
a tree that its neighbour in V2 has the component pos agree with the coordinates.
This can be done using a constant number of states.

3. Then the automaton checks that directions ±1,±2 in the grid lead to correct nodes.
That is, for each node v in V2 with coordinates (iv, jv), the following conditions
must hold. If an edge in the direction −1 exists (jv > 0), then it should lead to a
node with coordinates (iv, jv − 1). If an edge by +1 exists (jv < 2n − 1), then it
should lead to a node with coordinates (iv, jv + 1). Similarly, the direction +2 must
increase the coordinate iv, and the direction −2 must decrease it.

When the automaton visits some node v in V2, it can check these conditions using
O(n) states and return to the node v. Indeed, to check the equality of two vec-
tors of length n contaning 0s and 1s, the automaton can compare them bit by bit
remembering only the position of the current bit in a vector and the value of this
bit. To check that the number encoded in the first vector is greater by 1 than the
number encoded in the second vector, the automaton can check that the binary
representations of the vectors are of the form x10i and x01i, with x ∈ {0, 1}∗ and
i > 0, and this can be checked bit by bit.

To make these checks for all nodes in V2 the automaton traverses the tree on the
nodes in V1 as at the previous step.

4. If the automaton did not reject at the previous steps, then it returns to the node
with coordinates (0, 0) and starts the second phase.

If the automaton rejects at the first phase, then the graph does not define a correct
grid. It is claimed that the checks the automaton makes are sufficient, that is, that if
the automaton starts the second phase, then the graph defines a correct grid. Let the
automaton start the second phase on some graph G.

First, it is shown that all nodes with labels in Σ2 have distinct coordinates and that
every pair of coordinates (i, j), for i, j ∈ {0, . . . , 2n − 1}, occurs somewhere.

The node with coordinates (0, 0) exists because such a node is on the leftmost path.
For each node with some coordinates (i, j), the automaton has checked that its neighbours
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in directions ±1,±2 exist and have coordinates (i, j+ 1), (i, j− 1), (i+ 1, j), (i− 1, j), as
long as these coordinates are between 0 and 2n − 1. Then, for all i, j ∈ {0, . . . , 2n − 1},
there is a node in V2 with coordinates (i, j). As the tree on nodes in V1 is defined uniquely,
|V2| = 22n in every graph. So the node with each pair of coordinates is unique.

Note that the automaton has no way to distinguish a node from its copy locally, so it
is important that counting arguments give uniqueness to each pair of coordinates.

Then, as a node with each pair of coordinates exists and is unique, and coordinates
increase or decrease along the directions in the grid, the graph defines a correct grid.

The states and transitions used by the automaton in the first phase can be written
down in time quadratic in n, as both the number of states and the number of node labels
in the signature are linear in n.

In the second phase, the automaton checks that some accepting computation of the
Turing machine M on the string w is encoded in the grid.

The automaton should check that the initial row encodes the initial configuration of
the Turing machine M on the string w, that the next row encodes one of possible next
configurations, and so on, up to an accepting configuration. Rows after the accepting
configuration are allowed to contain anything.

How are configurations encoded in rows? The Turing machine M works in exponential
time, and the number n was chosen so that every computation on w contains at most
2n−1 steps, and that |w| 6 n. Thus, the head of the Turing machine never visits positions
beyond 2n − 1 on the tape, and during the computation the symbols at these positions
are blank symbols. So the tape contents in a configuration can be thought of as a string
of length 2n. This string is encoded in the nodes of a row in the components alph of node
labels, one symbol of the string per node. The position of the head is encoded by having
the component head non-zero only in one node; in this node, the component head encodes
a state of the Turing machine.

The automaton works in the second phase as follows.

1. The automaton Aw starts the second phase on a graph at the node with coordinates
(0, 0), and the graph is known to define a correct grid of size 2n × 2n.

2. First, the automaton checks the encoding of the initial configuration. It goes through
the first |w| nodes in the first row remembering in a state the number of moves j it
made, and for each node it checks that the component alph of the node label is the
j-th symbol of w. Then it continues moving to the right using one state for that,
and checking that the components alph in all other nodes in the first row contain
blank symbols. While moving from (0, 0) to (0, 2n − 1) the automaton additionally
checks that in the node (0, 0) the component head contains one of the initial states
of the Turing machine, and that in all other nodes of the first row the component
head of the label is 0.

3. For each row i ∈ {0, . . . , 2n− 1}, starting from the row i = 0, the automaton makes
the following two actions.

First, the automaton checks whether the current configuration is accepting. It finds
the node in which the head is encoded, and if (head , alph) is an accepting pair of
M , then the automaton immediately accepts.

If the configuration encoded in the i-th row is not accepting, then the automaton
checks that the next row encodes one of the possible next configurations. This check
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can be done using a constant number of states as follows. In the neighbourhood of
the head in the i-th row, the automaton checks that a transition is correctly made;
elsewhere, the automaton checks that the tape symbols are unchanged, and no extra
heads appear. Once the check is complete, the automaton moves to the next row.

Working as described above, the automaton accepts a graph in the second phase if and
only if one of the accepting computations of M on w is encoded on the grid, and otherwise
it rejects. The automaton Aw can be constructed in time polynomial in n, and the NEXP-
complete problem of whether the Turing machine M accepts a given string w or not is
reduced to the problem of whether the graph-walking automaton Aw over Sw accepts at
least one graph. Thus, non-emptiness for graph-walking automata is NEXP-hard.

7 Conclusion

In this paper it has been shown that the emptiness problems for signatures, for star
automata and for graph-walking automata are decidable. And the computational com-
plexity classes for these problems were determined: the non-emptiness problems for signa-
tures and for star automata are NP-complete, whereas non-emptiness for graph-walking
automata is NEXP-complete. Table 1 compares these new results about automata on
graphs with the previous results for similar automata on strings and on trees.

Note that the reduction of graph-walking automata to signatures works even in the
case of nondeterministic graph-walking automata. In this case, the conditions on incoming
and outgoing states encoded in a label should be replaced with the conditions that the
incoming states are all different, and that there is a bijection between the incoming and
the outgoing states, with a transition possible for each pair. So the non-emptiness for
nondeterministic graph-walking automata is NEXP-complete as well.

strings trees graphs
walking (2DFA) (DTWA) (DGWA)

PSPACE-complete [7] EXP-complete [1] NEXP-complete (Cor 4, Thm 8)

tilings by (NFA) (tree automata) (star automata)
edges/stars NL-complete [6] P-complete [13] NP-complete (Cor 2, Thm 7)

Table 1: Complexity of the non-emptiness problem for different families of automata.

In this paper, several upper bounds on the number of nodes in minimal accepted graphs
have been obtained. Bounds have been proved for graph-walking automata (Corollary 5),
for star automata (Corollary 3), and simply for graphs over a signature (Theorem 1). It
will be good to prove some lower bounds, and maybe to improve the upper bounds given
in this paper.

Star automata in this paper are a special case of elementary acceptors of Thomas [12],
they are elementary acceptors without conditions on the number of occurrences of each
star. Is the emptiness problem for elementary acceptors of Thomas also decidable? This
remains an open question.
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