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A B S T R A C T
Aquaculture systems can benefit from the recent development of advanced control strategies to reduce
operating costs and fish losses and increase growth production efficiency, resulting in fish welfare and
health. Monitoring the water quality and controlling the feeding are fundamental elements to bal-
ancing fish productivity and shaping fish’s life history in the fish growth process. Currently, most
fish feeding processes are conducted manually in different phases and rely on time-consuming and
challenging artificial discrimination. The ability of the feeding control approach influences the fish
growth and breeding through the feed conversion rate; hence, controlling these feeding parameters is
crucial for enhancing fish welfare and minimizing the general fishery costs. On the other hand, the
high concentration level of the environmental factors, such as a high ammonia concentration and pH
level, affect the water quality, affecting fish’s survival and mass death. Therefore, there is a critical
need to develop control strategies to determine optimal, efficient, and reliable feeding and water qual-
ity monitoring processes. In this paper, we revisit the representative fish growth model describing the
total biomass change by incorporating the fish population density and mortality. Since the measure-
ment data of the total biomass and population from the aquaculture systems are limited and difficult to
obtain, we validate the new dynamic population model with the individual fish growth data for track-
ing control purposes. We specifically focus on relative feeding as a manipulated variable to design
traditional and optimal control to track the desired weight reference within the sub-optimal tempera-
ture and dissolved oxygen profiles under different levels of unionized ammonia exposure. Then, we
propose a Q-learning approach that learns an optimal feeding control policy from the simulated data
of the fish growth weight trajectories while managing the ammonia effects. The proposed Q-learning
feeding control prevents fish mortality and achieves good tracking errors of the fish weight under the
different levels of unionized ammonia. However, it maintains a relative food consumption that po-
tentially underfeeds the fish. Finally, we propose an optimal algorithm that optimizes the feeding and
water quality of the dynamic fish population growth process. We also show that the model predic-
tive control decreases fish mortality and reduces food consumption in all different cases of unionized
ammonia exposure.

1. Introduction
Aquaculture is one of the largest and fastest-growing food
production sectors in the world and is likely to become the
primary source of seafood in the future [1], as illustrated in
Fig.1. As commercial fish production continues to increase,
its impact and reliance on protein sources provided by ocean
fisheries are likely to expand. To mitigate these impacts, ad-
equate growth models are relevant for efficient aquaculture
management, as they provide an optimized protocol for feed-
ing and monitoring fish welfare throughout the grow-out cy-
cle from stocking through harvesting [2].
Growth is a biological process comprising many crucial pro-
cesses and fish’s life history [3]. For aquaculture systems to
achieve better control, tracking and predicting fish growth
trajectory is vital. However, the tracking of growth trajectory
poses challenges where environmental factors influence fish
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Figure 1: Marine and aquaculture worldwide production

feed, such as unionized ammonia dissolved oxygen, salinity,
water temperature, and light [4].
The feeding process and water quality monitoring are usu-
ally done manually, on-site, or analyzed in laboratories after
the data is collected [5]. This monitoring process delays the
detection of abnormalities and the relevant control actions
and is arduous to manage the costs and complexity of the
cleaning, and the stabilization of the water quality [6]. De-
pending on water quality measurements, an electric on-off
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actuator was implemented, and the objective was to design
a bang-bang controller that switches the valves and pumps
on-off [7]. However, this type of controller requires a set
of desired points so the controller can meet them. As a re-
sult, undesirable responses like chattering phenomena are
induced. Proportional-integral-derivative (PID) controllers
have been examined experimentally in aquaculture for water
quality and feeding. For automatic feeding, the feeding rate
and time have been implemented using PID controller to en-
hance the fish growth [8]. Whereas in [9], the nitrate concen-
tration in water was controlled by PID controller to track the
desired reference. The design of closed-loop systems guar-
antees the best performance against requirements. However,
PID may not be efficient for various fish growth tracking sys-
tems due to different management factors that account for
the overfeeding specifications. Therefore, optimal control
law that ensures a trade-off between optimal growth rate per-
formance guarantees, minimization of the costs, and system
complexity is relevant to increasing the overall performance.
Optimal control approaches using optimization techniques
were developed to enhance aquaculture process economics.
Many of these optimal control techniques enhance the plants
aquaculture management and economics, considering the best
harvesting time and the market variation [10], [11]. Another
line of work is based on the fish price and mortality effects
to provide the best schedule of feeding [12], [13]. How-
ever, these works focus on designing a generic framework
and do not examine all the growth model’s biological vari-
ables. To this end, they might lack to maintain fish growth
tracking performance in the presence of model uncertainty,
such as ammonia effects. The learning-based method for fish
growth, such as reinforcement learning (RL), can alleviate
the ammonia exposure effects. The Q-learning algorithm for
fish trajectory tracking is a model-free RL algorithm, which
has been developed in [14]. Specifically, the Q-learning al-
gorithm controller aims to track the fish growth trajectory
while managing model uncertainties and environmental fac-
tors.

This paper proposes a fish population growth model that
relies on the fish stocking density and mortality rate. The
representative bioenergetic fish population growth model ac-
counts for the biodiversity by expressing the total biomass
change through the fish population density and mortality.
This proposed model is a step beyond the results in [15]
limited to a single bio-energetic fish growth model and does
not consider the effect of UIA on mortality. Since the mea-
surement data of the total biomass and population from the
aquaculture systems is limited and difficult to obtain, we val-
idate the new dynamic population model with the individual
fish growth data [16]. We particularly zoom on the relative
feeding as a manipulated variable to design traditional and
optimal control to track the desired weight reference within
the controlled temperature and dissolved oxygen (DO) pro-
files through different unionized ammonia (UIA) exposures.
To reduce the mortality related to UIA exposure under vary-
ing levels of fish stocking density at which the fish growth
rate tracks the desired growth reference, we propose an opti-

mal model-based feeding and water quality controller that in-
cludes temperature, DO, and UIA and a Q-learning approach
developed in [14] that only learns an optimal feeding control
policy while managing the ammonia exposure.
The paper’s outline is organized as follows: Section 2 de-
scribes the individual and the new population dynamic fish
growth models. Section 3 provides the main results of the
traditional and optimal feeding control problem and water
quality monitoring. Section 4 highlights the performance
assessments of the proposed controllers for controlling fish
feeding along with numerical simulation tests. Thanks to the
flexibility of the model-predictive framework, we provide
the optimal feeding and water quality monitoring in which
the temperature, dissolved oxygen, and unionized ammonia
are controlled in Section 5. Finally, the paper summarizes
the main contributions and some future works in Section 6.

2. Bioenergetic fish growth models
This section describes fish growth’s individual and popula-
tion dynamics. First, we validate the new dynamic popu-
lation model with the individual fish growth data for con-
trol and monitoring purposes. Then, we highlight the corre-
lation between ammonia exposure and mortality which un-
derly fish growth performance.
The dynamic energy budget (DEB) model has recently pro-
vided the most complete and well-connected environmental
variables effects for growth predictions by covering the en-
tire life cycle of the fish organism [17, 18, 19]. The DEB
model describes the metabolic processes of organisms in terms
of energy. The description incorporates tools in the early
organisms’ life cycle which enables; to maintain beneficial
knowledge before establishing new farms [20, 21], approx-
imate the fish production and amount of food [22], and en-
hance the production by farming aquatic species in integrated
fashion [23]. In line with this, the (DEB) growth model has
become central in the modeling and analysis of many fish
species. It can be formulated as in the metabolic process,
which is the difference between anabolism and catabolism,
according to Ursin’s work [24].

• Individual fish growth models: The dynamics of the
individual bioenergetic growth model is described in
terms of fish biomass and fish population density as
follows [15, 16]

d𝑤
d 𝑡

= Ψ
(

𝑓, 𝑇 ,𝐷𝑂
)

𝑣(𝑈𝐼𝐴)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

anabolism

𝑤𝑚 − 𝑘(𝑇 )
⏟⏟⏟
catabolism

𝑤𝑛 (1)

where 𝑤 is the individual fish weight, Ψ(𝑓, 𝑇 ,𝐷𝑂
)

(kcal1−𝑚day−1) and 𝑣(𝑈𝐼𝐴) are the coefficients of an-
abolism and 𝑘(𝑇 ) (kcal1−𝑛day−1) is the fasting catabolism
coefficient formulated as

Ψ
(

𝑓, 𝑇 ,𝐷𝑂
)

= ℎ𝜌𝑓𝑏(1 − 𝑎)𝜏(𝑇 )𝜎(𝐷𝑂),

and
𝑘(𝑇 ) = 𝑘min exp

(

𝑗(𝑇 − 𝑇min)
)

.
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

d 𝜉
d 𝑡

= 𝑝𝑠𝜉𝑖
⏟⏟⏟

fish stocking density

+Ψ
(

𝑓, 𝑇 ,𝐷𝑂
)

𝑣(𝑈𝐼𝐴)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

anabolism

𝜉𝑚 − 𝑘(𝑇 )
⏟⏟⏟
catabolism

𝜉𝑛 − 𝑝𝑘1(𝑈𝐼𝐴)𝜉𝑎
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

fish mortality
d 𝑝
d 𝑡

= 𝑝𝑠 − INT(𝑝𝑘1)

(2)

The model constitutes the effects of water quality pa-
rameters as temperature (𝑇 ), dissolved oxygen (𝐷𝑂),
and un-ionized ammonia (𝑈𝐼𝐴) and feeding param-
eters as food availability [16]. Nomenclature and the
fish growth model parameters are summarized in Ta-
ble 4 [16]. The effects of temperature 𝜏(𝑇 ), unionized
ammonia 𝑣(𝑈𝐼𝐴), and dissolved oxygen 𝜎(𝐷𝑂) on
food consumption and their formulations are found in
Appendix [16, 15, 25].

• Population dynamic fish growth models: Popula-
tion models are crucial to describe potential pathways
for fish population dynamic recovery and the patterns
in biodiversity to understand and predict the future of
marine resources. The fish growth population models
based on the DEB integrate the management variable,
such as feeding, and environmental variables, like the
temperature, dissolved oxygen, and ammonia, as ef-
fects for fish growth predictions and performance by
covering the life cycle of the fish organism. Besides,
these models capture essential information on envi-
ronmental and biological changes in fishes, including
mortality and fish stocking density [26, 27]. The dy-
namic of the population dynamic bioenergetic growth
models is described in terms of fish biomass and pop-
ulation density as follows by (2). The states 𝜉 and 𝑝
are total fish biomass and fish number, respectively.
𝑝𝑠 and 𝜉𝑖 are stocking fish number and individual fish
biomass during fish stocking, 𝑘1(𝑈𝐼𝐴) is fish mor-
tality coefficient, and 𝜉𝑎 is mean fish biomass which
equals to 𝜉 divided by 𝑝. The fish growth model (2)
can be written in a compact form as follows

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d 𝜉
d 𝑡

= 𝑔
(

𝜉, 𝑝, 𝑓 , 𝑇 ,𝐷𝑂,𝑈𝐼𝐴
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑢

, 𝑘1
)

d 𝑝
d 𝑡

= 𝑝𝑠 − INT(𝑝𝑘1)
(3)

where 𝜉 ∈ 𝕎 ⊂ IR denotes the state and 𝑢 = [𝑢1, 𝑢2, 𝑢3,
𝑢4]𝑇 is the input vector. 𝑢 ∈ 𝕌 ⊂ IR4 describes the
manipulated control input vector corresponds to the
feeding rate, temperature, and dissolved oxygen, and
unionized ammonia respectively. The set of admis-
sible input values 𝕌 is compact. The relative feeding
rate 𝑓 = 𝑟

𝑅
is expressed in terms of the maximal daily

ration 𝑅 and the daily ration 𝑟.

2.1. Model simulation and validation
This subsection aims to validate the proposed population
growth model to the individual bioenergetic growth model
proposed in [16]. This step is essential to investigate the
effectiveness of the proposed model and how it can reflect
reality. Thus, one of the validation limitations is the lack of
real data on total fish weight and population. This remains a
challenge even for the individual fish since the normal pro-
cedure to measure the fish’s weight is done manually. Due
to these limitations, the validation process relies on the indi-
vidual fish model (DEB) [16] because it has been tested and
validated experimentally.
The objective of the validation is to have a similar response
of individual fish model when the population is selected to
be 1 in the proposed model given similar input profiles. The
inputs, 𝑓 , 𝑇 , 𝐷𝑂, and 𝑈𝐼𝐴, are generated within the range
of their minimum and maximum as in Table 4 in Appendix.
The initial weight for the proposed model and the individual
fish (DEB) is selected to be 6.24 [g∕f ish]. And, the initials
for the fish population are picked 1, 5, 10, 50, and 100 [f ish].
Fig. 2 illustrates the validation results of the proposed model
where Fig. 2(a) shows the total fish weight. The solid black
line represents the result of [16] according to given the in-
put profiles and the dashed red line is the result of the pro-
posed model when the population is 1. It is clear that the re-
sponses of both models have similar fish growth trajectories
in the case of the individual population. While as expected,
increasing the fish population increase the total fish in the
proposed model. Fig. 2(b) shows population dynamic of the
proposed model. The results of the population are not chang-
ing due to non-toxic feeding and water quality input factors.
This leads us to investigate the effects of feeding and water
quality factors in the proposed model.
2.2. Feeding and water quality effects
This subsection studies the effects of the feeding and wa-
ter quality factors. The water quality effects are a function
of the temperature, dissolved oxygen, and unionized in (3).
These functions appear in the system (2) as function of 𝜏(𝑇 ),
𝜎(𝐷𝑂), and 𝑣(𝑈𝐼𝐴). Figs. 3 illustrates the effect of the wa-
ter quality factors on fish food consumption where Fig. 3(a)
corresponds to the effect of temperature on 𝜏(𝑇 ), Fig. 3(b)
represents to the effect of dissolved oxygen on 𝜎(𝐷𝑂), and
Fig. 3(c) corresponds to the effect of unionized ammonia on
𝑣(𝑈𝐼𝐴).
We note that the optimal temperature, dissolved oxygen, and
unionized ammonia result in maximum 𝜏(𝑇 ), 𝜎(𝐷𝑂), and
𝑣(𝑈𝐼𝐴), which are equal to 1. In this case, the anabolism
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Figure 2: Validation results of the proposed model given simi-
lar input profiles. Figure (a) shows the total fish weight (dashed)
compared to individual fish weight in [16] (solid black). Figure (b)
illustrates the population dynamic of the proposed model.
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Figure 3: The effects of the water quality factors on fish food con-
sumption. (a) 𝜏(𝑇 ) is the temperature factor (0 ⩽ 𝜏(𝑇 ) ⩽ 1, dimen-
sionless), (b) 𝜎(𝐷𝑂) is the dissolved oxygen factor (0 ⩽ 𝜎(𝐷𝑂) ≤ 1,
dimensionless), and (c) 𝑣(𝑈𝐼𝐴) is the unionized ammonia factor
(0 ⩽ 𝑣(𝑈𝐼𝐴) ⩽ 1, dimensionless).
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Figure 4: The generated input time-varying profiles for the sensi-
tivity analysis. Figure (a) presents the relative feeding profile, (b)
the temperature profile, (c) the dissolved oxygen profile, and (d) the
unionized ammonia profile.

in (2) will be maximum, assuming the relative feeding 𝑓 =
1. With that being mentioned, it is worth investigating the
effects of feeding and water quality factors on fish growth
and population. In particular, five cases are considered as
follows

• Baseline case: The feeding and water quality are op-
timal, namely 𝑓 = 1, 𝜏(𝑇 ) = 1, 𝜎(𝐷𝑂) = 1, and
𝑣(𝑈𝐼𝐴) = 1

• Time-varying relative feeding (𝑓 )
• Time-varying temperature (𝑇 )
• Time-varying dissolved oxygen (𝐷𝑂)
• Time-varying unionized ammonia (𝑈𝐼𝐴)
Figure 4 illustrates the generated input time-varying pro-

files for each case. They are designed to fluctuate the func-
tions 𝑓 , 𝜏(𝑇 ), 𝜎(𝐷𝑂), and 𝑣(𝑈𝐼𝐴) between 0 and 1. Table 1
summarizes the performance results of the water quality and
feeding factors. Feeding and water quality factors indeed af-
fect the total fish weight compared to the baseline case. Par-
ticularly, unionized ammonia (UIA) directly affects the fish
population, resulting in the death of 9 fish. From these ob-
servations, UIA is a dominant factor, and it is worth investi-
gating the responses of various control methods to different
UIA exposure.

3. Fish population growth tracking under
ammonia exposure

This section studies the model-based feeding controllers for
monitoring fish population growth under different UIA pro-
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Table 1
Sensitivity analysis of the effect on feeding and water quality
factor

Cases Fish weight [g] Population [f ish]
Maximum case 7922.9 10∕10
Time-varying 𝑓 4549.2 10∕10
Time-varying 𝑇 1220.15 10∕10

Time-varying 𝐷𝑂 4759.2 10∕10
Time-varying 𝑈𝐼𝐴 0.066 1∕10

files. Indeed, ammonia exposure remains a significant con-
cern in the fish population growth model and the possible
effects on fish health and survival in aquaculture systems.
Besides, the high ammonia accumulation directly results in
fish mortality and increases potential signs of stress result-
ing in behavioral responses and disease resistance. There-
fore, it is crucial to analyze the fish growth responses under
the different traditional and optimal controllers through the
UIA exposure to monitor the value of UIA to enhance fish
farming productivity. We start with the classical controllers,
as the bang-bang and proportional-integral-derivative (PID)
controllers; then, we move to the optimal control, namely
model predictive control and Q-learning.
3.1. Bang-bang control

The Bang-bang controller is an on-off controller. It is
considered one of the simplest controllers yet widely utilized
in various market devices. It has been used to regulate water
quality and automate feeding in aquaculture systems. For
instance, the bang-bang controller was implemented to track
the desired set-point of dissolved oxygen by switching the
aerator on or off in [28]. The mathematical representation
for tracking the desired set-point can be given as follows

𝑢𝑗(𝑡) =

{

on if 𝑒𝑗(𝑡) > 0,
off if 𝑒𝑗(𝑡) ⩽ 0,

(4)

where 𝑢𝑗(𝑡) is the input action to the system, 𝑗 is the number
of control variables and 𝑒𝑗(𝑡) =  𝑗

𝑑(𝑡) −  𝑗(𝑡) is the error
between desired references  𝑗

𝑑(𝑡) = [𝑇𝑑(𝑡), 𝐷𝑂𝑑(𝑡), 𝑓𝑑(𝑡),
𝑈𝐼𝐴𝑑(𝑡)] and output measurements  𝑗(𝑡) = [𝑇 (𝑡), 𝐷𝑂(𝑡),
𝑓 (𝑡), 𝑈𝐼𝐴(𝑡)]. For instance, consider the temperature to be
the controllable parameter 𝑇 , then the heater will turn on if
𝑇desired −𝑇 > 0 ⟹ 𝑇 < 𝑇desired or turn off if 𝑇desired −𝑇 ⩽
0 ⟹ 𝑇 ⩾ 𝑇desired. The given conditions in the bang-bang
controller are not restricted to tracking desired references but
can also be set according to duty cycles. This enables the
design of an automated feeding system. In the sequel, we
monitor the feeding using the bang-bang controller to track
the desired fish growth as follows

𝑓 =

{

1 if 𝑤𝑑 −𝑤 > 0,
0.1 if 𝑤𝑑 −𝑤 ⩽ 0,

(5)

where 𝑤 = 𝐹𝐵
𝐹𝑃 is the mean weight of fish under the assump-

tion that it is measurable, and 𝑤𝑑 is the desired fish weight.
In the case that 𝑓 = 1, the provided food quantity is 10%
of the fish’s mean body weight. On the other hand, when
𝑓 = 0.1, the provided food quantity is 1% of the fish’s mean
body weight. Using this structure of relative feeding allows
the fish to be fed daily.
3.2. Proportional-Integral-Derivative (PID)

controller
Proportional-Integral-Derivative (PID) controllers have been
examined experimentally in aquaculture for water quality and
feeding. For automatic feeding, the feeding rate and time
have been implemented using a PID controller to enhance
the fish growth [8]. Whereas in [9], the nitrate concentra-
tion in water was controlled by a PID controller to track the
desired reference. Assuming that the objective is to drive
temperature, dissolved oxygen, and feeding rate to desired
references, then the measurements are  𝑗(𝑡), and the refer-
ences are  𝑗

𝑑(𝑡). PID controller is calculated from the error
feedback as follows

𝑢𝑗(𝑡) = 𝐾𝑗
𝑝𝑒

𝑗(𝑡) +𝐾𝑗
𝑖 ∫ 𝑒𝑗(𝑡) 𝑑𝑡 +𝐾𝑗

𝑑
𝑑𝑒𝑗(𝑡)
𝑑𝑡

, (6)

where 𝑢𝑗(𝑡) is the input action to the system, 𝑒𝑗(𝑡) =  𝑗
𝑑(𝑡) −

 𝑗(𝑡) is the feedback or tracking error, 𝐾𝑗
𝑝 , 𝐾𝑗

𝑖 , and 𝐾𝑗
𝑑 are

the gains of proportional, integral, derivative, respectively.
These gains are tunable parameters tuned with trial and error.
Similar to the bang-bang controller, the manipulated vari-
able is the relative feeding, and the PID formulation is given
as follows

𝑓 = 𝐾𝑝𝑒 +𝐾𝑖 ∫ 𝑒 𝑑𝑡 +𝐾𝑑
𝑑𝑒
𝑑𝑡

, (7)
where 𝑒 = 𝑤𝑑 −𝑤 is the tracking error.
3.3. Optimal feeding under different UIA profiles

(MPC1)
Optimal control strategies are relevant to maximize efficiency
growth rate while incurring the cost of wasted food due to
overfeeding that adversely impacts water quality. Subsequently,
these advanced control methods can handle disturbance at-
tenuation of external factors such as time-varying environ-
mental factors. In the case of the fish growth application,
the closed-loop PID-type controllers and the bang-bang con-
troller do not satisfy the desirable features such as optimizing
the feed conversion ratio, which minimizes the feed while
maximizing the predicted growth state.
The fish population growth reference tracking problem is for-
mulated similarly to [15] as a minimization with a finite-time
prediction horizon as follows

min
𝑢∈ (𝜀)

𝐽 = ∫

𝑡𝑘+𝑁

𝑡𝑘

(

‖

‖

‖

�̃�(𝜏) −𝑤𝑑(𝜏)
𝑤𝑑(𝜏)

‖

‖

‖

2

+ 𝜆‖‖
‖

𝑓 (𝜏)‖‖
‖

2
)

𝑑𝜏 (8a)
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s.t. ̇̃𝑤(𝑡) = 𝑔
(

�̃�(𝑡), 𝑓 (𝑡)
) (8b)

𝑓min ⩽ 𝑓 (𝑡) ⩽ 𝑓max, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ] (8c)
Δ𝑓 (𝑡𝑘) = 𝑓 (𝑡𝑘) − 𝑓 (𝑡𝑘−1) (8d)
𝑤0 ⩽ �̃�(𝑡) ⩽ 𝑤end, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ] (8e)
�̃�(𝑡𝑘) = 𝑤(𝑡𝑘), �̃�(0) = 𝑤(𝑡0) (8f)

where 𝑁 is the prediction horizon, and 𝜆 is the weight
parameter. Equation (8a) defines the objective function that
minimizes the normalized difference error of tracking while
minimizing the relative feeding over the prediction horizon.
The constraint in (8b) is the growth model (3) used to predict
the evolve �̃�(𝑡) by bounded 𝑓 (𝑡) in (8c) and initial condition
in (8e). 𝑤0 and 𝑤end are the desired initial and maximal fish
weight constraints, respectively.

3.4. Q-learning based optimal feeding control
under ammonia exposure

Reinforcement learning (RL) technology has demonstrated
the ability to learn the optimal feeding control policy for the
fish growth rate for aquaculture in our recent work [14]. Ad-
ditionally, it has been applied to recognize the wave size
to determine whether to continue or stop through an auto-
matic fish-feeding system [29] and facilitate the feeding con-
trol process in [30]. RL is applied to fish robotic research
and schooling navigation areas [31, 32, 33]. However, few
studies have assessed fish-feeding control based on the RL
methodology in monitoring and optimizing fish growth rate
production for aquaculture systems. In line with this, we
implement the Q-learning algorithm to solve the fish growth
tracking problem under different levels of ammonia expo-
sure. Q-learning algorithm optimizes a lookup table itera-
tively. This Q-table is usually built from a record of feed-
ing actions related to fish weight, and population states [14].
Then, Q-learning algorithm maps the set of fish weight and
population system states, 𝐒, to the set of feeding actions, 𝐀,
such that the following reward, 𝑟𝑡 [14]

𝑟𝑡
(

𝑠𝑡, 𝑎𝑡
)

= −
[

(𝑤(𝑠𝑡) −𝑤𝑑(𝑡)
𝑤𝑑(𝑡)

)2
+ 𝜆

(

𝑓
)2

]

,

minimizes the fish growth tracking error deviation and pe-
nalizes the feed ration under the sub-optimal temperature
and dissolved oxygen profiles for the required action

a = max
𝑎′

𝑄
(

𝑠, 𝑎′
)

, 𝑎 ∈ 𝐀, 𝑠 ∈ 𝐒

where 𝑓 is the feeding rate, 𝜆 is a positive regularization term
to assess the feeding input preference,𝑤(𝑠𝑡) is the fish weight
at the state 𝑠𝑡 and 𝑤𝑑(𝑡) is the desired reference live-weight
growth trajectory. At each time 𝑡, the temporal difference of
the Q-learning algorithm uses sampling experiences to up-
date the action-value function from the aquaculture environ-
ment’s response according to the following equation [14]

𝑄
(

𝑠𝑡, 𝑎𝑡
)

←𝑄
(

𝑠𝑡, 𝑎𝑡
)

+ 𝛼
[

𝑟𝑡
(

𝑠𝑡, 𝑎𝑡
)

+𝛾 max
𝑎

𝑄
(

𝑠𝑡+1, 𝑎𝑡+1
)

−𝑄
(

𝑠𝑡, 𝑎𝑡
)]

,

where 𝑄
(

𝑠𝑡, 𝑎𝑡
)

is the value function of the state-action pair
(

𝑠𝑡, 𝑎𝑡
)

at each time 𝑡, 𝑟𝑡
(

𝑠𝑡, 𝑎𝑡
)

is the corresponding re-
ward, 𝛾 is the discount factor and 𝛼 is the learning rate.
4. Performance assessments of the different

approaches for controlling fish feeding
This section aims to design and implement classical con-
trollers such as bang-bang and PID, and optimal controllers
such as model predictive control and Q-learning to monitor
the fish population growth model under different unionized
ammonia (UIA) profiles. In this numerical simulation, the
individual fish weight is extracted from experimental data in
[34] for Nile Tilapia (Oreochromis niloticus). We specifi-
cally zoom on the relative feeding as a manipulated variable
to design traditional and optimal control to track the desired
weight reference within the controlled temperature and DO
profiles under different levels of unionized ammonia (UIA)
exposure.
4.1. Case 1: UIA is maintained constant under

its critical value
This case compares bang-bang, PID, MPC1, and Q-learning

controllers when UIA profile is maintained constant under
its critical value. The temperature and dissolved oxygen (DO)
profiles are controlled around the optimal temperature 𝑇opt =
29.7 ◦𝐶 and above the critical value 𝐷𝑂min = 1, respec-
tively.
4.2. Case 2: UIA varies under its critical value
This case aims to test the controllers by controlling the rela-
tive feeding using a time-varying UIA profile under its criti-
cal value. The temperature and dissolved oxygen (DO) pro-
files are maintained similar to case 1.
4.3. Case 3: UIA varies under its critical value

with a spike
The last case considers identical profiles of case 2. Thus,
one spike is added to the UIA profile to investigate the re-
sponses of the three controllers in the presence of a distur-
bance. Indeed, this case shows how the UIA directly affects
fish mortality and is sensitive to the fish population growth
mortality while reducing the food quantity.
In what follows, we tuned the PID gains to achieve a good
compromise between fish growth tracking error and food
consumption rate performances. Then, after several trial and
error tests, we selected the gains to be 𝐾𝑝 = 0.1, 𝐾𝑖 = 12,
and 𝐾𝑑 = 0.01. We also apply a saturation block when
𝑓 > 1 ⟹ 𝑓 = 1 and 𝑓 < 0.1 ⟹ 𝑓 = 0.1 which means
10% or less than 1% to prevent exceeding the boundary of
the relative feeding. In the MPC1 framework, the prediction
horizon and regularization parameter are selected as 𝑁 =6,
and 𝜆 = 0.002.
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Figure 5: The result of case 3 when the fish population size is equal to 10 and UIA is varied
under UIA𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 within a spike. Figures (a), (b), and (c) illustrate fish individual growth weight
tracking for Bang-Bang, PID, and MPC1 controllers, respectively. Figures (d), (e), and (f) show
the result of the manipulated variable (relative feeding) for Bang-Bang, PID, and MPC1 controllers,
respectively.

4.4. Results and discussion
Case 1: The three controllers bang-bang, PID and MPC1

perform well in tracking and reach the final fish weight. Ta-
ble 2 summarizes the performance assessment of all the con-
trollers, including all cases, food consumption, RMSE, and
fish mortality. The RMSE of the bang-bang controller is
14.109%, PID is 15.627%, and MPC1 is 14.878%. Besides,
the relative feeding of bang-bang and PID controllers are
𝑓 = 1 till the day ≈ 135. In contrast, MPC1 seeks to track
the desired fish weight while minimizing the relative feed-
ing. To summarize this case, the tracking performance of
the three controllers is quite similar (see Table 2). However,
MPC1 reduces the total food consumption by 17.47% and
18.73% compared to bang-bang and PID, respectively, even
though the bang-bang RMSE is less than MPC1.
Case 2: From Table 2, a similar conclusion can be extracted
as in case 1. The bang-bang and PID maximize the relative
feeding for the first ≈ 135 days while MPC1 solves for opti-
mal relative feeding in those days. Besides, MPC1 reduces
the total food consumption by 25.65% and 7.26% compared
to bang-bang and PID, respectively.
Case 3: This case considers a spike in the UIA profile above
its critical value. The resulting spike leads to one fish’s mor-
tality, indicating the need for further investigation of the three
controllers’ performances in Fig. 5. The tracking weight per-
formances of the bang-bang, PID, and MPC1 are illustrated
in Figs. 5(a), (b), and (c), respectively. Moreover, the effect
of the spike can be recognized on the day at 75 when the
trajectories decreased. The RMSE of the bang-bang con-

troller is 27.72%, PID controller 22.817%, and MPC1 con-
troller is 19.914%. Figs. 5(d), (e), and (f) show the result
of the relative feeding of bang-bang, PID, and MPC1 con-
trollers, respectively. The relative feeding response of the
MPC1 controller is sufficient because it focuses on minimiz-
ing the relative feeding and decreases the RMSE under the
presence of a spike.
On the other hand, Figure 6 illustrates the fish growth track-
ing performance results using Q-Learning when the fish pop-
ulation is 10 under different levels of unionized ammonia
(UIA) exposure. Figs. 6 (a), (b), and (c) show the fish in-
dividual growth weight tracking for cases 1, 2, and 3, re-
spectively. Figs. (d), (e) and (f) show the result of the rela-
tive feeding variable for case 1, case 2, and case 3, respec-
tively. Figs. 6 (g), (h), and (i) present the policy improve-
ment during the training episodes. We note that the pro-
posed Q-learning feeding control prevents fish mortality to
some degree compared to the model-based approaches and
achieves better tracking errors of the fish weight for all the
different levels of unionized ammonia exposures. However,
Q-learning provides a feeding policy and maintains a rela-
tive food consumption that potentially underfeeds the fish.

Remark 1. The discretization of system (3) for Q-learning
is sensitive to convert continuous dynamics to finite sets. Us-
ing a variable resolution grid scheme, introduced in [35],
improves the performance of Q-learning.
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Figure 6: Performance results of Q-Learning under the three cases when the fish population is
10. Figures (a), (b), and (c) illustrates fish individual growth weight tracking for case 1, 2, and
3, respectively. Figures (d), (e), and (f) show the result of the manipulated variable (relative
feeding) for case 1, case 2, and case 3, respectively. Figures (g), (h), and (i) present the policy
improvement during the training episodes.

5. Optimal feeding and water quality
monitoring (MPC2)

As presented above, a high concentration of exposure to UIA
that is reflected by a spike in case 3 results in fish mortality
by only controlling the feeding along with the density. To fill
this gap in fish mortality related to UIA exposure under con-
ditions of fish stocking density at which the fish growth rate
tracks the desired growth reference, we design an optimal
feeding and water quality monitoring that includes the tem-
perature, dissolved oxygen (DO), and UIA in the objective
function of MPC1. We formulate this second model predic-
tive control (called MPC2) as follows.

min
𝑢∈ (𝜀)

𝐽 = ∫

𝑡𝑘+𝑁

𝑡𝑘

(

‖

‖

‖

�̃�(𝜏) −𝑤𝑑(𝜏)
𝑤𝑑(𝜏)

‖

‖

‖

2
+ 𝜆1

‖

‖

‖

𝑓 (𝜏)‖‖
‖

2

+ 𝜆2
‖

‖

‖

𝑇 (𝜏) − 𝑇𝑑
‖

‖

‖

2
+ 𝜆3

‖

‖

‖

𝐷𝑂(𝜏) −𝐷𝑂𝑑
‖

‖

‖

2

+ 𝜆4
‖

‖

‖

𝑈𝐼𝐴(𝜏) − 𝑈𝐼𝐴𝑑
𝑈𝐼𝐴𝑑

‖

‖

‖

2
)

𝑑𝜏 (9a)

s.t. ̇̃𝑤(𝑡) = 𝑔
(

�̃�(𝑡), 𝑢(𝑡)
) (9b)

𝑢min ⩽ 𝑢(𝑡) ⩽ 𝑢max, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ] (9c)
Δ𝑢(𝑡𝑘) = 𝑢(𝑡𝑘) − 𝑢(𝑡𝑘−1) (9d)
𝑤0 ⩽ �̃�(𝑡) ⩽ 𝑤end, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ] (9e)
�̃�(𝑡𝑘) = 𝑤(𝑡𝑘), �̃�(0) = 𝑤(𝑡0) (9f)

where the prediction horizon is selected as 𝑁 = 5, and
the regularization parameters 𝜆1 = 0.001, 𝜆2 = 0.2, 𝜆3 =
0.5, and 𝜆4 = 0.5 are appropriately chosen to balance the
objective function (9a). 𝑇𝑑 , 𝐷𝑂𝑑 and 𝑈𝐼𝐴𝑑 are the desired
references.
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Table 2
Performance assessment of different controllers for the three cases (UIA constant, varying,
and varying with a spike)

Cases Controller Fish mortality RMSE Food consumption [g]
Case 1 Bang-Bang 0/10 14.109% 3479.7

PID 0/10 15.627% 3245.5
MPC1 0/10 14.878% 2871.9

Q-learning 0/10 11.71% 718.28
Case 2 Bang-Bang 0/10 15.645% 4054

PID 0/10 18.385% 3249.8
MPC1 0/10 17.69% 3013.8

Q-learning 0/10 10.98% 668.06
Case 3 Bang-Bang 1/10 27.72% 2835.4

PID 1/10 22.817% 3291
MPC1 1/10 19.914% 2928.5

Q-learning 0/10 12.09% 706.99
Case 3 Bang-Bang 4/25 56.428% 4607.5

PID 4/25 57.799% 4106
MPC1 4/25 57.0144% 3728.6

Q-learning 0/25 14.74% 979.85

Table 3
Performance assessment of MPC2 with different fish population
density

Fish mortality RMSE Food consumption [g]
0/10 2.723% 2487.9
0/25 21.335% 3311.4

Performance results of MPC2

Fig. 7 illustrates the performance results of MPC2 when the
fish population growth dynamics are 10 and 25. Figs. 7 (a)-
(f), Figs. 7 (b)-(g), and Figs. 7 (c)-(d)-(e) and Figs. 7 (h)-
(i)-(j) show the evolution of the fish growth trajectories, the
feeding and the environmental factors for both stocking den-
sities. Thanks to the flexibility of the model-predictive frame-
work, MPC2 achieves less food quantity and good tracking
error performance for both stocking densities. Further, we
notice from Table 3 that the feeding and environmental con-
trol inputs (i.e. temperature, dissolved oxygen, and UIA)
are well maintained around their desired references for both
stocking densities, and the fish mortality remains zero.

6. Conclusion
In this paper, we validated the new population dynamic fish
growth model to achieve a sufficient overlap between the in-
dividual population fish growth data and the new dynamic
model in which we consider the population state equal to
one. Then, we designed classical and optimal control strate-
gies, namely bang-bang, proportional-integral-derivative (PID),

and model predictive control (MPCs) schemes, to track a de-
sired fish growth trajectory and monitor the feeding and wa-
ter quality. First, we focused on determining the best feeding
regimen to design these controllers within the sub-optimal
temperature and DO profiles under different levels of union-
ized ammonia (UIA) exposures. Then, we proposed an op-
timal algorithm that optimizes the feeding and water quality
of the dynamic fish population growth process. This opti-
mal control relies on MPC, thanks to its flexibility to in-
corporate constraints and inputs in the objective function.
We also showed that the model predictive control simultane-
ously decreases fish mortality and reduces food consumption
in all different cases by an average of 26.9% compared to the
bang-bang controller, 22.6% compared to the PID controller,
and 14.3% compared to MPC1 controller. Our findings re-
vealed that the proposed MPC2 optimizes the food consump-
tion and enhances fish survival and growth while optimizing
food consumption while Q-learning policy provides a feed-
ing policy and maintains a relative food consumption that
potentially might underfeed the fish. For future works, we
will investigate how model predictive control approach can
support Q-learning framework to efficiently handle feeding
constraint satisfaction and find better trajectories and poli-
cies from value-based reinforcement learning.

7. Appendix
The effects of temperature 𝜏(𝑇 ), unionized ammonia 𝑣(𝑈𝐼𝐴)
and dissolved oxygen 𝜎(𝐷𝑂) on food consumption are de-

F. Aljehani, I. N’Doye and T.-M. Laleg-Kirati: Preprint submitted to Elsevier Page 9 of 12



Model-based versus model-free feeding control and water quality monitoring for fish growth tracking

0 100 200 300
0

100

200

300

400

500

In
di

vi
du

al
w
ei

gh
t

[g
∕f
is
h]

Culture period [day]

MPC2

Experimental

(a)
0 100 200 300

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
fe

ed
in

g

Culture period [day]
(b)

0 100 200 300
20

25

30

35

40

T
em

pe
ra

tu
re

[◦
𝐶

]

Culture period [day]
(c)

0 100 200 300
0

1

2

3

4

Culture period [day]

D
is
so

lv
ed

ox
yg

en
[m

g∕
L]

(d)
0 100 200 300

0

0.01

0.02

0.03

0.04

Culture period [day]

U
ni

on
iz

ed
am

m
on

ia
[m

g∕
L]

(e)

0 100 200 300
0

100

200

300

400

500

In
di

vi
du

al
w
ei

gh
t

[g
∕f
is
h]

Culture period [day]

MPC2

Experimental

(f)
0 100 200 300

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
fe

ed
in

g

Culture period [day]
(g)

0 100 200 300
20

25

30

35

40

T
em

pe
ra

tu
re

[◦
𝐶

]

Culture period [day]
(h)

0 100 200 300
0

1

2

3

4

Culture period [day]

D
is
so

lv
ed

ox
yg

en
[m

g∕
L]

(i)
0 100 200 300

0

0.01

0.02

0.03

0.04

Culture period [day]

U
ni

on
iz

ed
am

m
on

ia
[m

g∕
L]

(j)
Figure 7: Performance results of MPC2 when the fish population is equal to 10 and 25.

scribed, respectively [16].

𝜏(𝑇 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
{

−𝜅
( 𝑇 − 𝑇𝑜𝑝𝑡
𝑇max − 𝑇𝑜𝑝𝑡

)4
}

if 𝑇 > 𝑇𝑜𝑝𝑡,

exp
{

−𝜅
( 𝑇𝑜𝑝𝑡 − 𝑇
𝑇𝑜𝑝𝑡 − 𝑇min

)4
}

if 𝑇 < 𝑇𝑜𝑝𝑡,

where 𝜅 = 4.6.

𝑣(𝑈𝐼𝐴)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝑈𝐼𝐴 < 𝑈𝐼𝐴crit,
𝑈𝐼𝐴max − 𝑈𝐼𝐴
𝑈𝐼𝐴max − 𝑈𝐼𝐴crit

if𝑈𝐼𝐴crit < 𝑈𝐼𝐴 < 𝑈𝐼𝐴max,

0 elsewhere.
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𝜎(𝐷𝑂) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝐷𝑂 > 𝐷𝑂crit,
𝐷𝑂 −𝐷𝑂min
𝐷𝑂crit −𝐷𝑂min

if 𝐷𝑂min <𝐷𝑂<𝐷𝑂crit,

0 elsewhere.
The fish mortality coefficient 𝑘1 depends on unionized am-
monia (𝑈𝐼𝐴) factor. It has a form of logistic regression as
follows,

𝑘1(𝑈𝐼𝐴) = 
1 + exp{−𝛽(𝑈𝐼𝐴 − 𝜂)}

,

where , 𝛽, and 𝜂 are the three tuning parameters in the lo-
gistic fitting. The fish mortality points are extracted from
real-experiment in [25] and the three tuning parameters turned
out to be  = 99.41, 𝛽 = 10.36, and 𝜂 = 0.80. Fig. 8 illus-
trates the extracted points and the logistic fitting.
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Figure 8: Relation between fish mortality coefficient and UIA
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