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Abstract—We present a variant of the alternating direction
method of multipliers (ADMM) that can be implemented in a
hierarchical distributed fashion for large-scale systems where
the coupling between subsystems occurs in a structured way in
the cost function. We show that this ADMM algorithm can be
embedded in a model predictive control (MPC) implementation
and subsequently apply this to three battery scheduling problems
in the context of residential microgrid electricity networks.

Index Terms—Large-scale systems, Alternating direction
method of multipliers (ADMM), Model predictive control (MPC),
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I. INTRODUCTION
The optimal control of large-scale cyber-physical systems

presents several difficulties including curse of dimensional-
ity issues in solving large optimization problems, but also
accounting for security concerns (e.g., sharing sensitive in-
formation between subsystems) or facilitating plug-and-play
operation whereby new subsystems can be added without
requiring a coordinating agent to have detailed information
about the new subsystems.

One technique for coping with the curse of dimensionality
is to resort to distributed optimization algorithms when the
structure of the problem and systems allow devolving the
optimization from a central point to the individual subsystems
[1], [2]. With the interest in large-scale multi-agent systems,
many distributed optimization algorithms have been recently
proposed; e.g., [3], [4], [5] and the references therein.

Avoiding the need to share detailed information amongst
subsystems is more difficult in a completely distributed fash-
ion. However, as proposed in [5], the introduction of a
hierarchical structure with a trusted central entity that can
aggregate information and then broadcast only the aggregated
information alleviates the need for subsystems to share detailed
information with their neighbors.
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In this paper, we present an alternative hierarchical dis-
tributed optimization algorithm to that proposed in [5]. Here,
we propose a variant of the well-known alternating direction
method of multipliers (ADMM) algorithm [6]. For the class of
linear systems and a structured cost function, this ADMM vari-
ant can be decomposed so that a central entity needs only solve
an optimization problem that is independent of the number of
subsystems and does not depend on detailed information about
the subsystems, while each subsystem solves an optimization
problem that depends only on local information and a single
quantity broadcast from the central entity. Consequently, this
ADMM variant addresses the above concerns that frequently
arise in coordinating large-scale systems.

As an application of the above-described ADMM variant,
we consider three problems related to the optimal scheduling
of energy storage in a residential-scale electricity network.
Similar to the work in [7], [5], we consider the problem of
smoothing the energy demand from a group of residences
equipped with energy storage. However, the proposed ADMM
variant is somewhat more flexible than the approach consid-
ered in [7], [5] and we also address two additional problems.

The first looks at time-varying tube constraints, that allow
the grid operator to steer demand within reasonable limits.
Such an approach may be useful for the energy provider
in choosing the quantity and type of external generation re-
sources. The second problem looks at computing and/or imple-
menting a maximal islanding time for a microgrid connected to
a wider grid via a point of common coupling (see [8] and the
references therein). In this context, a grid operator can forecast
how long a microgrid can be disconnected from the larger grid,
while still maintaining sufficient local supply to meet demand.
Implemented in a predictive control context, the microgrid can
collectively store energy prior to the disconnection time, so as
to maximize the time it can operate independently.

The paper is structured as follows: In Section II we for-
mulate an optimal control problem in the form of a nonlinear
optimization problem (NLP) for linear time-varying discrete-
time control systems coupled through a set of variables in the
objective function. In Section III we introduce a hierarchical
distributed optimization algorithm and embed it in a reced-
ing horizon framework. In Section IV we recall the system
dynamics of an electricity network satisfying the assumptions
of the dynamics introduced in Section II. The flexibility of
the hierarchical distributed optimization algorithm with respect
to the objective in the context of model predictive control
is demonstrated in Section V based on the example of the
microgrid. The paper concludes in Section VI.
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II. OPTIMAL CONTROL FORMULATION FOR A NETWORK
OF LINEAR SYSTEMS

We consider a network of I ∈ N linear time-varying
discrete-time systems

Σi :

{
xi(k + 1) = Ai(k)xi(k) +Bi(k)ui(k) + vi(k)

zi(k) = Ei(k)xi(k) + Fi(k)ui(k) + wi(k)
(1)

where xi ∈ Xi ⊂ Rni , ui ∈ Ui ⊂ Rmi , zi ∈ Rp are the state,
input, and coupling variables, respectively, (vi(k))k∈N ⊂ Rni

and (wi(k))k∈N ⊂ Rp are known exogenous signals, and
Ai(k) ∈ Rni×ni , Bi(k) ∈ Rni×mi , Ei(k) ∈ Rp×ni , Fi(k) ∈
Rp×mi are time-dependent matrices defining the system dy-
namics for all k ∈ N and for all i ∈ NI := {1, . . . , I}.

As shown in Figure 1, systems Σi are coupled through the
variables zi, i ∈ NI , leading to the overall system dynamics

Σ :

{
x(k + 1) =A(k)x(k) +B(k)u(k) + v(k)

z(k) = 1
I
∑I
i=1(Ei(k)xi(k) + Fi(k)ui(k) + wi(k))

with x = (xT1 , . . . , x
T
I )T , u = (uT1 , . . . , u

T
I )T , v =

(vT1 , . . . , v
T
I )T , w = (wT1 , . . . , w

T
I )T , and the averaged cou-

pling variable z = 1
I
∑I
i=1 zi. The definition of matrices

A(k), B(k) follow immediately from the definition of the
individual dynamics Σi. Additionally we use the notation
X = X1 × · · · ×XI and U = U1 × · · · ×UI to rewrite the
state and input constraints. Throughout this paper we assume
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Fig. 1. Visualization of the individual systems Σi and the overall system Σ.

that the states xi are known or at least observable.
For a given prediction horizon N ∈ N and a fixed time

index k ∈ N we wish to solve the following (receding horizon)
optimal control problem:

min
(ui,xi,zi)

I∑
i=1

( k+N−1∑
j=k

`i(zi(j))
)

+

k+N−1∑
j=k

` (z(j)) (2a)

s.t. xi(k) = x0i (2b)
xi(j + 1) = Ai(j)xi(j) +Bi(j)ui(j) + vi(j) (2c)
zi(j) = Ei(j)xi(j) + Fi(j)ui(j) + wi(j) (2d)
xi(j + 1) ∈ Xi, ui(j) ∈ Ui, (2e)
∀ j = k, . . . , k +N − 1, i = 1, . . . , I.

Here, `i : Rp → R (i ∈ NI) and ` : Rp → R define running
costs which penalize the deviation from a desired reference for
the individual and averaged coupling variables, respectively.

The optimal control problem (2) defines a finite dimensional
NLP in the unknowns xi, ui, and zi, which can be solved

by standard optimization software if the number of systems
I is reasonably small. Otherwise, a distributed computation
is needed to ensure scalability and flexibility with respect to
the number of subsystems I. The main difficulty in (2) is the
coupling in the objective function through the variables z. One
solution to this difficulty is to use a distributed optimization
approach that solves the NLPs only at the subsystem level,
Σi, rather than at the overall system level, Σ. To this end, in
Section III, we summarize the alternating direction method of
multipliers (ADMM) and describe a distributed computation
implementation.

To present the ADMM algorithm in Section III, two prepara-
tory steps are required. Firstly, we rewrite the constraints
(2b)–(2e) in a more compact form. Secondly, we embed the
optimization problem (2) into a more general one, which
facilitates a desirable decomposition.

For a given time index k ∈ N and a prediction horizon
N ∈ N we use the notation

z(k) := (z1(k)T , z2(k)T , . . . , zI(k)T )T ,

where zi(k) := (zi(k)T , . . . , zi(k + N − 1)T )T is defined
componentwise. To simplify the notation we use z := z(k)
and zi := zi(k) whenever the k dependency is clear from the
context. We use · to denote the average of a vector; e.g.,

z(k) :=
1

I

I∑
i=1

zi(k).

The same notation is used for the other variables such as x and
u. At a fixed time index k ∈ N, for given initial values xi(k) ∈
Xi, we define the set of feasible trajectories of system i, i ∈
NI , as

Di=

{
zi∈RpN

∣∣∣∣∃ xi(j + 1) ∈ Xi, ui(j) ∈ Ui satisfying
(2b)–(2d) for j = k, . . . , k +N − 1

}
. (3)

Even though an explicit expression of the sets Di, i = 1, . . . , I
cannot be given, it is easy to see that they satisfy the following
convexity property if the sets Xi and Ui are convex.

Proposition II.1. Let the sets Ui and Xi be convex, Xi be
closed, and Ui be compact. Then, for given k,N ∈ N, x0i ∈
Xi, (vi(j))j∈N ⊂ Rni , and (wi(j))j∈N ⊂ Rmi , the set Di
defined in (3) is convex and compact.

By introducing the auxiliary variable s ∈ RM , M ∈ N, and
the set S ⊂ RpN × RM , the optimization problem (2) can be
generalized to

(z?, s?) ∈ argmin
(z,s)∈S

∑I
i=1 fi(zi) + g(z) + h(s)

s.t. zi ∈ Di for all i = 1, . . . , I.
(4)

The functions fi : RpN → R, i = 1, . . . , I, and g : RpN → R
capture sums over `i and `. Moreover, we define the overall
objective function K : RIpN × RpN × RM → R,

K(z, z, s) =

I∑
i=1

fi(zi) + g(z) + h(s). (5)

The function h : RM → R and the set S offer an addi-
tional degree of freedom in the objective function and in the
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constraints. Observe that in the optimization problem (2) the
variables ui, xi, zi are optimized whereas in the optimization
problem (4) the variable z is optimized. Using the variables
z will simplify the notation of the optimization problems in
the upcoming sections. Due to the linear dynamics (1), given
an optimal solution z?, an optimal solution x? and u? can be
easily constructed. However, the optimal solution z?, as well
as corresponding x? and u?, are in general not unique.

III. RECEDING HORIZON CONTROL USING THE
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

In this section we describe ADMM for the solution of
optimization problems of the form (4) which can be found,
for example, in detail in [6] and [2]. After the basic ADMM
scheme is described, we show how the formulation can be
simplified such that the number of unknowns in the opti-
mization problem can be reduced significantly. In the last
part of this section we show how the ADMM algorithm can
be embedded efficiently in a model predictive control (MPC)
implementation.

A. The alternating direction method of multipliers

The ADMM scheme solves optimization problems in a dis-
tributed way and is based on the ideas of dual decomposition
and dual ascent. We rewrite the optimization problem (4)
by introducing the auxiliary variables ai, i = 1, . . . , I, and
a = (aT1 ,a

T
2 , . . . ,a

T
I )T and a are defined analogously to z

and z; i.e., optimization problem (4) can be written as follows:

min
(z,a,s)

K(z,a, s)

s.t. (a, s) ∈ S
zi ∈ Di, zi − ai = 0, ∀ i = 1, . . . , I

 . (6)

The augmented Lagrangian Lρ : RIpN × RIpN × RM ×
RIpN → R with respect to (6) is given by

Lρ(z,a, s, λ) = K(z,a, s) + λT (z− a) +
ρ

2
‖z− a‖2 (7)

with Lagrange multipliers λ = (λT1 , λ
T
2 , . . . , λ

T
I )T and penalty

term ρ ∈ R>0. For ρ = 0, we obtain the usual definition of
the Lagrangian.

ADMM is an iterative scheme to solve problem (4) (equiv-
alently (6)). Both the update step of each iteration and conver-
gence properties are presented in the following theorem, see
[6, Appendix A] for a proof and an in-depth detailed analysis
of the convergence properties of the ADMM scheme (8).

Theorem III.1. Let the extended-real-valued functions fi,
i ∈ NI , g, and h be closed, convex, and proper1. Suppose,
in addition, that a saddle point (z?,a?, s?, λ?) of the (unaug-
mented) Lagrangian L0 exists, meaning that

L0(z?,a?, s?, λ) ≤ L0(z?,a?, s?, λ?) ≤ L0(z,a, s, λ?)

1An extended-real-valued function f : D → R ∪ {±∞} is called proper
if its effective domain {x ∈ D|f(x) ∈ R} is nonempty and there does not
exist x ∈ D such that f(x) = −∞.

holds for all λ and all (z,a, s). Then, the iteration scheme

z`+1
i := argmin

zi∈Di

Lρ
(
z,a`, s`, λ`

)
(8a)

(a`+1, s`+1) := argmin
(a,s)∈S

Lρ
(
z`+1,a, s, λ`

)
(8b)

λ`+1 := λ` + ρ
(
z`+1 − a`+1

)
(8c)

satisfies the following convergence properties for any initial-
izations z0,a0, s0, and λ0, and for all fixed stepsizes ρ > 0:
(i) The sequence (z` − a`)`∈N converges to zero, ensuring

feasibility of the optimization problem (6).
(ii) The sequence (K(z`,a`, s`))`∈N converges to the optimal

value K? of problem (6) for `→∞.
(iii) The dual variables λ` converge to the optimal dual point

λ? for `→∞.

One class of problems satisfying the assumption of Theo-
rem III.1 are convex functions subject to nonempty, convex,
and compact constraints. Thus, in our context, the assumptions
of Theorem III.1 are satisfied if the set S and the sets Di,
i = 1, . . . , I, are convex and compact (see Proposition II.1)
and there exist zi ∈ Di for i = 1, . . . , I, such that
(z, s) ∈ S. Since convex functions attain their minimum on
compact sets, there exists a (possibly non unique) optimal
primal solution (z?,a?, s?) if the minimization problem (4) (or
equivalently (6)) is feasible. This implies the existence of an
optimal dual solution λ? satisfying the saddle point condition;
see, e.g., [2, Appendix C].

B. Distributed Computation of the ADMM Update

The first update (8a) of the ADMM scheme (8) can be
computed in a distributed manner due to the separability (in z)
of the cost function K given by (5) and due to the definition
of the augmented Lagrangian Lρ in (7); i.e.,

z`+1
i = argmin

zi∈Di

fi(zi) +
(
zi − a`i

)T
λ`i +

ρ

2

∥∥zi − a`i
∥∥2 (9)

= argmin
zi∈Di

fi(zi) +
ρ

2

∥∥ρ−1λ`i + zi − a`i
∥∥2 , (10)

which can be solved for all i simultaneously.
The NLP (8b) cannot be separated due to the coupling in

the function g. However, it is possible to make the number
of unknowns in this problem independent of the number of
subsystems I by using the average variables a ∈ RpN instead
of a ∈ RIpN .

Proposition III.2. The updates (8b) and (8c) are equivalent
to computing

(a`+1, s`+1) =

argmin
(a,s)∈S

g (a) + h(s) +
ρI
2
‖ρ−1 · λ` + z`+1 − a‖2 (11)

and, then, setting

λ
`+1

:= λ
`

+ ρ(z`+1 − a`+1)

where λ = 1
I
∑I
i=1 λi.

To prove Proposition III.2, we require the following lemma.
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Lemma III.3. For given c,yi ∈ RN (i ∈ NI) the equality
ϕ?i = yi + c− y (i ∈ NI) with y = (1/I)

∑I
i=1 yi holds for

ϕ? := argmin
ϕi∈RN

I∑
i=1

‖ϕi − yi‖ s.t.
1

I

I∑
i=1

ϕi = c.

Proof. For yi = 0 (i ∈ NI) the triangle inequality implies

‖I · c‖ = min
ϕi:

1
I
∑I

i=1 ϕi=c

∥∥∥∑Ii=1 ϕi

∥∥∥
≤ min
ϕi:

1
I
∑I

i=1 ϕi=c

∑I
i=1 ‖ϕi‖

where equality is attained for ϕi = c, i ∈ NI . For the general
case we use the coordinate transformation ϕ̃i = ϕi−yi. Then
the equality constraint reads

1

I

I∑
i=1

ϕ̃i =
1

I

I∑
i=1

ϕi −
1

I

I∑
i=1

yi = c− y

which shows the assertion.

Based on this lemma we next prove Proposition III.2
following the arguments given in [6, Chapter 7.3].

Proof. We rewrite the augmented Lagrangian Lρ from (7) as

g (a) + h(s) +

I∑
i=1

(
fi(zi) +

ρ

2

∥∥∥∥zi − ai +
λi
ρ

∥∥∥∥2 − λTi λi
2ρ

)
.

Hence, the minimum of problem (8b) is attained in

argmin
(a,s)∈S

g (a) + h(s) +
ρ

2

I∑
i=1

∥∥∥∥λ`iρ + z`+1
i − ai

∥∥∥∥2 . (12)

Applying Lemma III.3 to problem (12) and fixing the variables
(a, s), we see that the optimal solution satisfies

ρ−1 · λ` + z`+1 − a = ρ−1 · λ`i + z`+1
i − ai (13)

for all i ∈ NI . Hence the minimization problem (12) is
equivalent to

argmin
(a,s)∈S

g (a) + h(s) +
ρ

2

I∑
i=1

∥∥∥λ`
ρ

+ z`+1 − a
∥∥∥2 (14)

where the number of optimization variables is independent
of the number of subsystems and the update (11) follows.
Furthermore, multiplying (13) by ρ and combining the result
with the update of the Lagrange multipliers (8c) yields

λ`+1
i = λ`i + ρ

(
z`+1
i − a`+1

i

)
= λ

`
+ ρ(z`+1 − a`+1);

i.e., λ`+1
i = λ`+1

j for all i, j ∈ NI . Hence also the update of
the dual variables can be written in terms of average variables
λ independent of the number of subsystems, which completes
the proof.

The update (9), see also (8a), of the variable zi involves the
variable ai, which is different for each i ∈ NI . This variable
has to be transmitted to every subsystem individually during
the iteration process. To alleviate this communication need,
define

Π` := ρ−1 · λ` + z` − a`.

Since λ`i = λ
`
, (13) can be rewritten as

−a`i = −z`i + z` − a`

Thus, if the variable Π` is known by the individual systems
Σi, then the update z`+1

i in (10) can be computed by

argmin
zi∈Di

fi(zi) +
ρ

2

∥∥zi − z`i + Π`
∥∥2 (15)

independent of variables specific to subsystem Σj , j 6= i.
The hierarchical (distributed) Algorithm 1 summarizes the

ideas of this section and splits the ADMM iterations into tasks
which can be carried out by the individual subsystems Σi in
parallel and tasks which must be done by the overall system
Σ or a central entity overseeing the coordination process.

Algorithm 1 Hierarchical distributed optimization algorithm
Phase 1 (Subsystem Σi, i ∈ NI): Receive Π`.
• Solve the minimization problem

z`+1
i := argmin

zi∈Di

fi(zi) +
ρ

2

∥∥zi − z`i + Π`
∥∥2

and send z`+1
i to the central entity.

Phase 2 (Central Entity Σ): Receive z`+1
i , i = 1, 2, . . . , I.

• Compute the average z`+1 = 1
I
∑I
i=1 z

`+1
i .

• Solve the minimization problem

(a`+1, s`+1) = argmin
(a,s)∈S

(
g (a) + h(s)

+ρ·I
2

∥∥∥z`+1 − a + λ
`

ρ

∥∥∥2 ).
• Update the Lagrange multiplier

λ
`+1

= λ
`

+ ρ
(
z`+1 − a`+1

)
.

• Compute and broadcast

Π`+1 = z`+1 − a`+1 +
λ
`+1

ρ
.

Increment the iteration counter ` and go to Phase 1.

Algorithm 1 provides several beneficial properties for sys-
tems organized as in Figure 1. Firstly, only the parameter Π is
transmitted from the overall system Σ to the subsystems Σi,
i ∈ NI . Hence, possibly sensitive data does not need to be
shared between the subsystems. Secondly, both the dimension
of Π (communication overhead) and the number of unknowns
in the optimization problem of the central entity is indepen-
dent of the number of subsystems. Thus, the communication
overhead and the computational burden are independent of I.

C. Applying ADMM within a receding horizon scheme

In Section II we proposed a finite dimensional optimization
problem (2), that can be solved using ADMM as explained in
the previous two subsections. The optimization problem (2) is
a standard setting for model predictive control (MPC), where
the time index k advances. MPC consists of the following
steps, which are repeated at every time instant k. Firstly,
optimization problem (2) is solved based on the most recent
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measurements (state x0i and the exogenous signals v(k) and
w(k) of the system Σ), see Step 1) and 2) of Algorithm 2.
Then, the first element of the computed sequence u?(k) is
implemented, see Step 3) of Algorithm 2, before the horizon
is shifted forward in time (receding horizon control). This
process iteratively defines a feedback law. Since in applica-
tions both modelling and estimation (and measurement) errors
occur, in general, feedback leads to better and more robust
dynamical behavior. For a detailed description we refer to the
recent monographs [9] and [10].

Algorithm 2 Distributed model predictive control
1) Initialization:

Subsystem Σi, (i ∈ NI):
• Define the local objective fi, measure the initial

state xi(k) = x0i and predict the exogenous signals

vi(k) = (vi(k)T , . . . , vi(k +N − 1)T )T

wi(k) = (wi(k)T , . . . , wi(k +N − 1)T )T .

Central Entity Σ:
• Define the objective functions g and h.

2) Distributed optimization: Apply Algorithm 1 to com-
pute optimal controls and state trajectories

u?i (k) = (u?i (k)T , . . . , u?i (k +N − 1)T )T ,

x?i (k) = (x?i (k + 1)T , . . . , x?i (k +N)T )T ,

z?i (k) = (z?i (k)T , . . . , z?i (k +N − 1)T )T ,

for i = 1, . . . , I.
3) Apply u?i (k) for i = 1, . . . , I and increment the time

index k

In the remainder of this section we discuss two advantages
of using Algorithm 1 within model predictive control as it is
proposed in Algorithm 2.

First, since the individual subsystems Σi do not require
knowledge of the objective functions g and h, the central
entity may modify these functions at every time step k without
reference to the subsystems Σi. Conversely, each subsys-
tem Σi, i ∈ NI , is free to change its system dynamics (1),
its (local) constraints Xi, Ui, and its objective function fi.
This yields significant flexibility and allows an adaptation of
the objectives during the runtime of the algorithm and a plug-
and-play installation in a real world application.

Second, if the objective functions and the system dynamics
are not changed between two consecutive time steps k and
k+1 the NLPs solved at both time steps are very similar. Thus,
the average number of iterations necessary to obtain an optimal
solution using Algorithm 1 can be reduced significantly with
a so-called warm-start technique; see for example [10, Ch.
10.5]. In our context a natural way to include warm-start in
Algorithm 2 is to initialize λ

0
and Π0 at time step k+1 based

on λ and Π from time k; i.e., we define

λ
0

k+1 := (λ
?

k(2)T , λ
?

k(3)T , . . . , λ
?

k(N)T , 0)T

Π0
k+1 := (Π?

k(2)T ,Π?
k(3)T , . . . ,Π?

k(N)T , 0)T

where

λ
?

k := (λ
?

k(1)T , λ
?

k(2)T , . . . , λ
?

k(N)T )T

Π?
k := (Π?

k(1)T ,Π?
k(2)T , . . . ,Π?

k(N)T )T

denotes the variables broadcast by the central entity in the last
iteration at time k.

IV. A NETWORK OF RESIDENTIAL ENERGY SYSTEMS

In this section we recall a network of I ∈ N residential en-
ergy systems (RESs) satisfying the dynamics (1). The network
of RESs is then used in Section V to illustrate the numerical
performance of Algorithm 1 and 2.

A. A network of RESs

Following [11] and the extension in [12], we assume that
the system dynamics of the i-th RES, i ∈ NI , is defined as

xi(k + 1) = αixi(k) + T
(
βiu

+
i (k) + u−i (k)

)
(16)

zi(k) = u+i (k) + γiu
−
i (k) + wi(k) (17)

with (αi, βi, γi) ∈ [0, 1]3. Thus, for the system dynamics
defined in (1), we obtain the matrices Ai(k) = αi, Bi(k) =
[Tβi, T ], Ei(k) = 0 and Fi(k) = [1, γi] for all k ∈ N and
for all i ∈ NI .

The variables zi(k) [kW], represent the power demand
drawn from/supplied to the grid at a point of common coupling
by each RES and, as described by (17), depend on the net
consumptions wi(k) [kW]; i.e., local power generation (e.g.,
solar photovoltaic panels) minus the energy demand of the
residence supplemented by the use of a battery or some other
appropriate storage element. The dynamics of the battery, (16),
are defined through the state of charge xi(k) in [kWh] and
the input variables u+i (k) and u−i (k) in [kW]. The input
u+i (k) represents the power drawn from the grid to increase
the state of charge of the battery and the power demand
zi(k), while u−i (k) can be used to discharge the battery and
decrease the power demand of the i-th RES. The parameter
αi models losses due to self-discharge, βi and γi model losses
due to energy conversion, and T (in hours [h]) represents the
discretization in time. Additionally, the storage device of each
RES is constrained by:

0 ≤ xi(k) ≤ Ci (18a)
ui ≤ u−i (k) ≤ 0 (18b)
0 ≤ u+i (k) ≤ ui (18c)

0 ≤ u−i (k)

ui
+

u+
i (k)

ui
≤ 1 (18d)

which define the sets Ui ⊂ R2 and Xi ⊂ R.
If max{βi, γi} < 1 holds, energy can be wasted, meaning

that an RES can dissipate an energy surplus by merely
charging and discharging its battery. Note that this possibility
is limited due to the battery constraint (18d). Additionally,
it is possible to change from charging to discharging (and
vice versa) between consecutive time steps k and k+1. Since
in this case only a fraction of the time interval of length T
is used for charging and discharging, the upper and lower
bounds for charging and discharging have to be adapted, which
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is captured by the constraint (18d). The dynamics (16)–(17)
and the constraints (18) extend the models introduced in [13],
[11]. Similar models of energy networks are described in [14]
and [15].

B. Numerical setting

For the numerical simulations in the next section we use
a dataset of I = 300 net consumption profiles (wi(k))k∈N,
i ∈ N300 provided by the Australian electricity distribution
company Ausgrid. (See [16] for a detailed analysis of the
dataset.)

For the constraints we consider two different settings de-
pending on the application. Either we use a set of small bat-
teries with Ci = 2+∆Ci[kWh] and −ui+∆ui = ui+∆ui =
0.5[kW] or a set of bigger batteries with Ci = 4 + ∆Ci[kWh]
and −ui + ∆ui = ui + ∆ui = 0.75[kW] for i ∈ N300. Here,
for i ∈ N300, ∆Ci ∈ [−1, 1] and ∆ui,∆ui ∈ [−0.25, 0.25],
or ∆Ci ∈ [−2, 2] and ∆ui,∆ui ∈ [−0.375, 0.375] for the
bigger batteries, define random variables which distinguish the
batteries of the individual RESs. Moreover, we use the con-
stants (αi, βi, γi) = (0.99, 0.95, 0.95) and x0i = 0.5 ·Ci[kWh]
for i ∈ N300, and T = 0.5[h]. The prediction horizon
N is set to N = 48; i.e., we solve the optimal control
problem for a 24 hour horizon. The parameter ρ in the ADMM
formulation is set to ρ = 0.01. In the visualizations we plot
u(k) = u+(k)+u−(k) instead of u+(k) and u−(k) separately.

V. APPLICATIONS TO POWER NETWORKS

In this section we discuss several applications of the dis-
tributed predictive control Algorithm 2 using the hierarchical
distributed optimization Algorithm 1 at every time step. In
particular we show how the functions g and h and the set S
can be chosen to obtain closed loop controllers with a desired
performance. We here concentrate on the performance of the
overall system dynamic Σ and not on the performance of an
individual system Σi; i.e., we set fi ≡ 0 for all i = 1, . . . , I,
and focus on the functions g and h. However, the results and
numerical simulations can be extended to the case where the
functions fi are not equal to zero.

A. Smoothing power demand

To minimize the fluctuation in the aggregated power demand
we penalize the deviation from the average power demand in
the prediction horizon. Thus, we define the average power
demand at time k ∈ N as

ζ(k) =
1

IN

k+N−1∑
j=k

I∑
i=1

wi(j) (19)

and the function g as

g(a) =

k+N−1∑
j=k

(a(j)− ζ(k))
2

= ‖a− 1ζ(k)‖2 . (20)

Instead of penalizing the fluctuations, one may try to obtain
a smooth aggregated power demand profile. In this case the
function g can be defined as

g(a) =

k+N−2∑
j=k

(a(j + 1)− a(j))
2

= aTGa (21)

where G ∈ RN×N is given by

G =



1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 1


. (22)

In both cases, a definition of the function h is not necessary
(i.e., h ≡ 0). The closed loop solutions for the proposed
functions g and the setting provided in Section IV-B using
the small set of batteries are shown in Figure 2. We observe
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Fig. 2. Comparison of the uncontrolled setting (cyan) and the controlled
setting using the objective function ((20); red) and ((21); blue).

that both objective functions lead to similar results in the
closed loop solution, at least in the case where the size of the
batteries and the charging/discharging rates are large enough
to compensate for the peaks in the uncontrolled setting. Note
that even in the case where the constraints on the size of the
batteries and the constraints on the charging and discharging
rate are never active, a constant power demand profile can not
be expected due to the time varying reference value (19).

Remark V.1. The update of the central entity in Algorithm 1
can be computed explicitly. For (20) the update is given by

a`+1 =
ρI

2 + ρI

(
z`+1 +

1

ρ
λ
`
)

and for (21) the update is given by

a`+1 =

(
2

ρI
G+ I

)−1(
z`+1 +

1

ρ
λ
`
)

where I ∈ RN×N denotes the identity matrix.



7

B. Time-varying tube constraints

The function h and the set S can also be defined in such
a way that the aggregated power demand stays within time-
varying lower and upper bounds defined by the central entity.
This means that the central entity can set lower and upper
bounds reflecting the minimal and maximal power which can
be drawn from the main grid at a certain time instant k. Based
on the predicted profiles, the central entity can decide, if an
additional external power plant is necessary or can be shut
down, which leads to time varying tube constraints limiting the
aggregated power demand. To this end, consider the bounds

c ≤ 1

I

I∑
i=1

zi ≤ c

for possibly time-varying vectors c, c ∈ RN . With g ≡ 0, the
optimization problem

(z?,a?) ∈ argmin
(z,a)

g(a)

s.t. c ≤ a ≤ c
zi ∈ Di, zi − ai = 0, ∀ i = 1, . . . , I

captures this setting. To avoid infeasibility of the minimization
problem, we relax the inequality constraints to

c− s ≤ a ≤ c + s

for s, s ∈ RN≥0, s := (sT , sT )T and include the function
h : R2N

≥0 → R penalizing the deviation from s = 0; e.g.

h(s) = ‖s‖2 . (23)

Thus, the overall optimization problem, which can be solved
using the distributed hierarchical optimization Algorithm 1 is

(z?,a?, s?) ∈ argmin
(z,a,s)

g(a) + h(s)

s.t. (a, s) ∈ S
zi ∈ Di, zi − ai = 0, ∀ i = 1, . . . , I

 (24)

with

S =

{
(a, s) ∈ RN × R2N

≥0

∣∣∣∣( −II
)
aT − sT ≤

(
−c
c

)}
.

The optimal variables s? can be used to change the bounds c
and c at the next time step. If s? = 0 holds, the bounds −c and
c can be decreased. If s? 6= 0 holds, s? can be an indicator
for the central entity to decide at which time steps in the
prediction horizon an increased or decreased external power
generation is necessary. Instead of using the function g ≡ 0
the function introduced in (21) can be used to additionally
smooth the average power demand profile z.

In Figure 3, the closed loop solution corresponding to this
setting is shown. For the simulations we use the parameters
defined in Section IV-B and compare the performance of
Algorithm 2 solving the optimization problem (24) with g ≡ 0
and g(a) = aTGa at every time step. The time-varying bounds
change between 0.2[kWh] and 0.6[kWh] for the minimal
demand and 0.4[kWh] and 0.8[kWh] for the maximal demand.

We observe that the battery size is too small to keep
controlled demand profile within the bounds for all time steps.
In the case where additionally the function g(a) = aTGa is
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g(a) = 0
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TGa

Fig. 3. Visualization of the closed loop solution for time-varying tube
constraints. The graph on top shows the average power demand z. The
corresponding states x and the inputs u = u+ + u− are shown in the lower
and in the middle graphic.

used in the objective function, the violations occur at more
time steps. These violations could be decreased by decreasing
the weight of the function g in the overall objective function
K. As expected, the variations in |z(k)−z(k−1)| are reduced
by using g(a) = aTGa instead of the function g ≡ 0.

Again, we point out that only the central entity has to change
its minimization problem at every time step. The RESs have
no information about the tube constraints and do not need to
adapt their respective minimization problems.

C. Islanding microgrids

∑I
i=1 zi

zI

z2

z1

...
RES I

RES 2

RES 1

Main Grid

S

Fig. 4. Visualization of the power grid. The RESs can be disconnected from
the main grid after the point of common coupling using the switch S.

In this section, we define an optimization problem which
serves two purposes: when solved once at time k (using Algo-
rithm 1), its solution tells us the number of time steps k̄ ∈ N0

the grid can be operated in islanded mode after a given time
instant k+k?, k? ∈ N0 (i.e., the microgrid can be disconnected
from the main grid at time k + k?, visualized in Figure 4
using the switch S, without failing to meet the local energy
demand). When solved iteratively within Algorithm 2, it yields
the control strategy for keeping the microgrid in islanded mode
from k + k? to k + k? + k̄.
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We have the following two distinct applications in mind.
• A scheduled disconnection from the grid for an a priori

specified time window k? ≥ 1.
• An unscheduled disconnection at k? = 0.

The main difference between the two cases is that in the
first scenario the microgrid can specifically prepare itself in
advance by charging the batteries until time k + k?, ne-
glecting other (possibly conflicting) objectives. Despite these
differences, both settings can be handled with the proposed
methodology by appropriately adapting the objective function
and the constraints and writing the optimal control problem in
Algorithm 1 as a convex optimization problem, demonstrating
the flexibility of Algorithms 1 and 2.

The possibility of disconnecting the grid in k? time steps
is equivalent to the existence of zi(k) ∈ Di (for i ∈ NI)
such that 1

I
∑I
i=1 zi(k + k?) ≤ 0 is satisfied; i.e., the overall

power demand is less or equal to zero at time k+ k?. To find
the maximal consecutive number of time steps from k+k? to
k+k?+q? (q? ≥ 0) such that 1

I
∑I
i=1 zi(k+k?+q) ≤ 0 holds

for all q ∈ {0, . . . , q?} we define the following minimization
problem.

Problem V.2. At a fixed time k for a given time index
k? ∈ {0, . . . , N − 1}, set M = N − k? and define the grid
disconnection problem as

(a?, s?) ∈ argmin
(a,s)∈S

h(s)

where

S =

(a, s) ∈ RN+M

∣∣∣∣∣∣
(

0 I
)
a− s ≤ 0

a = 1
I
∑I
i=1 zi

s ∈ RM≥0, zi ∈ Di

 . (25)

and the objective function h : RM≥0 → R is defined as

h(s) =

M∑
q=1

(M + 1− q)κ · sq (26)

for a positive constant κ > 0.

We will show that the number of leading zeros of a
possibly non-unique optimal solution s? provides the maximal
disconnection time if the weighting factor κ > 0 is chosen
appropriately. Observe that the objective function h is linear
and places a heavier penalty on the smaller indices of s.

To give an illustrative motivation for the choice of objective
function and κ, we assume that, for all i ∈ NI , αi = 1 before
we prove the general case in Theorem V.3.

Since the weighting parameters in the objective function h
are positive, the constraint s ∈ RM≥0 implies a(k?−1+q) = sq
for all optimal s? with a(k?−1+q) ≥ 0, q ∈ {1, . . . ,M}. For
simplicity, consider an isolated (power) exchange between sq1
and sq2 (q1 < q2) of a feasible solution s. Due to the linear
system dynamics, reducing sq1 by γiε leads to an increase of
sq2 by εβ−1i in the case that losses have maximal impact. This
is for example the case if

a(k? − 1 + q1) = sq1 and a(k? − 1 + q2) = sq2

and a(k? − 1 + q1) can only be decreased by using a smaller
u−i (k + k? − 1 + q1) by at least one RES i (i.e., discharge ε
more from the battery at time k?−1+q1) and simultaneously
increase u+i (k + k? − 1 + q2) (i.e., charge ε more at time
k + k? − 1 + q2). Charging more at time k + k? − 1 + q2
could for example be necessary to prevent violating the battery
constraints (18a) at times k+k?−1+q for q > q2. Moreover,
these considerations show that decreasing sq1 by γiε can
always be compensated by maximally increasing sq2 by ε/βi.

If this power exchange results in a new feasible s̃ with

s̃q1 = sq1 − γiε and s̃q2 = sq2 + ε/βi

and s̃q = sq for all q /∈ {q1, q2}, and since q1 < q2 by
assumption, κ has to be chosen such that the value of the
objective function decreases; i.e., h(s̃) < h(s) holds. Hence
we obtain the estimate

0 > h(s̃)− h(s)

= −(M + 1− q1)κγiε+ (M + 1− q2)κε/βi (27)

or equivalently

γi · βi >
(
M + 1− q2
M + 1− q1

)κ
.

Since this inequality has to hold for arbitrary q1 < q2, q1, q2 ∈
{1, . . . ,M} the estimate

γi · βi >
(
M − 1

M

)κ
>

(
M + 1− q2
M + 1− q1

)κ
has to be satisfied which leads to the condition

κ >
log(γ · β)

log
(
M−1
M

) .
That this condition indeed suffices is rigorously shown in the
following theorem.

Theorem V.3. For an arbitrary optimal solution (a?, s?) ∈ S
of Problem V.2 and an arbitrary feasible solution (a], s]) ∈ S,
we define q?, q] ∈ {1, . . . ,M+1} as the maximal indices such
that, for all q < q?, s?q = 0 and, for all q < q], s]q = 0. Let
β := mini=1,...,I{βi} and γ := mini=1,...,I{γi} define the
maximal losses of the battery models.

If κ is chosen such that

κ > log (β · γ)
/

log

(
M − 1

M

)
(28)

then q? ≥ q] holds; i.e., the grid can be disconnected for at
most q? − 1 time steps.

Proof. Assume that αi = 1 and let (a?, s?) ∈ S be an optimal
solution of the minimization problem with κ chosen according
to Equation (28). Let q? denote the first entry of s? which is
unequal to zero, i.e., we have s?q = 0 for all q < q? and
s?q? > 0. (In the case s? = 0, the statement of the theorem
is trivially satisfied, and hence we can assume that q? ≤M .)
Assume there exists a feasible solution (a], s]) ∈ S such that
s]q = 0 holds for all q < q] and q? < q]. We will show that
the existence of (a], s]) contradicts the optimality of (a?, s?).
Additionally, we assume without loss of generality that

a?(k? − 1 + q) = s?q and a](k? − 1 + q) = s]q
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holds for all q with a?(k?−1+q) ≥ 0 and a](k?−1+q) ≥ 0,
respectively. Since s]q? = 0 and s?q? = a(k? − 1 + q?) > 0
there is an index i ∈ NI such that

u+?i (k + k? − 1 + q?) > 0 or u−?i (k + k? − 1 + q?) > ui,

i.e., one of the constraints (18b) and (18c) is not active and it
is possible to decrease

u+?i (k + k? − 1 + q?) and/or u−?i (k + k? − 1 + q?)

to reduce z?i (k + k? − 1 + q?) and consequently also a(k? −
1 + q?) and s?q? . If we reduce u−?i (k+k?− 1 + q?) by ε > 0,
i.e.,

ũ−?i (k + k? − 1 + q?) := u−?i (k + k? − 1 + q?)− ε (29)

then the state xi decreases to

x̃?i (k + k? − 1 + q) := x−?i (k + k? − 1 + q)− ε (30)

for all q > q?. If x−?i (k + k? + q) > 0 for all q > q? then
u−?i (k + k? − 1 + q?) can be changed without violating the
constraints (18) and the variable s?q? can be reduced by γi ·ε/I
which contradicts the optimality. The same argument applies
if it is possible to change u+?i (k + k? − 1 + q?).

Hence, we can assume, that it is only possible to change

u−?i (k + k? − 1 + q?) (or u+?i (k + k? − 1 + q?),

respectively) by simultaneously changing

u−?i (k + q) (or u+?i (k + q))

at a time q < k?−1+ q? or q > k?−1+ q?. Note that one of
these options needs to be possible due to the existence of the
solution (a], s]) and since the constraints of the systems are
decoupled, one can concentrate on one index i ∈ NI only.

If it is possible to increase x?i (k+q) by increasing u−?i (k+
q) or u+?i (k + q) at time steps q < k? − 1 + q? without
increasing s?q for all q < k? − 1 + q? (i.e., there exist time
steps q < k?−1+q? such that a?(q) can be increased without
changing s?) then this strategy increases in particular x?i (k +
k? − 1 + q?). Hence, it is possible to decrease

u+?i (k + k? − 1 + q?) or u−?i (k + k? − 1 + q?)

without violating the constraints x?i (k + q) ≥ 0 for q > k? −
1+q?; i.e., s?q? can be reduced, violating the optimality of s?.

If the strategy (29) leads to x−?i (k+k?−1+q) < 0 for some
q > q?, again a contradiction to optimality can be derived
based on the estimate (27) and the choice of κ by decreasing
s?q? and increasing s?q for q > q?. Hence, (a], s]) ∈ S does not
exist, which completes the proof for αi = 1 for all i ∈ NI .

Assume that αi < 1, for at least one i ∈ NI . The strategy
of reducing sq? by increasing a?(q) for q < q? is applicable
in the same way as in the case αi = 1. Moreover, if sq? can be
decreased using the idea of Equation (30) and simultaneously
increasing sq for q > q?, then the amount of energy which
is lost due to self discharge for q > q? decreases (i.e., the
corresponding u+?i (k+k?−1+q?) or u−?i (k+k?−1+q?) can
be decreased more before x+?i (k+k?−1+q)−ε = 0 becomes
active) which increases the amount sq? can be reduced to.

It has been shown in Theorem V.3 that an optimal pair
(a?, s?) provides the maximal disconnection time if κ is
chosen such that (28) holds. However, for very large M , large
values of κ are required, which lead to a numerically unstable
scaling of the cost function h. Nevertheless, if a maximal
disconnection time can be estimated, the presented approach
can be easily generalized such that κ remains reasonably
sized, e.g. the maintenance work requires at most eight hours
of the 24 hours within the prediction horizon N . Moreover,
numerical experiments indicate that κ = 1 works well even if
(28) is violated.

Remark V.4. If no losses are considered (i.e., β = γ = 0)
then any value κ > 0 can be used in the objective function h.
For the values M = 48 and β = γ = 0.95 we obtain κ > 2.41
from (28).

If the maximal duration of the islanded mode is a priori
specified, the constraints

(
0 I 0

)
a− s ≤ 0 can be used

instead of
(

0 I
)
a − s ≤ 0 to obtain a smaller value M

and, hence, a smaller κ. Moreover, observe that the objective
function of the grid disconnection Problem V.2 is convex and
the constraints define a convex and compact set (compact-
ness of S can be easily enforced). Thus the assumptions of
Theorem III.1 hold and convergence of Algorithm 1 can be
concluded.

Numerical simulations: For the numerical simulations we
use the objective function

K(z,a, s) = η ·
k+k?−1∑
j=k

(a(j)− ζ(k))
2

+ hk?(s) (31)

for different values of η. Here, hk? is defined as (26) and
the index k? indicates the disconnection time. For η > 0
additionally the vertical fluctuations (cf. (20)) at the time index
from k to k + k? − 1 are minimized. Note that the maximal
islanding interval can only be guaranteed for the case η = 0.

a) Open loop solution of Algorithm 1: In Figure 5 the
solution of Algorithm 1 using the objective function (31) for
η = 0 and η = 100 and κ = 2.5 are visualized. Since
κ = 2.5 leads to large values in the objective function we
also increase the parameter ρ to ρ = 1. Here, the solution
corresponds to a scheduled disconnection at k? = 24 (i.e.,
after 12 hours). For the given initial state and parameters, the
grid can be disconnected for 5 hours. In the case η 6= 0,
additionally the vertical grid load is minimized in the first
12 hours. Observe that at the time the microgrid must be
reconnected, the average state of charge of the batteries is
still at 50%. Hence, the requirement that the microgrid is
reconnected is not due to a shortage of locally stored energy,
but rather due to the maximal discharging rate being too small
to satisfy the microgrid demand.

b) Closed loop simulation of Algorithm 2: In Figure 6 the
closed loop performance of the receding horizon Algorithm 2
using the objective function (31) for varying k?, η = 0 and
η = 1, and κ = 1 is visualized. The grid operator wants
to disconnect the grid after 48 time steps. Hence, the peak-
to-peak variation is penalized (in the case η = 1) and the
disconnection time is maximized. After 24 hours the grid is
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Fig. 5. Visualization of the variable s and the average values x, z, and
u = u+ + u− for a single minimization problem with different weights.
The microgrid is disconnected after 12 hours and can stay islanded for 5
hours. Additionally, the uncontrolled power demand without storage devices
is shown for comparison.

disconnected and stays disconnected for 14 time steps, which
is the maximal number of time steps. After the RESs are
connected again, the simulation is continued by minimizing
the deviation from the average (i.e., objective function (20))
and without an objective (i.e., K ≡ 0). In both cases (i.e.,
η = 0 and η = 1) the same islanding window is obtained.
For η = 1 the energy provider additionally benefits from a
flat demand profile. Even though we use κ = 1, the maximal
islanding time is returned by the algorithm, which shows, that
condition (28) is conservative in our application.

As already pointed out, since only the cost function of the
grid operator changes in this process, the RESs do not need
to change anything on the local level.
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Fig. 6. Visualization of the average values x, z, and u for a closed loop
simulation of 3 days. The maximal islanding time after 24 hours is maximized
once with additionally penalizing the vertical fluctuations and once without
additional penalties.

VI. CONCLUSIONS
In this paper we presented a hierarchical distributed opti-

mization algorithm based on the alternating direction method
of multipliers and designed for the predictive control of linear
systems coupled in the objective function. We demonstrated
how the flexibility in the distributed optimization algorithm
can be used to design objective functions such that desired
control objectives in the context of the optimal operation of
a microgrid are satisfied. For these settings, the theoretical
results were illustrated by numerical simulations.

The theoretical convergence results of the distributed opti-
mization algorithm are based on the assumption that the feasi-
ble set of the underlying optimization problem is convex. Thus,
linearity of the system dynamics is necessary for convergence
of the proposed scheme. It remains an open question whether
or not this approach can be generalized to the consideration
of nonlinear system dynamics.
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