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Abstract

Reaction delays are important in determining the qualitative dynamical properties of a platoon of vehicles traveling

on a straight road. In this paper, we investigate the impact of delayed feedback on the dynamics of the Modified

Optimal Velocity Model (MOVM). Specifically, we analyze the MOVM in three regimes – no delay, small delay

and arbitrary delay. In the absence of reaction delays, we show that the MOVM is locally stable. For small delays,

we then derive a sufficient condition for the MOVM to be locally stable. Next, for an arbitrary delay, we derive the

necessary and sufficient condition for the local stability of the MOVM. We show that the traffic flow transits from

the locally stable to the locally unstable regime via a Hopf bifurcation. We also derive the necessary and sufficient

condition for non-oscillatory convergence and characterize the rate of convergence of the MOVM. These conditions

help ensure smooth traffic flow, good ride quality and quick equilibration to the uniform flow. Further, since a Hopf

bifurcation results in the emergence of limit cycles, we provide an analytical framework to characterize the type of the

Hopf bifurcation and the asymptotic orbital stability of the resulting non-linear oscillations. Finally, we corroborate

our analyses using stability charts, bifurcation diagrams, numerical computations and simulations conducted using

MATLAB.

Index Terms

Transportation networks, car-following models, time delays, stability, convergence, Hopf bifurcation.

I. INTRODUCTION

Intelligent transportation systems constitute a substantial theme of discussion on futuristic smart cities. In this

context, self-driven vehicles are a prospective solution to address traffic issues such as resource utilization and

commute delays; see [1, Section 5.2], [2]–[4] and references therein. To ensure that these objectives are met, in

addition to ensuring human safety, the design of control algorithms for these vehicles becomes important. To that

end, it is imperative to have an in-depth understanding of human behavior and vehicular dynamics. This has led to

the development and study of a class of dynamical models known as the car-following models [5]–[10].

A conference version of this paper appeared in Proceedings of the 53rd Annual Allerton Conference on Communication, Control and

Computing, pp. 538-545, 2015. DOI: 10.1109/ALLERTON.2015.7447051
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Feedback delays play an important role in determining the qualitative behavior of dynamical systems [11]. In

particular, these delays are known to destabilize the system and induce oscillatory behavior [10], [12]. In the

context of human-driven vehicles, predominant components of the reaction delay are psychological and mechanical

in nature [12]. In contrast, the delay in self-driven vehicles arise due to sensing, communication, signal processing

and actuation, and are envisioned to be smaller than human reaction delays [13].

In this paper, we investigate the impact of delayed feedback on the qualitative dynamical properties of a platoon

of vehicles traveling on a straight road. Specifically, we consider each vehicle’s dynamics to be modeled by the

Modified Optimal Velocity Model (MOVM) [10]. Motivated by the wide range of values assumed by reaction

delays in various scenarios, we analyze the MOVM in three regimes; namely, (i) no delay, (ii) small delay and

(iii) arbitrary delay. In the absence of delays, we show that the MOVM is locally stable. When the delays are

rather small, as in the case of self-driven vehicles, we derive a sufficient condition for the local stability of the

MOVM using a suitable approximation. For the arbitrary-delay regime, we analytically characterize the region of

local stability for the MOVM.

In the context transportation networks, two additional properties are of practical importance; namely, ride quality

(lack of jerky vehicular motion) and the time taken by the platoon to attain the desired equilibrium when perturbed.

Mathematically, these translate to studying the non-oscillatory property of the MOVM’s solutions and the rate of

their convergence to the desired equilibrium. In this paper, we also characterize these properties for the MOVM.

In the context of human-driven vehicles, model parameters generally correspond to human behavior, and hence

cannot be “tuned” or “controlled.” However, our work enhances phenomenological insight into the emergence and

evolution of traffic congestion. For example, a peculiar phenomenon known as the “phantom jam” is observed on

highways [7], [8]. Therein, a congestion wave emerges seemingly out of nowhere and propagates up the highway

from the point of its origin. Such an oscillatory behavior in the traffic flow has typically been attributed to a

change in the driver’s sensitivity, such as a sudden deceleration; for details, see [7], [8]. In general, feedback delays

are known to induce oscillations in state variables of dynamical systems [10], [12]. Since the MOVM explicitly

incorporates feedback delays, and relative velocities and headways constitute state variables of the MOVM, our

work provides a theoretical basis for understanding the emergence and evolution of oscillatory phenomena such as

“phantom jams.” In particular, our work serves to highlight the possible role of reaction delays in the emergence

of oscillatory phenomena in traffic flows. More generally, our results reveal an important observation: the traffic

flow may transit into instability due to an appropriate variation in any subset of model parameters. To capture this

complex dependence of stability on various parameters, we introduce an exogenous, non-dimensional parameter in

our dynamical model. We then analyze the behavior of the resulting system as the exogenous parameter is pushed

just beyond the stability boundary. We show that non-linear oscillations, termed limit cycles, emerge in the traffic

flow due to a Hopf bifurcation.

In the context of self-driven vehicles, reaction delays are expected to be smaller than their human counterparts [13].

Hence, it would be realistically possible to achieve smaller equilibrium headways [1, Section 5.2]. This would, in

turn, vastly improve resource utilization without compromising safety [3]. In this paper, based on our theoretical

analyses, we provide some design guidelines to appropriately tune the parameters of the so-called “upper longitudinal
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control algorithm” [1, Section 5.2]. Mathematically, our analytical findings highlight the quantitative impact of

delayed feedback on the design of control algorithms for self-driven vehicles. Specifically, our design guidelines

take into consideration various aspects of the longitudinal control algorithm such as stability, good ride quality

and fast convergence of the traffic to the uniform flow. In the event that the traffic flow does lose stability, our

design guidelines help tune the model parameters with an aim of reducing the amplitude and angular velocity of

the resultant limit cycles.

A. Related work on car-following models

The motivation for our paper comes from the key idea behind the Optimal Velocity Model (OVM) proposed by

Bando et al. in [14]. However, the model considered therein was devoid of reaction delays. Thus, a new model

was proposed in [6] to account for the drivers’ delays. Therein, the authors also claimed that these delays were

not central to capturing the dynamics of the system. In response, Davis showed via numerical computations that

reaction delays indeed played an important part in determining the qualitative behavior of the OVM [15]. This led

to a further modification to the OVM in [16]. However, this too did not account for the delay arising due to a

vehicle’s own velocity.

It was shown in [17] that the OVM without delays loses local stability via a Hopf bifurcation. For the OVM with

delays, [18] performed an initial numerical study of the bifurcation phenomenon before supplying an analytical

proof in [9]. The theme issue on “Traffic jams: dynamics and control” [19] highlights the growing interest in

a dynamical systems viewpoint of transportation networks. A recent exposition of linear stability analysis in the

context of car-following models can be found in [20].

From a vehicular dynamics perspective, most upper longitudinal controllers in the literature assume the lower

controller’s dynamics to be well modeled by a first-order control system, in order to capture the delay lag [1, Section

5.3]. The upper longitudinal controllers are then designed to maintain either constant velocity, spacing or time gap;

for details, see [21] and the references therein. Specifically, it was shown in [21] that synchronization with the

lead vehicle is possible by using information only from the vehicle directly ahead. This reduces implementation

complexity, and does not mandate vehicles to be installed with communication devices.

However, in the context of autonomous vehicles, communication systems are required to exchange various system

states required for the control algorithm. This information is used either for distributed control [21] or coordinated

control [22]. Formation and platoon stabilities have also been studied considering information flow among the

vehicles [23], [24]. For an extensive review, see [25]. Usage of communication systems is also known to mitigate

phantom jams [26].

At a microscopic level, Chen et al. proposed a behavioral car-following model based on empirical data that

captures phantom jams [27]. Therein, the authors showed statistical correlation in drivers’ behavior before and

during traffic oscillations. However, no suggestions to avoid phantom jams were offered. To that end, Nishi et al.

developed a framework for “jam-absorbing” driving in [28]. A “jam-absorbing vehicle” appropriately varies its

headway with the aim of mitigating phantom jams. This work was extended by Taniguchi et al. [29] to include
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car-following behavior. Therein, the authors also numerically constructed the region in parameter space that avoids

formation of secondary jams.

In the context of platoon stability, it has been shown that well-placed, communicating autonomous vehicles may

be used to stabilize platoons of human-driven vehicles [30]. More generally, the platooning problem has been

studied as a consensus problem with delays [31]. Such an approach aids the design of coupling protocols between

interacting agents (in this context, vehicles). In contrast, we provide design guidelines to appropriately choose

protocol parameters, for a given coupling protocol.

B. Our contributions

Our contributions are as follows.

(1) We derive a variant of the OVM for an infinitely-long road – called the MOVM – and analyze it in three

regimes; namely, (i) no delay, (ii) small delay and (iii) arbitrary delay. We prove that the ideal case of

instantaneously-reacting drivers is locally stable for all practically significant parameter values. We then derive

a stability condition for the small-delay regime by conducting a linearization on the time variable.

(2) For the case of an arbitrary delay, we derive the necessary and sufficient condition for the local stability of

the MOVM. We then prove that, upon violation of this condition, the MOVM loses local stability via a Hopf

bifurcation.

(3) We provide an analytical framework to characterize the type of the Hopf bifurcation and the asymptotic orbital

stability of the emergent limit cycles using Poincaré normal forms and the center manifold theory.

(4) In the case of human-driven vehicles, our work enhances phenomenological insight into the emergence and

evolution of traffic congestion. For example, the Hopf bifurcation analysis provides a mathematical framework

to offer a possible explanation for the observed “phantom jams” [10]. In the case of self-driven vehicles, our

work offers suggestions for their design guidelines.

(5) We derive a necessary and sufficient condition for non-oscillatory convergence of the MOVM. This is useful in

the context of a transportation network since oscillations lead to jerky vehicular movements, thereby degrading

ride quality and possibly causing collisions.

(6) We characterize the rate of convergence of the MOVM, thereby gaining insight into the time required for

the platoon to equilibrate, when perturbed. Such perturbations occur, for instance, when a vehicle departs

from a platoon. Therein, we also bring forth the trade-off between the rate of convergence and non-oscillatory

convergence of the MOVM.

(7) We corroborate the analytical results with the aid of stability charts, bifurcation diagrams, numerical compu-

tations and simulations performed using MATLAB.

The remainder of this paper is organized as follows. In Section II, we summarize the OVM and derive the

MOVM. In Sections III, IV and V, we characterize the stable regions for the MOVM in no-delay, small-delay

and arbitrary-delay regimes respectively. We then derive the necessary and sufficient condition for non-oscillatory

convergence of the MOVM in Section VI, and characterize its rate of convergence in Section VII. In Section VIII,
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we present the local Hopf bifurcation analysis for the MOVM. In Section IX, we corroborate our analyses using

MATLAB simulations before concluding the paper in Section X.

II. MODELS

In this section, we first provide an overview of the setting of our work. We then briefly explain the OVM, before

ending the section by deriving the MOVM.

A. The setting

We consider N + 1 idealistic vehicles (with 0 length) traveling on an infinitely long, single-lane road with no

overtaking. The lead vehicle is indexed with 0, the vehicle following it with 1, and so on. The acceleration of each

vehicle is updated based on a combination of its position, velocity and acceleration as well as those corresponding

to the vehicle directly ahead. We use xi(t), ẋi(t) and ẍi(t) to denote the position, velocity and acceleration of the

vehicle indexed i at time t respectively. We also assume that the lead vehicle’s acceleration and velocity profiles

are known. Specifically, we only consider leader profiles that converge to ẍ0 = 0 and 0 < ẋ0 <∞ in finite time;

that is, there exists T0 < ∞ such that ẍ0(t) = 0, ẋ0(t) = ẋ0 > 0, ∀ t ≥ T0. We also use the terms “driver” and

“vehicle” interchangeably throughout.

B. The Optimal Velocity Model (OVM)

The OVM, proposed by Bando et al. in [14], is based on the key idea that each vehicle in a platoon tries to attain

an “optimal” velocity, which a function of its headway. Hence, each vehicle updates its acceleration proportional

to the difference between this optimal velocity and its own velocity. This was modified in [6] to account for the

reaction delay. For N vehicles traveling on a circular loop of length L units, the dynamics is captured by [6]

ẍ1(t) = a (V (xN (t− τ)− x1(t− τ))− ẋ1(t− τ)) ,

ẍi(t) = a (V (xi−1(t− τ)− xi(t− τ))− ẋi(t− τ)) , (1)

for i ∈ {2, · · · , N}. Here, a > 0 is the drivers’ sensitivity coefficient, τ is the common reaction delay and

V : R+ → R+ is called the Optimal Velocity Function (OVF). As pointed out in [32], an OVF satisfies:

(i) Monotonic increase,

(ii) Bounded above, and,

(iii) Continuous differentiability.

Let V max = lim
y→∞

V (y). The limit exists as a consequence of (i) and (ii) above. Also, (iii) ensures that an OVF

will also be invertible.
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C. The Modified Optimal Velocity Model (MOVM)

Next, we derive a variant of the OVM for our setting. To that end, we define the relative spacing (or headway)

and the relative velocity as yi(t) = xi−1(t) − xi(t) and vi(t) = ẏi(t) = ẋi−1(t) − ẋi(t) respectively. Substituting

these in (1), we obtain the following system after some algebraic manipulations

v̇1(t) = ẍ0(t) + a (ẋ0(t− τ1)− V (y1(t− τ1))− v1(t− τ1)) ,

v̇k(t) = a (V (yk−1(t− τk−1))− V (yk(t− τk))− vk(t− τk)) ,

ẏi(t) = vi(t), (2)

for i ∈ {1, 2, · · · , N} and for k ∈ {2, 3, · · · , N}. We refer to system (2) as the Modified Optimal Velocity Model

(MOVM). Notice that, in contrast to (1), the MOVM no longer possesses the circular structure resulting from the

periodic boundary condition. Indeed, the second vehicle (with index 1) now follows the lead vehicle rather than

the vehicle with index N, since we consider the platoon to be traversing an infinitely long road.

The MOVM is described by a system of Delay Differential Equations (DDEs). Since such systems are hard to

analyze, we obtain conditions for their local stability by analyzing them in the neighborhood of their equilibria.

Such an analysis technique is called local stability analysis. To obtain the equilibrium, we equate the 2N derivatives

in (2) to zero. This yields v∗i = 0, y∗i = V −1(ẋ0), i = 1, 2, · · · , N as an equilibrium for system (2). Therefore, to

linearize (2) about this equilibrium, we first consider a small perturbation ui(t) about the equilibrium of the relative

spacing pertaining to vehicle indexed i. That is, ui(t) = yi(t) - y∗i . Next, we consider the Taylor’s series expansion

of ui(t), and set the leader’s profile to zero, to obtain the linearized model, given by

v̇1(t) = − du1(t− τ1)− av1(t− τ1),

v̇k(t) = duk−1(t− τk−1)− duk(t− τk)− avk(t− τk),

u̇i(t) = vi(t), (3)

for i ∈ {1, 2, · · · , N} and for k ∈ {2, 3, · · · , N}. Here, d = aV
′
(V −1(ẋ0)) is the equilibrium coefficient, where the

prime indicates differentiation with respect to a state variable. Henceforth, we denote d̃ = V
′
(V −1(ẋ0)). Therefore,

d = ad̃.

The MOVM is completely specified by the relative velocities vi’s and the headways yi’s. Therefore, the state of

the MOVM at time “t” is given by S(t) = [v1(t) v2(t) · · · vN (t) u1(t) u2(t) · · ·uN (t)]T ∈ R2N . Thus, system (3)

can be succinctly written in matrix form as

Ṡ(t) =

N∑
k=0

AkS(t− τk), (4)

where the matrices Ak ∈ R2N×2N for each k. Also, τ0 is introduced for notational brevity and set to zero. The

matrices Ak, k = 1, 2 · · · , N, are defined as follows.

A0 =

0N×N 0N×N

IN×N 0N×N

 .
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Here, 0N×N and IN×N denote zero and identity matrices of order N ×N respectively. For 1 ≤ k ≤ N − 1, we

have

(Ak)ij =



−a, i = j = k,

−d, i = k, j = N + k,

d, i = k + 1, j = k,

0, elsewhere,

and

(AN )ij =


−a, i = j = N,

−d, i = N, j = 2N,

0, elsewhere.

D. Optimal Velocity Functions (OVFs)

There are several functions that satisfy the properties mentioned in Section II-B. We mention four widely-used

OVFs [32], obtained by fixing a functional form for V (·).

(a) Underwood OVF:

V1(y) = V0e
− 2ym

y .

(b) Bando OVF:

V2(y) = V0

(
tanh

(
y − ym
ỹ

)
+ tanh

(
ym
ỹ

))
.

(c) Trigonometric OVF:

V3(y) = V0

(
tan−1

(
y − ym
ỹ

)
+ tan−1

(
ym
ỹ

))
.

(d) Hyperbolic OVF:

V4(y) =

0, y ≤ y0,

V0

(
(y−y0)n

(ỹ)n+(y−y0)n

)
, y ≥ y0.

Here, V0, y0, ym, ỹ and n are model parameters.

As captured by [33, Figure 1], the aforementioned OVFs behave similarly with varying headway. The following

are noteworthy: (i) The values attained by these OVFs, in the vicinity of the equilibrium, are almost the same,

(ii) their slopes, evaluated at the equilibrium, are different. The linearized version of the MOVM, captured by

system (4), brings forth the dependence on the slope via the variable d̃, and (iii) we make use of the Bando OVF

throughout this paper, except in Section VIII. Therein, we consider both the Bando OVF and the Underwood OVF,

consistent with [10].

We now proceed to understand the dynamical behavior of a platoon of cars running the MOVM.
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III. THE NO-DELAY REGIME

We first consider the idealistic case of instantaneously-reacting drivers. This results in zero reactions delays.

Therefore, the model described by system (4) boils down to the following system of Ordinary Differential Equations

(ODEs):

Ṡ(t) =

(
N∑
k=0

Ak

)
S(t). (5)

We denote by A, the sum of matrices Ak, which is known as the dynamics matrix. To characterize the stability

of system (5), we require the eigenvalues of A to be negative [34, Theorem 5.1.1]. To that end, we compute its

characteristic function as

f(λ) = det(λI2N×2N −A) = det

(λ+ a)IN×N D̂

IN×N λIN×N

 = 0,

where D̂ is derived from the dynamics matrix A. The diagonal matrices of the above block matrix are invertible,

and the off-diagonal matrices commute with each other. Hence, from [35, Theorem 3], the characteristic equation

can be simplified to (λ2 + aλ− d)N = 0, which holds true if and only if

λ2 + aλ− d = 0. (6)

Solving the above quadratic, we notice that the poles corresponding to system (5) will be negative if a > 0

and d̃ = V
′
(V −1(ẋ0)) > 0. We note that, from physical constraints, a > 0. Also, since V (·) is an OVF, it

is monotonically increasing. Therefore, d̃ > 0. Hence, for all physically relevant values of the parameters, the

corresponding poles will lie in the open left-half of the Argand plane. Thus, the MOVM is locally stable for all

physically relevant values of the parameters, in the absence of delays.

IV. THE SMALL-DELAY REGIME

Having studied the MOVM in the absence of reaction delays, we now analyze it in the small-delay regime. A

way to obtain insight for the case of small delays is to conduct a linearization on time. This would yield a system

of ODEs, which serves as an approximation to the original infinite-dimensional system (4), valid for small delays.

We derive the criterion for such a system of ODEs to be stable, thereby emphasizing the design trade-off inherent

among various system parameters and the reaction delay.

We begin by applying the Taylor’s series approximation to the time-delayed state variables thus: vi(t − τi) ≈
vi(t) − τiv̇i(t), and ui(t − τi) ≈ ui(t) − τiu̇i(t). Using this approximation for terms in (3), substituting vi(t) for

u̇i(t) and re-arranging the resulting equations, we obtain the matrix equation

BṠ(t) = AS(t). (7)

where the matrix A is the dynamics matrix, as defined in Section III, and B is a block matrix of the form

B =

 Bs 0N×N

0N×N IN×N ,

 ,
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where

(Bs)ij =

1− aτi, i = j,

0, elsewhere.

We note that, since Bs is a diagonal matrix, so is B. Also, B is invertible if and only if aτi 6= 1, for each i. Thus,

when aτi 6= 1, for each i, we define C̃ = B−1A, which is of the form

C̃ =

 C̃s C̃c

IN×N 0N×N ,

 ,
where

(Cs)ij =


−a+dτi
1−aτi , i = j,

−dτj
1−aτi , j = i− 1,

0, elsewhere,

and

(Cc)ij =


−d

1−aτi , i = j,

d
1−aτi , j = i− 1,

0, elsewhere.

For system (7) to be stable, the real part of eigenvalues of C̃ must be negative [34, Theorem 5.1.1]. To that end,

we compute its characteristic function as

f(λ) = det(λI2N×2N − C̃) = det

λIN×N − C̃s −C̃c
−IN×N λIN×N

 = 0.

The diagonal matrices of the aforementioned block matrix are invertible, and the matrices in the second row therein

commute with each other. Hence, the characteristic equation simplifies to [35, Theorem 3]

f(λ) = det
(
λ(λIN×N − C̃s)− C̃c

)
= 0.

On further simplification, this yields

f(λ) =

N∏
i=1

(
(1− aτi)λ2 + (a− dτi)λ+ d

)
= 0.

For multiple terms in the above product to equal zero, their respective reaction delays must be equal. Such a

possibility is not realistic, hence we ignore it. Therefore, for some i ∈ {1, 2, · · · , N}, we have

(1− aτi)λ2 + (a− dτi)λ+ d = 0.

The roots of this quadratic equation are given by

λ1,2 =
−(a− dτi)±

√
(a− dτi)2 − 4d(1− aτi)

2(1− aτi)
.

We now consider the following (exhaustive) cases.
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(1) Let aτi > 1. Since d > 0, it follows that 4d(1−aτi) < 0. Then, the eigenvalues are real. Further, one of these

eigenvalues will be positive and the other negative. Hence, we require aτi < 1 for system (7) to be stable.

(2) Let (a − dτi)2 ≥ 4d(1 − aτi). Then, the eigenvalues are real. They are negative if and only if a − dτi > 0,

i.e., d̃τi < 1. Hence, we require d̃τi < 1 for system (7) to be stable.

(3) Let (a − dτi)2 < 4d(1 − aτi). Then, the eigenvalues are complex. The real part of the eigenvalues will be

negative if and only if a− dτi > 0, i.e., d̃τi < 1. Hence, we require d̃τi < 1 for system (7) to be stable.

From the above cases, it is clear that system (7) is stable if and only if

max(a, d̃)τi < 1, (8)

for each i ∈ {1, 2, · · · , N}. Recall that we obtained system (7) by truncating the Taylor’s series to first order.

Hence, (8) is a sufficient condition for the local stability of the MOVM described by system (2), valid for small

values of the reaction delay.

V. THE ARBITRARY-DELAY REGIME

Having studied system (2) in the no-delay and the small-delay regimes, in this section, we focus on the arbitrary-

delay regime. We first derive the necessary and sufficient condition for the local stability of the MOVM. We then

show that, upon violation of this condition, the corresponding traffic flow transits via a Hopf bifurcation to the

locally unstable regime.

A. Transversality condition

Hopf bifurcation is a phenomenon wherein, on appropriate variation of system parameters, a dynamical system

either loses or regains stability because of a pair of conjugate eigenvalues crossing the imaginary axis in the Argand

plane [11, Chapter 11, Theorem 1.1]. Mathematically, Hopf bifurcation analysis is a rigorous way of proving the

emergence of limit cycles (isolated closed trajectory in state space) in non-linear dynamical systems.

To determine if system (2) undergoes a stability loss via a Hopf bifurcation, we follow [37] and introduce an

exogenous, non-dimensional parameter κ > 0. A general system of DDEs

ẋ(t) = f(x(t), x(t− τ1), · · · , x(t− τn)), (9)

is modified to

ẋ(t) = κf(x(t), x(t− τ1), · · · , x(t− τn)), (10)

with the introduction of the exogenous parameter. Note that (i) κ has no effect on the equilibrium of system (9),

and (ii) we obtain system (9) by setting κ = 1 in system (10). We first linearize system (10) about its non-trivial

equilibrium and derive its characteristic equation. We then search for a pair of conjugate eigenvalues on the imaginary

axis in the Argand plane. This yields the necessary and sufficient condition for the local stability of system (10).

Setting the exogenous parameter to unity then yields the necessary and sufficient condition for system (9). The

exogenous parameter so introduced helps simplify the requisite algebra and capture any interdependence among the

system parameters.
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For the MOVM, introducing κ in (2) yields

v̇1(t) = ẍ0(t) + κa (ẋ0(t− τ1)− V (y1(t− τ1))− v1(t− τ1)) ,

v̇k(t) =κa (V (yk−1(t− τk−1))− V (yk(t− τk))− vk(t− τk)) ,

ẏi(t) =κvi(t), (11)

for i ∈ {1, 2, · · · , N} and for k ∈ {2, 3, · · · , N}. We linearize this about the equilibrium v∗i = 0, y∗i =

V
′
(V −1(ẋ0)), i = 1, 2, · · · , N, and write it in matrix form to obtain

Ṡ(t) =

N∑
k=0

ÃkS(t− τk), (12)

where the matrices Ãk = κAk, for k = 1, 2, · · · , N, where the matrices Ak are as defined in Section II.

The characteristic equation corresponding to system (12) is obtained as [34, Section 5.1]

f(λ) = det

(
λI2N×2N −

N∑
k=0

e−λτkÃk

)
= 0.

The matrix in consideration is a block matrix of the form

λI2N×2N −
N∑
k=0

e−λτkÃk =

Ã B̃

C̃ D̃

 ,
where C̃ = −κIN×N and D̃ = λIN×N . Further, Ã is a diagonal matrix with the ith diagonal entry being

λ+κae−λτi , and B̃ is a sparse lower-triangular matrix. Clearly, Ã and D̃ are invertible, and C̃ commutes with D̃.

Therefore, the characteristic equation simplifies to the form [35, Theorem 3]

f(λ) = det

Ã B̃

C̃ D̃

 = det
(
ÃD̃ − B̃C̃

)
= 0.

Simplifying the above expression, we obtain the characteristic equation pertaining to (12) as

f(λ) =

N∏
i=1

(λ2 + κaλe−λτi + κ2de−λτi) = 0. (13)

For multiple terms in the above product to equal zero, their respective reaction delays must be equal. Such a

possibility is not realistic, hence we ignore it. Therefore, for some i ∈ {1, 2, · · · , N}, we have

λ2 + κaλe−λτi + κ2de−λτi = 0. (14)

System (11) will be locally stable if and only if all the roots of (14) lie in the open left-half of the Argand plane [34,

Theorem 5.1.1]. Therefore, we search for a conjugate pair of eigenvalues of (14) that crosses the imaginary axis in

the Argand plane. To that end, we substitute λ = jω in (14), with j =
√
−1. We then equate the real and imaginary

parts to zero and obtain

κaω sin(ωτi) + κ2d cos(ωτi) =ω2, (15)

κaω cos(ωτi)− κ2d sin(ωτi) = 0. (16)
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Squaring and adding (15) and (16) yields ω4 − κ2a2ω2 − κ4d2 = 0. Solving for ω2, we obtain

ω2
1,2 = κ2

(
a2 ±

√
a4 + 4d2

2

)
.

Since we are searching for a positive root, we discard the negative root. The positive root of the above expression

is given by

ω = κ

√
a(a+

√
a2 + 4d̃2)

2
. (17)

For convenience, we write the above equation as ω = κχ. Notice that, on re-arranging (16), we obtain κd̃ tan(ωτi) =

ω. Substituting for ω in the above equation and simplifying yields

ω0 =
1

τi
tan−1

(
χ

d̃

)
. (18)

Substituting ω0 in (16) and simplifying, we obtain

κcr =
1

τiχ
tan−1

(
χ

d̃

)
. (19)

Thus, (18) and (19) yield the angular frequency of the oscillatory solution and the value of κ at which such a

solution exists respectively.

We now show that the MOVM undergoes a Hopf bifurcation at κ = κcr. To that end, we need to prove the

transversality condition of the Hopf spectrum. That is, we must show that [11, Chapter 11, Theorem 1.1]

Real
(

dλ
dκ

)
κ=κcr

6= 0. (20)

To that end, we differentiate (14) with respect to κ and simplify it, to obtain

Real

((
dλ
dκ

)−1
)
κ=κcr

=
κcrω

2
0τi(κ

2
crd̃ cos(ω0τi) + ω2

0)

(κ2
crd̃ cos(ω0τi) + ω0)2 + (κ2

crd̃ sin(ω0τi))2
> 0. (21)

The positivity in (21) follows because cos(ω0τi) = κcrd̃/(κ
2
crd̃

2 +ω2
0) is positive. This expression follows from (16)

using trigonometric manipulations. Also, Real(z) > 0 if and only if Real(1/z) > 0 ∀ z ∈ C. Hence, from (21) we

have

Real
(

dλ
dκ

)
κ=κcr

> 0.

This proves the transversality of the Hopf spectrum. Therefore, the MOVM transits from the locally stable to the

locally unstable regime via a Hopf bifurcation at κ = κcr. It can be shown that for sufficiently small values of

κ, system (11) is locally stable. Additionally, the above strict inequality implies that the eigenvalues move from

left to right in the Argand plane as κ is increased in the neighborhood of κcr. Therefore, κ < κcr is the necessary

and sufficient condition for local stability of system (11).

B. Discussion

A few comments are in order.

(1) Note that the characteristic equation (14) is transcendental, hence there exist infinitely many roots. However,

system (11) loses local stability when the first conjugate pair of eigenvalues crosses the imaginary axis as
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Fig. 1: Stability chart: Illustrates the necessary and sufficient condition (N&SC) (22) and the sufficient condition

(SC) (8) for the MOVM, for small delays. The plot serves to validate our analysis presented in Section IV.

the exogenous parameter is varied. Due to the positivity of the derivative in (21), system stability cannot be

restored by increasing κ.

(2) The equation of the stability boundary pertaining to system (11) is κ = κcr. It is also called the Hopf boundary

of the said system. To obtain the Hopf boundary corresponding to the MOVM described by system (2), we

tune the system parameters such that κcr = 1 in (19). In particular, the MOVM is locally stable if and only

if, for each i ∈ {1, 2, · · · , N}, we have

τi <
1

χ
tan−1

(
χ

d̃

)
. (22)

It is clear from (22) that when the reaction delay increases, the MOVM loses local stability via a Hopf

bifurcation. Also note that when τ = 0, (22) is trivially satisfied for all physically relevant parameter values.

This is in agreement with the result derived in Section III. To validate the analysis presented in Section IV,

we plot the Right Hand Sides (RHSs) of (8) and (22) for small values of the reaction delay in Fig. 1. Clearly,

we notice from Fig. 1 that (8) indeed represents a sufficient condition for the local stability of the MOVM for

small delays.

(3) Loss of local stability via a Hopf bifurcation results in the emergence of limit cycles. Since the dynamical

variables for the MOVM correspond to relative velocities and headways, these non-linear oscillations physically

manifest as back-propagating congestion wave on a highway. Thus, as mentioned in the Introduction, our

analysis provides a mathematical basis to the commonly-observed “phantom jam.”

(4) Note that the non-dimensional parameter κ is not a model parameter; rather, it is an exogenous mathematical

entity introduced to aid the analysis and capture any interdependence among model parameters. It also serves to

simplify the algebra required to obtain the necessary and sufficient condition for local stability of the MOVM.

Further, since substituting κ = 1 yields the MOVM, it is useful in a neighborhood around 1, i.e., near the

stability boundary.

(5) Gain parameters are known to destabilize feedback systems [1, Section 3.7]. Thus, we need to verify that the
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bifurcation phenomenon proved in this section is not an artefact of the exogenous parameter. To that end, we

need to verify that the MOVM also undergoes a Hopf bifurcation when one of the model parameters is chosen

as the bifurcation parameter. It was shown in [38] that the transversality condition of the Hopf spectrum holds

true for the characteristic equation of the form (14) (with κ = 1) when τ is used as the bifurcation parameter,

although in a different context.

VI. NON-OSCILLATORY CONVERGENCE

In the previous three sections, we derived conditions for the MOVM to be locally stable in three different regimes.

In the next two sections, we explore two important properties of the MOVM; namely, non-oscillatory convergence

and the rate of convergence.

In the context of transportation networks, ride quality is of utmost importance. This, in turn, mandates that the

vehicles avoid jerky motion. Since relative velocities and headways constitute dynamical variables for the MOVM,

it boils down to studying the non-oscillatory property of its solutions. In particular, we derive the necessary and

sufficient condition for non-oscillatory convergence of the MOVM. Mathematically, this amounts to ensuring that

the eigenvalues corresponding to system (4) are negative real numbers.

To derive the necessary and sufficient condition for non-oscillatory convergence of the MOVM, we begin with the

characteristic equation corresponding to system (2), obtained by setting κ = 1 in (14). We also drop the subscript

“i” for convenience. Thus, we obtain

f(λ) = λ2 + (aλ+ d)e−λτ = 0. (23)

To ensure non-oscillatory convergence of the MOVM, we require the roots of (23) to be real and negative. To

that end, we substitute λ = σ + jω in (23), where j =
√
−1. This yields

aω sin(ωτ) + (aσ + d) cos(ωτ) = (ω2 − σ2)eστ , and (24)

aω sin(ωτ) + (aσ + d) cos(ωτ) = (−2σω)eστ . (25)

Squaring and adding (24) and (25), we obtain

(aω)2 + (aσ + d)2 = (ω2 + σ2)2e2στ . (26)

To ensure that the roots are real, we require a condition for ω = 0 to be the only solution of (26). Substituting

ω = 0 in (26), we obtain

(aσ + d)2 = σ4e2στ . (27)

Thus, the above condition is necessary for ω = 0 to be a solution of (26). To check whether it is also a sufficient

condition, we first separate the terms containing ω in (26) from those without it. This yields

e2στω4 + (2σ2e2στ − a2)ω2 = (aσ + d)2 − σ4e2στ .

Assuming (aσ + d)2 = σ4e2στ , we solve the above quadratic in ω2 to obtain

ω2 = 0 or ω2 =
a2 − 2σ2e2στ

e2στ
.
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Fig. 2: Illustration of region of non-oscillatory convergence for the MOVM. Here, τcr and τnoc represent the

boundary of the locally stable region and the region of non-oscillatory convergence of the MOVM respectively.

Notice the stringent requirements on the reaction delay for the solutions of the MOVM to be non-oscillatory.

Thus, for ω = 0 to be the unique solution of (26), we require a2 = 2σ2e2στ in addition to the condition mentioned

in (27). That is, (23) has real eigenvalues if and only if

(aσ + d)2 = σ4e2στ , and a2 = 2σ2e2στ . (28)

Solving the above two equations for the eigenvalue, we obtain

σ = d̃m±, with m± = −2±
√

2. (29)

Notice from the foregoing analysis that the eigenvalues are guaranteed to be negative if they are real. Substituting (29)

in (23) and re-arranging, we obtain the boundary for the region of non-oscillatory convergence as

e−d̃τm± =
−m2

±d̃

a(m+ 1)
.

Notice that the Left Hand Side (LHS) in the above equation is a non-negative quantity. The RHS is non-negative

for m− but not for m+. Hence, we set m = m− in the above equation, and re-arrange to obtain

τnoc =
1

md̃
ln
(−a(m+ 1)

m2d̃

)
, (30)

where τnoc represents the boundary for the region of non-oscillatory convergence in the τ -domain. Therefore,

τ < τnoc represents the necessary and sufficient condition for non-oscillatory convergence of the MOVM. We note

that the following inequalities must be satisfied: 0 < τnoc < τcr, where τcr is the RHS of (22).

In summary, the necessary and sufficient condition for non-oscillatory convergence of the MOVM is

τi <
1

md̃
ln
(−a(m+ 1)

m2d̃

)
, (31)

for each i ∈ {1, 2, · · · , N}, when the RHS is positive and less than τcr.

We now illustrate the boundary for the region of non-oscillatory convergence of the MOVM described by (30). In

order to better-understand the stringent constraints on system parameters to achieve non-oscillatory convergence, we



16

also plot the necessary and sufficient condition for local stability (22) of the MOVM. To that end, we make use of

the Bando OVF. We let the equilibrium velocity of the lead vehicle to be ẋ0 = 5 m/s, and the model parameters as

y∗ = 2 m, ỹ = 5 m and ym = 1 m. We then compute the corresponding V0 and d̃. We vary the sensitivity coefficient

a from 1 and 5, and compute the requisite boundaries using the scientific computation software MATLAB.

Fig. 2 portrays regions of local stability and non-oscillatory convergence for the MOVM in the (a, τ)-space. For a

fixed a, the reaction delay must not exceed τcr (respectively, τnoc) for the MOVM to be locally stable (respectively,

possess non-oscillatory solutions). Clearly, the values of τ need to be much smaller for the solutions of the MOVM

to be non oscillatory as opposed to the stability of the MOVM, for a fixed value of a. In fact, as the sensitivity

parameter a increases, the corresponding value of reaction delays required to ensure non-oscillatory convergence

decreases rapidly.

We end this section with two remarks. (i) To the best of our knowledge, the analysis presented in this section

is the first to address non-oscillatory convergence of systems with characteristic equations of the form (23) using

spectral-domain techniques. (ii) We can obtain ω = 0 as the only solution to (26) by a geometrical method as

follows. Re-arranging (26) yields

(ω2 + σ2)2 = (a2e−2στ )ω2 + (aσ + d)2e−2στ .

Notice that the LHS and RHS of the above equation represent a parabola and a line in ω2-domain respectively. Since

a parabola is strictly convex, the tangent to a parabola at any point will intersect it only at that point. Therefore,

the slope of the line (captured by the coefficient of the term ω2) must equal the derivative of the LHS with respect

to ω2, evaluated at zero. That is, a2e−2στ = 2σ2. Also, the intercept of the line should be equal the value of the

parabola evaluated at zero, i.e., (aσ + d)2e−2στ = σ4. These are same as the conditions in (28).

VII. RATE OF CONVERGENCE

In this section, we characterize the time required to attain the uniform traffic flow, once the traffic flow is

perturbed (by events such as the departure of a vehicle from the platoon). Mathematically, it is related to the rate of

convergence of solutions of the MOVM to the desired equilibrium. To that end, we follow [39] and first characterize

the rate of convergence of the MOVM. Then, using the notion of settling time, we derive an expression for the

time a platoon takes to attain the desired equilibrium following a perturbation.

We begin by recalling the characteristic equation pertaining to system (4) from Section V-A. Dropping the

subscript “i” for ease of exposition, and setting κ = 1 in (14), we obtain

λ2 + aλe−λτ + de−λτ = 0.

Using the change of variables z = λτ, the above equation results in

z2ez + a∗z + d∗ = 0, (32)

where a∗ = aτ and d∗ = dτ2. Notice that (32) has the same form as [39, Equation (22)]. Hence, following [39],

we substitute z = ψ − σ, where σ is non-negative and real, in (32) to obtain

(ψ2 − 2σψ + σ2)eψ + a∗eσψ + (d∗ − a∗σ)eσ = 0.
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Fig. 3: Contour plots: Contour lines of the rate of convergence overlaying the boundaries of the locally stable

region and the region of non-oscillatory convergence of the MOVM. While (a) is for low to medium values of

rate of convergence, (b) is for high values. From (a), observe: (i) the rapid change in the gradient of the rate of

convergence, and (ii) for lower values of the rate of convergence, non-oscillatory convergence is also guaranteed. In

contrast, (b) shows that very high rates of convergence cannot be achieved if the solutions are to be non oscillatory.

The characteristic equation corresponding to the above system is obtained by substituting ψ = τλ as

λ2 +

(
−2σ

τ

)
λ+ (aeσ)λe−λτ +

(
d− aσ

τ

)
eσe−λτ +

(
σ2

τ2

)
= 0. (33)

The rate of convergence is the largest σ ≥ 0 such that the root of (33) with the largest real part is negative [39].

As pointed out in [39], finding such a σ analytically is intractable. Hence, we illustrate the variation of the rate

of convergence numerically with respect to both the sensitivity parameter a and the reaction delay τ , using the

scientific computation software MATLAB.

We consider the Bando OVF, and set the following parameters: ym = 1 m, ỹ = 5 m, y∗ = 2 m and ẋ0 = 5 m/s.

We then compute the corresponding values of V0 and d̃. Next, we vary the sensitivity coefficient a in the range

[1, 5], and for each of its values, we compute the critical value of the reaction delay τcr using (22). We then vary the

reaction delay τ in the range [0, τcr], for each a. For every pair (a, τ) in this range, σ is increased from 0, till the

root of (33) with the largest real part crosses the imaginary axis in the Argand plane. Since the resulting plot would

be three dimensional, we present the corresponding contour plots in Fig. 3. For clarity in presentation, the contour

plots are segregated as follows: Fig. 3a is for low to medium values of the rate of convergence, whereas Fig. 3b is

for high values. It can be seen from Fig. 3a that small changes in a or τ causes the rate of convergence to change

from 0.3 to 0.9. However, it would require relatively larger changes in a or τ for the rate of convergence to change

from 0.1 to 0.3. That is, the gradient of the rate of convergence increases rather rapidly with an increase in the rate

of convergence. Also, for low values of the rate of convergence, non-oscillatory convergence can be guaranteed. In

contrast, Fig. 3b brings forth the trade-off between the rate of convergence and non-oscillatory convergence; very
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high rates of convergence cannot be achieved if the solutions are to be non oscillatory.

The rate of convergence determines the time taken by a platoon to reach an equilibrium (denoted by T eMOVM ).

To characterize T eMOVM , we first define the time taken by the ith pair of vehicles in the platoon following the

standard control-theoretic notion of “settling time.” That is, by tei (ε), we denote the minimum time taken by the

time-domain trajectory of the MOVM to enter and subsequently remain within the ε-band around the equilibrium.

For simplicity, we drop the explicit dependence on ε. Then,

T eMOVM =

N∑
i=1

tei . (34)

It is clear that (34) is an upper bound on the time taken by the platoon to equilibrate. However, the equality holds

since the ith pair cannot equilibrate till the (i− 1)th pair has reached its equilibrium.

VIII. HOPF BIFURCATION ANALYSIS

In the previous sections, we have characterized the stable region for the MOVM, and studied two of its most

important properties; namely, non-oscillatory convergence and the rate of convergence. We have also proved that

system (2) loses stability via a Hopf bifurcation, thus resulting in limit cycles. In this section, we provide an

analytical framework to characterize the type of the bifurcation and the asymptotic orbital stability of the emergent

limit cycles. We closely follow the style of analysis presented in [36], which uses Poincaré normal forms and the

center manifold theory.

We begin by denoting the RHS of (11) as fi. That is, for i ∈ {1, 2, · · · , N},

fi , aκ (V (yi−1(t− τi−1))− V (yi(t− τi))− vk(t− τi)) . (35)

Define µ = κ− κcr. Notice that the system undergoes a Hopf bifurcation at µ = 0, where κ = κcr. Henceforth,

we shall consider µ as the bifurcation parameter. Also, it is clear that when µ > 0, the exogenous parameter κ

changes from κcr to κcr + µ, thus pushing the system into its unstable regime.

We now provide a step-by-step overview of the detailed local bifurcation analysis, before delving into its technical

details.

Step 1: We begin by applying Taylor’s series expansion to the RHS of (35). Next, we separate the linear terms

from their non-linear counterparts. This allows us to cast the resulting equation into the standard form of an Operator

Differential Equation (OpDE).

Step 2: When µ = 0, the system has exactly one pair of purely imaginary eigenvalues with non-zero angular

velocity, as seen from (21). We call the linear space spanned by the corresponding eigenvectors as the critical

eigenspace. For the purpose of our analysis, we also require a locally invariant manifold that is a tangent to the

critical eigenspace at the system’s equilibrium. The center manifold theorem [36] guarantees the existence of such

a manifold.

Step 3: Next, we project the system onto its critical eigenspace and its complement when µ = 0. Thus, we may

write the dynamics of the original system on the center manifold as an ODE in a single complex variable.
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Step 4: Finally, using Poincaré normal forms, we evaluate the Lyapunov coefficient and the Floquet exponent.

These, in turn, help characterize the type of the Hopf bifurcation and the asymptotic orbital stability of the emergent

limit cycles.

We begin the analysis by expanding (35) about the equilibrium v∗i = 0, y∗i = V
′
(V −1(ẋ0)), i = 1, 2, · · · , N,

using Taylor’s series, to obtain

v̇i(t) =(−κa)vi,t(−τi) + Ω
(1)
i yi,t(−τi) + Ω

(2)
i y2

i,t(−τi) + Ω
(3)
i y3

i,t(−τi) + ζ
(1)
i y(i−1),t(−τi−1)

+ ζ
(2)
i y2

(i−1),t(−τi−1) + ζ
(3)
i y3

(i−1),t(−τi−1) + higher order terms,

ẏi(t) =κxi(t) (36)

where we use the shorthand vi,t(−τi) and yi,t(−τi) to represent vi(t−τi) and yi(t−τi) respectively. The coefficients

are given by Ω
(1)
i = −κaV ′(y∗i ), Ω

(2)
i = −κaV ′′(y∗i ), and Ω

(3)
i = −κaV ′′′(y∗i ). Also, the coefficients ζ(1)

i , ζ
(2)
i

and ζ
(3)
i assume the values Ωi(1), Ωi(2) and Ωi(3) respectively for i > 1, and are zero for i = 1. The terms

with the primes V
′
, V

′′
and V

′′′
denote the first, second and third derivatives of the OVF with respect to the state

variable respectively.

In the following, we use Ck (A;B) to denote the linear space of all functions from A to B which are k times

differentiable, with each derivative being continuous. Also, we use C to denote C0, for convenience.

With the concatenated state S(t), note that (11) is of the form:

dS(t)

dt
= LµSt(θ) + F(St(θ), µ), (37)

where t > 0, µ ∈ R, and where for τ = max
i
τi > 0,

St(θ) = S(t+ θ), S : [−τ, 0] −→ R2N , θ ∈ [−τ, 0].

Here, Lµ : C
(
[−τ, 0];R2N

)
−→ R2N is a one-parameter family of continuous, bounded linear functionals, whereas

the operator F : C
(
[−τ, 0];R2N

)
−→ R2N is an aggregation of the non-linear terms. Further, we assume that

F(St, µ) is analytic, and that F and Lµ depend analytically on the bifurcation parameter µ, for small |µ|. The

objective now is to cast (37) in the standard form of an OpDE:

dSt
dt

= A(µ)St +RSt, (38)

since the dependence here is on St alone rather than both St and S(t). To that end, we begin by transforming the

linear problem dS(t)/dt = LµSt(θ). We note that, by the Riesz representation theorem [40, Theorem 6.19], there

exists a 2N × 2N matrix-valued measure η(·, µ) : B
(
C
(
[−τ, 0];R2N

))
−→ R2N×2N , wherein each component of

η(·) has bounded variation, and for all φ ∈ C
(
[−τ, 0];R2N

)
, we have

Lµφ =

0∫
−τ

dη(θ, µ)φ(θ). (39)

In particular,

LµSt =

0∫
−τ

dη(θ, µ)S(t+ θ).
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Motivated by the linearized system (12), we define

dη =

Ã B̃

C̃ D̃

 dθ,

where

(Ã)ij =


−κdδ(θ + τi), i = j,

κdδ(θ + τj), j = i− 1, i > 1,

0, otherwise,

(B̃)ij =

−κaδ(θ + τi), i = j,

0, otherwise,

C̃ = κIN×N and D̃ = 0N×N . For instance, when N = 2,

dη =


−κdδ(θ + τ1) 0 −κaδ(θ + τ1) 0

κdδ(θ + τ1) −κdδ(θ + τ2) 0 −κaδ(θ + τ2)

κ 0 0 0

0 κ 0 0

 dθ.

For φ ∈ C1
(
[−τ, 0];C2N

)
, we define

A(µ)φ(θ) =


dφ(θ)

dθ , θ ∈ [−τ, 0),
0∫
−τ

dη(s, µ)φ(s) ≡ Lµ, θ = 0,
(40)

and

Rφ(θ) =

0, θ ∈ [−τ, 0),

F(φ, µ), θ = 0.

With the above definitions, we observe that dSt/dθ ≡ dSt/dt. Hence, we have successfully cast (37) in the form

of (38). To obtain the required coefficients, it is sufficient to evaluate various expressions for µ = 0, which we

use henceforth. We start by finding the eigenvector of the operator A(0) with eigenvalue λ(0) = jω0. That is, we

want an 2N × 1 vector (to be denoted by q(θ)) with the property that A(0)q(θ) = jω0q(θ). We assume the form:

q(θ) = [1 φ1 φ2 · · · φ2N−1]T ejω0θ, and solve the eigenvalue equations. That is, we need to solve

−κde−jω0τ1 − aφNe−jω0τ1

κde−jω0τ2 + κ(−dφ1 − aφN+1)e−jω0τ2

κde−jω0τ3 + κ(−dφ2 − aφN+2)e−jω0τ3

...

κde−jω0τN−1 + κ(−dφN−1 − aφ2N−1)e−jω0τN−1

κβ

κφ1β
...

κφN−1β



= jω0



1

φ1

φ2

...

φ2N−2

φ2N−1


,
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where β = j(−1 + je−jω0τ )/ω0. This, in turn, necessitates the following assumptions:

(i)

−jω0e
jω0τ1 + κd

κ2a
=
−1 + ejω0τ

ω2
0

,

(ii) For each i ∈ {1, 2, · · ·N − 1}, the following matrix is invertible:κde−jω0τi+1 + jω0 κae−jω0τi+1

κβ −jω0

 ,
where β = j(−1 + je−jω0τ )/ω0. Then, for i ∈ {1, 2, · · ·N − 1},

φN =
κβ

jω0
, φi = −jκω0de

−jω0τi

∆Mi
, and φN+i = −βκ

2de−jω0τi

∆Mi
,

where ∆Mi = ω2
0 − κdω0 sin(ω0τi+1)− κ2βa cos(ω0τi+1) + j

(
κ2βa sin(ω0τi+1)− κdω0 cos(ω0τi+1)

)
.

We define the adjoint operator as follows:

A∗(0)φ(θ) =


− dφ(θ)

dθ , θ ∈ (0, τ ],
0∫
−τ

dηT (s, 0)φ(−s), θ = 0,

where dηT is the transpose of dη. We note that the domains of A and A∗ are C1
(
[−τ, 0];C2N

)
and C1

(
[0, τ ];C2N

)
respectively. Therefore, if jω0 is an eigenvalue ofA, then−jω0 is an eigenvalue ofA∗. Hence, to find the eigenvector

of A∗(0) corresponding to −jω0, we assume the form: p(θ) = B[ψ2N−1 ψ2N−2 ψ2N−3 · · · 1]T ejω0θ, and solve

A∗(0)p(θ) = −jω0p(θ). Simplifying this, we obtain

−κde−jω0τ1ψ2N−1 + κde−jω0τ1ψ2N−2 − βκψN−1

−κde−jω0τ2ψ2N−2 + κde−jω0τ2ψ2N−3 − βκψN−2

−κde−jω0τ3ψ2N−3 + κde−jω0τ3ψ2N−4 − βκψN−3

...

−κde−jω0τNψN − βκ
−κae−jω0τ1

−κae−jω0τ2

...

−κae−jω0τN



= −jω0



ψ2N−1

ψ2N−2

ψ2n−3

...

ψ1

1


.

We require the following assumptions:

(i)

κd− jω0e
jω0τN

κ2a
=
−1 + ejω0τ

ω2
0

,

(ii) For each i ∈ {1, 2, · · ·N − 1}, the following matrix is invertible:jω0 −κae−jω0τi

κβ κde−jω0τi − jω0

 .
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Then, for i ∈ {1, 2, · · ·N − 1}, we obtain

ψN =
jω0e

jω0τN

κa
, ψN+i =

jω0κdψN+i−1e
−jω0τN−i

∆M̃i

, and ψi =
κ2adψN+i−1e

−jω0τN−i

∆M̃i

,

where ∆M̃i = ω2
0 + κdω0 sin(ω0τN−i) + κ2βa cos(ω0τN−i) + j

(
κdω0 cos(ω0τN−i)− κ2βa sin(ω0τN−i)

)
.

The normalization condition for Hopf bifurcation requires that 〈p, q〉 = 1, thus yielding an expression for B.

For any q ∈ C
(
[−τ, 0];C2N

)
and p ∈ C

(
[0, τ ];C2N

)
, the inner product is defined as

〈p, q〉 , p̄ · q −
0∫

θ=−τ

θ∫
ζ=0

p̄T (ζ − θ)dηq(ζ) dζ, (41)

where the overbar represents the complex conjugate and the “ · ” represents the regular dot product. The value of

B such that the inner product between the eigenvectors of A and A∗ is unity can be shown to be

B =
1

ζ1 + ζ2 + ζ3 + ζ4
,

where

ζ1 =

(
2ejω0τ − ej2ω0τ − 1

2

)N−1∑
i=0

κψN−i−1φ̄i, ζ2 =

N−1∑
i=0

(
ejω0τi+1 − ej2ω0τi+1

jω0

)
κψ2N−1−i(aφ̄i + dφ̄N+i),

ζ3 =

N−2∑
i=0

(
ej2ω0τi+1 − ejω0τi+1

jω0

)
κdφ̄iψ2N−2−i, and, ζ4 =

2N−1∑
i=0

ψ2N−1−iφ̄i.

In the above, we define φ0 = ψ0 = 0 for notational brevity.

For St, a solution of (38) at µ = 0, we define

z(t) = 〈p(θ),St〉, and w(t, θ) = St(θ)− 2Real(z(t)q(θ)).

Then, on the center manifold C0, we have w(t, θ) = w(z(t), z̄(t), θ), where

w(z(t), z̄(t), θ) = w20(θ)
z2

2
+ w02(θ)

z̄2

2
+ w11(θ)zz̄ + · · · . (42)

Effectively, z and z̄ are the local coordinates for C0 in C in the directions of p and p̄ respectively. We note that

w is real if St is real, and we deal only with real solutions. The existence of the center manifold C0 enables the

reduction of (38) to an ODE in a single complex variable on C0. At µ = 0, the said ODE can be described as

ż(t) = 〈p,ASt +RSt〉 ,

= jω0z(t) + p̄(0).F (w(z, z̄, θ) + 2Real(z(t)q(θ))) ,

= jω0z(t) + p̄(0).F0(z, z̄). (43)

This is written in abbreviated form as

ż(t) = jω0z(t) + g(z, z̄). (44)

The objective now is to expand g in powers of z and z̄. However, this requires wij(θ)’s from (42). Once these are

evaluated, the ODE (43) for z would be explicit (as given by (44)), where g can be expanded in terms of z and z̄

as

g(z, z̄) = p̄(0).F0(z, z̄) = g20
z2

2
+ g02

z̄2

2
+ g11zz̄ + g21

z2z̄

2
+ · · · . (45)
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Next, we write ẇ = Ṡt − żq − ˙̄zq̄. Using (38) and (44), we then obtain the following ODE:

ẇ =

Aw− 2Real(p̄(0).F0q(θ)), θ ∈ [−τ, 0),

Aw− 2Real(p̄(0).F0q(0)) + F0, θ = 0.

This can be re-written using (42) as

ẇ = Aw +H(z, z̄, θ), (46)

where H can be expanded as

H(z, z̄, θ) = H20(θ)
z2

2
+H02(θ)

z̄2

2
+H11(θ)zz̄ +H21(θ)

z2z̄

2
+ · · · . (47)

Near the origin, on the manifold C0, we have ẇ = wz ż + wz̄ ˙̄z. Using (42) and (44) to replace wz ż (and their

conjugates, by their power series expansion) and equating with (46), we obtain the following operator equations:

(2jω0 −A)w20(θ) =H20(θ), (48)

−Aw11 =H11(θ), (49)

−(2jω0 +A)w02(θ) =H02(θ). (50)

We start by observing that

St(θ) = w20(θ)
z2

2
+ w02(θ)

z̄2

2
+ w11(θ)zz̄ + zq(θ) + z̄q̄(θ) + · · · .

From the Hopf bifurcation analysis [36], we know that the coefficients of z2, z̄2, z2z̄, and zz̄ terms are used to

approximate the system dynamics. Hence, we only retain these terms in the expansions.

To obtain the effect of non-linearities, we substitute the aforementioned terms appropriately in the non-linear

terms of (36) and separate the terms as required. Therefore, for each i ∈ {1, 2, . . . , 2N}, we have the non-linearity

term to be

Fi = F20i
z2

2
+ F02i

z̄2

2
+ F11izz̄ + F21i

z2z̄

2
, (51)

where, for i ∈ {1, 2, · · · , N}, the coefficients are given by

F20i = Ω
(1)
i w20i(−τi) + ζ

(1)
i−1w20(i−1)(−τi−1),

F02i = Ω
(1)
i w02i(−τi) + ζ

(1)
i−1w02(i−1)(−τi−1),

F11i = Ω
(1)
i w11i(−τi) + ζ

(1)
i−1w11(i−1)(−τi−1),

F21i = 2Ω
(2)
i

(
w20i(−τi)ejω0τi + 2w11i(−τi)e−jω0τi

)
+ 2ζ

(2)
i−1

(
w20(i−1)(−τi−1)ejω0τi−1 + 2w11(i−1)(−τi−1)e−jω0τi−1

)
.

For i ∈ {N + 1, N + 2, · · · , 2N}, each of these coefficients are zero. This is so, since last N states correspond to

the headways who evolution equations are linear.
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We represent the vector of non-linearities used in (43) as F0 = [F1 F2 · · · FN ]T . Next, we compute g using

F0 as

g(z, z̄) = p̄(0).F0 = B̄

N∑
l=1

ψ̄N−lFl. (52)

Substituting (51) in (52), and comparing with (45), we obtain

gx = B̄

N∑
l=1

ψ̄N−lFxl, (53)

where x ∈ {20, 02, 11, 21}. Using (53), the corresponding coefficients can be computed. However, computing g21

requires w20(θ) and w11(θ). Hence, we perform the requisite computation next. For θ ∈ [−τ, 0), H can be simplified

as

H(z, z̄, θ) = −Real (p̄(0).F0q(θ)) ,

= −
(
g20

z2

2
+ g02

z̄2

2
+ g11zz̄ + · · ·

)
q(θ)

−
(
ḡ20

z̄2

2
+ ḡ02

z2

2
+ ḡ11zz̄ + · · ·

)
q̄(θ),

which, when compared with (47), yields

H20(θ) = −g20q(θ)− ḡ20q̄(θ), (54)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (55)

From (40), (48) and (49), we obtain the following ODEs:

ẇ20(θ) = 2jω0w20(θ) + g20q(θ) + ḡ02q̄(θ), (56)

ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (57)

Solving (56) and (57), we obtain

w20(θ) = − g20

jω0
q(0)ejω0θ − ḡ02

3jω0
q̄(0)e−jω0θ + e e2jωθ, (58)

w11(θ) =
g11

jω0
q(0)ejω0θ − ḡ11

jω0
q̄(0)e−jω0θ + f, (59)

for some vectors e and f, to be determined.

To that end, we begin by defining the following vector: F̃20 , [F201 F202 · · · F20N ]T . Equating (48) and (54),

and simplifying, yields the operator equation: 2jω0e − A
(
e e2jω0θ

)
= F̃20. To solve this, we assume that the

following matrices to be invertible for each i ∈ {1, 2, · · · , N},2jωo + κ(a+ d)e−jω0τi κ(a+ d)e−jω0τi

−κτ 2jωo

 .
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Then, the operator equation can be simplified to

(
2jω0 + κ(a+ d)e−jω0τ1

)
e1 + κ(a+ d)e−jω0τ1eN+1(

2jω0 + κ(a+ d)e−jω0τ2
)
e2 + κ(a+ d)e−jω0τ2eN+2

...(
2jω0 + κ(a+ d)e−jω0τN

)
eN + κ(a+ d)e−jω0τN e2N

−κτe1 + 2jω0eN+1

...

−κτeN + 2jω0e2N


= F̃20.

This, in turn, yields

ei =
2jω0F20i

∆M∗i
, and, eN+i =

κτF20i

∆M∗i
, (60)

for i ∈ {1, 2, · · · , N}. Here, ∆M∗i = −4ω2
0 + 2ω0κ(a + d) sin(ω0τi) + τκ2(a + d) cos(ω0τi) + j

(
2ω0κ(a +

d) cos(ω0τi)− τκ2(a+ d) sin(ω0τi)
)
.

Next, equating (49) and (55), and simplifying, we obtain the operator equation Af = −F̃11, with F̃11 ,

[F111 F112 · · · F11N ]T . On simplification, this equation yields

−κτ1(a+ d)(f1 + fN+1)

−κτ2(a+ d)(f2 + fN+2)
...

−κτ1(a+ d)(fN + f2N )

κτ f1
...

κτ fN


= −F̃11.

On solving this, we obtain for i ∈ {1, 2, · · · , N},

fi = 0, and, fN+i =
F11i

κτi(a+ d)
. (61)

Substituting for e and f from (60) and (61) in (58) and (59) respectively, we obtain w20(θ) and w11(θ). This, in

turn, facilitates the computation of g21. We can then compute

c1(0) =
j

2ω0

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+
g21

2
,

α
′
(0) = Real

(
dλ
dκ

)
κ=κcr

, µ2 = −Real(c1(0))

α′(0)
, and β2 = 2Real(c1(0)).

Here, c1(0) is known as the Lyapunov coefficient and β2 is the Floquet exponent. It is known from [36] that

these quantities are useful since

(i) If µ2 > 0, then the bifurcation is supercritical, whereas if µ2 < 0, then the bifurcation is subcritical.

(ii) If β2 > 0, then the limit cycle is asymptotically orbitally unstable, whereas if β2 < 0, then the limit cycle is

asymptotically orbitally stable.

We now present numerically-constructed bifurcation diagrams to gain some insight into the effect of various

parameters on the amplitude of the limit cycle.
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Fig. 4: Bifurcation diagram: Amplitude of the emergent limit cycles in relative velocity variable as a function of the

exogenous parameter κ. (a) is for the Bando OVF, while (b) is for the Underwood OVF. For a fixed κ ∈ [1, 1.1],

the Underwood OVF results in limit cycles of smaller relative velocity than its Bando counterpart.

Bifurcation diagrams

To obtain bifurcation diagrams, we make use of DDE-BIFTOOL [41], [42]. We first input system (11) and their

first-order derivatives with respect to the state and delayed state variables to DDE-BIFTOOL. We then set κ = 1

and initialize the model parameters appropriately. We also fix a range of variation for the bifurcation parameter.

DDE-BIFTOOL varies the bifurcation parameter accordingly and finds its critical value. We then increase the value

of κ and record the amplitude of the resulting limit cycle, thus obtaining the bifurcation diagram. We use the SI

units throughout. That is, time will be expressed in “seconds,” distance in “meters,” velocity in “meters per second”

and the sensitivity coefficient in “inverse second.” For our comparison, we consider two optimal velocity functions;

namely, the Bando OVF and the Underwood OVF.

For the Bando OVF, we initialize the parameters as follows: N = 4, a = 1.2, τ1 = 0.2, τ2 = 0.2, τ3 = 0.3911

and τ4 = 0.2. We fix ym = 2 and ỹ = 5, and compute V0 for each of y∗i = 1, 2 and 3. The vehicle indexed 3 is

considered to undergo a Hopf bifurcation. For the case of the Underwood OVF, we set the following values for

the parameters. N = 3, a = 1.2, τ1 = 0.1, τ2 = 0.11885 and τ3 = 0.1. We fix ym = 2, and compute V0 for

each of y∗i = 1, 2 and 3. The vehicle indexed 2 is then considered to undergo a Hopf bifurcation. We choose the

equilibrium velocity of the lead vehicle, ẋ0 = 5.

The bifurcation diagrams are shown in Figure 4. As seen from the figure, the amplitude of the relative velocity

increases with an increase in κ. However, for a fixed value of the exogenous parameter, the Underwood OVF

yields limit cycles with smaller relative velocity that its Bando counterpart, which is desirable. Also, notice that

the amplitude of the emergent limit cycles increases with an increase in the equilibrium headway. This is intuitive

because larger equilibrium headways offer more space for the resulting limit cycles to oscillate in.
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Fig. 5: Simulation results: Shows the variations in relative velocity and headway around their respective equilibria.

(a) portrays the limit cycles predicted by (21), while (b) presents an instance of non-oscillatory behavior when

parameters are chosen appropriately satisfying (31).

IX. SIMULATIONS

Thus far, we have analyzed the MOVM in no-delay, small-delay and arbitrary-delay regimes. We also studied two

of its important properties – non-oscillatory convergence and the rate of convergence. In the previous section, we

presented an analytical framework to characterize the type of Hopf bifurcation and the asymptotic orbital stability

of the limit cycles that emerge when the stability conditions are marginally violated.

In this section, we present the simulation results of the MOVM that serve to corroborate our analytical findings.

We make use of the scientific computation software MATLAB to implement a discrete version of system (2), thus

simulating the MOVM. We use Ts = 10−4 s as the update time. Throughout, we use SI units.

To corroborate the insight from Section V, we make use of the Bando OVF. We set the parameters values as:

N = 4, a = 1.2, ỹ = 5, ym = 1 and y∗i = 3 for i = 1, 2, 3, 4. We then compute the corresponding value of

V0 using the functional form for the Bando OVF and τcr using (22). Further, we set τ1 = τcr/10, τ2 = τcr/3,

τ3 = τcr and τ4 = τcr/2. This ensures that the vehicle indexed ẋ0 = 3 undergoes a Hopf bifurcation. The leader’s

velocity profile is considered to be 5(1− e−10t), thus yielding an equilibrium velocity of 5. We plot the variation

of the relative velocity and the headway about their respective equilibria for the vehicle indexed 3. That is, we plot

ṽ3(t) = v3(t) − v∗3 = v3(t) and ỹ3(t) = y3(t) − y∗3 = y3(t) − 3. Fig. 5a shows the emergence of limit cycles, as

predicted by the transversality condition of the Hopf spectrum (21).

Next, we corroborate the analysis presented in Section VI using the Bando OVF. The parameters are initialized

as: N = 4, a = 2, ỹ = 25, ym = 15 and y∗i = 15 for i = 1, 2, 3, 4. We then compute the corresponding value of

V0 using the functional form for the Bando OVF. We fix the equilibrium velocity of the leader to be ẋ0 = 25 by

setting the its velocity profile as 25(1 − e−10t). We then compute τnoc using (30). We set the reaction delays as

τ1 = τnoc/10, τ2 = τnoc/3, τ3 = τnoc/2 and τ4 = τnoc/5. Fig. 5b shows an instance of the relative velocity and
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headway variations around their respective equilibria for the vehicle indexed 3. The headway and relative velocities

possess the non-oscillatory behavior, as predicted by the analysis in Section VI.

X. CONCLUDING REMARKS

In this paper, we highlighted the importance of delayed feedback in determining the qualitative dynamical

properties of a platoon of vehicles traveling on a straight road. Specifically, we analyzed the Modified Optimal

Velocity Model (MOVM) in three regimes – no delay, small delay and arbitrary delay. We proved that, in the

absence of reaction delays, the MOVM is locally stable for all practically relevant values of model parameters. We

then obtained a sufficient condition for the local stability of the MOVM by analyzing it in the small-delay regime.

We also characterized the local stability region of the MOVM in the arbitrary-delay regime.

We then proved that the MOVM undergoes a loss of local stability via a Hopf bifurcation. The resulting limit

cycles physically manifest as a back-propagating congestion wave. Thus, our work provides a mathematical basis

to explain the observed “phantom jams.” For the said analysis, we used an exogenous parameter that captures any

interdependence among the model parameters.

We then derived the necessary and sufficient condition for non-oscillatory convergence of the MOVM, with the

aim of avoiding jerky vehicular motions. This, in turn, guarantees smooth traffic flow and improves ride quality. Next,

we characterized the rate of convergence of the MOVM, which affects the time taken by a platoon to equilibrate.

We also brought forth the trade-off between the rate of convergence and non-oscillatory convergence of the MOVM.

Finally, we provided an analytical framework to characterize the type of Hopf bifurcation and the asymptotic

orbital stability of the limit cycles which emerge when the stability conditions are violated. Therein, we made

use of Poincaré normal forms and the center manifold theory. We corroborated our analyses using stability charts,

bifurcation diagrams, numerical computations and simulations conducted using MATLAB.

Avenues for further research

There are numerous avenues that merit further investigation. In this work, we have derived the conditions for

pairwise stability of vehicles in a platoon, whose dynamics are captured by the MOVM. However, the string stability

of such a platoon remains to be studied.

From a practical standpoint, the parameters of the MOVM may vary, for varied reasons. Hence, it becomes im-

perative that the longitudinal control algorithm be robust to such parameter variations, and to unmodeled dynamics.
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