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Abstract

Starting with Dempster’s seminal work, several approaches to statistical inference based on be-
lief functions have been proposed. Some of these approaches can be seen as implementing some
form of prior-free Bayesian inference, while some others put the emphasis on long-run frequency
properties and are more related to classical frequentist methods. This paper focusses on the latter
class of techniques, which have been developed independently and had not been put in perspective
until now. Existing definitions for frequency-calibrated belief functions as well as corresponding
construction methods are reviewed, and some new notions and techniques are introduced. The con-
nections with other frequentist notions such as confidence distributions and confidence curves are
also explored. The different construction techniques are illustrated on simple inference problems,
with a focus on interpretation and implementation issues.

Keywords: Dempster-Shafer Theory, Evidence Theory, Statistical inference, Estimation,
Prediction.

1. Introduction

The theory of belief functions, or Dempster-Shafer (DS) theory [1, 2, 3], is a general framework
for reasoning under uncertainty. Its success in applications [4, 5] owes much to its flexibility and
its ability to represent and combine elementary items of evidence in a wide range of problems. The
validity and cogency of the inferences and decisions performed within this theory thus crucially
depend on the validity of the operational methods used for expressing uncertain and partial evidence
in the formalism of belief functions.

The first category of problems to which belief functions have been applied is parametric sta-
tistical inference. Dempster’s approach [6, 7] extends Fisher’s fiducial inference by making use of
a structural equation X = ϕ(θ, U), which relates the observable data X, an unknown parameter
θ ∈ Θ and an auxiliary random variable U with known distribution. After observing X = x, the
random set Γ(U, x) = {θ ∈ Θ | x = ϕ(θ, U)} defines a belief function on Θ. Although conceptually
simple and elegant, this method leads to intricate computations for most but very simple infer-
ence problems. An alternative approach, introduced by Shafer [2], is based on the construction

∗Corresponding author.
Email addresses: thierry.denoeux@utc.fr (Thierry Denœux), lisma@bjut.edu.cn (Shoumei Li)

Preprint submitted to International Journal of Approximate Reasoning October 21, 2017



of a consonant belief function directly from the likelihood function. This approach, in line with
likelihood inference [8, 9, 10], is much easier to implement than Dempster’s method [11, 12, 13]
and it can be justified from basic axiomatic requirements [14, 15]. Both Dempster’s method and
the likelihood-based approach are compatible with Bayesian inference, in the sense that combining
the data-conditional belief function with a prior probability distribution using Dempster’s rule of
combination [1, 2] yields the Bayesian posterior distribution. These methods can thus be seen as
implementing a form of prior-free generalization of Bayesian inference. They lack, however, the
frequency calibration properties expected by many statisticians.

In recent years, several attempts have been made to blend belief function inference with fre-
quentist ideas. In [16, 17], the first author proposed a notion of predictive belief function, which
under repeated sampling is less committed than the true probability distribution of interest with
some prescribed probability. Using different ideas, Liu and Martin developed the Inferential Model
(IM) approach, which can be seen as a modification of Dempster’s model that produces credible,
or valid belief functions with well defined frequentist properties [18, 19]. Yet another notion is the
theory of Confidence Structures proposed by Balch [20, 21] as an extension of confidence distribu-
tions. The common idea underlying these three distinct approaches is to constrain degrees of belief
to meet some properties in a repeated sampling framework. Each of them allows one to construct
a different kind of “frequency-calibrated” belief function, i.e., a belief function based on observed
data, which assigns degrees of belief to which a frequentist meaning can be attached. These ap-
proaches seem to have been developed independently and they have not been compared from a
conceptual or practical point of view. The objective of this paper is to fill this gap by reviewing
the different notions of frequency-calibrated belief functions, relating them to statistical notions
developed in other contexts such as confidence distributions or confidence curves, and describing
some simple procedures (including some original ones) for generating such belief functions in real-
istic statistical inference situations. We also introduce some new notions, namely: the extension
of predictive belief functions at a given confidence level to estimation, and the extension of confi-
dence structures to prediction. These new notions allow us to provide the global picture shown in
Table 1, in which three different principles are applied both to estimation and to prediction. The
rest of this paper will be devoted to detailed explanation and in-depth discussion of the notions
summarized in this table. The emphasis will be on underlying principles, with the objective of
bringing recent results and ideas to the attention of a large audience of researchers interested in
belief functions. Accordingly, technicalities will be avoided by considering only simple statistical
models and inference problems.

We will assume that the reader already has some familiarity with the theory of belief functions.
A concise exposition of the main relevant notions can be found in [25], for instance. The three
approaches mentioned will then be described sequentially. Section 2 will be devoted to the frequen-
tist notion of predictive belief functions introduced in [16]. Confidence Structures and valid belief
functions will then be reviewed, respectively, in Section 3 and 4. A summary and some conclusions
will be provided in Section 5.

Notations and terminology. Before entering into the description of different notions and methods
related to frequency-calibrated belief functions, let us first clarify the notations and terminology.
Throughout this paper, we will denote by x the observed data, assumed to be a realization of a
random vector X with sample space ΩX . The σ-algebra BX on ΩX will be the power set when
ΩX is finite, and the Borel σ-algebra on ΩX when ΩX = Rn. In general, random variables and
their realizations will be denoted by uppercase and lowercase letters, respectively. We will consider
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a parametric model X ∼ PX|θ, where θ ∈ Θ is a fixed but unknown parameter. An estimative
belief function Belθ|x is a data-conditional belief function on Θ, defined after observing the data x.
It basically encodes statistical evidence about θ. Given a measurable subset H ⊂ Θ, the quantity
Belθ|x(H) is interpreted as one’s degree of belief in the proposition θ ∈ H, based on the evidence
X = x. It is a function h(x) of x. The notation Belθ|X(H) stands for the random variable h(X).

As opposed to estimation, prediction is concerned with the determination of a random quantity.
Typically, we have a pair of random variables (X,Y ), where X is the (past) observed data and Y is
the (future) not-yet observed data taking values in the probability space (ΩY ,BY ). As before, BY
will be 2ΩY in the finite case and the Borel σ-algebra in the continuous case. The joint distribution
PX,Y |θ depends on parameter θ. After observing X = x, we wish to make statements about a
future realization of Y . A predictive belief function BelY |x is a data-conditional belief function
from BY to [0, 1] quantifying the uncertainty on Y after observing the evidence x. To simplify the
exposition, we will consider throughout this paper the special case where the future data is a real
random variable and we will denote it by Y .

In the next sections, we will assume that we repeatedly draw realizations x of the data and
compute estimative or predictive belief functions using some procedures. We will then consider var-
ious requirements that can be imposed on such procedures, so that the resulting belief assessments
based on any given realization x can be trusted.

2. Belief functions at a given confidence level

In this section, the definition of a predictive belief function at a given confidence level will first
be recalled in Section 2.1. Techniques to generate such belief functions will be reviewed in Section
2.2 and a counterpart for estimation problems will be introduced in Section 2.3.

2.1. Predictive belief functions

The notion of predictive belief function introduced in [16] is based on the following idea. If we
knew the conditional distribution PY |x,θ of Y given X = x, then it would be natural to equate our
degrees of belief BelY |x(A) with degrees of chance PY |x,θ(A) for any event A in ΩY , i.e., we would
impose

BelY |x = PY |x,θ.

In real situations, however, we only have limited information about PY |x,θ in the form of the
observed data x. Our predictive belief function should thus be less informative, or less committed
[26] than PY |x,θ, which can be expressed by the following inequalities

BelY |x(A) ≤ PY |x,θ(A) (1)

for all measurable event A ∈ BY . Property (1) can be equivalently expressed using the dual
plausibility function PlY |x(A) = 1−BelY |x(A) as

PlY |x(A) ≥ PY |x,θ(A) (2)

for all event A. However, conditions (1) and (2) are generally too strict to be of any practical
value, as they can be guaranteed only for the vacuous belief function verifying BelY |x(A) = 0 for
all A ⊂ ΩY and PlY |x(A) = 1 for all A 6= ∅. For instance, consider the case where X has a binomial
distribution B(n, θ) and Y has a Bernoulli distribution B(1, θ), with X and Y independent. Having
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observed X = x, no value of θ in (0, 1) can be ruled out. Consequently (1) implies Bel({0}) ≤ 1−θ
and Bel({1}) ≤ θ for any θ ∈ (0, 1), a condition only verified for the vacuous belief function defined
by Bel({0}) = Bel({1}) = 0.

The solution proposed in [16] is to weaken condition (1) by imposing only that it hold for at
least a proportion 1 − α ∈ (0, 1) of the samples x, under repeated sampling. We then have the
following requirement,

PX|θ

(
BelY |X(A) ≤ PY |X,θ(A), ∀A ∈ BY

)
≥ 1− α, (3)

for all θ ∈ Θ. In (3), both BelY |X(A) and PY |X,θ(A) are random variables, defined as functions of
X. A belief function verifying (3) is called a predictive belief function at confidence level 1− α. It
is an approximate 1 − α-level predictive belief function if Property (3) holds only in the limit as
the sample size tends to infinity.

Example 1. Consider again the binomial case, with X and Y independently distributed according
to binomial B(n, θ) and Bernoulli B(1, θ) distributions, respectively. The Clopper-Pearson confi-
dence interval [27] on θ at level 1− α is

qBetax,n−x+1

(
α

2

)
≤ θ ≤ qBetax+1,n−x

(
1− α

2

)
, (4)

where qBetaa,b(p) is the p-th quantile from a beta distribution with shape parameters a and b. This
interval is known to be conservative. With probability at least 1 − α, we thus have simultaneously
qBetax,n−x+1

(
α/2

)
≤ θ and 1 − qBetax+1,n−x

(
1− α/2

)
≤ 1 − θ. Consider the following mass

function on ΩY = {0, 1},

mY |x({1}) = qBetax,n−x+1

(
α/2

)
(5a)

mY |x({0}) = 1− qBetax+1,n−x

(
1− α/2

)
(5b)

mY |x({0, 1}) = qBetax+1,n−x

(
1− α/2

)
− qBetax,n−x+1

(
α/2

)
. (5c)

We have BelY |x({1}) = mY |x({1}) and BelY |x({0}) = mY |x({0}). Consequently, the condition

BelY |x({1}) ≤ θ and BelY |x({0}) ≤ 1− θ

holds with probability at least 1− α, and BelY |x is a predictive belief function for Y at level 1− α.
For α = 0.05, n = 20 and x = 5, we get BelY |x({1}) = mY |x({1}) ≈ 0.0866 and BelY |x({0}) =
mY |x({0}) ≈ 0.509. �

2.2. Practical construction
Discrete case. In [16], the approach of Example 1 is generalized to compute predictive belief func-
tions in the case where X1, . . . , Xn, Y are i.i.d. according to a discrete distribution with finite
support ΩY = {ξ1, . . . , ξK}. Let X = (X1, . . . , Xn) and θ = (θ1, . . . , θK) with θk = P(Y = ξk),
k = 1, . . . ,K. The method is based on simultaneous confidence intervals for multinomial propor-
tions θk [28, 29], which define a lower probability measure P such that

PX|θ

(
P (A) ≤ PY |X,θ(A), ∀A ∈ BY

)
≥ 1− α.

Usually, P is not a belief function (except for K = 2 and K = 3), but we can construct the best
approximating belief function BelY |x such that BelY |x ≤ P using linear optimization. Analytical
formula are given for the case where the elements of ΩY are ordered and the focal sets of BelY |x
are restricted to be intervals. A similar approach is proposed in [30] to construct a predictive
possibility distribution (equivalent to a consonant belief function).
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Confidence bands. In [17], a method was proposed to construct predictive belief functions at a given
confidence level based on confidence bands. The method can be used in the particular situation
where the observed data is an n-sample X = (X1, . . . , Xn) and X1, . . . , Xn, Y are i.i.d. according
to a continuous distribution. A confidence band for Y at level α ∈ (0, 1) [31, page 334] is a pair
of cumulative distribution functions (cdfs) F (·;x) and F (·;x) depending on the observed data x,
such that

PX

{
F (y;X) ≤ FY (y) ≤ F (y;X), ∀y ∈ ΩY

}
≥ 1− α.

A pair of cdfs (F , F ) such that F ≤ F , called a probability box or “p-box” [32], is a common
representation of a set of probability distributions. It was shown in [33] that the lower envelope
of the family of probability distributions represented by a p-box is a belief function Bel. This

belief function is induced by a random interval Π(U) with bounds F
−1

(U) and F−1(U), where

F
−1

and F−1 are, respectively, the generalized inverses of F and F , and U has a standard uniform
distribution. The random interval is closed if F is left-continuous and F is right-continuous. The
following equalities hold for any event A:

Bel(A) = PU
(
Π(U) ⊆ A

)
(6a)

Pl(A) = PU
(
Π(U) ∩A 6= ∅

)
. (6b)

In particular,
Bel((−∞, y]) = F (y), P l((−∞, y]) = F (y)

for any y ∈ R and

Bel([y1, y2]) =
(
F (y2)− F (y1)

)
+

(7a)

Pl([y1, y2]) =
(
F (y2)− F (y1)

)
(7b)

for any y1 ≤ y2, where (·)+ denotes the positive part.
An immediate consequence of the above results is that the belief function induced by a confi-

dence band on Y at level 1− α is a predictive belief function with the same confidence level [17].
Any method to construct a confidence band thus yields a predictive belief function. One such
method in a nonparametric setting is based on Kolmogorov’s statistic [34]:

Dn = sup
y
|F̂ (y;X)− FY (y)|,

where F̂ (·;X) is the empirical cdf of the sample X = (X1, . . . , Xn). The resulting confidence band
[35, page 481] is

F (y;X) = max(0, F̂ (y;X)− dn,1−α), (8a)

F (y;X) = min(1, F̂ (y;X) + dn,1−α)., (8b)

where dn,1−α is the 1 − α quantile of Dn. We note that, in this case, both F and F are right-
continuous steps functions. The upper cdf F can be replaced by the left-continuous function taking
the same values everywhere except at sample points.

In a parametric setting, it is possible to compute a confidence band by determining lower and
upper bounds of the cdf FY |θ when θ varies in a confidence region. For instance, Cheng and Iles
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[36] give closed-form expressions for the upper and lower cdfs F and F in the case of general
location-scale parametric model of the form:

FY |θ(y) = G

(
y − µ
σ

)
,

where G is a fixed cdf, µ and σ are the unknown location and scale parameters, and θ = (µ, σ).
The confidence band is based on the Maximum Likelihood Estimators (MLEs) of µ and σ and on
the Fisher information matrix. It thus has approximately the prescribed confidence level for fixed
sample size n. Cheng and Iles [36] give explicit formula for the cases of the normal, lognormal,
Gumbel and Weibull distributions.

Use of a structural equation. In this section, we propose a new general method to compute a
predictive belief function at a given confidence level, by adapting the method described in [25].
For simplicity, we assume here that X and Y are independent, but the approach can easily be
extended to relax this assumption. The method is based on a structural equation of the form

Y = ϕ(θ, U), (9)

where U is a pivotal random variable with known distribution [37, 18, 25]. Equation (9) can be
obtained by inverting the cdf of Y . More precisely, let us first assume that Y is continuous; we can
then observe that U = FY |θ(Y ) has a standard uniform distribution. Denoting by F−1

Y |θ the inverse
of the cdf FY |θ, we get

Y = F−1
Y |θ(U), (10)

with U ∼ U [0, 1], which has the same form as (9). When Y is discrete, (10) is still valid if F−1
Y |θ

now denotes the generalized inverse of FY .
Let Cα(X) be a confidence region for θ at level 1− α, and consider the following random set,

Π(U ;x) = ϕ(Cα(x), U). (11)

The following theorem states that the belief function induced by the random set (11) is a predictive
belief function at level 1− α.

Theorem 1. Let Y = ϕ(θ, U) be a random variable, and Cα(X) a confidence region for θ at level
1 − α. Then, the belief function BelY |x induced by the random set Π(U ;x) = ϕ(Cα(x), U) is a
predictive belief function at level 1− α.

Proof. If θ ∈ Cα(x), then ϕ(θ, U) ∈ ϕ(Cα(x), U) for any U . Consequently, the following implication
holds for any measurable subset A ∈ BY , and any x ∈ ΩX ,

ϕ(Cα(x), U) ⊆ A⇒ ϕ(θ, U) ∈ A.

Hence,
PU (ϕ(Cα(x), U) ⊆ A) ≤ PU (ϕ(θ, U) ∈ A),

or, equivalently,
BelY |x(A) ≤ PY |θ(A). (12)

7



Table 2: Likelihood levels c0.05 defining approximate 95% confidence regions.

p 1 2 5 10 15
c 0.15 0.05 3.9e-03 1.1e-04 3.7e-06

As (12) holds whenever θ ∈ Cα(x), and PX|θ(Cα(X) 3 θ) ≥ 1 − α for all θ ∈ Θ, it follows that
(12) holds for any measurable event A with probability at least 1− α, i.e.,

PX|θ

(
BelY |X(A) ≤ PY |θ(A), ∀A ∈ BY

)
≥ 1− α, (13)

for all θ ∈ Θ. �
Belief values BelY |x(A) = PU (ϕ(C(x), U) ⊆ A) can be estimated by Monte Carlo simulation

using a pseudo-random sample u1, . . . , uN of U . The degree of belief BelY |x(A) in A can then be
estimated by the proportion of ui such that ϕ(Cα(x), ui) ⊆ A (see [25] for more details on this
method).

In the case where X = (X1, . . . , Xn) is iid, the likelihood function L(θ;x) will often provide us
with a convenient means to obtain a confidence region on θ [38, 57]. Let

plθ|x(θ) =
L(θ;x)

L(θ̂;x)
(14)

be the relative likelihood function, where θ̂ is a MLE of θ and it is assumed that L(θ̂;x) <∞. From
Wilks’ theorem [39, 40], we know that, under regularity conditions1, −2 log plθ|X(θ0) converges in
distribution to a chi square distribution with p degrees of freedom, where p is the dimension of θ,
under the hypothesis θ = θ0. Consequently, the sets

Cα(X) = {θ ∈ Θ|plθ|X(θ) ≥ cα}, (15)

with cα = exp(−0.5χ2
p;1−α), are approximate 100(1 − α)% confidence regions, i.e., their coverage

probability is approximately equal to 1 − α for large n. This way of defining a predictive belief
function is similar to the one described in [41, 25], except that the relative likelihood function
is cut at a fixed level cα. Table 2 gives the values of c0.05 for different values of p. We can see
that c0.05 decreases quickly with p, which means that the likelihood-based confidence regions and,
consequently, the corresponding predictive belief functions will become increasing imprecise as p
increases.

Example 2. The data shown in Figure 1(a) are annual maximum sea-levels recorded at Port Pirie,
a location just north of Adelaide, South Australia, over the period 1923-1987 [42]. The probability
plot in Figure 1(b) shows a good fit with the Gumbel distribution, with cdf

FX|θ(x) = exp

(
− exp

(
−x− µ

σ

))
, (16)

1These conditions are [40]: (1) logL(θ;x) is regular with respect to its first-order and second-order θ-derivatives

in an open set Θ0 containing the true value θ0 of θ, and (2) the MLE θ̂ of θ is unique for n ≥ n0, for some n0 ∈ N∗.
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Figure 1: Annual maximum sea-levels recorded at Port Pirie over the period 1923-1987 (a), and probability plot for
the Gumbel fit to the data (b).

where µ is the mode of the distribution, σ a scale parameter, and θ = (µ, σ). Suppose that, based on
these data, we want to predict the maximum sea level Y in the next m = 10 years. Assuming that
the sea level distribution will remain unchanged in the near future (i.e., neglecting, for instance, the
effect of sea level rise due to climate change), Y is the maximum X(m) of an iid sample X1, . . . , Xm

from X. Its cdf is, thus,

FY |θ(y) = FX(m)|θ(y) = FX|θ(y)m = exp

(
−m exp

(
−y − µ

σ

))
. (17)

To construct a predictive belief function on Y , we may construct a confidence band (F , F ) on X
at level 1 − α, and then consider the p-box defined by the lower and upper cdfs (Fm, F

m
). The

structural equation (10) becomes, in that case,

Y = µ− σ log log(U−1/m), (18)

with U ∼ U [0, 1].
Figures 2(a) and 2(b) show, respectively, the lower and upper cdfs and the contour functions of

predictive belief functions at level 1 − α = 0.95, constructed from (1) the Kolmogorov confidence
band, (2) Cheng and Iles’ confidence band, and (3) the structural equation (18) with the likelihood-
based confidence region (15). For this last method, we used Monte Carlo simulation with N = 1000
draws. The bounds of each interval ϕ(C(x), ui) were computed as the minimum and the maximum

of ϕ(θ, ui) = µ − σ log log(u
−1/m
i ) subject to the constraint plθ|x(θ) ≥ cα. We can see that the

Cheng-Iles and likelihood-based solutions are almost indiscernible. The small difference is due to
the use of different confidence regions, which happen to be very similar for sample size n = 65. In
contrast, the belief function based on the Kolmogorov band is much more imprecise, and probably
too little informative to be of any practical use. Given the very good fit of the data with the Gumbel
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Figure 2: Port Pirie data: lower and upper cdfs (a) and contour functions (b) of the predictive belief functions at
confidence level 95% computed by the three methods.

distribution as shown in Figure 1(b), the belief functions derived from parametric confidence bands
are definitely be preferable in this case.

�

To conclude this section, we can mention a related, but distinct approach to the construction
of predictive belief functions proposed in [43]. This approach is based on the notion of pignistic
probability distribution, a probability distribution derived from a belief function for decision-making
[44, 45, 46]. In [43], the authors propose to construct the least committed belief function whose
pignistic probability distribution belongs to a confidence set of probability measures containing
PY with some confidence level. This belief function can be shown to be consonant. Although this
procedure is often simple to implement and has a well-defined justification, it does not produce
belief or plausibility statements that are strictly calibrated in term of frequencies. For instance, for
any A ∈ BY , it is not possible to directly relate statements like BelY |x(A) = 0.5 or PlY |x(A) = 0.8
to frequencies. For this reason, we now favor the approach described previously in this section,
which produces belief statements that have a clearer interpretation in terms of frequencies.

2.3. Estimation

The idea underlying the notion of predictive belief function as defined in Section 2.1 can be
applied to estimation problems, resulting in a new notion of estimative belief function. Estimation
can actually be seen as a special case of prediction, in which the predicted quantity is a constant.
If we know for sure that θ = θ0, then our belief function on θ is the certain belief function verifying

Bel∗θ0(A) = I(θ0 ∈ A)

for all A ⊆ Θ, where I(·) is the indicator function. An estimative belief function at confidence level
1− α can be defined as a data-conditional belief function Belθ|x on Θ that is less committed than
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Bel∗θ0 , for a proportion 1− α of the samples:

PX|θ0

(
Belθ|X(A) ≤ Bel∗θ0(A), ∀A ⊆ Θ

)
≥ 1− α, (19)

for any θ0 ∈ Θ.
Because Bel∗θ0 can only takes values 0 and 1, the condition (Belθ|X(A) ≤ Bel∗θ0(A),∀A ⊆ Θ)

is equivalent to Belθ|X(A) = 0 for all A ⊂ Θ such that θ0 6∈ A. From the equality Plθ|X(A) =

1−Belθ|X(A), this condition can be expressed as Plθ|X(A) = 1 for all A ⊆ Θ such that θ0 ∈ A or,
equivalently plθ|X(θ0) = 1. Condition (19) is thus equivalent to

PX|θ0

(
plθ|X(θ0) = 1

)
≥ 1− α, (20)

for any θ0 ∈ Θ. Let Cα(X) be the set

Cα(X) = {θ ∈ Θ, plθ|X(θ) = 1}.

Equation (20) expresses that Cα(X) is a confidence region at level 1 − α. Conversely, given a
confidence region Cα(X) at level 1−α, any belief function verifying plθ|X(θ) = 1 for all θ ∈ Cα(X)
is an estimative belief function at confidence level 1 − α. Among all belief functions with this
property, the least committed one is the logical belief function focussed on Cα(X), defined by

Belθ|X(A) = I
(
Cα(X) ⊆ A

)
,

for all A ⊆ Θ.
From these considerations, we can conclude that estimative belief functions at confidence level

1−α are belief functions whose contour functions take value one inside some 1−α-level confidence
region Cα(X). For any such belief function, there is always a logical belief function that is less
committed: it is the belief function that assigns zero plausibilities outside Cα(X). However, such
a logical belief function does not adequately represent the statistical evidence, as it declares all
values of θ outside Cα(X) as impossible. A better alternative may be to assign a mass 1 − α to
Cα(X) and a mass α to Θ. The corresponding contour function is given by

plθ|X(θ) =

{
1 if θ ∈ Cα(X),

α otherwise.
(21)

3. Confidence structures

The predictive and estimative belief functions defined in Section 2 have a major drawback:
they require the user to specify a confidence level. Following common statistical practice, one may
choose standard confidence values such as 95% or 99%, but these values are arbitrary. Confidence
structures introduced by Balch [20] overcome this limitation by encoding confidence regions at all
levels. This notion will be discussed in Section 3.1 with a focus on parameter estimation, which
is the category of problems studied in [20]. An extension to prediction will then be introduced in
Section 3.2.
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3.1. Confidence Structures for estimation

Definition. A confidence structure as defined by Balch [20] is a data-conditional random set that
encodes confidence regions at all levels. For any realization x of X, this random set defines a belief
function Belθ|x with well-defined frequentist properties, distinct from those considered in Section
2. More precisely, let (ΩU ,BU ,PU ) be a probability space, BΘ an algebra of subsets of Θ, and Γ a
mapping from ΩU ×ΩX to BΘ, such that, for any x ∈ ΩX , the mapping Γ(U,x) defines a random
subset of Θ. The corresponding belief function is defined as

Belθ|x(B) = PU
(
Γ(U,x) ⊆ B

)
.

for all B ∈ BΘ. Mapping Γ defines a confidence structure if the following inequality holds for all
θ ∈ Θ and all A ∈ BU ,

PX|θ

θ ∈ ⋃
u∈A

Γ(u,X)

 ≥ PU (A). (22)

Condition (22) expresses that, for any measurable subset A of ΩU , the random set C(A,X) =⋃
u∈A Γ(u,X) is a confidence region for θ at confidence level PU (A). Having observed a realization

x of X, let H be a subset of Θ, and let

A = {u ∈ ΩU ,Γ(u,x) ⊆ H}.

The degree of belief in H is Belθ|x(H) = PU (A), and C(A,x) =
⋃
u∈A Γ(u,x) is included in

H. Consequently, H contains a realization of a confidence region with confidence level larger
than, or equal to Belθ|x(H). Degrees of belief are thus related to confidence levels for a family
{C(A,x)} of confidence regions. In terms of plausibilities, Plθ|x(H) = α, for instance, means that
the complement of H contains a realization of a confidence region at level at least equal to 1− α.

Relation with confidence distributions. Confidence structures obviously include confidence distri-
butions as a special case. Following [47, 48] a confidence distribution for a scalar parameter θ is a
mapping F : Θ× ΩX → [0, 1] such that

1. F (·,x) is a continuous cdf, for any x ∈ ΩX ;
2. At the true parameter value θ = θ0, F (θ0,X) has a standard uniform distribution U [0, 1].

Denoting by F−1(·,x) the inverse of F with respect to its first argument, it is easy to see that the
random set (−∞, F−1(α,X)] is a lower-side confidence interval for θ at level α. Indeed,

PX|θ0

(
θ0 ≤ F−1(α,X)

)
= PX|θ0

(
F (θ0,X) ≤ α

)
= α.

Conversely, a confidence distribution is often constructed from a family of one sided confidence
intervals (−∞, L(α,X)] at level α: we then set F (θ,x) = L−1(θ,x).

It is clear that any confidence distribution corresponds to a confidence structure (Figure 3).
Indeed, let Γ(u,x) = {F−1(u,x)} and U ∼ U [0, 1]. For any measurable subset A of [0, 1], we have

PX|θ

θ ∈ ⋃
u∈A

Γ(u,X)

 = PX|θ
(
F (θ,X) ∈ A

)
= PU (A).

The usefulness of the notion of confidence structure becomes apparent when we consider prob-
lems for which the notion of confidence distribution is not easily applicable, i.e., those involving
discrete observations or a multidimensional parameter. Balch [20] proposed some methods to
construct confidence structures for such problems. They are briefly reviewed below.
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Figure 3: Confidence distribution and relation with the notion of confidence structure.

Pivoting the cdf. In the discrete case, there is no exact confidence distribution [48], but a confidence
structure can be constructed using a p-box, resulting in a “C-box” [21]. Balch [20] describes a
general method based on a technique for “pivoting the cdf” [49, page 434]. This method can be
used when θ is a scalar parameter and there is a discrete statistic T such that FT |θ(t) is monotone
in θ for all t. If FT |θ(t) is increasing in θ, then we can consider the following mapping,

Γ(u, t) =
{
θ ∈ Θ | 1−GT |θ(t) ≤ u ≤ FT |θ(t)

}
, (23)

where GT |θ(t) = PT |θ(T ≥ t), and U ∼ U [0, 1]. The induced confidence structure corresponds to

a p-box with F (θ) = 1 − GT |θ(t) and F (θ) = FT |θ(t). If FT |θ(t) is decreasing in θ, then we can
choose the following mapping,

Γ(u, t) =
{
θ ∈ Θ | 1− FT |θ(t) ≤ u ≤ GT |θ(t)

}
, (24)

which again defines a p-box.
To show that the mappings (23) or (24) generate a confidence structure, let us consider an

interval A = [α1, α2], with 0 ≤ α1 ≤ α2 ≤ 1 (see Figure 4). Consider, for instance, the mapping
(24). We have

C(A, t) =
⋃
u∈A

Γ(u, t) =
{
θ ∈ Θ | 1− FT |θ(t) ≤ α2

}
\
{
θ ∈ Θ | GT |θ(t) ≤ α1

}
.

Now, both FT |θ(T ) and GT |θ(T ) are stochastically greater than U [0, 1], i.e., PT |θ(FT |θ(T ) ≤
α) ≤ α and PT |θ(GT |θ(T ) ≤ α) ≤ α for all α ∈ [0, 1] (see [49, page 434]). Hence,

PT |θ
(

1− FT |θ(t) ≤ α2

)
≥ α2

and
PT |θ

(
GT |θ(t) ≤ α1

)
≤ α1

Consequently, we have

PT |θ

θ ∈ ⋃
u∈A

Γ(u, T )

 ≥ α2 − α1 = PU (A).
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Figure 4: Constructing a confidence structure by the “pivoting the cdf” method.

Example 3. Consider the case where X has a binomial distribution B(n, θ), and take T = X.
Here,

FX|θ(x) = 1− pBetax+1,n−x(θ), (25)

where pBetax+1,n−x is the beta cdf with shape parameters x+ 1 and n− x. It is decreasing in θ, so
we select mapping (24). We thus get a C-box with bounding functions

F θ|x(θ) = 1− FX|θ(x) = pBetax+1,n−x(θ) (26a)

and
F θ|x(θ) = GX|θ(x) = 1− FX|θ(x− 1) = pBetax,n−x+1(θ). (26b)

We note that the confidence interval C(A, x) for A = [α/2, 1−α/2] is the Clopper-Pearson interval
(4). Figure 5 shows an example of a C-box for n = 10 and x = 3.

Confidence regions. Balch [20] describes a method to construct confidence structures from p-values,
which can be equivalently described in terms of confidence regions (Figure 6). Let Cα(X), α ∈ [0, 1]
be a nested family of confidence regions, such that

PX|θ
(
θ ∈ Cα(X)

)
≥ 1− α (27)

and, for any (α, α′),
α < α′ ⇒ Cα(X) ⊇ Cα′(X). (28)

Consider the confidence structure with multivalued mapping

Γ(u,x) = C1−u(x)

and U ∼ U [0, 1]. For any measurable A ⊆ [0, 1], we have

PX|θ

θ ∈ ⋃
u∈A

Γ(u,X)

 = PX|θ

(
θ ∈ Cinf(A)(X)

)
= 1− inf(A) ≥ PU (A).
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Figure 6: Constructing a confidence structure from nested confidence intervals.
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Consequently, the random set Γ(U,x) = C1−U (x) defines a confidence structure. If (27) holds only
asymptotically as the amount of data tends to infinity, then Cα(X) is an approximate 100(1−α)%
confidence region, and the random set C1−U (x) can be called an approximate confidence structure.

We can remark that, due to (28), the confidence structure constructed by this method induces
a consonant belief function. The associated plausibility function is then known to be a possibility
measure [50], and the following equation holds

Plθ|x(A) = sup
θ∈A

plθ|x(θ) (29)

for all A ⊆ Θ, where plθ|x is the contour function associated to Plθ|x. This method of constructing
a possibility distribution from nested confidence intervals was already suggested in [51]. When θ is
scalar, the contour function plθ|x(θ) is a confidence curve, a notion introduced by Birnbaum [52].
See, e.g., [53, 54] for more recent references on this notion, and [55] for an extension to the case
of a multidimensional parameter. A confidence curve can easily be constructed from a confidence
distribution [48]. If F (·,x) is a confidence distribution for θ, the corresponding confidence curve is

plθ|x(θ) = 2 min
{
F (θ,x), 1− F (θ,x)

}
. (30)

A confidence curve can also be obtained from a C-box (F θ|x(θ), F θ|x(θ)) (constructed, e.g., by
pivoting the cdf as explained above) as

plθ|x(θ) =


2F θ|x(θ) if θ ≤ F−1

θ|x(0.5),

1 if F
−1
θ|x(0.5) < θ ≤ F−1

θ|x(0.5),

2(1− F θ|x(θ)) if θ > F−1
θ|x(0.5).

(31)

The relative likelihood (14) often provides a convenient way to obtain a nested family of confi-
dence regions [56, Chapter 5], from which a confidence structure can be constructed. In particular,
when the conditions of Wilks’ theorem hold, the confidence regions Cα(x) have simple analytical
expressions (15). The contour function pl′θ|x(θ) corresponding to these confidence regions is then

related to the relative likelihood plθ|x(θ) defined in (14) by the following equation,

cpl′
θ|x(θ) = plθ|x(θ),

with cα = exp(−0.5χ2
p;1−α). The solution is

pl′θ|x(θ) = 1− Fχ2
p

{
−2 log plθ|x(θ)

}
, (32)

where Fχ2
p

is the cdf of the chi square distribution with p degrees of freedom. We then have, by
construction,

PX|θ

{
pl′θ|X(θ) ≥ α

}
≈ 1− α.

Transformation (32) can be seen as a calibration of the likelihood-based belief function introduced
in [2] and studied in [14, 15]. Figure 7 shows pl′(θ) as a function of pl(θ) for different values
of p. For p = 1, the calibrated belief function is more specific than the likelihood-based belief
function. For p = 2, they are identical, and for p > 2 calibration results in a loss of specificity.
The likelihood-based belief function thus corresponds to an approximate confidence structure for
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Figure 7: Transformation of the relative likelihood to calibrate a likelihood-based belief function, for different values
of the number p of parameters.

p = 1 and p = 2 (and it is conservative for p = 1). It can be calibrated to become an approximate
confidence structure for p > 2 (and also for p = 1 to make it less conservative). A refinement of
this method, based on the estimation of the exact distribution of plθ|X(θ) by simulation, has been
recently proposed in [57].

Example 4. Consider again the binomial case with X ∼ B(n, θ). Figure 8 shows the relative
likelihood function plθ|X(θ), the calibrated contour function pl′θ|X(θ) obtained from (32) with p = 1,

and the contour function pl′′θ|X(θ) computed from the C-box (26) using (31), for n = 100 and
x = 30. We note that the α-level cuts

C1−α(X) = {θ ∈ Θ|pl′′θ|X(θ) ≥ α}

are the Clopper-Pearson confidence intervals (4) at level 1 − α. As these confidence intervals are
conservative, the confidence curve pl′′θ|X(θ) defines an exact confidence structure. In contrast, the

α-level cuts of pl′θ|X(θ) are only approximate confidence intervals. �

In the case of a consonant confidence structure, there is an interesting connection between
plausibilities and p-values. Specifically, consider a null hypothesis H0 = {θ0}. Each confidence
region Cα(X) corresponds to a test of H0 at level α, which rejects H0 when Cα(X) 63 θ0. For
a given realization x of X, the p-value can be defined as the smallest level α for which H0 is
rejected. From Figure 6, it is clear that the p-value equals plθ|x(θ0). Thanks to Eq. (29), the
same property holds in the case of a composite null hypothesis, the p-value being equal to the
plausibility Plθ|x(H0). Consequently, in the case of a consonant confidence structure, there is a
close connection between notions of plausibility and p-value. This connection was already noticed
by Martin and Liu [58], who showed that, for most practical hypothesis testing problems, there

17



0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

pl
(θ

)
likelihood
calibrated likelihood
Clopper−Pearson

Figure 8: Relative likelihood plθ|X(θ), calibrated relative likelihood pl′θ|X(θ) and Clopper-Pearson confidence curve
for the binomial example with n = 100 and x = 30.

exists a data-conditional plausibility function (constructed from an inferential model, see Section
4.1), which, evaluated at the null hypothesis, is the p-value.

Confidence nets. Confidence nets, as defined in [59], also have a close connection with confidence
structures2. For a parametric statistical model with random variable X, a confidence net is a
collection of data dependent sets Sj(X), j = 1, . . . , N , whose union is the whole parameter space,
and such that

1. Each set Sj(X) is a confidence region for θ with known coverage probability pj , and

2. Any intersection of the Sj covers θ with probability zero.

For instance, let X = (X1, . . . , Xn) be an iid sample from a univariate continuous distribution
symmetrically distributed about scalar parameter θ, and let Z1, . . . , ZN−1, N = 2n, denote the
subsample means (i.e., the means of all nonempty subsets of the n random observations). Then,
the collection of intervals between the ordered means S1(X) = (−∞, Z(1)), S2(X) = (Z(1), Z(2)),
. . ., SN (X) = (Z(N−1),+∞) forms a confidence net with pj = 1/N , j = 1, . . . , N [59]. It is clear
that a confidence net corresponds to a special kind of C-box. Specifically, let U be a random
variable with a standard normal distribution, and let Γ be the multivalued mapping defined by
Γ(u,x) = Sj(x) for all u ∈ [(j − 1)/N, j/N), j = 1, . . . , N . Then, the random set Γ(U,X) defines
a C-box, with disjoint focal sets Sj(X). This principle was used by Balch and Smarslok [60] to
construct a confidence structure on the offset between two otherwise similar distributions.

2We thank an anonymous referee for drawing our attention on confidence nets and their relation with confidence
structures.
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Propagation of confidence structures. As noted by Balch [20] and Ferson et al. [21], an interesting
property of confidence structures is that they can be propagated through numerical equations.
More precisely, let θ1 ∈ Θ1 and θ2 ∈ Θ2 be two parameters, with confidence structures Γ1(U1,X1)
and Γ2(U2,X2) induced by independent observations X1 and X2. Let η = g(θ1, θ2) be a parameter
defined as a function of θ1 and θ2, and let V = (V1, V2) be a pair of independent random variables
such that Vi has the same marginal distribution as Ui, i = 1, 2. Then, the random set

Γ(V,X) = g
{

Γ1(V1,X1),Γ2(V2,X2)
}
,

where X = (X1,X2) is a confidence structure for η. This strong result, proved in [20], shows that
we can propagate confidence structures in equations using the usual Dempster-Shafer calculus (see,
e.g, [61, 62, 63]), and get a confidence structure as an output. Confidence structure are thus, in
this respect, compatible with the Demspter-Shafer semantics of belief functions.

3.2. Confidence structures for prediction

The notion of confidence structure can easily be extended to prediction problems, resulting
in a new notion of predictive confidence structure. Using the notations introduced in Section 1,
consider a pair of r.v. (X, Y ) whose joint distribution PX,Y |θ depends on a parameter θ ∈ Θ. A
data-conditional random set Γ(U,X) will be called a predictive confidence structure if the following
inequalities hold:

PX,Y |θ

Y ∈ ⋃
u∈A

Γ(u,X)

 ≥ PU (A), (33)

for all θ ∈ Θ and all A ∈ BU . Having observed X = x, the induced predictive belief function is

BelY |x(B) = PU
(
Γ(U,x) ⊆ B

)
,

for all B ∈ BY . The meaning of a predictive confidence structure is similar as that of a confi-
dence structure in estimation problems: for any measurable subset A of ΩU , the set C(A,X) =⋃
u∈A Γ(u,X) is a prediction region for Y at confidence level PU (A). Any subset B of ΩY thus

contains a realization of a prediction region for Y with confidence level at least equal to BelY |x(B).
Most of the time (i.e., for most of the observed data X and the future data Y ), regions B with a
high degree of belief thus contain the future data Y .

Link with frequentist predictive distributions. Just as confidence distributions are particular confi-
dence structures, frequentist predictive distributions [64] are a special kind of predictive confidence
structures. Any method for constructing predictive confidence distributions thus provides us with
predictive confidence structures. For example, the so-called pivotal method [65] starts with a
pivotal quantity W = q(Y,X) whose distribution function G(w) does not depend on θ. If q is
nondecreasing in Y , α prediction limits Lα(X) on Y by can be obtained by solving the inequality

P(W ≤ wα) = α

for Y , where wα is the α-quantile of W , leading to P(Y ≤ Lα(X)) = α. A frequentist predictive
distribution F̃Y |x(y) can then be defined by treating the confidence limits Lα(X) as α-quantiles,

i.e., F̃Y |x(Lα(x)) = α. The predictive distribution can then be obtained from G as

F̃Y |x(y) = G
{
q(y,x)

}
.
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WhenW is only asymptotically pivotal, i.e., when its distribution functionG(w; θ) depends on θ but
approaches a fixed distribution asymptotically, then we can approximate the distribution G(w; θ) in
the case of finite sample size by G̃(w) = G(w; θ̂), where θ̂ is an estimate of θ. We can then proceed
as if W was pivotal, which gives us an approximate predictive distribution F̃Y |x(y) = G̃

{
q(y,x)

}
.

Given a predictive distribution F̃Y |x(y), the interval [F̃−1
Y |x(α/2), F̃−1

Y |x(1 − α/2)] is an exact or

approximate predictive interval for Y . A general approach, [65] is to consider the following pivotal
or asymptotically pivotal quantity

W = F
Y |X,θ̂(X)

(Y ).

We assume that θ̂ is a consistent estimator of θ as the information about θ increases, and W is
asymptotically distributed as U [0, 1] [65]. The predictive distribution is then

F̃Y |x(y) = G
{
F
Y |x;θ̂(x)

(y)
}
, (34)

and G can be replaced by G̃ if W is asymptotically pivotal. When an analytical expression of
G̃ is not available, it can be estimated by a parametric bootstrap approach [65]. Specifically, let
x∗1, . . . ,x

∗
B and y∗1, . . . , y

∗
B be B bootstrap replicates of x and y, respectively. We can compute

the corresponding values w∗b = F
Y |x∗b ,θ̂(x

∗
b )

(y∗i ), b = 1, . . . , B, and the distribution of W can be

approximated by the empirical cdf

G̃(w) =
1

B

B∑
b=1

I(w∗b ≤ w).

Example 5. Let us consider again the sea-level data of Example 2, assuming X = (X1, . . . , Xn)
to be iid from the Gumbel distribution (16) and Y to be independently distributed according to
(17). Here, the exact distribution of the quantity W = F

Y |X,θ̂(X)
(Y ) is intractable, but it can be

estimated by the parametric bootstrap technique described above. Figure 9(a) shows the empirical
cdf G̃(v) estimated with B = 10, 000 bootstrap samples. As we can see, the distribution of W is
very close to uniform. Consequently, the predictive distribution F̃Y |x is very close to the plug-in
distribution F

Y |x,θ̂(x)
, as shown in Figure 9(b).

Prediction regions. Just as confidence structures can be derived from a nested family of confidence
regions, as shown in Section 3.1, predictive confidence structures can be derived from a nested
family of prediction regions. We recall that a prediction region at level 1 − α is a random set
Rα(X) such that

PX,Y |θ
(
Y ∈ Rα(X)

)
≥ 1− α. (35)

Assume that the family
(
Rα(X)

)
α∈[0,1]

is nested, i.e., a condition similar to (28) holds for any

(α, α′). Then, the multivalued mapping

Γ(u,x) = R1−u(x)

and U ∼ U [0, 1] induces a predictive confidence structure. (The proof is similar to the one given in
Section 3 for the confidence structure case.) Again, the predictive belief function BelY |x induced
by this predictive confidence structure is consonant.
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Figure 9: Frequentist predictive distribution for the Port Pirie data (Example 5). (a) bootstrap distribution G̃(w) of

pivotal variable W = FY |X,θ̂(X)(Y ); (b) predictive distribution F̃Y |x (solid line) and plug-in distribution FY |x,θ̂(x)

(dashed line).

This method is more general than the previous one based on predictive distributions, because
it can also be applied when Y is multidimensional. If, however, a predictive distribution F̃ (y|x) is
available, then a “prediction curve”, the equivalent of a confidence curve, can be obtained as

plY |x(y) = 2 min
{
F̃Y |x(y), 1− F̃Y |x(y)

}
, (36)

which parallels (30). Each α-cut of this contour function is a 1 − α prediction interval. The
predictive plausibility function is then

PlY |x(A) = sup
y∈A

plY |x(y)

for any A ⊆ ΩY .

Example 6. Figures 10(a) and 10(b) show, respectively, the contour function plY |x(y) and the
lower and upper cdfs for the consonant predictive belief function BelY |x constructed from the pre-

dictive distribution F̃Y |x of Example 5.

Use of a structural equation. A predictive confidence structure can also be built from a confidence
structure via a structural equation such as (9). More precisely, if Y can be written as a function of
the unknown parameter θ and some pivotal variable V as Y = ϕ(θ, V ), then we obtain a predictive
confidence structure by plugging a confidence structure on θ in this structural equation. This result
is expressed by the following theorem.
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Figure 10: Consonant predictive belief function for the Port Pirie data, derived from the predictive distribution of
Example 5. (a) contour function; (b) lower and upper cdfs.

Theorem 2. Let Y = ϕ(θ, V ) be a random variable, and Γ(U,X) a confidence structure for θ.
Then, the random set Π(U, V,X) = ϕ

(
Γ(U,X), V

)
is a predictive confidence structure for Y .

Proof. We need to prove that, for any measurable subset A ⊆ ΩU × ΩV and any θ ∈ Θ,

PX,Y |θ

Y ∈ ⋃
(u,v)∈A

ϕ
(
Γ(u,X), v

) ≥ PU,V (A).

For any v0 ∈ ΩV , let A(v0) = {u ∈ ΩU | (u, v0) ∈ A}. As Γ(U,X) is a confidence structure, we
have, for any θ ∈ Θ,

PX|θ

θ ∈ ⋃
u∈A(v0)

Γ(u,X)

 ≥ PU (A(v0)).

Now, θ ∈ ⋃
u∈A(v0)

Γ(u,X)

⇒
ϕ(θ, v) ∈

⋃
u∈A(v0)

ϕ(Γ(u,X), v0)

 .
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Hence,

PX|θ

ϕ(θ, v0) ∈
⋃

(u,v)∈A

ϕ(Γ(u,X), v)

 ≥
PX|θ

ϕ(θ, v0) ∈
⋃

u∈A(v0)

ϕ(Γ(u,X), v0)

 ≥
PX|θ

θ ∈ ⋃
u∈A(v0)

Γ(u,X)

 ≥ PU (A(v0)).

Consequently,

PX,Y |θ

Y ∈ ⋃
(u,v)∈A

ϕ
(
Γ(u,X), v

) =

∫
PX|θ

ϕ(θ, v0) ∈
⋃

(u,v)∈A

ϕ(Γ(u,X), v)

 fV (v0)dv0 ≥∫
PU (A(v0))fV (v0)dv0 = PU,V (A).

�
In the special case where θ is a scalar parameter and the confidence structure on θ is a confidence

distribution, it follows from Theorem 2 that the predictive confidence structure on Y = ϕ(θ, V ) is
a frequentist predictive distribution. Let us illustrate this point by the following example.

Example 7. Let X1, . . . , Xn, Y be iid from N (θ, σ2) with known σ2. From the upper α confidence
limit X + σ√

n
Φ−1(α) we get the confidence distribution of θ

F (θ,x) = Φ

(√
n(θ − x)

σ

)
,

which is the normal cdf with mean x and standard deviation σ/
√
n. The confidence structure on θ

is thus F−1(U,X) with U ∼ U [0, 1]. Now, we have the structural equation

Y = θ + V

with V ∼ N (0, σ2). We thus get the following predictive confidence structure predictive distribution
for Y :

Π(U, V,X) = F−1(U,X) + V,

which corresponds to a normal distribution with mean x and standard deviation σ
√

1 + 1/n,

F̃Y |x(y) = Φ

(
y − x

σ
√

1 + 1/n

)
(37)
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We can easily check that F̃Y |x defined by (37) is a frequentist predictive distribution: its α-quantile
is

F̃−1
Y |x(α) = x+ Φ−1(α)σ

√
1 +

1

n
,

and

PX,Y |θ

{
Y ≤ X + Φ−1(α)σ

√
1 +

1

n

}
= α.

�

In the previous example, both the confidence structure on θ and the predictive confidence
structure on Y induce probability distributions. When parameter θ is multidimensional, there is
no confidence distribution: the belief functions on θ and Y will usually be non-additive. This more
general case is illustrated by the following example.

Example 8. Consider again the sea-level example (Example 2). The structural equation is given
by (18). As mentioned in Section 3.1, the likelihood-based belief function, defined as the conso-
nant belief function with contour function equal to the relative likelihood (14), is an approximate
confidence structure when p = 2, as the sets

Γ(α,X) = {θ ∈ Θ | plθ|X(θ) ≥ α}

are approximate 1− α confidence regions. The predictive confidence structure ϕ(Γ(U,X), V ) with
(U, V ) uniformly distributed in [0, 1]2 is thus an approximate predictive confidence structure. We
note that the corresponding predictive belief function is identical to the one studied in [41, 25].
As the likelihood function is unimodal and continuous, the sets ϕ(Γ(u,X), v) are closed intervals.
Their lower and upper bounds are, respectively, the minimum and the maximum of

ϕ(θ, v) = µ− σ log log v−1/m

subject to plθ|x(θ) ≥ u. As ϕ(Γ(U,X), V ) is a predictive confidence structure, the sets

C(A,X) =
⋃

(u,v)∈A

ϕ
(
Γ(u,X), v

)
are confidence regions at level PU,V (A), for any measurable subset A of [0, 1]. For instance, consider
the following family of sets,

Aα =
[
1−
√

1− α, 1
]
×

[
1−
√

1− α
2

,
1 +
√

1− α
2

]
The corresponding 1− α confidence regions are closed intervalsmin

µ,σ

µ− σ log log

(
1−
√

1− α
2

)−1/m
 ,max

µ,σ

µ− σ log log

(
1 +
√

1− α
2

)−1/m

 ,

where the minimum and maximum are computed subject to the constraint plθ|x(θ) ≥
√

1− α. We
estimated the coverage probabilities by simulation, for α ∈ {0.5, 0.3, 0.1, 0.05}, by drawing B = 1000
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Table 3: Estimated coverage probabilities of prediction regions in Example 8.

1− α 0.5 0.7 0.9 0.95
p 0.881 0.938 0.989 0.998
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Figure 11: Port Pirie data: contour functions (a) and lower/upper cdfs (b) of three different predictive belief functions:
predictive confidence structure derived from the likelihood and the structural equation method (“likelihood-based
PCS”), predictive belief function obtained from the Cheng-Iles confidence band (“Cheng-Iles 95%”), and consonant
predictive confidence structure derived from the predictive distribution computed by Lawless’ method (“Consonant
PCS”).

observed datasets x∗b , b = 1, . . . , B and B realizations y∗b , b = 1, . . . , B of Y , from their respective

distributions with θ = θ̂. The results are shown in Table 3. We can see that the prediction regions
are very conservative. Other choices of sets A may lead to less conservative solutions.

Figures 11(a) and 11(b) show, respectively, the contour functions and the lower/upper cdfs
for the likelihood-based predictive belief function induced by the predictive confidence structure
ϕ(Γ(U,X), V ), together with those obtained from the Cheng-Iles 95% confidence band (Section
2.2), and consonant predictive confidence structure already shown in Figure 10. Figure 11(b) also
shows the predictive distribution F̃ (y|x).

Nonparametric predictive confidence structures. In the case where X1, . . . , Xn, Y is iid from a
univariate continuous distribution, a nonparametric confidence structure can be designed using
a construction procedure similar to that used to build confidence nets (Section 3.1). Specifically,
as all permutations of the n+ 1 values are equally likely, the events Y ≤ X(1), X(i) < Y ≤ X(i+1)

for i = 1, . . . , n− 1, and X(n) < Y have equal probability 1/(n+ 1). Consequently, the multivalued
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mapping

Γ(U,X) =


(−∞, X(1)] if U ≤ 1

n+1 ,

(X(i), X(i+1)] if i
n+1 < U ≤ i+1

n+1 , i = 1, . . . , n− 1

(X(n),+∞) if U > n
n+1 ,

with U ∼ U [0, 1], is a predictive confidence structure for Y .

4. Valid belief functions

As we have seen in Section 3, the notion of confidence structure is intimately related to those
of confidence or prediction regions. For estimation problem, a degree of belief Belθ|x(H) = α in
a proposition “θ ∈ H” means that H contains a realization C(x) of a confidence region for θ, at
a level at least equal to α. Because an α-level confidence region contains θ for at least 100α% of
the training samples, knowing that H contains such a confidence region with a high value of α is
strong evidence for H and should logically be reflected by a high degree of belief.

However, the condition defining a confidence structure is not very restrictive, as it can be met
by very different belief functions. For instance, in the case of a scalar parameter, a nested set
of confidence intervals may induce both a Bayesian belief function (the confidence distribution)
and a consonant one. The latter seems to be more in line with the usual interpretation of belief
functions, as it assigns plausibilities between 0 and 1 to single hypotheses {θ}. In some cases,
such plausibilities are equal to relative likelihoods, or a transformation thereof. In contrast, a
continuous confidence distribution assigns zero plausibility to any single hypothesis, which means
that no single parameter value can be considered as plausible after observing the data, a rather
counterintuitive statement.

In this section, we examine a different notion of calibration for belief functions, introduced in
[22] and [23]. This notion will be reviewed in Section 4.1 in the case of estimation problems. A
corresponding notion for prediction problems will be examined in Section 4.2.

4.1. Valid estimative belief functions

The notion of a credible [22, 23] or valid [18, 19] belief function captures the idea that a false
hypothesis (i.e., a subset H ⊂ Θ that does not contain the true value of the parameter) should
rarely receive a high degree of belief, or, conversely, a true hypothesis should rarely have a low
plausibility. Formally, a belief function Belθ|x is said to be valid for hypothesis H if, for any
α ∈ (0, 1),

sup
θ 6∈H

PX|θ

{
Belθ|X(H) ≥ 1− α

}
≤ α. (38)

The belief function Belθ|x is valid if it is valid for any H. This condition can be equivalently
expressed in different forms, as shown by the following proposition.

Proposition 1. Let Belθ|X be an estimative belief function. The following conditions are equiva-
lent:

1. ∀α ∈ (0, 1), ∀θ ∈ Θ, ∀H ⊂ Θ,

sup
θ 6∈H

PX|θ

{
Belθ|X(H) ≥ 1− α

}
≤ α. (39a)
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2. ∀α ∈ (0, 1), ∀θ ∈ Θ, ∀H ⊂ Θ,

sup
θ∈H

PX|θ

{
Plθ|X(H) ≤ α

}
≤ α. (39b)

3. ∀α ∈ (0, 1),

∀θ ∈ Θ, PX|θ

{
plθ|X(θ) ≤ α

}
≤ α. (39c)

4. For all α ∈ (0, 1), let Cα(X) = {θ ∈ Θ | plθ|X(θ) > α}. Then, ∀θ ∈ Θ,

PX|θ{Cα(X) 3 θ} ≥ 1− α. (39d)

Proof. We summarize the proof given in [18] for completeness. The equivalence between (39a) and
(39b) results from the equality

Plθ|X(H) = 1−Belθ|X(H).

Condition (39c) is a special case of (39b) withH = {θ}, and (39c) implies (39b) because Plθ|X(H) ≥
plθ|X(θ) whenever θ ∈ H, by the monotonicity of Plθ|X . The equivalence between (39c) and (39d)
results from the equivalence

PX|θ

{
plθ|X(θ) > α

}
≥ 1− α⇔ PX|θ

{
plθ|X(θ) ≤ α

}
≤ α.

�
Each of the equivalent definitions of validity in Proposition 1 allows us to grasp the meaning

of this notion. Condition (39b) means that, for any θ ∈ Θ and any H such that θ ∈ H, the
random variable Plθ|X(H) is stochastically greater than a random variable U with the standard
uniform distribution. This condition formalizes the requirement that true hypotheses should often
be assigned relatively high plausibilities. An immediate consequence is that, for a valid belief
function, the testing rule that rejects H whenever Plθ|X(H) ≤ α has type-I error at level α [18].
Condition (39d) means that the 100(1−α)% plausibility regions Cα(X) are 100(1−α)% confidence
regions for θ. Informally, this means that true hypotheses H rarely have a small plausibility.

We can remark that the validity condition does not imply that the belief function Belθ|X
conveys any information about θ. It is satisfied, in particular, by the vacuous belief function for

which plθ|X(θ) = 1 for all θ ∈ Θ: we then have PX|θ

{
plθ|X(θ) ≤ α

}
= 0 ≤ α for any α ∈ (0, 1).

A more stringent condition can be imposed by replacing the rightmost inequality in (39c) and the
inequality (39d) by equalities, i.e.,

∀θ ∈ Θ, PX|θ

{
plθ|X(θ) ≤ α

}
= α (40a)

and
PX|θ{Cα(X) 3 θ} = 1− α. (40b)

A belief function verifying (40a) or, equivalently (40b) for any θ and any α ∈ (0, 1) is said to be
efficient [18]. It is asymptotically efficient if these conditions hold in the limit as the sample size
tends to infinity.

Proposition 1 suggests a simple way to build valid belief functions from a nested set of confi-
dence regions Cα(X) verifying (27)-(28). The consonant belief function induced by the confidence
structure

Γ(u,x) = C1−u(x)
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with U ∼ U [0, 1] verifies {θ ∈ Θ | plθ|X(θ) > α} = Cα(X). Consequently, it is valid. This
remark shows that the notion of confidence structure and that of valid belief function coincide
in the case of consonant belief functions. However, other types of confidence structures such as
confidence distributions or C-boxes (such as constructed in Example 3) are not valid. A method to
generate valid belief functions using Inferential Models (IMs) has been introduced by Martin and
Liu [18, 19]. This method is summarized below.

Inferential models. The IM approach is an adaptation of Dempster’s method of inference [37, 66, 7]
that guarantees that the computed belief function is valid. As Dempster, Martin and Liu [18, 19]
start with a sampling model taking the form of a structural equation

X = ϕ(θ, U), (41)

where U is an auxiliary random variable with known distribution. Having observed X = x, we
must have

x = ϕ(θ, u∗) (42)

for some unknown u∗. If u∗ was known, then the set of possible values of θ could be found by
solving Equation 42 for θ. The set of solutions is

Γ(u∗;x) = {θ ∈ Θ | x = ϕ(θ, u∗)}.

At this point, Dempster’s method and the IM approach diverge. Dempster [7] postulates that
our beliefs about u∗ are represented by the probability measure PU . The resulting belief function
Belθ|x is then induced by the random set Γ(U ;x), i.e., for any hypothesis H,we have

Belθ|x(H) = PU
{

Γ(U ;x) ⊆ H | Γ(U ;x) 6= ∅
}

(43a)

Plθ|x(H) = PU
{

Γ(U ;x) ∩H 6= ∅
}
. (43b)

In general, belief function Belθ|x defined by (43) is not valid. To ensure this property, the IM
approach consists in “predicting” u∗ by a random set S(U), thus “weakening” the belief function
obtained in Dempster’s model. Let pl(u∗) = PU (S(U) 3 u∗) denote the contour function giving,
for each u∗, the probability that the random set S(U) hits u∗. The random set S(U) is said to be
valid if

PU (pl(U) ≤ α) ≤ α, (44)

for all α ∈ (0, 1), i.e., if the random variable pl(U) stochastically dominates the standard uniform
distribution. A typical choice for the mapping u→ S(u) in the frequent case where U ∼ U [0, 1] is

S(u) = [u/2, 1− u/2].

The random set S(U) then induces a consonant belief function with contour function

pl(u) = 1− |1− 2u|,

and
PU (pl(U) ≤ α) = PU (1− |1− 2U | ≤ α) = α.
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The resulting belief function on θ is then the belief function induced by the random set Γx(S(U)),
i.e., we have

Belθ|x(H) = PU
{

Γ(S(U);x) ⊆ H | Γ(S(U);x) 6= ∅
}

(45a)

Plθ|x(H) = PU
{

Γ(S(U);x) ∩H 6= ∅
}
. (45b)

It can easily be shown that the validity of S(U) implies the validity of the belief function defined
by (45) ([18, Theorem 2]).

Example 9. As in Example 3, consider again the case where X has a binomial distribution B(n, θ)
and we wish to estimate θ. Here, a possible choice of a structural equation is

FX|θ(X − 1) ≤ 1− U < FX|θ(X), (46)

with U ∼ U [0, 1] (see, e.g. [23]). Using again formula (25) relating the binomial and beta cdfs,
(46) can be written as

1− pBetaX,n−X+1(θ) ≤ 1−U < 1− pBetaX+1,n−X(θ). (47)

Solving Equation (47) for θ, we get the set of solutions

ΓX(U) =
[
qBetaX,n−X+1(U), qBetaX+1,n−X(U)

]
. (48)

The belief function induced by the random set (48) corresponds to Dempster’s solution in [37]. It
is also identical to the C-box (26) obtained in Example 3. It is thus a confidence structure, but the
induced belief function is not valid. To obtain a valid belief function, we need to replace U in (48)
by a valid random set, such as S(U) = [U/2, 1− U/2]. We then get the IM

ΓX(S(U)) =

[
qBetaX,n−X+1

(
U

2

)
, qBetaX+1,n−X

(
1− U

2

)]
. (49)

We can see that the focal intervals (49) are nested, and they are the Clopper-Pearson confidence
intervals (4). Consequently, the IM approach yields the consonant belief function already found in
Example 4, by applying formula 31 to the C-box (48). Its contour function plθ|x(θ) is the Clopper-
Pearson confidence curve shown in Figure 8 for the case n = 100 and x = 30. We can notice
that another choice of valid predictive random set yields another belief function, not necessarily
consonant. For instance, the random set S′(U) = [U/2, (1 + U)/2] is also valid, and it yields the
IM

ΓX(S′(U)) =

[
qBetaX,n−X+1

(
U

2

)
, qBetaX+1,n−X

(
1 + U

2

)]
. (50)

As the bounds of ΓX(S′(U)) are co-monotonic, this random set defines a p-box. However, its
contour function is identical to that induced by (49).
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4.2. Valid predictive belief functions

The notion of validity can straightforwardly be extended to predictive belief functions [24].
Using the notations introduced in Section 1, a predictive belief function with contour function
plY |X is said to be valid if the random variable plY |X(Y ) stochastically dominates the uniform
distribution, i.e., if

PX,Y |θ

{
plY |X(Y ) ≤ α

}
≤ α, (51)

for any θ ∈ Θ and any α ∈ (0, 1). Using the same line of reasoning as in Section 4.1, it is easy
to show that a predictive belief function with contour function plY |X is valid if and only if the
100(1− α)% plausibility sets

Rα(X) = {y ∈ ΩY | plY |X(y) > α}

are 100(1− α)% prediction regions, i.e., if

PX,Y |θ{Rα(X) 3 Y } ≥ 1− α, (52)

for any θ ∈ Θ and any α ∈ (0, 1). Consequently, a valid predictive belief function can be constructed
from a nested family of confidence regions {Rα(X)} for α ∈ (0, 1), through the multi-valued
mapping

Γ(u,x) = R1−u(x)

with U ∼ U [0, 1]. Such a family of confidence regions can be obtained, for instance, by first
constructing a predictive distribution such as (34) using Lawless’ method [65], and then using
transformation (36) to obtain a contour function plY |x. This contour function defines a valid and
consonant predictive belief function. In other words, a consonant predictive confidence structure
induces a valid predictive belief functions. This construction, which, to the best of our knowledge,
has not been considered before as a means to obtain valid predictive belief functions, was illustrated
in Example 5 (see Figure 10).

Another method for constructing valid predictive belief functions was recently proposed by
Martin and Lingham in [24]. Basically, the method uses two structural equations for X and Y .
Solving the first equation for θ and plugging in to the second equation, they get a new equation
relating Y to X and an auxiliary variable U . Predicting U using a valid random set S(U) verifying
(44) then yields a valid predictive belief function for Y . The following example is taken from [24].

Example 10. Assume that X ∼ B(n, θ) and Y ∼ B(m, θ) are two binomial variables with the
same parameter θ and known numbers of trials n and m. Using again the structural equation (46),
we get

FX|θ(X − 1) ≤ 1− U < FX|θ(X) (53)

and
FY |θ(Y − 1) ≤ 1− V < FY |θ(Y ), (54)

where (U, V ) has a uniform distribution in [0, 1]2. Writing (53) in the form (47) using (25), and
solving for θ, we get

qBetaX,n−X+1(U) ≤ θ < qBetaX+1,n−X(U). (55)

Solving (54) for Y , we obtain

F−1
Y |θ(1− V ) < Y ≤ 1 + F−1

Y |θ(1− V ). (56)
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Using the fact that F−1
Y |θ(v) is an increasing function of θ for all v, we can plug in the interval (55)

into (56) to get
F−1
Y |θ1(X,U)(1− V ) < Y ≤ 1 + F−1

Y |θ1(X,U)(1− V ), (57)

where θ1(X,U) and θ2(X,U), respectively, the lower and upper endpoints of interval (55). Predict-
ing U and V using valid random sets, we get a valid predictive belief function of Y .

According to Martin and Lingham in [24], the prediction intervals Rα(X) obtained using the
method detailed in Example 10 are close to those constructed using Wang’s method described
in [67]. For this problem, we could thus equivalently start from these prediction intervals and
build a valid consonant belief function as explained above. In general, the available techniques for
constructing confidence regions, both for continuous and for discrete distributions, provide easy
ways to obtain valid predictive belief functions for a wide range of problems. A more extensive
comparison between this approach and the recent method proposed in [24] remains to be performed.

5. Summary and Conclusions

In this paper, we have tried to put in perspective recent streams of research on statistical
inference in the belief function framework, which propose different ways to compute degrees of
belief with frequency-related interpretation from statistical evidence. Three different definitions
of a calibrated belief function, recapitulated in Table 1, have been put forward. Each of these
definitions relates degrees of belief with long-run frequencies in repeated experiments, ensuring
that true statements are “often” assigned a high degree of belief, while false statements “often”
have a low plausibility. Consider, for instance, the problem of predicting some future observation
Y based on past observation X = x, and consider some statement “Y ∈ B” for some B ∈ BY . For
some predictive belief function BelY |x, let BelY |x(B) = βB and PlY |x(B) = 1−BelY |x(B) = πB.

• If BelY |x is a predictive belief function at confidence level 1−α, then [βB, πB] is a realization
of a 100(1−α)% prediction interval for PY |X(B). In other words, this interval was computed
by a method which, most of the time, provides an interval that encloses the conditional
probability of the event Y ∈ B. A high value of βB (respectively, a low value of πB) is thus
logically associated with a high degree of belief that the event Y ∈ B will (respectively, will
not) happen.

• If BelY |x is induced by a predictive confidence structure, then we know that B and B contain
realizations of prediction regions for Y at levels, respectively, βB and 1− πB. Again, a high
value of βB (respectively, a low value of πB) corresponds to strong evidence in favor of
(respectively, against) B.

• Assume BelY |x is a valid predictive belief function. For any y ∈ B, plY |x(y) ≤ πB. The event
plY |X(Y ) ≤ πB has a probability less than πB. If πB is small, we are thus inclined to believe

that the event Y ∈ B will not occur. Conversely, for any y 6∈ B, plY |x(y) ≤ Pl(B) = 1− βB,
and the event plY |X(Y ) ≤ 1− βB has a probability less than 1− βB: a high value of βB thus
corresponds to a good reason to believe that the event Y ∈ B will happen.

It results from this discussion that all three definitions of calibration make sense and are con-
sistent with the usual semantics of belief functions. From a practical point of view, the necessity
to fix a confidence level 1 − α in the first approach can be seen as a drawback. The other two
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approaches do not have this limitation, and they are equivalent in the case of consonant belief func-
tions. The availability of simple procedures for constructing such belief functions, based, e.g., on
nested families of confidence or prediction intervals, is another argument in favor of these notions.

We believe that frequentist interpretations of degrees of belief such as discussed in this paper
may facilitate the acceptance of belief function analyses by scientist and engineers (see, e.g., [68] for
an engineering application of belief functions and statistical inference). On the other hand, it must
be stressed that, by making belief functions compatible with frequentist concepts such as confidence
regions and confidence distributions, we generally loose compatibility with Bayesian inference. In
particular, combining a data-conditional belief function, constructed using any of the methods
reviewed in this paper, with a probabilistic prior using Dempster’s rule will not yield the Bayesian
posterior. This is in contrast with Dempster’s method of inference [7], and with the likelihood-
based methods described in [14, 25]. It thus seems that “frequentist” and “generalized Bayesian”
views of belief functions cannot be easily reconciled and have to coexist, just as frequentist and
Bayesian procedures in mainstream statistics [69]. It remains to be seen if a useful compromise
between these two approaches can be found, perhaps drawing ideas from the calibrated Bayes
paradigm [70].

Acknowledgement

This research was supported by a grant from the Beijing Government as part of the “Overseas
Talents” program.

References

[1] A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical
Statistics 38 (1967) 325–339.

[2] G. Shafer, A mathematical theory of evidence, Princeton University Press, Princeton, N.J., 1976.
[3] G. Shafer, Perspectives in the theory and practice of belief functions, International Journal of Approximate

Reasoning 4 (1990) 323–362.
[4] T. Denoeux, 40 years of Dempster-Shafer theory, International Journal of Approximate Reasoning 79 (2016)

1–6.
[5] G. Shafer, A mathematical theory of evidence turns 40, International Journal of Approximate Reasoning 79

(2016) 7–25.
[6] A. P. Dempster, A generalization of Bayesian inference (with discussion), J. R. Statistical Society B 30 (1968)

205–247.
[7] A. P. Dempster, The Dempster-Shafer calculus for statisticians, International Journal of Approximate Reasoning

48 (2) (2008) 365–377.
[8] A. W. F. Edwards, Likelihood (expanded edition), The John Hopkins University Press, Baltimore, USA, 1992.
[9] G. A. Barnard, G. M. Jenkins, C. B. Winsten, Likelihood inference and time series, Journal of the Royal

Statistical Society 125 (3) (1962) 321–372.
[10] A. Birnbaum, On the foundations of statistical inference, Journal of the American Statistical Association 57 (298)

(1962) 269–306.
[11] L. A. Wasserman, Belief functions and statistical evidence, The Canadian Journal of Statistics 18 (3) (1990)

183–196.
[12] Y. Y. Chen, Statistical inference based on the possibility and belief measures, Transactions of the American

Mathematical Society 347 (5) (1995) 1855–1863.
[13] M. Aickin, Connecting Dempster-Shafer belief functions with likelihood-based inference, Synthese 123 (2000)

347–364.
[14] T. Denœux, Likelihood-based belief function: justification and some extensions to low-quality data, International

Journal of Approximate Reasoning 55 (7) (2014) 1535–1547.

32



[15] T. Denœux, Rejoinder on “likelihood-based belief function: Justification and some extensions to low-quality
data”, International Journal of Approximate Reasoning 55 (7) (2014) 1614–1617.

[16] T. Denœux, Constructing belief functions from sample data using multinomial confidence regions, International
Journal of Approximate Reasoning 42 (3) (2006) 228–252.

[17] A. Aregui, T. Denœux, Constructing predictive belief functions from continuous sample data using confidence
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