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Abstract

Walley’s Imprecise Dirichlet Model (IDM) for categorical i.i.d. data ex-
tends the classical Dirichlet model to a set of priors. It overcomes several fun-
damental problems which other approaches to uncertainty suffer from. Yet,
to be useful in practice, one needs efficient ways for computing the impre-
cise=robust sets or intervals. The main objective of this work is to derive
exact, conservative, and approximate, robust and credible interval estimates
under the IDM for a large class of statistical estimators, including the entropy
and mutual information.
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1 Introduction

This work derives interval estimates under the Imprecise Dirichlet Model (IDM)
[Wal96] for a large class of statistical estimators. In the IDM one considers an i.i.d.
process with unknown chances1 πi for outcome i∈{1,...,d}. The prior uncertainty
about2 π=(π1,...,πd) is modeled by a set of Dirichlet priors3 {p(π)∝

∏
iπ

sti−1
i : t∈∆},

where4 ∆ := {t : ti ≥ 0 ∀i,
∑

iti = 1}, and s is a hyper-parameter, typically chosen
between 1 and 2. Sets of probability distributions are often called Imprecise proba-
bilities, hence the name IDM for this model. We avoid the term imprecise and use
robust instead, or capitalize Imprecise. The IDM overcomes several fundamental
problems which other approaches to uncertainty suffer from [Wal96]. For instance,
the IDM satisfies the representation invariance principle and the symmetry princi-
ple, which are mutually exclusive in a pure Bayesian treatment with proper prior
[Wal96].5 The counts ni for i form a minimal sufficient statistic of the data of size
n=
∑

ini. Statistical estimators F (n) usually also depend on the chosen prior: so a
set of priors leads to a set of estimators {Ft(n) : t∈∆}. For instance, the expected
chances Et[πi]=

ni+sti
n+s

=:ui(t) lead to a robust interval estimate [ ni

n+s
,ni+s
n+s

]∋Et[πi].
Robust intervals for the variance Vart[πi] [Wal96] and for the mean and variance
of linear-combinations

∑
iαiπi have also been derived [Ber01]. Bayesian estimators

(like expectations) depend on t and n only through u (and n+s which we suppress),
i.e. Ft(n)=F (u). The main objective of this work is to derive approximate, conser-
vative, and exact intervals [mint∈∆F (u),maxt∈∆F (u)] for general F (u), and for the
expected (also called predictive) entropy and the expected mutual information in
particular. These results are key building blocks for applying the IDM. Walley sug-
gests, for instance, to use mintPt[F≥c]≥α for inference problems and mintEt[F ]≥c
for decision problems [Wal96], where F is some function of π. One application is
the inference of robust tree-dependency structures [Zaf01, ZH05], in which edges are
partially ordered based on Imprecise mutual information.

Section 2 gives a brief introduction to the IDM and describes our problem setup.
In Section 3 we derive exact robust intervals for concave functions F , such as the
entropy. Section 4 derives approximate robust intervals for arbitrary F . In Section 5
we show how bounds of elementary functions can be used to get bounds for composite
function, especially for sums and products of functions. The results are used in

1Also called objective or aleatory probabilities.
2We denote vectors by x := (x1,...,xd) for x ∈ {n,t,u,π,...}, and i ranges from 1 to d unless

otherwise stated. See also Appendix B.
3Also called second order or subjective or belief or epistemic probabilities.
4Strictly speaking, ∆ should be the open simplex [Wal96], since p(π) is improper for t on

the boundary of ∆. For simplicity we assume that, if necessary, considered functions of t can
and are continuously extended to the boundary of ∆, so that, for instance, minima and maxima
exist. All considerations can straightforwardly, but cumbersomely, be rewritten in terms of an
open simplex. Note that open/closed ∆ result in open/closed robust intervals, the difference being
numerically/practically irrelevant.

5 But see [Hut07] for a proper Bayesian reconciliation of these principles.
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Section 6 for deriving robust intervals for the mutual information. The issue of how
to set up IDMmodels on product spaces is discussed in Section 7. Section 8 addresses
the problem of how to combine Bayesian credible intervals with the robust intervals
of the IDM. Conclusions are given in Section 9. Appendix A lists properties of the
ψ function, which occurs in the expressions for the expected entropy and mutual
information. Appendix B contains a table of used notation.

2 The Imprecise Dirichlet Model

This section provides a brief introduction to the IDM, introduces notation, and de-
scribes our generic problem setup of finding upper and lower statistical estimators.
We first introduce the multinomial process and the Bayesian treatment with Dirich-
let priors, and then the IDM extension to sets of such priors. See [Wal96] for a more
thorough account and motivation.

Random i.i.d. processes. We consider discrete random variables ı∈{1,...,d} and
an i.i.d. random process with outcome i∈{1,...,d} having probability πi. The chances
π form a probability distribution, i.e. π ∈∆ := {x∈ IRd : xi ≥ 0 ∀i, x+ =1}, where
we have used the abbreviation x=(x1,...,xd) and x+ :=

∑d
i=1xi. The likelihood of a

specific (ordered) data set D=(i1,...,in) with ni observations i and total sample size
n=n+=

∑
ini is p(D|π)=

∏
iπ

ni

i . The chances πi are usually unknown and have to
be estimated from the sample frequencies ni. The maximum likelihood (frequency)
estimate ni

n
for πi is one possible point estimate.

The Bayesian approach. A (precise) Bayesian models the initial uncertainty in
π by a (second order) prior “belief” distribution p(π) with domain π ∈∆. The

Dirichlet priors p(π) ∝
∏

iπ
n′
i−1

i , where n′
i comprises prior information, represent

a large class of priors. The n′
i may be interpreted as (possibly fractional) virtual

number of “observations”. High prior belief in i can be modeled by large n′
i. It is

convenient to write n′
i = s·ti with s :=n′

+, hence t∈∆. Having no initial bias one
should choose a prior in which all ti are equal, i.e. ti=

1
d
∀i. Examples for s are 0

for Haldane’s prior [Hal48], 1 for Perks’ prior [Per47], d
2
for Jeffreys’ prior [Jef46],

and d for Bayes-Laplace’s uniform prior [GCSR95]. From the prior and the data
likelihood one can determine the posterior p(π|D)=p(π|n)∝

∏
iπ

ni+sti−1
i .

The posterior p(π|D) summarizes all statistical information available in the data.
In general, the posterior is a very complex object, so we are interested in summaries
of this plethora of information. A possible summary is the expected value or mean
Et[πi]=

ni+sti
n+s

which is often used for estimating πi. The accuracy may be obtained
from the covariance of π.

Usually one is not only interested in an estimation of the whole vector π, but
also in an estimation of scalar functions F : ∆ → IR of π, such as the entropy
H(π) =−∑iπilogπi, where log denotes the natural logarithm. Since F is itself a
random variable we could determine the posterior distribution p(F0|n)=

∫
∆
δ(F(π)−

F0)p(π|n)dπ of F , where F0 ∈ IR and δ() is the Dirac delta distribution. This

3



may further be summarized by the posterior mean Et[F ] =
∫
∆
F(π)p(π|n)dπ and

possibly the posterior variance Vart[F ]. A simple but crude approximation for the
mean can be obtained by exchanging E with F (exact only for linear functions):
Et[F(π)]≈F(Et[π]). The approximation error is typically of the order 1

n
.

The Imprecise Dirichlet Model. There are several problems with this approach.
First, the uniform choice ti =

1
d
depends on how events are grouped into d classes,

which could be ambiguous. Secondly, it assumes exact prior knowledge of p(π).
The solution to the second problem is to model our ignorance by considering sets
of priors p(π), often called Imprecise probabilities. The specific Imprecise Dirichlet
Model (IDM) [Wal96] considers the set of all t∈∆, i.e. {p(π|n) :t∈∆} which solves
also the first problem. Walley suggests to fix the hyperparameter s somewhere in
the interval [1,2]. A set of priors results in a set of posteriors, set of expected values,
etc. For real-valued quantities like the expected entropy Et[H] the sets are typically
intervals, which we call robust intervals

Et[F ] ∈ [min
t∈∆

Et[F ] , max
t∈∆

Et[F ]].

Problem setup and notation. Consider any statistical estimator F . F is a func-
tion of the dataD and the hyperparameters t. We define the general correspondence

u···i =
ni + st···i
n+ s

, where ... can be various superscripts or be empty. (1)

F can, hence, be rewritten as a function of u and D. Since we regard D as fixed, we
suppress this dependence and simply write F =F (u). This is further motivated by
the fact that all Bayesian estimators of functions F of π only depend on u and the
sample size n+s. It is easy to see that this holds for the mean, i.e. Et[F ]=F (u ;n+s),
and similarly for the variance and all higher (central) moments. Most of this work is
applicable to generic F , whatever it’s origin – as an expectation of F or otherwise.
The main focus of this work is to derive exact and approximate expressions for upper
and lower F values

F := max
t∈∆

F (u) and F := min
t∈∆

F (u), F := [F , F ].

t∈∆ ⇔ u∈∆′, where ∆′ := {u : ui≥ ni

n+s
∀i, u+ =1}. We define u

F as the u∈∆′

which maximizes F , i.e. F =F (uF ), and similarly t
F through relation (1). If the

maximum of F is assumed in a corner of ∆′ we denote the index of the corner by
iF , i.e. tFi =δiiF , where δij is Kronecker’s delta function, and similarly for uF , tF , iF .

3 Exact Robust Intervals for Concave Estimators

In this section we derive exact expressions for F if F :∆→IR is of the form

F (u) =

d∑

i=1

f(ui) and concave f : [0, 1] → IR. (2)

4



The expected entropy is such an example (discussed later). Convex f are treated
similarly (or simply take −f).
The nature of the solution. The approach to a solution of this problem is
motivated as follows: Due to symmetry and concavity of F , the global maximum is
attained at the center ui=

1
d
of the probability simplex ∆ if we allow u∈∆, i.e. the

more uniform u is, the larger F (u). The nearer u is to a vertex of ∆, i.e. the more
unbalanced u is, the smaller is F (u). But the constraints ti ≥ 0 restrict u to the
smaller simplex

∆′ = {u : ui ≥ u0i ∀i, u+ = 1} with u0i :=
ni

n+ s
,

which prevents setting uFi =
1
d
and uFi =δi1. Nevertheless, the basic idea of choosing

u as uniform / as unbalanced as possible still works, as we will see.

Greedy F (u) minimization. Consider the following procedure for obtaining u
F .

We start with t≡0 (outside the usual domain ∆ of F , which can be extended to
[0,1]d via (2)) and then gradually increase t in an axis-parallel way until t+ = 1.
With axis-parallel we mean that only one component of t is increased, which one
possibly changes during the process. The total zigzag curve from t

start=0 to t
end

has length tend
+

= 1. Since all possible curves have the same (Manhattan) length
1, F (uend) is minimized for the curve which has (on average) smallest F -gradient
along its path. A greedy strategy is to follow the direction i of currently smallest
F -gradient ∂F

∂ti
=f ′(ui)

s
n+s

. Since f ′ is monotone decreasing (f ′′<0), ∂F
∂ti

is smallest

for largest ui. At t
start = 0, ui =

ni

n+s
is largest for i= imin := argmaxini. Once we

start in direction imin, uimin increases even further whereas all other ui (i 6= imin)
remain constant. So the moving direction is never changed and finally we reach a
local minimum at tendi =δiimin . Below we show that this is a global minimum, i.e.

tFi = δiiF with iF := argmax
i
ni. (3)

Greedy F (u) maximization. Similarly we maximize F (u). Now we increase t in
direction i= i1 of maximal ∂F

∂ti
, which is the direction of smallest ui. Again, (only)

ui1 increases, but possibly reaches a value where it is no longer the smallest one.
We stop if it becomes equal to the second smallest ui, say i= i2. We now have to
increase ui1 and ui2 with same speed (or in an ε-zigzag fashion) until they become
equal to ui3, etc. or until u+ = 1 = t+ is reached. Assume the process stops with
direction im and minimal u being ũ, i.e. finally uik = ũ for k ≤m and tik = 0 for
k>m. From the constraint 1=u+=

∑
k≤muik+

∑
k>muik=mũ+

∑
k>m

nik

n+s
we obtain

ũ= 1
m
[1−

∑
k>m

nik

n+s
]= [s+

∑
k≤mnik ]/[m(n+s)]. One can show that ũ as a function

of m has one global minimum (no local ones) and that the final m is the one which
minimizes ũ, i.e.

ũ = min
m∈{1...d}

s+
∑

k≤m nik

m(n + s)
, where ni1 ≤ ni2 ≤ ... ≤ nid , uFi = max{u0i , ũ}. (4)
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If there is a unique minimal ni1 with gap ≥s to the 2nd smallest ni2 (which is quite
likely for not too small n and small s like 1 or 2), then m=1 and the maximum is
attained at a corner of ∆ (∆′).

Theorem 1 (Exact extrema for concave functions on simplices) Assume
F :∆′→IR is a concave function of the form F (u)=

∑d
i=1f(ui). Then F attains the

global maximum F at uF defined in (4) and the global minimum F at uF defined
in (3).

Proof. What remains to be shown is that the solutions obtained in the last
paragraphs by greedy minimization/maximization of F (u) are actually global min-
ima/maxima. For this assume that t is a local minimum of F (u). Let j :=argmaxiui
(ties broken arbitrarily). Assume that there is a k 6=j with non-zero tk. Define t

′ as
t′i= ti for all i 6= j,k, and t′j = tj+ε, t′k= tk−ε, for some 0<ε≤ tk. From uk≤uj and
the concavity of f we get6

F (u′)− F (u) = [f(u′j) + f(u′k)]− [f(uj) + f(uk)]

= [f(uj+σε)− f(uj)]− [f(uk)− f(uk−σε)] < 0,

where σ := s
n+s

. This contradicts the minimality assumption of t. Hence, ti=0 for
all i except one (namely j, where it must be 1). (Local) minima are attained in the
vertices of ∆. Obviously the global minimum is for t

F
i = δiiF with iF := argmaxini.

This solution coincides with the greedy solution. Note that the global minimum
may not be unique, but since we are only interested in the value of F (uF ) and not
its argument this degeneracy is of no further significance.

Similarly for the maximum, assume that t is a (local) maximum of F (u). Let
j :=argminiui (ties broken arbitrarily). Assume that there is a k 6=j with non-zero tk
and uk>uj. Define t

′ as above with 0<ε<min{tk , tk−tj}. Concavity of f implies

F (u′)− F (u) = [f(uj+σε)− f(uj)]− [f(uk)− f(uk−σε)] > 0,

which contradicts the maximality assumption of t. Hence ti=0 if ui is not minimal
(ũ). The previous paragraph constructed the unique solution u

F satisfying this
condition. Since this is the only local maximum it must be the unique global
maximum (contrast this to the minimum case).

Theorem 2 (Exact extrema of expected entropy) Let H(π)=−
∑

iπilogπi be
the entropy of π and the uncertainty of π be modeled by the Imprecise Dirichlet
Model. The expected entropy H(u) :=Et[H] for given hyperparameter t and sample
n is given by

H(u) =
∑

i

h(ui) with h(u) = u·[ψ(n+s+1)− ψ((n+s)u+1)] = u ·
n+s∑

k=(n+s)u+1

k−1 (5)

6Slope f(u+ε)−f(u)
ε

is a decreasing function in u for any ε>0, since f is concave.

6



where ψ(x)=d logΓ(x)/dx is the logarithmic derivative of the Gamma function and
the last expression is valid for integral s and (n+s)u. The lower H and upper H
expected entropies are assumed at uH and u

H given in (3) and (4) (with F replaced
by H, see also (1)).

A derivation of the exact expression (5) for the expected entropy can be found
in [WW95, Hut01]. The only thing to be shown is that h is concave. This may be
done by exploiting special properties of the digamma function ψ (see [AS74, Chp.6]).
There are fast implementations of ψ and its derivatives and exact expressions for
integer and half-integer arguments (see Appendix A for details).

Example 3 (Exact robust expected entropy) To see how the derived formulas
can be used, let us compute the upper and lower expected entropy for for

d = 2, n1 = 3, n2 = 6, i.e. n = 9, and s = 1, hence σ = 1
10

The general correspondence (1) becomes

u1 =
3+t1
10
, u2 =

6+t2
10
, hence t

0 = 0 implies u
0 =

(
0.3
0.6

)
.

Using n1<n2, (3) implies

iH = 2, t
H =

(
0
1

)
, hence u

H =
(
0.3
0.7

)
.

From (4), using i1=1 and i2=2, we get

ũ = min
{

1+3
9+1

, 1+3+6
2·(9+1)

}
= 4

10
, hence u

H = max{u0, ũ} =
(
0.4
0.6

)
.

This shows that the upper bound is assumed in a/the corner t
H =

(
1
0

)
. Inserting

these u into (5), we get

h( 3
10
) = 2761

8400
, h( 4

10
) = 2131

6300
, h( 6

10
) = 1207

4200
, h( 7

10
) = 847

3600
.

Putting everything together we get the robust H estimate

H = [H(uH), H(uH)] = [h( 3
10
) + h( 7

10
) , h( 4

10
) + h( 6

10
)]

= [ 7106
12600

, 7883
12600

]
.
= [0.5639, 0.6256]

The size of this interval is 37
600

, so H−H .
=0.0616 is of the order of σ. ♦

In general, in order to apply Theorem 1, we need to be able to (a) somehow
compute F (u), e.g. compute the expectation Et[F ], (b) verify whether F (u) has the
form

∑
if(ui), which is often trivial, e.g. if F(π)=

∑
〉φ(π〉), and (c) prove concavity

or convexity of F . In the following sections we derive conservative approximations
for more general F (u).
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4 Approximate Robust Intervals

In this section we derive approximations for F suitable for arbitrary, twice differen-
tiable functions F (u). The derived approximations for F will be robust in the sense
of covering set F (for any n), and the approximations will be “good” if n is not too
small. We do this by means of a finite Taylor series expansion in σ := s

n+s
and by

bounding the remainder.
In the following, we treat σ as a (small) expansion parameter. For u,u∗∈∆′ we

have

ui − u∗i = σ ·(ti − t∗i ) and |ui − u∗i | = σ|ti − t∗i | ≤ σ with σ := s
n+s

. (6)

Hence we may Taylor-expand F (u) around u
∗, which leads to a Taylor series in σ.

This shows that F is approximately linear in u and hence in t. A linear function on
a simplex assumes its extreme values at the vertices of the simplex. This has already
been encountered in Section 3. The consideration above is a simple explanation for
this fact. This also shows that the robust interval F is of size F−F =O(σ).7 Any
approximation to F should hence be at least O(σ2). The expansion of F to O(σ) is

F (u) =

F0=O(1)︷ ︸︸ ︷
F (u∗) +

FR=O(σ)︷ ︸︸ ︷∑

i

[∂iF (ǔ)](ui − u∗i ), (7)

where ∂iF (ǔ) is the partial derivative ∂F (ǔ)/∂ǔi of F (ǔ) w.r.t. ǔi. For suitable
ǔ=ǔ(u,u∗)∈∆′ this expansion is exact (FR is the exact remainder). Natural points
for expansion are t∗i =

1
d
in the center of ∆, or possibly also t∗i =

ni

n
=u∗i . Here, we

expand around the improper point t∗i := t0i ≡ 0, which is outside(!) ∆, since this
makes expressions particularly simple.8 Eq.(6) is still valid in this case, and FR is
exact for some ǔ in

∆′
e := {u : ui ≥ u0i ∀i, u+ ≤ 1}, where u0i =

ni

n+ s
.

Note that we keep the exact condition u∈∆′. F is usually already defined on ∆′
e

or extends from ∆′ to ∆′
e without effort in a natural way (analytical continuation).

We introduce the notation

F ⊑ G :⇔ F ≤ G and F = G+O(σ2), (8)

stating that G is a “good” upper bound on F . The following bounds hold for
arbitrary differentiable functions. In order for the bounds to be “good,” F has to be
Lipschitz differentiable in the sense that there exists a constant c such that

|∂iF (u)| ≤ c and |∂iF (u)− ∂iF (u
′)| ≤ c|u− u

′|
7f(n,t,s)=O(σk) :⇔ ∃c ∀n∈INd

0 , t∈∆, s>0 : |f(n,t,s)|≤cσk, where σ= s
n+s

.
8The order of accuracy O(σ2) we will encounter is the same for all choices of u∗. The concrete

numerical errors differ of course. The choice t
∗=0 can lead to O(d) smaller FR than the natural

center point t∗= 1
d
, but is more likely a factor O(1) larger. The exact numerical values depend on

the structure of F .
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∀u,u′ ∈ ∆′
e and ∀ i ∈ {1, ..., d} (9)

If F depends also on n, e.g. via σ or u0, then c shall be independent of them.

The Lipschitz condition is satisfied, for instance, if the curvature ∂2F is uniformly
bounded. This is satisfied for the expected entropy H (see (5)), but violated for the
approximation Et[H]≈H(u) if ni=0 for some i.

Theorem 4 (Approximate robust intervals) Assume F :∆′
e→IR is a Lipschitz

differentiable function (9). Let [F,F ] be the global [minimum,maximum] of F re-
stricted to ∆′. Then

F (u1) ⊑ F ⊑ F0 + F ub
R where F ub

R := max
i
F ub
iR and F ub

iR := σmax
u∈∆′

e

[∂iF (u)],

F0 + F lb
R ⊑ F ⊑ F (u2) where F lb

R := min
i
F lb
iR and F lb

iR := σ min
u∈∆′

e

[∂iF (u)],

F0 :=F (u
0), and t1i :=δii1 with i1 :=argmaxiF

ub
iR , and t

2
i :=δii2 with i2 :=argminiF

lb
iR,

and ⊑ defined in (8) means ≤ and = +O(σ2), where σ=1−u0
+
.

For conservative estimates, the lower bound on F and the upper bound on F are the
interesting ones. Together with the “inner” bounds F (u1) and F (u2), they also yield
interesting information about the accuracy of the approximations: F0+F

ub
R −F (u1)

is an upper bound on the (unknown) approximation error F0+F
ub
R −F , and similarly

for F .

Proof. We start by giving an O(σ2) bound on FR=maxu∈∆′FR(u). We first insert
(6) with t

∗=t
0≡0 into (7) and treat ǔ and t as separate variables:

FR(ǔ, t) = σ
∑

i

[∂iF (ǔ)] · ti ⊑ max
ǔ∈∆′

e

{
σ
∑

i

[∂iF (ǔ)] · ti
}

⊑
∑

i

F ub
iR · ti

with F ub
iR := σmax

ǔ∈∆′
e

[∂iF (ǔ)] (10)

The first inequality is obvious, the second follows from the convexity of max. From
assumption (9) we get ∂iF (u)−∂iF (u′) = O(σ) for all u,u′ ∈ ∆′

e, since ∆′
e has

diameter O(σ). Due to one additional σ in (10) the expressions in (10) change
only by O(σ2) when introducing or dropping maxǔ anywhere. This shows that the
inequalities are tight within O(σ2) and justifies ⊑. We now upper bound FR(u):

FR = max
u∈∆′

FR(u) ⊑ max
t∈∆

max
ǔ∈∆′

e

FR(ǔ, t) ⊑ max
t∈∆

∑

i

F ub
iR · ti = max

i
F ub
iR =: F ub

R (11)

A linear function on ∆ is maximized by setting the ti component with largest coeffi-
cient to 1. This shows the last equality. The maximization over ǔ in (10) can often
be performed analytically, leaving an easy O(d) time task for maximizing over i.

We have derived an upper bound F ub
R on FR. Let us define the corner ti= δii1

of ∆ with i1 := argmaxiF
ub
iR . Since FR ≥ FR(u) for all u, FR(u

1) in particular

9



is a lower bound on FR. A similar line of reasoning as above shows that that
FR(u

1)=FR+O(σ
2). Using F+const.=F+const. we get O(σ2) lower and upper

bounds on F , i.e. F (u1)⊑F⊑F0+F
ub
R . F is bound similarly with all max’s replaced

by min’s and inequalities reversed. Together this proves the Theorem 4.

In the following sections we assume the definitions/notation of Theorem 4 for F
and analogous ones for all other occurring estimators (G,H,I,...).

5 Error Propagation

We now show how bounds of elementary functions obtained by Theorem 4 can be
used to get bounds for more complex composite functions, especially for sums and
products of functions. The results are used in Section 6 for deriving robust intervals
for the mutual information for which exact solutions are not known.

Approximation of F (special cases). For the special case F (u)=
∑

if(ui) we
have ∂iF (u)=f

′(ui). For concave f like in case of the entropy we get particularly
simple bounds

F ub
iR = σmaxu∈∆′

e
f ′(ui) = σf ′(u0i ), F ub

R = σmax
i
f ′(u0i ) = σf ′(mini ni

n+s
), (12)

F lb
iR = σminu∈∆′

e
f ′(ui) = σf ′(u0i + σ), F lb

R = σmin
i
f ′(u0i + σ) = σf ′(maxi ni+s

n+s
),

where we have used maxu∈∆′
e
f ′(ui)=maxui∈[u0

i ,u
0
i+σ]f

′(ui)=f
′(u0i ), and similarly for

min. Analogous results hold for convex functions. In case the maximum cannot be
found exactly one is allowed to further increase ∆′

e as long as its diameter remains
O(σ). Often an increase to �

′ :={u :u0i ≤ui≤u0i +σ}⊃∆′
e⊃∆′ makes the problem

easy. Note that if we were to perform these kind of crude enlargements on maxuF (u)
directly we would loose the bounds by O(σ).

Example 5 (Approximate robust expected entropy) Let us compare the ex-
act robust estimate of the expected entropy for n1=3, n2=6, s=1 (hence n=9, and
σ= 1

10
) computed in Example 3 with this approximation: Using the expressions for

h′ from Appendix A, we get

h′( 3
10
) = 13051

2520
− 1

2
Π
2 and h′( 7

10
) = 91717

8400
− 7

6
Π
2,

where Π
.
=3.1415. From (2) and (12) we get

H0 = H(u0) = h( 3
10
) + h( 6

10
) = 69

112
, Hub

R = 1
10
h′( 3

10
), H lb

R = 1
10
h′( 7

10
).

Together with the expressions from Example 3 we get the conservative estimate

[H0 +H lb
R , H0 +Hub

R ]
.
= [0.5564, 0.6404].

10
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Figure 1: [Expected Entropy] The figures display the various (expected) entropy
estimates for s=1: The left figure for n1/n=1/3 and n=1...10. The right figure for
n=9 and n1/n=0...0.5. The “intersection” n1=3 and n2=6 is treated analytically
in Examples 3 and 5. The green (dark gray) area is the exact robust interval
[H ,H ] from Theorem 2. The yellow+green (gray) area is the conservative estimate
[H0+H

lb
R , H0+H

ub
R ] from Theorem 4. The area [H(u2) , H(u1)] is not shown, since

(here) it essentially coincides with H). Some point estimates H(n
n
), H(n+1/2

n+1
), and

H(n
n
) are also shown.

The approximation accuracy

H0 +Hub
R −H

.
= 0.0148 and H −H0 −H lb

R
.
= 0.0074

is consistent with our O(σ2) estimation. If exact expressions are not available we
can upper bound the widening by

H0 +Hub
R −H(u1)

.
= 0.0148 and H(u2)−H0 −H lb

R
.
= 0.0074

Since generally u
2 =u

H and in our example also u
1 =u

H , the numbers coincide.
♦

Example 6 (Entropy: dependency on n) Figure 1 (left) shows how the size
of the (conservative) robust interval of the expected entropy H varies with the
sample size n. We considered s= 1 and d= 2 and kept n1/n=

1/3 and n2/n=
2/3

fix (allowing for fractional n). We clearly see that the yellow (light gray) region
diminishes quickly compared to the green (dark gray) region with increasing n, i.e.
the approximation accuracy gets better for larger n. Some point estimates H(n

n
),

H(n+1/2
n+1

), and H(n
n
) are also shown. Figure 1 (right) shows the intervals for fixed

n=9, while varying n1/n=0...0.5 (n1/n=0.5...1 is symmetric). The interval H is
shorter for more uniform u, since H (like H) varies more closer to the boundary of

11



∆. The [H(u2),H(u1)] region is not shown since it is identical to H (also in the left
graph except for n=1). For n=9 and n1/n=1/3 we recover the results of Examples
3 and 5 (left and right figure). ♦

Error propagation. Assume we found bounds for estimators G(u) and H(u)
and we want now to bound the sum F (u) :=G(u)+H(u). In the direct approach
F ≤G+H we may lose O(σ). A simple example is G(u)=ui and H(u)=−ui for
which F (u)=0, hence 0=F≤G+H=u0i+σ−u0i =σ, i.e. F 6⊑G+H . We can exploit
the techniques of the previous section to obtain O(σ2) approximations.

F ub
iR = σmax

u∈∆′
e

∂iF (u) ⊑ σmax
u∈∆′

e

∂iG(u) + σmax
u∈∆′

e

∂iH(u) = Gub
iR +Hub

iR

Theorem 7 (Error propagation: Sum) Let G(u) and H(u) be Lipschitz differ-
entiable and F (u) =αG(u)+βH(u), α,β≥ 0, then F ⊑F0+F

ub
R and F ⊒F0+F

lb
R ,

where F0=αG0+βH0, and F
ub
iR ⊑αGub

iR+βH
ub
iR, and F

lb
iR⊒αGlb

iR+βH
lb
iR.

It is important to notice that F ub
R 6⊑Gub

R +Hub
R (use previous example), i.e. maxi[G

ub
iR+

Hub
iR] 6⊑maxiG

ub
iR+maxiH

ub
iR. maxi can not be pulled in and it is important to propa-

gate F ub
iR , rather than F

ub
R .

Every function F with bounded curvature can be written as a sum of a concave
function G and a convex function H . For convex and concave functions, determining
bounds is particularly easy, as we have seen. Often F decomposes naturally into
convex and concave parts as is the case for the mutual information, addressed later.
Bounds can also be derived for products.

Theorem 8 (Error propagation: Product) Let G,H :∆′
e→ [0,∞) be non-nega-

tive Lipschitz differentiable functions (9) with non-negative derivatives ∂iG,∂iH≥0
∀i and F (u)=G(u)·H(u), then F⊑F0+F

ub
R , where F0=G0·H0, and F

ub
iR⊑Gub

iR(H0+
Hub

R )+(G0+G
ub
R )Hub

iR, and similarly for F .

Proof. We have

F ub
iR = σmax ∂iF = σmax ∂i(G·H) = σmax[(∂iG)H +G(∂iH)] ⊑

σ(max ∂iG)(maxH) + σ(maxG)(max ∂iH) ⊑ Gub
iR(H0+H

ub
R ) + (G0+G

ub
R )Hub

iR

where all functions depend on u and all max are over u∈∆′
e. There is one subtlety

in the last inequality: maxG 6=G⊑G0+G
ub
R . The reason for the 6= being that the

maximization is taken over ∆′
e, not over ∆′ as in the definition of G. The correct

line of reasoning is as follows:

max
u∈∆′

e

GR(u) ⊑ max
t∈∆e

∑

i

Gub
iR · ti = max{0,max

i
Gub

iR} = Gub
R ⇒ maxG ⊑ G0 +Gub

R

The first inequality can be proven in the same way as (11). In the first equality we
set the ti=1 with maximal Gub

iR if it is positive. If all Gub
iR are negative we set t≡0.

12



We assumed G≥0 and ∂iG≥0, which implies GR≥0. So, since GR≥0 anyway, this
subtlety is ineffective. Similarly for maxHR.

It is possible to remove the rather strong non-negativity assumptions. Propaga-
tion of errors for other combinations like ratios F =G/H may also be obtained.

6 Robust Intervals for Expected Mutual Informa-

tion

We illustrate the application of the previous results on the Mutual Information
between two random variables ı∈{1,...,d1} and ∈{1,...,d2}.
Mutual Information. Consider an i.i.d. random process with outcome (i,j) ∈
{1,...,d1}×{1,...,d2} having joint probability πij , where π∈∆:={x∈IRd1×d2 : xij ≥
0 ∀ij, x++=1}. An important measure of the stochastic dependence of ı and  is the
mutual information

I(π) =

d1∑

i=1

d2∑

j=1

πij log
πij

πi+π+j
=

∑

ij

πij log πij −
∑

i

πi+ log πi+ −
∑

j

π+j log π+j

= H(πı+) +H(π+)−H(πı), (13)

where πi+ =
∑

jπij and π+j =
∑

iπij are row and column marginal chances. Again,
we assume a Dirichlet prior over πı, which leads to a Dirichlet posterior p(πı|n)∝∏

ijπ
nij+stij−1
ij with t∈∆. The expected value of πij is

Et[πij ] =
nij + stij
n+ s

=: uij

The marginals πi+ and π+j are also Dirichlet with expectation ui+ and u+j. The
expected mutual information I(u) :=Et[I] can, hence, be expressed in terms of the
expectations of three entropies H(u) :=Et[H] (see (5))

I(u) = H(uı+) +H(u+)−H(uı) = Hrow +Hcol −Hjoint

=
∑

i

h(ui+) +
∑

j

h(u+j)−
∑

ij

h(uij),

where here and in the following we index quantities with joint, row, and col to
denote to which distribution the quantity refers.

Crude bounds for I(u). Estimates for the robust IDM interval
[mint∈∆Et[I] ,maxt∈∆Et[I]] can be obtained by [minimizing,maximizing] I(u). A
crude upper bound can be obtained as

I := max
t∈∆

I(u) = max[Hrow +Hcol −Hjoint] ≤

maxHrow +maxHcol −minHjoint = Hrow +Hcol −Hjoint,

13



where exact solutions toHrow, Hcol andHjoint are available from Section 3. Similarly

I≥Hrow+Hcol−Hjoint. The problem with these bounds is that, although good in
some cases, they can become arbitrarily crude. The following O(σ2) bound can be
derived by exploiting the error sum propagation Theorem 7.

Theorem 9 (Bound on lower and upper expected Mutual Information)
The following bounds on the expected mutual information I(u)=Et[I] are valid:

I(u1) ⊑ I ⊑ I0 + IubR and I0 + I lbR ⊑ I ⊑ I(u2), where

I0 = I(u0) = H0row +H0col −H0joint =
∑

i h(u
0
i+) +

∑
j h(u

0
+j)−

∑
ij h(u

0
ij),

IubijR ⊑ Hub
iRrow +Hub

jRcol −H lb
ijRjoint = h′(u0i+) + h′(u0

+j)− h′(u0ij+σ),

I lbijR ⊒ H lb
iRrow +H lb

jRcol −Hub
ijRjoint = h′(u0i++σ) + h′(u0

+j+σ)− h′(u0ij),

with h defined in (5), and t0ij =0, and t1ij = δ(ij)(ij)1 with (ij)1 =argmaxijI
ub
ijR, and

t2ij=δ(ij)(ij)2 with (ij)2=argminijI
lb
ijR, and I

ub
R =maxijI

ub
ijR, and I

lb
R =maxijI

lb
ijR.

7 The IDM for Product Spaces

In the last section we considered the “full” IDM on the product of two random
variables. The structure of the problem suggests considering a smaller “product” of
IDMs as described below, which can lead to better estimates.

Product spaces Ω=Ω1×...×Ωm with Ωk={1,...dk} occur frequently in practical
problems, e.g. in the mutual information (m= 2), in robust trees (m= 3), or in
Bayesian nets in general (m large). Without loss of generality we only discuss the
m=2 case in the following. Ignoring the underlying structure in Ω, a Dirichlet prior
in case of unknown chances πı and an IDM as used in Section 6 with

t ∈ ∆ := {t ∈ IRd1×d2 ≡ IRd1 ⊗ IRd2 : tij ≥ 0 ∀ ij, t++ = 1} (14)

seems natural.
On the other hand, if we take into account the structure of Ω and go back

to the original motivation of the IDM, this choice is far less obvious. Recall that
one of the major motivations of the IDM was its representation invariance in the
sense that inferences are not affected when grouping or splitting events in Ω. For
unstructured spaces like Ωk this is a reasonable principle. For illustration, let us
consider objects of various shape and color, i.e. Ω=Ω1×Ω2, Ω1={ball,pen,die,...},
Ω2 = {yellow,red,green,...} in generalization to Walley’s bag of marbles example.
Assume we want to detect a potential dependency between shape and color by
means of their mutual information I. If we have no prior idea on the possible kind
of colors, a model which is independent of the choice of Ω2 is welcome. Grouping
red and green, for instance, corresponds to grouping (xi1, xi2, xi3, xi4,...) to (xi1,
xi2+xi3, xi4,...) for all shapes i, where x ∈ {n,π,t,u}. Similarly for the different
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shapes, for instance we could group all round or all angular objects. The “smallest
IDM” which respects this invariance is the one which considers all

t ∈ ∆⊗ := ∆d1 ⊗∆d2 ( ∆. (15)

The tensor or outer product ⊗ is defined as (v⊗w)ij :=viwj and V ⊗W :={v⊗w :
v ∈V,w ∈W}. It is a bilinear (not linear!) mapping. This smaller product IDM
∆⊗ is invariant under arbitrary grouping of columns and rows of the chance matrix
(πij)1≤i≤d1,1≤j≤d2. In contrast to the larger full IDM ∆ it is not invariant under
arbitrary grouping of matrix cells, but there is anyway little motivation for the
necessity of such a general invariance. General non-column/row cross groupings
would destroy the product structure of Ω and with that the mere concepts of shape
and color, and their correlation. For m> 2 as in Bayes-nets cross groupings look
even less natural. Whether the ∆⊗ or the larger simplex ∆ is the more appropriate
IDM depends on whether one regards the structure Ω1×Ω2 of Ω as a natural prior
knowledge or as an arbitrary a posteriori choice. The smaller IDM has the potential
advantage of leading to more precise predictions (smaller robust sets).

Let us consider an estimator F :∆→ IR and its restriction F⊗ :∆⊗ → IR. Robust
intervals [F ,F ] for ∆ are generally wider than robust intervals [F

⊗
,F⊗] for ∆⊗. Fortu-

nately not much. Although ∆⊗ is a lower-dimensional subspace of ∆, it contains all
vertices of ∆. This is possible since ∆⊗ is a nonlinear subspace. The set of “vertices”
in both cases is {t : tij=δii0δjj0, i0∈Ω1, j0∈Ω2}. Hence, if the robust interval bound-
aries F are assumed in the vertices of ∆ then the interval for the ∆⊗ IDM model is
the same (F =F

⊗
). Since the condition is “approximately” true, the conclusion is

“approximately” true. More precisely:

Theorem 10 (IDM bounds for product spaces) The O(σ2) bounds of Theo-
rem 4 on the robust interval F in the full IDM ∆ (14), remain valid for F

⊗
in the

product IDM ∆⊗ (15).

Proof.

F (u1) ≤ F⊗ ≤ F ≤ F0 + F ub
R = F (u1) +O(σ2),

where F⊗ := maxt∈∆⊗F (u) and u
1 was the “FR maximizing” vertex as defined in

Theorem 9 (F (u1) ⊑ F ). The first inequality follows from the fact that all ∆
vertices also belong to ∆⊗, i.e. t1∈∆⊗. The second inequality follows from ∆⊗⊂∆. The
remaining (in)equalities follow from Theorem 4. This shows that |F⊗−F |=O(σ2),
hence F0+F

ub
R is also an O(σ2) upper bound to F⊗. This implies that to the

approximation accuracy we can achieve, the choice between ∆ and ∆⊗ is irrelevant.
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8 Robust Credible Intervals

So far we have considered robust intervals of expected values F =Et[F ]. We now
briefly consider the problem of how to combine Bayesian credible intervals for F
with robust intervals of the IDM.

Bayesian credible sets/intervals. For a probability density p : IRd → [0,1], an
α-credible region is a measurable set A for which p(A) :=

∫
p(x)11A(x)d

dx≥α, where
11A(x)=1 if x∈A and 0 otherwise, i.e. x∈A with probability at least α. For given
α, there are many choices for A. Often one is interested in “small” sets, where the
size of A may be measured by its volume Vol(A) :=

∫
11A(x)d

dx. Let us define a/the
smallest α-credible set

Amin := argmin
A:p(A)≥α

Vol(A)

with ties broken arbitrarily. For unimodal p, Amin can be chosen as a connected
set. For d=1 this means that Amin = [a,b] with

∫ b

a
p(x)dx=α is a minimal length

highest density α-credible interval. If, additionally p is symmetric around E[x], then
Amin=[E[x]−c,E[x]+c] is also symmetric around E[x].

Robust credible sets. If we have a set of probability distributions {pt(x), t∈T},
we can choose for each t an α-credible set At with pt(At)≥α, a minimal one being
Amin

t :=argminA:pt(A)≥αVol(A). A robust α-credible set is a set A which contains x
with pt-probability at least α for all t. A minimal size robust α-credible set is

Amin := argmin
A=∪tAt:pt(At)≥α

Vol(A). (16)

It is not easy to deal with this expression, since Amin is not a function of {Amin
t :t∈T},

and especially does not coincide with
⋃

tA
min
t as one might expect.

Robust credible intervals. This can most easily be seen for univariate symmetric
unimodal distributions, where t is a translation, e.g. pt(x)=Normal(Et[x]= t,σ=1)
with 95% credible intervals Amin

t =[t−2,t+2]. For, e.g. T =[−1,1] we get
⋃

tA
min
t =

[−3,3]. The credible intervals move with t. One can get a smaller union if we take
the intervals Asym

t =[−ct,ct] symmetric around 0. Since Asym
t is a non-central interval

w.r.t. pt for t 6=0, we have ct>2, i.e. Asym
t is larger than Amin

t , but one can show that
the increase of ct is smaller than the shift of Amin

t by t, hence we save something in
the union. The optimal choice is neither Asym

t nor Amin
t , but something in-between.

To illustrate this point numerically consider triangular distributions instead of
Gaussians:

pt(x) := max{0 , 1−|x−t|}, t ∈ T := [−γ, γ], γ > 0,

⇒ pt([a, b]) =
∣∣b∗(1− 1

2
|b∗|)− a∗(1− 1

2
|a∗|)

∣∣ with a∗ = min{max{a, 0}, 1}−t,
b∗ = min{max{b, 0}, 1}−t.

One can derive the following expressions for the α-credible intervals, valid for (the
interesting case of) α≥ 1

2
.
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Amin
t = [t− 1 +

√
1− α , t+ 1−

√
1− α],

⋃

t∈T

Amin
t = [−γ − 1 +

√
1− α , γ + 1−

√
1− α].

Amin =





[
−1+

√
1−α−γ2 , 1−

√
1−α−γ2

]
for γ2 ≤ 1

2
(1−α),[

−γ−1+
√
2(1−α) , γ+1−

√
2(1−α)

]
for γ2 ≥ 1

2
(1−α).

It is easy to see that Amin⊂
⋃

tA
min
t and that Amin is a proper subinterval of

⋃
tA

min
t

of shorter length for every γ>0 and 1
2
≤α<1.

An interesting open question is under which general conditions we can expect
Amin ⊆

⋃
tA

min
t . In any case,

⋃
tAt can be used as a conservative estimate for a

robust credible set, since pt(
⋃

t′At′)≥pt(At)≥α for all t.
A special (but important) case which falls outside the above framework are one-

sided credible intervals, where only At of the form [a,∞) are considered. In this case
Amin=

⋃
tA

min
t , i.e. Amin=[amin,∞) with amin=max{a :pt([a,∞])≥α∀t}.

Approximations.For complex distributions like for the mutual information we have
to approximate (16) somehow. We use the following notation for shortest α-credible
intervals w.r.t. a univariate distribution pt(x):

x̃
∼
t ≡ [x

∼
t, x̃t] ≡ [Et[x]−∆x

∼
t , Et[x] + ∆x̃t] := argmin

[a,b]:pt([a,b])≥α

(b− a),

where ∆x̃t := x̃t−Et[x] (∆x
∼
t :=Et[x]−x

∼
t) is the distance from the right boundary

x̃t (left boundary x
∼
t) of the shortest α-credible interval x̃

∼
t to the mean Et[x] of

distribution pt. We can use x̃
≃
≡ [x

≃
,x̃] :=

⋃
tx̃∼t as a (conservative, but not shortest)

robust credible interval, since pt(x̃
≃
)≥ pt(x̃

∼
t)≥ α for all t. We can upper bound x̃

(and similarly lower bound x
≃
) by

x̃ = max
t

(Et[x] + ∆x̃t) ≤ max
t
Et[x] + max

t
∆x̃t = E[x] + ∆x̃. (17)

We have already intensively discussed how to compute upper and lower quantities,
particularly for the upper mean E[x] for x∈{F ,H,I,...}, but the linearization tech-
nique introduced in Section 4 is general enough to deal with all in t differentiable
quantities, including ∆x̃t. For example for Gaussian pt with variances σt we have
∆x̃t=κσt with κ given by α=erf(κ/

√
2), where erf is the error function (e.g. κ=2

for α
.
=95%). We only need to estimate maxtσt.

For non-Gaussian distributions, exact expression for ∆x̃t are often hard or im-
possible to obtain and to deal with. Non-Gaussian distributions depending on some
sample size n are usually close to Gaussian for large n due to the central limit theo-
rem. One may simply use κσt in place of ∆x̃t also in this case, keeping in mind that
this could be a non-conservative approximation. More systematically, simple (and
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for large n good) upper bounds on ∆x̃t can often be obtained and should preferably
be used.

Further, we have seen that the variation of sample depending differentiable func-
tions (like Et[x] =Et[x|n]) w.r.t. t ∈∆ are of order s

n+s
. Since in such cases the

standard deviation σt ∼n−1/2 ∼∆x̃t is itself suppressed, the variation of ∆x̃t with
t is of order n−3/2. If we regard this as negligibly small, we may simply fix some
t∗∈∆:

max
t

∆x̃t = κσt∗ +O(n−3/2).

Since ∆x̃t is “nearly” constant, this also shows that we lose at most O(n−3/2) pre-
cision in the bound (17) (equality holds for ∆x̃t independent of t).

Robust credible intervals for mutual information. Consider the mutual in-
formation defined in (13). The robust credible interval for I can be estimated as
follows.

Ĩ ≤ I +∆Ĩ ≤ I0 + IubR +∆Ĩ = I0 + IubR + κ
√

Vart∗ [I] +O(n−3/2).

Expressions for the variance of I have been derived in [Hut01]:

Vart[I] =
1

n + s

∑

ij

uij

(
log

uij
ui+u+j

)2

− 1

n+ s

(
∑

ij

uij log
uij

ui+u+j

)2

+ O(n−2).

Higher order corrections to the variance and higher moments have also been derived,
but are irrelevant in light of our other approximations.

9 Conclusions

This is the first work, providing a systematic approach for deriving closed form ex-
pressions for interval estimates for the Imprecise Dirichlet Model (IDM). We concen-
trated on exact and conservative robust interval ([lower,upper]) estimates for concave
functions F =

∑
ifi on simplices, like the entropy. For the conservative estimates we

used a first-order Taylor series expansion in one over the sample size n and bounded
the exact remainder, which widened the intervals by O(n−2). This construction may
work for other imprecise models too. Here is a dilemma, of course: For large n the
approximations are good, whereas for small n the bounds are more interesting, so
the approximations will be most useful for intermediate n. More precise expressions
for small n would be highly interesting. We have also indicated how to propagate
robust estimates from simple functions to composite functions, like the mutual in-
formation. We argued that a reduced IDM on product spaces, like Bayesian nets,
is more natural and should be preferred in order to improve predictions. Although
improvement is formally only O(n−2), the difference may be significant in Bayes
nets or for very small n. Finally, the basics of how to combine robust with credible
intervals have been laid out. Under certain conditions O(n−3/2) approximations can
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be derived, but the presented approximations are not conservative. All in all this
work has shown that the IDM has not only interesting theoretical properties, but
that explicit (exact/conservative/approximate) expressions for robust (credible) in-
tervals for various quantities can be derived. The computational complexity of the
derived bounds on F =

∑
ifi is very small, typically one or two evaluations of F or

related functions, like its derivative. First applications of these (or more precisely,
very similar) results, especially the mutual information, to robust inference of trees
look promising [ZH05].

Acknowledgements. I want to thank Peter Walley for introducing the IDM to
me, Marco Zaffalon for encouraging me to investigate this topic, and Jean-Marc
Bernard for his feedback on earlier drafts of the paper.

A Properties of the ψ Function

The digamma function ψ is defined as the logarithmic derivative of the Gamma
function. Integral representations for ψ and its derivatives are

ψ(z) =
d ln Γ(z)

dz
=

Γ′(z)

Γ(z)
=

∫ ∞

0

[
e−t

t
− e−zt

1− e−t

]
dt, ψ(k)(z) = (−1)k+1

∫ ∞

0

tke−zt

1− e−t
dt.

The h function (5) and its first derivative are

h(ui) = (ni+sti)[ψ(n+s+1)− ψ(ni+sti+1)]/(n+s),

h′(ui) = ψ(n+s+1)− ψ(ni+sti+1)− (ni+sti)ψ
′(ni+sti+1),

For integral s and at argument u0i =
ni

n+s
and u0i =

ni+s
n+s

we need ψ and ψ′ only at
integer values for which the following closed representations exist

ψ(n+1) = −γ +

n∑

i=1

1

i
, ψ′(n+1) =

π2

6
−

n∑

i=1

1

i2
,

where γ=0.5772156... is Euler’s constant. Closed expressions for half-integer values
and fast approximations for arbitrary arguments also exist. The following asymp-
totic expansion can be used if one is interested in O(( s

n+s
)2) approximations only

(and not rigorous bounds):

ψ(z + 1) = log z +
1

2z
− 1

12z2
+O(

1

z4
),

This shows that h(ui) converges to −uilogui for n→∞ (and ui→const.), i.e. H(u)
is close to H(u) for large n. See [AS74, Chp.6] for details on the ψ function and its
derivatives. From the above expressions one may show h′′<0.
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B Symbols

Symbol Explanation

δij Kronecker symbol (δij=1 for i=j and δij=0 for i 6=j)
ı,i Discrete random variable, index/outcome/observation ∈{1,...,d}
d Dimension of discrete random variable ı

πi (Objective/aleatory) probability/chance of i

log natural logarithm to basis e

xi,x,x+ Vector x=(x1,...,xd), x+=x1+...+xd, x∈{n,t,u,π,...}
ti,t Initial bias of i, bias vector

∆ = {π : πi≥0 ∀i,
∑

iπi=1} = π-simplex (π∈∆)

∆(e) = { t : ti≥0 ∀i,
∑

iti
(<)
= 1} = (extended) t-simplex (t∈∆(e))

∆′
(e) = {u : ui≥u0i ∀i,

∑
iui

(<)
= 1}= (extended) u-simplex (u∈∆′

(e))

s Magnitude of imprecision (n′
i=sti is virtual observation #)

D Data/sample {i1,...,in}
ni,n,n # of outcomes/observations i, # sample vector, total sample size

δ(·) Dirac delta distribution
∫
f(x)δ(x)dx=f(0)

p(π|n) ∝
∏

iπ
n+sti−1
i ∝ Dirichlet posterior

(second order/belief/subjective/epistemic probability)

Et[F ] Expected value of F w.r.t. posterior p(π|n)
w.r.t. with respect to

i.i.d. independent and identically distributed

u0i = ni

n+s

ui = ni+sti
n+s

=Et[π]

u∗i ,t
∗
i Origin for Taylor expansion

σ = s
n+s

=1−u0
+
= Taylor expansion parameter

O(σk) f(n,t,s)=O(σk) :⇔ ∃c ∀n∈INd
0 , t∈∆, s>0 : |f(n,t,s)|≤cσk

H(π) =−∑iπilogπi= entropy of π

H(u) =
∑

ih(ui)= expected entropy (see Eq.(5))

F(π) = function of π (F∈{H,I,...})
F (u) = statistic Et[F ] or general function (F ∈{H,I,...})
F ⊑G :⇔F ≤G and F =G+O(σ2), i.e. G is “good” upper bound on F

u
F ,tF maximize (and u

F ,tF minimize) F (u), t∈∆, u∈∆′

F =maxt∈∆F (u)=F (u
F )= upper value of F (u), similarly F

F =[F ,F ]= robust/Imprecise interval (estimate) of F

F0+FR(u) =F (u) with F0=F (u
0) and FR(u)=O(σ)
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[F lb
R ,F

ub
R ] ⊇ [FR,FR]∋FR (conservative [lower,upper] bound on FR)

F̃
∼

=[F
∼
,F̃ ]= credible interval (estimate) of F

uij,ui+,u+j joint, row, column marginal

I(π) =
∑

ijπij log
πij

πi+π+j
= mutual information of π

I(u) =H(ui+)+H(u+j)−H(uij)=Hrow+Hcol−Hjoint

joint,row,col Index for quantities based on joint, row, column marginal distr.

References

[AS74] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions.
Dover publications, 1974.

[Ber01] J.-M. Bernard. Non-parametric inference about an unknown mean using the
Imprecise Dirichlet Model. In Proc. 2nd International Symposium on Imprecise
Probabilities and Their Application (ISIPTA-2001), pages 40–50, The Nether-
lands, 2001. Shaker Publishing.

[GCSR95] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Chapman & Hall / CRC, 1995.

[Hal48] J. B. S. Haldane. The precision of observed values of small frequencies.
Biometrika, 35:297–300, 1948.

[Hut01] M. Hutter. Distribution of mutual information. In Advances in Neural In-
formation Processing Systems 14, pages 399–406, Cambridge, MA, 2001. MIT
Press.

[Hut03] M. Hutter. Robust estimators under the Imprecise Dirichlet Model. In Proc.
3rd International Symposium on Imprecise Probabilities and Their Applica-
tion (ISIPTA-2003), volume 18 of Proceedings in Informatics, pages 274–289,
Canada, 2003. Carleton Scientific.

[Hut07] M. Hutter. On universal prediction and Bayesian confirmation. Theoretical
Computer Science, 384(1):33–48, 2007.

[Jef46] H. Jeffreys. An invariant form for the prior probability in estimation problems.
In Proc. Royal Society London, volume Series A 186, pages 453–461, 1946.

[Per47] W. Perks. Some observations on inverse probability. J. Inst. Actuar., 73:285–
312, 1947.

[Wal96] P. Walley. Inferences from multinomial data: learning about a bag of marbles.
Journal of the Royal Statistical Society B, 58(1):3–57, 1996.

[WW95] D. H. Wolpert and D. R. Wolf. Estimating functions of distributions from a
finite set of samples. Physical Review E, 52(6):6841–6854, 1995.

21



[Zaf01] M. Zaffalon. Robust discovery of tree-dependency structures. In Proc. 2nd
International Symposium on Imprecise Probabilities and Their Application
(ISIPTA-2001), pages 394–403, The Netherlands, 2001. Shaker Publishing.

[ZH05] M. Zaffalon and M. Hutter. Robust inference of trees. Annals of Mathematics
and Artificial Intelligence, 45:215–239, 2005.

22


	Introduction
	The Imprecise Dirichlet Model
	Exact Robust Intervals for Concave Estimators
	Approximate Robust Intervals
	Error Propagation
	Robust Intervals for Expected Mutual Information
	The IDM for Product Spaces
	Robust Credible Intervals
	Conclusions
	Properties of the  Function
	Symbols

