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Abstract: In this paper, in a Model Predictive Control problem, we tackle the integration
of uncertain constraints that belong to a discrete set. We propose a controller that offers a
solution to reformulate the discrete stochastic constraints to avoid the exponential growth of
scenario tree experienced by existing controllers. The proposed controller’s efficiency is shown
by benchmarking and comparing it with the Multistage Stochastic Programming algorithm in
a context of Home Energy Management System. The comparison is made based on simulations
using real-life data to manage the energy flow within a building connected to the electricity
feeder, which random character involves its availability and nonavailability.
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1. INTRODUCTION

Optimization-based controllers, especially Model Predic-
tive Control (MPC) (Camacho and Alba, 2007; Borrelli,
2017; James B. Rawlings, 2017), provides a practical so-
lution that easily handles physical and operational con-
straints which have to be considered. However, constraints
can be subject to uncertainties and disturbances, which
can severely deteriorate the system’s performance. This is
the case when the uncertainty does not varies within a
continuous space as with discrete constraints that model
radical changes. Grid outages which we focus on in this
paper is one example.
Two families of MPC can address uncertainty: Robust
MPC and Stochastic MPC. An extensive review of both
methods are proposed in (Mayne, 2014, 2016). When
no other information is available, but the uncertainty is
known to lie in a given set, explicitly assessing the worst-
case uncertainty leads to robust optimization (Ben-Tal
et al., 2009; Bram et al., 2015) in general and Robust
MPC (RMPC) techniques (Bemporad and Morari, 1999;
Raković, 2015) in particular. RMPC has proven its worth
in many applications, but its conservativeness can be a
downside for applications that interest us.
Less conservative approaches exploit the knowledge of
the probability distribution of uncertain variables, which
leads to stochastic MPC (SPMC). There are two main
approaches to SMPC. There are two main approaches
to SMPC. When the uncertain variables vary slightly
around some mean value, the first approach is based on
Chance Constrained optimization (Charnes et al., 1958;
Prékopa, 1970; Henrion, 2007; Nasir et al., 2019), which

provides explicit probabilistic guarantees on the feasibility
of optimal solutions. Although very attractive, chance
constrained problems can be challenging to solve in the
presence of discrete random variables (r.vs.) (Adam et al.,
2018; Geng and Xie, 2019).
The second approach that is better suited to discrete
uncertainties is the Multistage Stochastic Programming
(MSP) based on a scenario tree. When the size of the
prediction horizon and the number of elements in the
random variables’ sample space lead to an exponential
growth of the scenario tree, a simple strategy to cut
this growth is to consider that the uncertainty becomes
constant after the “robust horizon”. This simplification is
allowed by the receding horizon nature of the strategy;
Modeling the far future very accurately is not critical
because all the control inputs will be recomputed at the
next sampling time anyway (Lucia et al., 2014). Another
method that helps to avoid dealing with the exponential
growth of the scenario is the Stochastic Dual Dynamic
Programming (SDDP) (Pereira and Pinto, 1991) that
reformulate the initial problem in dynamic programming
and solve it through bender’s cut method as applied in
energy management by Pacaud et al. (2018).
In this paper, we propose a new method to integrate
discrete stochastic constraints within a MPC framework.
We call it Stochastic Discrete Constraint Model Pre-
dictive Control (SDCMPC). It is based on Open Loop
Feedback Control (OLFC) (Dreyfus, 1964; Papageorgiou,
1988; Bertsekas, 2005) with a relaxation of stochastic con-
straints. In our method, the size of the online optimization
problem grows linearly with the prediction horizon.
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In our recent work (Prince Agbodjan et al., 2019), we were
interested in how to integrate deterministic radical changes
within a predictive controller and therefore make it reac-
tive to the apparition of these changes while in (Prince
Agbodjan et al., 2020) the integration and anticipation of
stochastic radical changes have been addressed in a study
case. This paper offers a unified framework to generalise
both the problem and the solution provided. The latter
is used to design and bench-mark a controller that is
compared to a state of the art’s controller. Specifically,
we extend the previous works in the following ways:

1. An explicit formalisation of the problem considered
and the proposed method to solve this problem are
included;

2. The resulting controller is extensively compared to
the Multistage Stochastic Programming controller
through Monte Carlo simulations. The latter consid-
ers disparate profiles of electrical grid availability to
analyse the controllers in different situations;

The remainder of the paper is structured as follows. Sec-
tion 2 presents the family of dynamical systems that we
consider. In Section 3, we formulate the decision problem
that we are interested in and present an existing solution
based on MSP. Section 4 describes the new controller
which we apply to a Home Energy Management System
presented in section 5. Discussions and experimental re-
sults based on real condition data are shown in section 6
and the conclusion with some ideas of how this present
work could be extended follows in section 7.

2. SYSTEM DESCRIPTION

Let us consider the state-space representation of a discrete-
time linear system given by:

x(k + 1) = Ax(k) +Bu(k) (1)
where x(k) ∈ Rnx and u(k) ∈ Rnu are the model state and
control vectors at the kth sampling instant.
The state constraints are given by:

x(k) ∈ X . (2)

Two groups of control constraints are considered:
• nd deterministic linear constraints that can be aggre-

gated as:
Ddu(k) ≤ d, (3)

where Dd ∈ Rnd×nu , and d ∈ Rnd a column vector.
• ns stochastic linear inequality constraints. Each of them

has the following expression:
eT

i u(k) ≤ ξi(k), (4)
where i ∈ {1, . . . , ns} indexes the ith stochastic inequal-
ity, ei ∈ Rnu and ξi is the associated random variable.
Each ξi takes its value in a finite discrete set

Ξi = {ξ1,i, ξ2,i, ... ξNi,i} , (5)
where each ξ·,i ∈ R, Ni = |Ξi|, and without loss of
generality the elements of the set Ξi are ordered as
follows

ξ1,i < ξ2,i < . . . < ξNi,i. (6)
Note that for the rest of the paper, the following conven-
tion is adopted: a r.v. will be denoted by a bold letter, and
its realization will be indicated by a regular letter.

We make the following assumption,
A.1. For all i = 1, . . . , ns, for all realizations of ξi(k) and
for all x ∈ X , it exists u(k) that satisfies (3) and (4) such
that x(k + 1) ∈ X

3. PROBLEM STATEMENT

3.1 MPC formulation

To control the system, we use an MPC framework. Thus,
at each instant k, a sequence of predicted control values
is computed by minimizing a performance cost over the
prediction horizon H. Then, only the first element of the
control sequence is applied to the system.
The problem is defined as follows

min
u
J(k) =

H−1∑
h=0

j
(
x(k + h+ 1), u(k + h), k + h

)
(7a)

s.t. ∀h ∈
{

0, . . . ,H − 1
}

x(k + h+ 1) = Ax(k + h) +Bu(k + h) (7b)
Ddu(k + h) ≤ d (7c)
eT

i u(k + h) ≤ ξi(k + h), ∀i = 1, . . . , ns (7d)
x(k + h+ 1) ∈ X (7e)

We make the following assumptions:
A.2. j(·) is a convex function with respect to x and u.
A.3. At the first instant of the prediction horizon k, for
all i = 1, . . . , ns the r.v. ξi(k) is known and for the rest
of the prediction horizon (h = 1, . . . ,H − 1), the marginal
probability P

(
ξi(k + h) = ξn,i|k

)
= πn,i(k + h|k) is also

known.
We highlight that problem (7) is unsolvable since we have
yet to specify the meaning of the stochastic inequality (7d).
Based on the decision structure (Wets, 2002), different
methods exist to solve such a problem.
Among them we focus on the Multistage Stochastic Pro-
gramming which is used as contender to make a complexity
and performance comparison with our proposal described
in the section (4)

3.2 Multistage Stochastic programming formulation

The Multistage Stochastic programming(MSP) considers
all the possible realizations of a r.v. at each stage to solve
a unique optimization problem accordingly. The resulting

u
1
(k+h)

k+h k+h+1

ξ
2 (k+h)

u
2
(k+h)

ξ 1(k+h+1))

ξ
2 (k+h+1))

u
1
(k+h+1))

u
2
(k+h+1))

u
3
(k+h+1))

u
4
(k+h+1))

ξ 1(k+h+1))

ξ
2 (k+h+1))

ξ 1(k+h)

Fig. 1. MSP
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problem is a scenario tree that grows exponentially in
consonance with the distribution of the r.v. and the
prediction horizon. Each node of the tree at a particular
stage corresponds to a realization of the r.v. at that stage
and is associated with one or several decisions
Consequently to A.3., since the first decision of the se-
quence does not depend on r.vs. while the others do, the
direct extension of problem (7) into the MSP framework
is the “Wait and See” MSP. Figure 1 shows the scenario
tree associated with a simple case of problem (7) where
ns = 1, and N1 = 2. The equivalent deterministic form of
problem (7) in its MSP form is given by (8).

min
u

{
j
(
x(k + 1), u(k), k

)
+

S∑
s=1

P(s)

H−1∑
h=1

j
(
x∗,s(k + h+ 1), u∗,s(k + h), k + h

)}
(8a)

s.t. ∀ s = 1, . . . , S; ∀h ∈
{

0, . . . ,H − 1
}

x∗,s(k + h+ 1) = Ax∗,s(k + h)
+Bu∗,s(k + h) (8b)

Ddu∗,s(k + h) ≤ d (8c)
x∗,s(k + h+ 1) ∈ X (8d)

∀ h ∈
{

1, . . . ,H − 1
}

eT
i u∗,s(k + h) ≤ ξ∗,s(k + h) (8e)

where s, S and P(s) represent respectively a scenario (a
particular sequence of the realization of the r.vs. over the
prediction horizon), the total numbers of scenarios and
the probability that the scenario s occurs . The cost to be
minimized is an expectation over all the possible scenarios.

4. STOCHASTIC DISCRETE CONSTRAINT MODEL
PREDICTIVE CONTROLLER (SDCMPC)

We want to develop a controller that does not suffer from
the combinatorial explosion of variables experienced by the
MSP. That is, the decision u over the prediction horizon
does not depend on the realization of the random variable.

4.1 Relaxed problem

We propose to relax the constraints (7d) using relaxation
variables which, unlike u, can depend on the r.v. ξi(k+h).
Our goal in doing so is to make the decision u deterministic
by transferring the associated randomness, to the relax-
ation variables. Therefore the relaxation variables become
r.vs.. The relaxed constraint are given by:
∀h = 1, . . . ,H − 1; ∀i = 1, . . . , ns

eT
i u(k + h)−yi(k + h) ≤ ξi(k + h)

yi(k + h) ≥ 0 (9)

Each relaxation variable y is random, because its optimal
value is a function of its corresponding uncertain bound ξ.
It is often called recourse in the Stochastic Programming
literature. We emphasize that there is no relaxation vari-
able for the first instant h = 0, since the random variable
is supposed to be known already as a consequence of A.3.
The constraint violations allowed by the usage of the
relaxation variables must be penalized, and hence a new

term is added to the cost function of problem (7) such that
the new cost function is:

JSDCMP C(k) = J(k) + Jy(k) (10)
with

Jy(k) = E
[H−1∑

h=1

ns∑
i=1

ciyi(k + h)
]

(11)

where ci is the penalization associated to utilizing yi.
The control problem becomes a minimization on the
decision variables u and the recourse variables y function
of ξ. It can be solved by formulating its “deterministic
equivalent”.

4.2 Deterministic equivalent

We formulate the deterministic equivalent problem by
introducing the variables y1,i(k + h), . . . , yNi−1,i(k + h)
all non negative which correspond to the various possible
values taken by yi(k + h) at the instant k + h. Therefore
the stochastic constraints become a list of deterministic
constraints as:

∀i = 1, . . . , ns, ∀h = 1, . . . ,H − 1
eT

i u(k + h)− y1,i(k + h) ≤ ξ1,i;
...

eT
i u(k + h)− yNi−1,i(k + h) ≤ ξNi−1,i;

eT
i u(k + h) ≤ ξNi,i.

(12)

We highlight that the last constraints (Ni-th constraints)
correspond to the higher value of the r.vs; hence, they
describe hard constraints that should not be relaxed.
With this notation in mind and with A.3,

Jy(k) =
H−1∑
h=1

ns∑
i=1

ciE
[
yi(k + h)

]
=

H−1∑
h=1

ns∑
i=1

Ni−1∑
n=1

ciπn,i(k + h|k)yn,i(k + h).
(13)

The final problem to be solved is given by:

min
u,y

JSDCMP C (14a)

s.t. ∀h ∈
{

0, . . . ,H − 1
}

(14b)
x(k + h+ 1) = Ax(k + h) +Bu(k + h) (14c)
Ddu(k + h) ≤ d (14d)
x(k + h+ 1) ∈ X (14e)

∀h ∈
{

1, . . . ,H − 1
}
, ∀i = 1, . . . , ns

eT
i u(k + h) ≤ ξNi,i (14f)

∀i =1, . . . , ns, ∀n = 1, . . . , Ni − 1
eT

i u(k + h)− yn,i(k + h) ≤ ξn,i, (14g)
yn,i(k + h) ≥ 0; (14h)

Now that the formulation of the problem is finished lets
us highlight some important points.
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Energy Storage

Load

Grid

Solar panels

Fig. 2. Power flow model of a solar home. The decision
variables are colored in green, external data are col-
ored in red (Solar potential and desired consumption),
internal variables are colored in black.

4.3 Important remarks

Let us consider problem (7). The total number of variables
computed to solve this problem for the MSP is given by

(nx + nu)
[
1 +

H−1∑
h=1

( ns∏
i=1

Ni

)h
]

(15)

while it is

nx + nu + (H − 1)
(
nx + nu +

ns∑
i=1

Ni − ns

)
(16)

for the SDCMPC. A comparison between both numbers
shows a great reduction from an exponential growth to
a linear one with the new controller depending on the
prediction horizon H. The difference in the number of
variables is of great importance in time and memory usage
performances, as we will show in section 6.4. Another
advantage of the new formulation is that it is applicable
for any type of r.vs. as long as the marginal probability
of occurrence of the considered r.vs. πn,i(·|k) can be
computed.
It is also worth mentioning that ci introduced in (11) is a
user setting parameter which exact value range is still an
important open question. Depending on the chosen value,
the control variables obtained by solving the optimization
problem will be different, as we will show in the simulation
and result section.

5. ENERGY SYSTEM MODEL

This section describes the different components of the
energy model that is the study case shown in Figure 2.
It is a model of a solar home, that is a grid-connected
residential consumer equipped with photovoltaic power
generation and an energy storage. We are interested in
applying the strategy proposed in section 4 to this solar
home, where there is an uncertainty about the electrical
network availability. More details are given while describ-
ing the electrical network in the next section 5.1.

5.1 System components

The system has four main parts.

1-μ1-λ Pav Pun

λ

μ

Fig. 3. Markov chain model of the electricity grid

The electrical network: The maximum power allowed to
be drawn from the grid at each instant is given by a
variable named Pmax

g that can take either one of two values
depending on whether the electrical network is available or
unavailable. Thus Pmax

g is a random r.v. which takes its
values in {Pav, Pun}.
Explicitly, if the r.v.
• Pmax

g = Pun = 0 → the electricity network is not
available, an outage is occurring;
• Pmax

g = Pav → the electricity network is available,
one can draw energy from it.

The maximum power allowed to be drawn from the elec-
trical grid taking two values, either Pav or Pun, we model
the grid by a two states Markov Chain (MC) (Billinton
and Allan, 1992) given by fig. 3 where λ is said to be the
failure rate while µ is the repair rate.
Let’s Pmax

g (k) denote the value of the electrical grid at
time period k. Whenever the process is in some state,
there is a fixed probability that it will be next in the
other state or remain in the same. The one step transition
probabilities matrix representing the MC is given by:

T =
[
1− λ λ
µ 1− µ

]
. (17)

Let’s denote by Πk+h the h-step transition probability
vector of the process from the initial instant k. The
Chapman–Kolmogorov equations provide a method for
computing the h-step transition probability vector such
that:

Πk+h =
[
πav(k + h|k) πun(k + h|k)

]
= ΠkTh ∀h ≥ 1

(18)

Since the electricity grid state is supposed to be known at
the initial instant (A.3.), the initial probability state vector
Πk takes either the value [1 0] when the grid is available
and [0 1] on the contrary.
We emphasize that this Markov chain is just a simple
example, but more advanced reliability models could be
used as well. In particular, our control method does not
require the uncertain signals to be Markov processes.
The power needed to be drawn at each discrete time k
is the control variable Pg. Selling energy to the grid is
not authorized, Pg is non negative, therefore we have the
following physical constraint:

0 ≤ Pg(k) ≤ Pmax
g . (19)

The solar panel: Its production profile is Ppv. When the
whole production Pmax

pv defined by the solar irradiation
cannot be utilized in the system, some part may be spilled.
The power spilled Psp is a controlled variable such that the
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actual power provided by the solar panel to the system is
given by:

Ppv(k) = Pmax
pv (k)− Psp(k) (20)

Energy storage: The decision variable Pb (battery power)
is the power sent to the battery at each instant. The
accumulation of this power over time gives the energy
within the storage Eb (battery energy):

Eb(k + 1) = Eb(k) + Pb(k)∆t (21)
with ∆t the sampling time. By convention Pb(k) > 0 and
Pb(k) ≤ 0 imply respectively charging and discharging.
Storage losses are neglected because they are out of scope
here. The storage capacity at each instant is bounded as
follows:

Emin
b ≤ Eb(k) ≤ Emax

b . (22)

The load/building/user: The building demand at each
instant k is given by the variable P ∗

l . When the building
demand is above what the main (the electrical network)
and the auxiliaries (the solar panel and the storage unit)
sources can provide, some part of the demand must be
shedded. The power to be shedded is the decision variable
Ps. The actual power provided to the load Pl can then be
computed as follow:

Pl(k) = P ∗
l (k)− Ps(k). (23)

We note here that introducing the decision variable Ps into
the problem permits to always satisfy A.1. (the control is
always feasible).
These four previously described components exchange
energy among themselves, which allows us to write the
following load balance equation

Pg(k)− Pb(k) + Ppv(k) = Pl(k) (24)

5.2 System control objective

The solar home controller aims to compute optimal deci-
sions two satisfy two objectives:
(1) Minimizing the load dissatisfaction (maximizing the

quality of service);
(2) Minimizing the economical cost (electricity bill);

both over the prediction horizon H. We express the com-
promise between these two conflicting objectives through
linear scalarization (Deb, 2014) which gives:
j
(
x(k + 1), u(k), k

)
= cg(k)Pg(k)︸ ︷︷ ︸

Economical cost

+ csPs(k)︸ ︷︷ ︸
Load dissatisfaction

, (25)

where cg is the time-varying energy price and cs a virtual
price associated with one unit of discomfort. Both signals
are known.
Since the load satisfaction objective is more important
than the economical cost minimization, we set cs �
max(cg).

6. SIMULATION AND RESULTS

All of the simulations have been done using Julia (a high-
level, high-performance dynamic programming language

for technical computing) with the Mosek solver, JuMP and
“BenchmarkTools” (Revels, 2015) toolbox. The computer
we have used run the Operating System Ubuntu 18.04.4
LTS and is powered by the processor Intel Core i7-8750H
CPU @ 2.20 GHz x 12 with 15.5 GiB RAM.

6.1 Simulation settings

To simulate the controllers behavior, we use the the data-
set extracted from the “Solar home electricity data” (Rat-
nam et al., 2017). The data-set comprises 3 years of data
(solar power generated Pmax

pv and household consumption
P ∗

l ) recorded at a frequency of 30 minutes (∆t = 0.5h). In
order to facilitate the interpretation of the results, let us
define the net load power Pnl as the difference between the
building load demand and the solar panel total production.

Pnl = P ∗
l − Pmax

pv (26)
Note that Pnl ≥ 0 means the local solar production is
not enough to sustain the building’s demand while the
contrary Pnl < 0 implies that there an excessive solar
production that can be stored in the battery.
The electrical grid when available, provides a maximum
energy Pav = 3kWh (at a cost 0.1€ from 00:00 to 05h:59
and 0.2€ from 06:00 to 23:59). The electrical distribution
company also informs the subscriber of the failure and
repair rate of the grid considered both constant. For the
storage Emax

b = 10kWh, Emin
b = 2kWh and we choose

the shedding cost to be cs = 10.

6.2 Manipulated variables

For the problem considered, the manipulated variables are
defined as follows:
• the system uncontrolled inputs are given by the a

vector v defined as

v(k) =
[

P ∗
l (k)

Pmax
pv (k)

]
; (27)

• the decision or controlled variables are given by the
vector u defined as

u(k + h|k) =

 Pg(k + h|k)
Psp(k + h|k)
Pb(k + h|k)
Ps(k + h|k)

 ; (28)

• the stochastic variable is given by
ξ(k) = Pmax

g (k). (29)
For our application there is a unique stochastic constraint
which implies ns = 1 and therefore i = 1. The stochastic
variable takes its values within a set of two elements,
meaning Ni = N1 = 2 therefore, n = 1 . Given this,
the elements present in the objective cost Jy(k) defined by
equation (13) become ci = c1, πn,i(·) = π1,1(·) = πun(·)
and yn,i(·) = y1,1(·).
Note that the optimization variables is therefore given by[

u(k + h|k)
y1,1(k + h|k)

]
; (30)
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6.3 Relaxation variable cost effect on the SDCMPC

For the first set of simulations, we are interested in the
influence of the parameter c1 on the optimisation results.
To do so, we solve problem (14) with a horizon of three
days without any outage. We simulate four times with the
varying parameter being c1 (therefore c1π1,1) defined in
the objective cost to be optimized given by (14a).
The results obtained from the simulation, are given on
figures 4 and 5. For clarity, we did not plot the relaxation
variable y1,1, because it is equal to Pg. We underline that
drawing energy from the grid at the price cg(k+h) has the
direct consequence of using the same quantity of relaxation
variable at the price c1π1,1(k + h|k). Table 1 presents a
summary of the result obtained. In fig. 5, the dotted grey
line represents the value of the shedding cost cs = 10.
Referring to figures 4, 5 and table 1 we see that depending
on the value of the product c1π1,1(k + h|k) over the
considered prediction horizon, we distinguish three types
of behaviors of the controller:
• Behavior1: c1π1,1 is equal or higher than cs. The con-

troller sheds a part of demand instead of buying energy
from the grid, the controller is in the over-preventive
mode;

• Behavior2: c1π1,1 is bellow and far from cs. The con-
troller does not anticipate on the occurrence of outages,
the controller is in the nominal mode;

• Behavior3: c1π1,1 is bellow but near cs. The controller
anticipate on the occurrence of a default on the grid, the
controller is in the preventive mode .

From the three previously explained cases, we can assert
that c1 must always be chosen so that the controller never
enters the over-preventive mode because not providing
the building with its total energy demand when the
grid is available is undesirable. Both remaining behaviors
(nominal and preventive) can be selected by the user,
depending on the cost c1 and the MC parameters.
To choose the good value for c1, let us recall that in
the steady state of the MC described by Figure 3, the
probability of being in state Pun, is given by π1,1 = λ

µ+ λ
.

With this in mind the following equation is to be respected

c1π1,1 = c1
λ

µ+ λ
= c

′

s. (31)

Note that c′

s is the maximum value we would like the cost
c1π1,1(k + h) to reach in steady state. Since c1 depends
on the MC parameters, it needs to be tune according to
the user will every time these parameters change. For the
rest of the paper, we would like the controller to be in
the preventive mode. According to figure 5 the preventive

Table 1. SDCMPC Performances depending on
the value of the parameter c1∑

Pg∆t

∑
CgPg∆t

∑
Ps∆t

c1 = 1 19.27 1.97 0
c1 = 10 19.27 2.77
c1 = 102 6.46 0.65 12.8
c1 = 103 3 0.30 16.27
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Fig. 4. Variation of power and state of charge depending on
the cost c1 associated to the relaxation variable for a
constant failure and repair rate (λ = 10−2, µ = 10−2)
of the grid. The parts colored in light black correspond
to the moment of the day where the electricity price
is the lowest
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Fig. 5. Variation of the product c1π1,1(k + h) associated
to the relaxation variable for a constant failure and
repair rate of the grid.

mode is activated for a c′

s ≈ 5 which leads to c1 = 10 for
the following simulations.

6.4 Performances comparison

For the optimisation problem, we are interested in com-
paring the computing time and memory usage of the SD-
CMPC and the state of the art controller MSP (described
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Table 2. Stochastic Controller Performances for a Monte Carlo simulation of 10 days in Closed
loop with a prediction horizon of 7.5 hours for SDCMPC and MSP and 24 hours for SDCMPC2∑

jre

∑
CgPg∆t

∑
Ps∆t

Mean Std Mean Std Mean Std

MSP - SDCMPC 36.75 22.54 -1.03 0.47 3.78 2.29

SDCMPC - SDCMPC2 58.15 40.24 0.74 1.22 5.74 4.11

MSP - SDCMPC2 94.9 48.88 -0.29 1.21 9.52 4.98
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Fig. 6. Evolution of the variables associated with SDCMPC, MSP (prediction horizon = 7.5 hours for both) and
SDCMPC2 (prediction horizon = 24 hours) of scenario 24.

in section 3.2) for different values of the prediction horizon
H.
The results obtained with these simulations are shown
in figure 7. We can see that the memory usage and the
computing time both grow exponentially according to
the prediction horizon for the MSP, while the growth is

much much slower for the SDCMPC. Let emphasize that
the laptop ran out of memory for a prediction horizon
higher than 7.5 hours with the MSP. The conclusion is
pretty straightforward; for the same prediction horizon,
the SDCMPC has better computing time and memory
usage than the MSP. The low computing time and memory
usage of the SDCMPC allows extending its prediction
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Fig. 7. Evolution of the computing time and memory
estimate usage function of the prediction horizon from
1 to 7.5 hour for the MSP and from 1 hour to 24 hour
for the SDCMPC

horizon from the maximum admissible by the MSP to
a much longer one. For this paper, we consider a whole
day (24 hours) as the longest prediction horizon. Figure 7
shows that even at the prediction horizon of 24 hours
for the SDCMPC, there still a considerable difference in
computing time and memory usage compared to the MSP.

6.5 Monte Carlo simulation

Based on a failure rate λ = 10−2 and a repair rate µ =
10−2 for the Markov chain describing the grid state, we
have created 40 independent scenarios of grid availability
over ten days. All scenarios share the same profile of
house demand and solar production. We have simulated
the SDCMPC and MSP with a prediction horizon of 7.5
hours and the SDCMPC considering the extended horizon
24 hours (SDCMPC2). Figure 6 shows the evolution of the
interesting variables for one of these scenarios. Translucent
red is used to highlight grid outages while black is used for
low-cost electricity during the night. The fourth subplot
represents at each instant the integral over time of energy
not provided to the house Ps. Pnl (“net load”) is the
difference between P ∗

l and Pmax
pv .

For each scenario and each controller, we have computed
the following performance indices:
• Cumulated cost of energy drawn from the grid (energy

bill)
• Cumulated energy not provided to the building
• Cumulated reconstructed optimization cost (weighted

sum of the first two): jre(k) = j
(
x(k + 1), u(k), k

)
There is a large variability across the 40 scenarios (grid
availability is 53 % on average for all scenarios, but it
is only 3 % in the worst one and 98 % in the luckiest).
Therefore, comparing the average performance across all
scenarios for each controller yields statistically meaning-
less differences. Instead, for each scenario, we compute
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Fig. 8. Reconstructed optimization cost rearranged in
ascending order of the results obtained by the OLFC
with an horizon of 7.5hour

differences in performance indices for pairs of controllers.
In table 2, we show the mean and the standard deviation of
these differences across all scenarios. The SDCMPC2 does
better on average compared to other controllers. This is
due to its higher prediction horizon, which allows better
anticipation, in particular, to take most of grid energy at
a lower price.
Figure 8, we show the performance indices for each sce-
nario (dropping the shedded energy, because it is very
similar to the total reconstructed cost

∑
jre due to the

high cs weight) and each controller. For plotting clar-
ity, the scenarios are sorted in ascending order of the
cummulated reconstructed optimization cost (

∑
jre) for

SDCMPC. This yields an approximate ascending order
for the other controllers’ cost and approximate descending
order for the energy bill. Indeed, the energy bill is neg-
atively correlated with grid unavailability and, therefore,
the energy dissatisfaction.
We can see that the SDCMPC2 yields the lowest jre for all
scenarios, followed by the MSP, and then the SDCMPC.
As for the energy bill, the SDCMPC2 can be lower, higher,
or equal to the other controllers depending on the scenario.
However, even for scenarios where SDCMPC2 energy cost
is worse (higher) than the other’s, this is more than
compensated by a lower energy dissatisfaction.

7. CONCLUSION

We have proposed in this paper a controller that integrates
discrete stochastic constraints in the MPC framework.
To do so, we have used relaxation techniques within an
Open Loop Feedback Control formulation. The resulting
optimization complexity is not much increased compared
to a deterministic MPC. On an energy management appli-
cation, we have compared the new controller to a controller
based on the MSP. Our controller’s very low computational
time and memory usage compared to the MSP allows a
substantial extension of its prediction horizon. The ex-
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tended horizon results in a significant improvement in the
quality of service and the closed-loop optimization cost.
This approach is very well suited for the linear discrete
stochastic constraints that model the commutations in this
work. Further works need firstly to study its adaptation to
other aspects of hybrid dynamic systems. Lastly, it would
be interesting to reevaluate the MSP while assuming a
deterministic trajectory of the random variable after a
predetermined reduced horizon or by cutting the less likely
scenarios in the tree.
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