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Abstract

With the increasing size of social networks in the real world, community detection approaches

should be fast and accurate. The label propagation algorithm is known to be one of the

near-linear solutions which is easy to implement. However, it is not stable and it cannot take

advantage of the prior information about the network structure which is very common in real

applications. In this paper, a new Semi-supervised clustering approach based on an Evidential

Label Propagation strategy (SELP) is proposed to incorporate limited domain knowledge into

the community detection model. The main advantage of SELP is that it can effectively use

limited supervised information to guide the detection process. The prior information about

the labels of nodes in the graph, including the labeled nodes and the unlabeled ones, is initially

expressed in the form of mass functions. Then the evidential label propagation rule is designed

to propagate the labels from the labeled nodes to the unlabeled ones. The communities of

each node can be identified after the propagation process becomes stable. The outliers can

be identified to be in a special class. Experimental results demonstrate the effectiveness of

SELP on both graphs and classical data sets.

Keywords: Semi-supervised learning, Label propagation, Theory of belief functions,

Uncertainty, Community detection

1. Introduction

As described in [2], communities (also called clusters or modules) are groups of nodes

(vertices) which probably share common properties and/or play similar roles within the graph

(or network)1. Identifying communities may offer insight on how the network is organized [3],

and it is often the precondition for the structural and functional analysis of the networked

systems. Community detection for networks has attracted considerable attention crossing

many areas from physics, biology, and economics to sociology [3]. It can be seen as the task

of clustering on graph data, which consists of a finite set of nodes, together with a set of

∗Corresponding author.

Email addresses: kzhoumath@163.com (Kuang Zhou ), Arnaud.Martin@univ-rennes1.fr (Arnaud Martin),
quanpan@nwpu.edu.cn (Quan Pan), liuzhunga@nwpu.edu.cn (Zhunga Liu)

This paper is an extension and revision of [1].
1In this work, “graph” and “network” are considered as synonyms.

Preprint submitted to Elsevier December 20, 2017



unordered pairs of these vertices. These pairs are known as edges in the graph.

As the size of real-world networks grows rapidly, the community detection algorithms need

to be fast and efficient. The Label Propagation Algorithm (LPA), which was first investigated

by Raghavan et al. [4], has the benefits of nearly-linear running time and easy implementation.

But the original LPA is not stable due to randomness. Different communities may be detected

in different runs over the same network. Moreover, by assuming that a node always adopts the

label of the majority of its neighbors, LPA ignores any other structural information existing

in the neighborhood. In real applications, there is often some prior information about the

network structure. For instance, in co-authorship networks, the communities related to some

famous scholars are easy to know. In the movie network, the types of some special films may

be clear to us. If such kind of prior information could be fused effectively in the unsupervised

community detection models, the performance could be improved.

Supervised classification is one of the most popular techniques in machine learning. Gen-

erally, the goal of supervised learning is to train a classifier that reliably approximates a

classification task based on a set of labeled examples from the problem of interest. The

performance of the learned classifier highly depends on the proportion of labeled samples.

However, in many practical applications of pattern classification, it is usually difficult to get

abundant labeled samples since the task of manual labeling is time consuming and often

requires expensive human labor. On the contrary, there are usually a large number of un-

labeled samples which are easier to obtain. Consequently, Semi-Supervised Learning (SSL),

which aims to effectively combine the unlabeled data with labeled data, has been developed

to perform the classification task when there are not enough training data.

Some semi-supervised community detection approaches have already be proposed [5–7].

The supervised information in these models are mainly two types: 1. The labels of some nodes

are given in advance; 2. There are some must-link and/or cannot-link pair-wise constrains

between some node pairs. In this paper we focus on the former type, i.e., some nodes in the

graph are assumed to be labeled in advance. There are some problems when dealing with

the information about node labels among the existing semi-supervised community detection

methods, such as:

• If there are some outliers in the graph, the performance of the community detection

model will become worse.

• If the labeled objects are located in the overlapping region between or among commu-

nities, the same label will be propagated to more than one class and, consequently, the

accuracy of the detection results will be low.

The theory of belief functions is very effective in dealing with uncertain information, and it

has already been applied in many fields, such as data classification [8–12], data clustering [13–

16], complex networks [17–20], data fusion [21] and statistical estimation [22–24]. In this work,

we try to address the above problems in semi-supervised community detection models using

the theory of belief functions. The Semi-supervised Evidential Label Propagation (SELP)

algorithm will be proposed to take advantage of the prior information in the graph. The
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initial knowledge about node labels is expressed in the form of Bayesian categorical mass

functions, while the labels of the unlabeled nodes are represented by vacuous mass functions.

The evidential label propagation rule is designed to propagate the labels from the labeled

nodes to the unlabeled ones iteratively. The basic belief assignments about each nodes’ classes

are obtained after convergence of the algorithm. Experimental results show that SELP can

improve the accuracy of the detected communities compared with the unsupervised version.

This result confirms that limited supervised information is of great value for the community

detection task.

The rest of this paper is organized as follows. In Section 2, some basic knowledge and the

rationale of our method are briefly introduced. In Section 3, the proposed SELP algorithm

will be presented in detail. In order to show the effectiveness of the proposed community

detection approaches, in Section 4 we test the SELP algorithm on different artificial and real-

world data sets and compare it with related partitioning methods. Finally, we conclude and

present some perspectives in Section 5.

2. Background

In this section some related preliminary knowledge, including the theory of belief functions

and the classical label propagation algorithm, will be presented.

2.1. Theory of belief functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X, called the discernment frame. The

belief functions are defined on the power set 2Ω. Function m : 2Ω → [0, 1] is said to be a Basic

Belief Assignment (bba) on 2Ω, if it satisfies:∑
A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The credibility and plausibility

functions can be defined, respectively, as

Bel(A) =
∑

B⊆A,B 6=∅

m(B) ∀A ⊆ Ω, (2)

Pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) represents potential

amount of support to A. Based on the types of the focal set that contains all the focal

elements, we can have some particular forms of mass functions. A categorical mass function

is a normalized bba which has a unique focal element A∗. This kind of mass functions can be

defined as:
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m(A) =

1 if A = A∗ ⊂ Ω,

0 otherwise.
(4)

A vacuous mass function is a particular categorical mass function focused on Ω. It is a special

kind of categorical mass functions with a unique focal element Ω. This type of mass functions

is defined as follows:

m(A) =

1 if A = Ω,

0 otherwise.
(5)

The vacuous mass function represents the case of total ignorance. A Bayesian mass function

is a bba whose all focal elements are elementary hypotheses (i.e., singletons). It can be

regarded as a probability distribution over frame Ω. Specially, if a Bayesian mass function is

categorical, it represents that there is no uncertainty at all and we are completely sure about

the state of the concerned variable.

A belief function can be transformed into a probability function by Smets’ method [25],

in which the mass m(A) is equally distributed among the elements of A. This leads to the

concept of pignistic probability, BetP , defined by

BetP (ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (6)

where | · | denotes the number of elements of the set.

Mass functions can be used to describe the information obtained from different sources.

It requires to take into account the level of reliability of each information source in real appli-

cations. When the sources of evidence are not completely reliable, the discounting operation

proposed by Shafer [26] and justified by Smets [27] can be applied. Denote the reliability

degree of mass function m by α ∈ [0, 1], then the discounting operation can be defined as:

m
′
(A) =

α×m(A) ∀A ⊂ Θ,

1− α+ α×m(Θ) if A = Θ.
(7)

If α = 1, the evidence is completely reliable and the bba will remain unchanged. On the

contrary, if α = 0, the evidence is completely unreliable. In this case the so-called vacuous

belief function, m(Θ) = 1, is obtained. It describes our total ignorance.

How to combine efficiently several bbas coming from distinct sources is a major informa-

tion fusion problem in the theory belief functions. Many rules have been proposed for such

a task. When the information sources are considered as reliable, several distinct bodies of

evidence characterized by different bbas can be combined using Dempster-Shafer (DS) rule

[26]. If bbas mj , j = 1, 2, · · · , S describing S distinct items of evidence on Ω, the combined
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bba of the S mass functions using the DS rule can be obtained by the following equation:

(m1 ⊕m2 ⊕ · · · ⊕mS) (X) =



0 if X = ∅,∑
Y1∩···∩YS=X

S∏
j=1

mj(Yj)

1−
∑

Y1∩···∩YS=∅

S∏
j=1

mj(Yj)

otherwise.
(8)

A decision can finally be made by assigning object oi to the class ωk with the highest plausi-

bility.

2.2. EK-NNclus clustering

Belief functions defined on the power set can well describe the uncertainty in the class

structure in the analyzed data set. Many clustering algorithms have been designed using the

theory of belief functions [13, 14, 16, 28, 29]. See Ref.[30] for a review. Recently, Denœux et

al. [31] put forward a new decision-directed clustering algorithm, named EK-NNclus, which

uses the evidential K nearest-neighbor (EK-NN) rule [8] as the base classifier.

EK-NNclus is a clustering algorithm for relational data, where the dissimilarities between

objects should be given in advance. Consider a clustering problem for n objects. The dis-

similarity between objects oi and oj is denoted by dij , i, j = 1, 2, · · · , n. Matrix D = (dij) is

symmetric. Let Ω = {ω1, · · · , ωc} be the set of groups. Define class-membership binary vari-

ables uik, which indicates whether object oi belongs to cluster ωk (uik = 1) or not (uik = 0).

To initialize the algorithm, the objects can be labeled randomly (or using some prior knowl-

edge if available). As the number of clusters is unknown, we can simply set c = n, i.e. it

is assumed that there are as many clusters as objects and each cluster contains exactly one

object. The algorithm iteratively reassigns objects to clusters in some random order using the

EKNN rule. For each object oi, the knowledge that object ot is at a distance dit from oi is

a piece of evidence for the class membership of oi, which can be represented by the following

mass function defined on Ω:mi
t({ωk}) = utkα0 exp{−γdit}, k = 1, 2, · · · , c

mi
t(Ω) = 1− α0 exp{−γdit},

(9)

where α0 and γ are some constants. Denoting by NK
i the set of the K nearest neighbors of

object oi, the K mass functions mi
t, t ∈ NK

i can be combined by the DS rule:

mi = ⊕
t∈Nk

i

mi
t. (10)

The label of object oi can be determined according to the fused mass function mi. As the

focal elements of mi are the singletons and the whole frame Ω, the object can be assigned

to the cluster with the highest mass assignment (or plausibility). If the label of at least one

object has been changed during the last iteration, then the objects are randomly re-ordered

and a new iteration is started. Otherwise, the algorithm stops. After convergence, the cluster
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membership of each object is described by a mass function assigning a mass to each specific

cluster and to the whole set of clusters. One of the advantages of EK-NNclus clustering is

that it does not require the number of clusters to be fixed in advance [31].

2.3. Label propagation

The graph data can be denoted by G(V,E), where V is the set of nodes and E is the set

of edges. The number of nodes in graph G(V,E) is denoted by |V |. It is assumed that each

node nv(∈ V ) has a label yv ∈ Ω, where Ω = {ω1, ω2, · · · , ωc} represents the frame of classes.

Denote by Nv the set of neighbors of node nv. The Label Propagation Algorithm (LPA) uses

the network structure alone to guide its process. It starts from an initial configuration where

every node has a unique label. Then at every step one node (in asynchronous version) or each

node (in a synchronous version) updates its current label to the label shared by the maximum

number of its neighbors. For node nv, its new label can be updated to ωj with

ωj = arg max
ωl

{|nu : yu = ωl, nu ∈ Nv|} . (11)

When there are multiple maximal labels among the neighbors’ labels, the new label is picked

randomly from them. By this iterative process densely connected groups of nodes form consen-

sus on one label to form communities, and each node has more neighbors in its own community

than in any of other community. Communities are identified as a group of nodes sharing the

same label.

2.4. Semi-supervised label propagation

The original LPA can only make use of the network topology information, while it com-

pletely ignores the background information of the networks. However, in many real-world

applications, there may exist some prior information that can be useful in detecting the

community structures. Liu et al. [5] proposed a novel semi-supervised community detection

approach based on label propagation (SLP), which can utilize the limited prior information

to guide the discovery process of community structure.

Let G(V,E) denote the graph, and A = (aij)|V |×|V | be the adjacent matrix, where aij = 1

if there is an edge between nodes ni and nj , and 0 otherwise. Suppose that a node nv carries a

label denoting the community to which it belongs, then nv propagates its label to its neighbors

nv1 , nv2 , · · · , nv|Nv|
, where Nv is the set of all the neighbors of node nv and |Nv| is the degree

of node nv. The node nviabsorbs a fraction of label information from its neighborhood node

nv, and retains some label information of its initial state. A few number of nodes can be

initialized based on the available prior information and then let the labels propagate through

the network.

Suppose there are k communities (ω1, ω2, · · · , ωk) and let F denote a set of n×k matrices

with non-negative real-value entries. Any matrix F = [f1, f2, · · · , fn]T ∈ F corresponds to a

specific partition on V . Here fi is a column vector with length k, and the ith element in fi

denotes the membership of node ni to community ωi. Initially, we set F0 = Y , where Yij = 1

if node ni is labeled as ωj , and Yij = 0 otherwise. For unlabeled nodes Yj = 0(1 < j < k).
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Then the iteration equation can be given as

F t+1 = αWF t + (1− α)Y, (12)

where W is the weight matrix with entries

wij =
aij
|Ni|

. (13)

After convergence, each node can be assigned to the class with the highest membership value,

i.e., we can label ni ∈ V as

yi = arg max
j
Fij . (14)

3. Semi-supervised evidential label propagation

Inspired from LPA and EK-NNclus [31], we propose here the SELP algorithm for graphs

with some prior information. The problem of semi-supervised community detection will be

first described in a mathematical way, and then the proposed semi-supervised label propaga-

tion algorithm will be presented in detail.

3.1. Problem restatement and notions

As before, let G(V,E) denote the graph, where V is the set of nodes and E ⊆ V × V is

the set of edges. The adjacent matrix of the graph can be denoted by A = (aij)|V |×|V |.

Assume that there are c communities (i.e., clusters, groups) in the graph. The set of

labels is denoted by Ω = {ω1, ω2, · · · , ωc}. Each node nv ∈ V in the graph is assumed to have

a label ωv ∈ Ω. In addition, in order to make sure the solution is unique, we assume that

there must be at least one labeled vertex in each community. The |V | nodes in set V can be

divided into two parts:

VL = {n1, n2, · · · , nl}

for the labeled nodes, and

VU = {nl+1, nl+2, · · · , n|V |}

for the unlabeled ones. The nodes in VL are labeled. Denote the label of node ni(∈ VL) is

yi ∈ Ω. The main task of the semi-supervised community detection is to propagate the labels

from nodes in VL to those in VU , and further determine the labels of those unlabeled vertices.

3.2. Dissimilarities between nodes

A basic assumption which has been often adopted in semi-supervised graph-based learning

methods is that nearby points are likely to have the same labels, which is known as the

smoothness assumption [32]. Pairwise similarity measure is the basis of label propagation.

Similarly, here we assume that the more common neighbors the two nodes share, the larger the
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probability that they belong to the same community. Thus, in this work, an index considering

the number of shared common neighbors is adopted to measure the similarities between nodes.

Definition 1. If there is an edge between node ni and nj , i.e., aij = 1, we say that ni (nj) is a

neighbor of nj (correspondingly, ni). Let the set of neighbors of node ni be Ni, and the degree

of node ni be |Ni|, i = 1, 2, · · · , |V |. The similarity between nodes ni and nj (ni, nj ∈ V ) can

be defined as

sij =


|Ni∩Nj |
|Ni|+|Nj | , if aij = 1,

0, otherwise.
(15)

Then the dissimilarities associated with the similarity measure can be defined as

dij =
1− sij
sij

, ∀ ni, nj ∈ V. (16)

3.3. Evidential label propagation

For the labeled node nj ∈ VL in community ωk, the initial bba can be defined as a

Bayesian categorical mass function:

mj(A) =

1 if A = {ωk},

0 otherwise.
(17)

For the unlabeled node nx ∈ VU , the vacuous mass assignment can be used to express our

ignorance about its community label:

mx(A) =

1 if A = Ω,

0 otherwise.
(18)

To determine the label of node nx, its neighbors can be regarded as distinct information

sources. If there are |Nx| neighbors for node nx
2, the number of sources is |Nx|. Based on

the assumption that similar nodes are likely to have the same labels, the reliability of each

source depends on the similarities between the neighbors and node nx. Suppose that there is a

neighbor nt with label ωj , it can provide us with a bba describing the belief on the community

label of node nx as

mx
t ({ωj}) = α ∗mt({ωj}),

mx
t (Ω) = mt(Ω) + (1− α) ∗mt ({ωj}) ,

mx
t (A) = 0, if A 6= {ωj},Ω, (19)

where α is the discounting parameter such that 0 ≤ α ≤ 1. It should be determined according

to the similarity between nodes nx and nt. The more similar the two nodes are, the more

reliable the source is. Thus α can be set as a decreasing function of dxt. In this work we

2The number of node nx’s neighbors is determined by the number of nodes sharing the same edge with nx.
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suggest to use

α = α0 exp
{
−γdβxt

}
, (20)

where parameters α0 and β can be set to be 1 and 2 respectively as default, and γ can be set

to

γ = 1/median
({
dβij , i = 1, 2, · · · , n, j ∈ Ni

})
. (21)

After the |Nx| bbas from its neighbors are calculated using Eq. (19), the fused bba of node nx

can be got by the use of Dempster’s combination rule (see Eq. (8)):

mx = mx
1 ⊕mx

2 ⊕ · · · ⊕mx
|Nx|. (22)

As all the bbas to combine are in the form of Eq. (19), the focal elements of mx are the

singletons {ω1}, {ω2}, · · · , {ωc} and the frame Ω. The label of node nx can be assigned to

the focal element with the maximal mass value in mx. The main principle of semi-supervised

learning is to take advantage of the unlabeled data. It is an intuitive way to add node nx

(previously in set VU but already be labeled now) to set VL to train the classifier. However,

if the predicted label of nx is incorrect, this will have very bad effects on the accuracy of the

following predictions. Here a parameter η is introduced to control the prediction confidence

of the nodes that are to be added in VL. If the maximum of mx is larger than η, it indicates

that the belief about the community of node nx is high and the prediction is confident. Then

we remove node nx from VU and add it to set VL. On the contrary, if the maximum of mx is

not larger than η, it means that we can not make a confident decision about the label of nx

based on the current information. Thus the node nx should be remained in set VU . This is the

idea of self-training [33], which attempts to iteratively choose to label several examples about

which one is the most confident in the unlabeled set. The learner keeps on labeling unlabeled

examples and retraining itself on an enlarged labeled training set until all the samples are

labeled.

In order to propagate the labels from the labeled nodes to the unlabeled ones in the

graph, a classifier should first be trained using the labeled data in VL. For each node nx in

VU , we find its direct neighbors and construct bbas through Eq. (19). Then the fused bba

about the community label of node nx is calculated by Eq. (22). The subset of the unlabeled

nodes, the maximal bba of which is larger than the given threshold η, are selected to augment

the labeled data set. The predicted labels of these nodes are set to be the class assigned with

the maximal mass. Parameter η can be set to 0.7 by default in practice.

After the above update process, there may still be some nodes in VU . For these nodes,

we can find their neighbors that are in VL, and then use Eqs. (19) and (22) to determine their

bbas. The whole algorithm of SELP is summarized in Algorithm 1.

The main idea of SELP is similar to that of EK-NNclus clustering algorithm. Both

methods update the labels of objects iteratively based on the neighborhood information. The

differences between SELP and EK-NNclus algorithms are as follows:

• SELP is in line with the principle of semi-supervised learning, which can take advantage

the limited supervised information; EK-NNclus is a clustering method, which is in the
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scope of unsupervised learning;

• SELP is specially designed for the community detection task on graphs, while EK-

NNclus is for relational data. When using SELP, the dissimilarities between nodes are

calculated based on the graph structure;

• In the iterative label propagation process, the updating rule of SELP considers the mass

assignments for the neighbors. The dissimilarities between nodes are used to determine

the discounting factor.

Algorithm 1 : SELP algorithm

Input: Graph G(V,E). The set of labeled nodes VL, and the set of unlabeled nodes VU .
Parameters:
η: the parameter to control the prediction confidence
α0, β: the parameter to determine the discounting factor
MaxIts: the maximal update steps
PercFul: the percentage of the labeled data
Initialization:
(1) Initialize the bba of each node in the network using Eqs. (17) and (18).
(2) Let it = 0
repeat

(1) For each node nx ∈ VU , find the set Nx of all its neighbors and construct |Nx| bbas
using Eq. (19).
(2) Calculate the fused bba of node nx by Eq. (22).
(3) If the maximum of mass assignment of nx is larger than the threshold η, move node
nx from set VU to set VL.
(4) it = it+ 1.

until The percentage of nodes in VL is larger than PercFul or the maximal update step is
reached.
If there are still some nodes in VU , update their bbas based on the information from the
neighbors using Eqs. (19) and (22).
Output: The bba matrix M = {mi}, i = 1, 2, · · · , |V |.

3.4. Application on relational data

To apply the SELP algorithm on classical data sets, an appropriate graph should be

constructed first to model the analyzed data set. However, in graph-based learning methods,

the construction of graph has not been studied extensively [34, 35]. In this paper, a commonly

used method, the K-Nearest Neighbor Graph (KNNG), is adopted to construct a graph based

on the dissimilarities between objects [36]. Assume that there are |V | objects, x1, x2, · · · , x|V |,
in the data set. The dissimilarities between objects are denoted by dij , i, j = 1, 2, · · · , |V |.
The corresponding KNNG, denoted by G(V,E), can be defined based on the dissimilarities

as follows. The data points are used as vertices in the constructed undirected graph, i.e.,

vi = xi. As before, by Nj we denote the set of the K nearest neighbors of object xi among

x1, x2, · · · , xi−1, xi+1, · · · , x|V |. The edges in G can be generated using the following rule: if

xi ∈ Nj and xj ∈ Ni, there is an edge between xi and xj .

10



4. Experiment

In order to illustrate the behavior of the proposed SELP algorithm, some experiments on

classification tasks will be reported in this section. The semi-supervised community detection

algorithm using label propagation (SLP) [5] and the unsupervised label propagation algorithm

were used for comparison. In SELP, parameters α0 and β were set to 1 and 2, respectively, as

default. Parameter γ was determined by Eq. (21). Parameter η, which controls the prediction

confidence, was set to be 0.7. The maximum iterative step was set to be 1000, and the

percentage of labeled nodes for stopping the algorithm, PercFul, was set to be 0.9.

For the graph data, the NMI index, which measures the similarity between the planted

partitions (ground truth) and the detected communities in the graph was used for comparison.

The NMI of two partitions A and B for a graph with |V | nodes, NMI(A,B), can be calculated

by

NMI(A,B) =

−2

CA∑
i=1

CB∑
j=1

Mij log

(
Mij |V |
Mi·M·j

)
CA∑
i=1

Mi· log

(
Mi·

|V |

)
+

CB∑
j=1

M·j log

(
M·j
|V |

) , (23)

where CA and CB denote the numbers of communities in partitions A and B respectively.

The notation Mij stands for the element of matrix (M)CA×CB
, representing the number of

nodes in the ith community of A that appears in the jth community of B. The sum over row

i of matrix M is denoted by Mi· and that over column j by M·j .

4.1. Graph data

Example 1. Here we test on a widely used benchmark in detecting community structures,

“Karate Club”, studied by Wayne Zachary. The network consists of 34 nodes and 78 edges

representing the friendship among the members of the club (see Figure 1-a). During the de-

velopment, a dispute arose between the club’s administrator and instructor, which eventually

resulted in the club splitting into two smaller clubs. The first one is an instructor-centered

group covering 16 vertices (the circle nodes in the figure), while the second administrator

centered group consists of the remaining 18 vertices (the square nodes in the figure).

The labeled node in community ω1 was set to node 5, while that in community ω2 was

node 24. After five steps, SELP algorithm stopped. The detailed update process is displayed

in Figure 1. It can be seen from the figure that two outliers, nodes 10 and 12 are detected

by SELP. From the original graph, we can see that node 10 has two neighbors, node 3 and

node 34. But neither of them shares a common neighbor with node 10. For node 12, it only

connects to node 1, but has no connection with any other node in the graph. Therefore, it is

very intuitive that the two nodes are regarded as outliers of the graph.

The detection results on Karate Club network by SELP and SLP algorithms with different

labeled nodes are shown in Table 1. The labeled vertices and its corresponding misclassified
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Figure 1: The label propagation process on Karate Club network. The nodes marked with color red are the outliers
detected by SELP.
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vertices are clearly presented. As it can be seen from the table, Nodes 10 and 12 are detected

as outliers in all the cases by SELP, and the two communities can be correctly classified most

of the time. The performance of SLP is worse than that of SELP when there is only one

labeled data in each community. For the nodes which are connected to both communities and

located in the overlap, such as nodes 3 and 9, they are misclassified most frequently. If the

number of labeled data in each community is increased to 2, the exact community structure

can be obtained by both methods. It is indicated that the more the prior information, i.e.,

labeled vertices, the better the performance of SELP is.

Table 1: Community detection results for the Karate Club network.

Labeled nodes in ω1 Labeled nodes in ω2 Misclassified nodes by SELP Detected outliers by SELP Misclassified nodes by SLP
1 34 None 10, 12 None
1 32 9 10, 12 9, 10, 27, 31, 34
2 33 None 10, 12 None
6 31 3 10, 12 2, 3, 8, 14, 2
8 31 None 10, 12 10
8 32 None 10, 12 None

17 31 3, 4, 8, 14 10, 12 2, 3, 4, 8, 13, 14, 18, 20, 22
1, 2 33, 34 None 10, 12 None
1, 2 33, 9 None 10, 12 None

3, 18 26, 30 None 10, 12 None
17, 4 31, 9 None 10, 12 None

Example 2. As a further test of our algorithm, the network we investigate in this experiment

is the world of American college football games between Division IA colleges during regular

season Fall 2000. The vertices in the network represent 115 teams, while the links denote

613 regular-season games between the two teams they connect. The teams are divided into

12 conferences containing around 8-12 teams each and generally games are more frequent

between members from the same conference than between those from different conferences.

Let the number of labeled nodes in each community be fixed. Then SELP and SLP

algorithms are run 50 times respectively with randomly selected labeled nodes. The average

error rates and NMI values (plus and minus one standard deviation) of the 50 experiments

are displayed in Figures 2-a and 2-b, respectively. As can be seen from the figures, with the

increasing number of labeled samples, the performances of both SELP and SLP become better.

The NMI values of the detected communities by SELP and SLP are significantly better than

those by LPA. This finding indicates that the semi-supervised community detection methods

could take advantage of the limited amount of prior information and consequently improve

the accuracy of the detection results. The behavior of SELP is slightly better than that of

SLP in terms of both error rates and NMI values.

Example 3. In this example, we tested our algorithm on a large real-world network named

com-Youtube, in which the ground-truth communities are known [37]. We selected 5637 nodes

from 25 communities, which are in the top 5000 communities with highest quality that are

described [37]. The selected communities contained at least five members. We performed

some tests with different number of labeled nodes in each group. The results are displayed

in Figure 3. From these figures, we can see that the detection results obtained by SELP and

SLP are better than those of LPA, as the former two methods can take the limited supervised
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Figure 2: The results on American football network.

information into consideration. SELP performs better than SLP in terms of the average values

of the error rate and NMI index.
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Figure 3: The results on Youtube network.

Example 4. In this experiment, we used a generated network frequently used for testing

community detection approaches, the LFR benchmark [38], based on the assumption that the

distributions of degree and community size are power laws. The experiments reported here

included evaluating the performance of the algorithm with various amounts of labeled nodes

and different values of parameter µ in the benchmark networks. The original LPA [4] and the

semi-supervised community detection approach SLP [5] were used for comparison.

In LFR networks, the mixing parameter µ represents the ratio between the external

degree of each vertex with respect to its community and the total degree of the node. The
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larger the value of µ, the more difficult it is to detect the community structure. The values

of the parameters in LFR benchmark networks were first set as follows: n = 1000, ξ = 15,

τ1 = 2, τ2 = 1, cmin = 20, cmax = 50.

The performances of different methods with various values of µ are shown in Figure 4. As

expected, the error rate is very high and the NMI value is low when µ is large. From Figure

4-b, we can see the original LPA could not work at all when µ is larger than 0.5. This result

reflects the fact that the community structure is not very clear and consequently difficult

to be identified correctly. It can be seen from Figure 4-a that the error rates of SELP are

generally smaller than those of SLP. SELP performs better than SLP. The same conclusion

can be drawn from the NMI values displayed in Figure 4-b.
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Figure 4: The results on LFR network with n = 1000. The number of labeled nodes in each community is 3.

We continue some experiments on LFR benchmarks with fixed parameter µ = 0.6. Dif-

ferent numbers of labeled nodes in each community were adopted for SELP and SLP in the

experiment. The results are displayed in Figure 5. As we can see, LPA become completely

invalid as the NMI values of the detected community structure is around 0. The performance

of SELP and SLP is significantly improved compared with LPA. As shown in Figure 5-b,

even when there is only one labeled data in each community, the behavior of SELP is much

better than that of LPA. This confirms the fact that the semi-supervised community detec-

tion approaches can effectively take advantage of the limited amount of labeled data. From

the figure, we can also see that the performance of SELP and SLP becomes better with the

increasing number of labeled nodes.

We also test on a large LFR benchmark with the following parameters: n = 5000, ξ = 30,

τ1 = 2, τ2 = 1, cmin = 500, cmax = 1000. The results are displayed in Figures 6 and 7.

As can been seen from Figure 6, SELP is superior to SLP and LPA, especially when µ is
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Figure 5: The results on LFR network with n = 1000. The parameter of µ is set to be 0.6.

between 0.4 and 0.7. Figure 7 shows the results with different number of labeled nodes in

each community. For both SELP and SLP, when there are more labeled nodes, the detection

results become better in terms of error rate and NMI index. This is in consistent with our

common sense. From Figure 7-b, we can see that LPA does not work at all when µ = 0.6.

But in this case SELP can also provide good results even when there is only one labeled node

in each community.
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Figure 6: The results on LFR network with n = 5000. The number of labeled nodes in each community is 3.

4.2. Classical data sets

This section is to show some perspectives on the application of SELP on some classical

data sets. The KNNG method was used to construct graphs based on the Euclidean distance
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Figure 7: The results on LFR network with n = 5000. The parameter of µ is set to be 0.6.

between objects. We also compared our method with the K-EVCLUS clustering algorithms

which is designed for relational data [29]. The dissimilarity measure adopted in K-EVCLUS

was also the Euclidean distance.

Example 5. The performance of SELP will be first tested on a simulated two-dimensional

data set which is shown in Figure 8-a. This data set consists of 405 objects which form two

non-linearly separable semi-circle shaped clusters. There are five noisy data (marked with

stars in the figure) that does not belong to either class. The constructed graph using the

KNNG method with K = 9 is displayed in Figure 8-b.
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Figure 8: The two-moon data set.

We ran SELP algorithm on this graph. Initially we randomly select one sample from each

class as the labeled data. The label propagation process is illustrated in Figure 9. As it can

be seen from the figure, the algorithm stops after 30 iterations. The two classes as well as the

five noisy data are correctly classified finally. Using other semi-supervised learning algorithms
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such as SLP on the same constructed graph, the two classes are easily detected. However, the

noisy data will be partitioned into the two classes randomly. Setting K = 2, the clustering

result by K-EVCLUS is shown in Figure 10. As can be seen, the performance of K-EVCLUS

is not good. The objects located in the left part of the top moon and those in the right part

of the bottom moon are not correctly classified. This can be due to the fact that K-EVCLUS

does not make use of the supervised information, as it is an unsupervised clustering method.

●

●●●
●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

x

y

● Labeled data in ω1

Labeled data in ω2

unlabeled data

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

x

y
● Labeled data in ω1

Labeled data in ω2

unlabeled data

a. it = 3 b. it = 11

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

x

y

● Labeled data in ω1

Labeled data in ω2

Labeled as noisy data

unlabeled data

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

x

y

● Labeled data in ω1

Labeled data in ω2

Labeled as noisy data

unlabeled data

c. it = 27 d. it = 30

Figure 9: The label propagation process on two-moon data set. The initial labeled samples are marked with big
size symbols in the figure.

Example 6. The original data set used in the example is shown in Figure 11-a, which is

a three-ring pattern with 180 × 3 data points. Each circle contains 180 points. There are

also eight noisy points located between the circles. Figure 11-b depicts the constructed graph

using the KNNG method with K = 10.

The update process and the classification results are illustrated in Figures 12-a–d. From

these figures, we can see that SELP could detect the three classes exactly. Five outliers out

of six are correctly found. The results by SLP are not shown here, as it can not provide good

results due to the outliers in the data sets. We also tried K-EVCLUS by setting K = 3. The

result is not satisfactory. Even in the same ring, objects are partitioned into different groups
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Figure 10: The clustering result on two-moon data set with K-EVCLUS clustering method.
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Figure 11: The three-ring data set.
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by K-EVCLUS. This fact confirms the advantage of limited supervised information, which

can be used to improve the performance of the clustering algorithm.
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Figure 12: The label propagation process on three-ring data set. The initial labeled samples are marked with big
size symbols in the figure. In the first three figures, the samples marked with black symbols denote the unlabeled
data in the current step.

These two experiments on classical data sets are just used to show the possibility of

the application of SELP on classical data sets. The results indicate that SELP works well

especially in detecting outliers. However, how to construct the graph using the dissimilarities

between objects needs a further consideration.

5. Conclusion

In this paper, the SELP algorithm has been introduced as an enhanced version of LPA.

The approach proposed here can effectively take advantage of the limited amount of supervised

information. This advantage is of practical meaning in real applications as there often exists

some prior knowledge about the analyzed data sets. The experimental results show that the
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detection results will be significantly improved with the help of limited amount of supervised

data.

At the end of the experimental part, we showed the possibility to apply SELP on classical

data sets. This task requires the construction of graph based on the dissimilarities between

objects. However, how to construct graphs should be further studied. Another problem, which

can be seen from the experiments, is that the detection results are different if the labeled data

are different. Thus, which data should be selected as the initial labeled samples should be

studied. This question is related to active learning. Active community detection using the

principle of label propagation is also an interesting problem that is worth of investigation in

future research work.
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