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Markov networks are extensively used to model complex sequential, spatial, and relational 
interactions in a wide range of fields. By learning the Markov network independence 
structure of a domain, more accurate joint probability distributions can be obtained for 
inference tasks or, more directly, for interpreting the most significant relations among 
the variables. Recently, several researchers have investigated techniques for automatically 
learning the structure from data by obtaining the probabilistic maximum-a-posteriori 
structure given the available data. However, all the approximations proposed decompose 
the posterior of the whole structure into local sub-problems, by assuming that the 
posteriors of the Markov blankets of all the variables are mutually independent. In this 
work, we propose a scoring function for relaxing such assumption. The Blankets Joint 
Posterior score computes the joint posterior of structures as a joint distribution of the 
collection of its Markov blankets. Essentially, the whole posterior is obtained by computing 
the posterior of the blanket of each variable as a conditional distribution that takes into 
account information from other blankets in the network. We show in our experimental 
results that the proposed approximation can improve the sample complexity of state-of-
the-art competitors when learning complex networks, where the independence assumption 
between blanket variables is clearly incorrect.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A Markov network (MN) is a popular probabilistic graphical model that efficiently encodes the joint probability distribu-
tion for a set of random variables of a specific domain [1–3]. MNs usually represent probability distributions by using two 
interdependent components: an independence structure, and a set of numerical parameters over the structure. The first is a 
qualitative component that represents structural information about a problem domain in the form of conditional indepen-
dence relationships between variables. The numerical parameters are a quantitative component that represents the strength 
of the dependences in the structure. There is a large list of applications of MNs in a wide range of fields, such as computer 
vision and image analysis [4–6], computational biology [7], biomedicine [8,9], and evolutionary computation [10,11], among 
many others. For some of these applications, the model can be constructed manually by human experts, but in many other 
problems this can become unfeasible, mainly due to the dimensionality of the problem.
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Learning the model from data consists of two interdependent problems: learning the structure; and given the structure, 
learning its parameters. This work focuses on the task of learning the structure, which is useful for a variety of tasks. The 
structures learned may be used to construct accurate models for inference tasks (such as the estimation of marginal and 
conditional probabilities) [12–14], and may also be interesting per se, since they can be used as interpretable models that 
show the most significant interactions of a domain [15–19]. The first scenario is known in practice as the density estimation 
goal of learning, and the second one is known as the knowledge discovery goal of learning [Chapter 16 [3]].

An interesting approach to MN structure learning is to use constraint-based (also known as independence-based) algo-
rithms [20–23]. Such algorithms proceed by performing statistical independence tests on data, and discard all structures 
inconsistent with the tests. This is an efficient approach, and it is correct under the assumption that the distribution can be 
represented by a graph, and that the tests are reliable. However, the algorithms that follow this approach are quite sensitive 
to errors in the tests, which may be unreliable for large conditioning sets [20,3]. A second approach to MN structure learn-
ing is to use score-based algorithms [24,25,15,26]. Such algorithms formulate the problem as an optimization, combining 
a strategy for searching through the space of possible structures with a scoring function that measures the fitness of each 
structure to the data. The structure learned is the one that achieves the highest score in the search.

It is important to mention that both constraint-based and score-based approaches have been originally motivated by 
distinct learning goals. According to the existing literature [3], constraint-based methods are generally designed for the 
knowledge-discovery goal of learning [22,21], and their quality is often measured in terms of the correctness of the structure 
learned (structural errors). In contrast, most score-based approaches have been designed for the density estimation goal of 
learning [12–14], and they are in general evaluated in terms of inference accuracy. For this reason, score-based algorithms 
often work by considering the whole MN at once during the search, interleaving the parameter learning step. This makes 
them more accurate for inference tasks. However, since learning the parameters is known to be NP-hard for MNs [27], it 
has a negative effect on their scalability.

Recently, there has been a surge of interest towards efficient methods based on a strategy that follows a score-based 
approach, but with the knowledge discovery goal in mind. Basically, an undirected graph structure is learned by obtaining 
the probabilistic maximum-a-posteriori structure given the available data [28,19,29]. This hybrid strategy achieves scalability, 
as well as reliable performance. Such contributions consist in the design of efficient scoring functions for MN structures, 
expressing the problem formally as follows: given a complete training data set D , find an undirected graph G� such that

G� = arg max
G∈G Pr(G|D), (1)

where Pr(G|D) is the posterior probability of a structure given D , and G is the family of all the possible undirected graphs 
for the domain size. This class of algorithms has been shown to outperform constraint-based algorithms in the quality of the 
learned structures, with competitive computational complexities. The method proposed in this paper follows this approach.

Since there are no feasible exact methods for computing the posterior of MN structures, different approximations have 
been proposed. An important assumption commonly made by the current state-of-the-art methods is to suppose that the 
posterior of the structure is decomposable [30,31,3,28,19,29]. It means that the whole posterior can be computed as a 
product of the posteriors of the Markov blankets that compose the structure, which are smaller posteriors that can be 
computed independently. In fact, this is a good approximation that improves the efficiency of search. The research line of 
this work aims at designing a better approximation of the posterior, by relaxing this independence assumption. This work’s 
contribution is the Blankets Joint Posterior (BJP), a scoring function that estimates Pr(G|D) as the joint posterior probability of 
the Markov blankets of G . This is achieved by formulating Pr(G|D) in a novel way that relaxes the independence assumption 
between the blankets. Essentially, the whole posterior is obtained by computing the posterior of the blanket of each variable 
as a conditional distribution that takes into account information from other blankets in the network. In our experiments 
we show that the proposed approximation can improve the sample complexity of state-of-the-art scores when learning 
networks with complex topologies, that commonly appear in real-world problems.

After providing some preliminaries, notations and definitions in Section 2, we introduce the BJP scoring function in 
Section 3. Section 4 presents the experimental results for several study cases. Finally, Section 5 summarizes this work, and 
poses several possible directions of future work.

2. Background

We begin by introducing the notation used for MNs. Then we provide some additional background about these models 
and the problem of learning their independence structure, and also discuss the state-of-the-art of MN structure learning.

2.1. Markov networks

Let V be a finite set of indexes, with lowercase subscripts for denoting particular indexes, e.g., i, j ∈ V , and uppercase 
subscripts for subsets of indexes, e.g., W ⊆ V . Let XV be the set of random variables of a domain, denoting single variables 
as single indexes in V , e.g., Xi, X j ∈ XV where i, j ∈ V . For a MN representing a probability distribution P (XV ), its two 
components are denoted as follows: G , and θ . G is the structure, an undirected graph G = (V , E) where the nodes V =
{0, ..., n − 1} are the indices of each random variable Xi of the domain, and E ⊆ {V × V } is the edge set of the graph. 
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A node i is a neighbor of j when the pair (i, j) ∈ E . The edges encode direct probabilistic influence between the variables. 
Similarly, the absence of an edge manifests that the dependence could be mediated by some other subset of variables, 
corresponding to conditional independences between these variables.

A variable Xi is conditionally independent of another non-adjacent variable X j given a set of variables X Z if Pr(Xi |
X j, X Z ) = Pr(Xi | X Z ). This is denoted by 〈Xi ⊥ X j |X Z 〉 (or 〈Xi �⊥X j |X Z 〉 for the dependence assertion). As proven by [32], 
the independences encoded by G allow the decomposition of the joint distribution into simpler lower-dimensional functions 
called factors, or potential functions. The distribution can be factorized as the product of the potential functions φc (V c) over 
each clique V c (i.e., each completely connected sub-graph) of G , that is

P (V ) = 1

Z

∏
c∈cliques(G)

φc(V c), (2)

where Z is a constant that normalizes the product of potentials. Such potential functions are parameterized by the set of 
numerical parameters θ .

For each variable Xi of a MN, its Markov blanket is composed by the set of all its neighbor nodes in the graph. We 
denote the blanket of a variable Xi as B Xi . An important concept that is satisfied by MNs is the Local Markov property, 
formally described as:

Local Markov property. A variable is conditionally independent of all its non-neighbor variables given its MB. That is

〈Xi ⊥ {XV \ (B Xi ∪ Xi)} | B Xi 〉. (3)

By using this property, the conditional independences of P (XV ) can be read from the structure G . This is done by consid-
ering the concept of separability. Each pair of non-adjacent variables (Xi, X j) is said to be separated by a set of variables 
X Z ⊆ XV \ {Xi, X j} when every path between Xi and X j in G contains some node in X Z [1].

In machine learning, statistical independence tests are a well-known tool to decide whether a conditional independence 
is supported by the data. Examples of independence tests used in practice are Mutual Information [33], Pearson’s χ2 and 
G2 [34], the Bayesian statistical test of independence [35], and the Partial Correlation test for continuous Gaussian data 
[20]. Such tests require the construction of a contingency table of counts for each complete configuration of the variables 
involved; as a result, they would have an exponential cost in the number of variables [36]. For this reason, the use of 
the local Markov property has a positive effect for learning independence structures, allowing the use of smaller tests. 
Accordingly, the BJP score introduced in this work takes advantage of this property by computing a set of conditional 
probabilities that are more reliable and less expensive.

2.2. Scoring metrics for MN structure learning

The MN structure is learned from a training dataset D = {D1, ..., Dd}, assumed to be a representative sample of the 
underlying distribution P (XV ). Commonly, D has a tabular format, with a column for each variable of the domain XV , and 
one row per data point. This work assumes that each variable is discrete, with a finite number of possible values, and that 
no data point in D has missing values. As mentioned in the introduction, this work focuses on methods for computing 
Pr(G|D). For this reason, in this subsection we review two recently proposed scoring functions that approximate it: the 
Marginal Pseudo-Likelihood (MPL) score [19], and the Independence-based score (IB-score) [28].

2.2.1. Marginal pseudo-likelihood score
Marginal Pseudo Likelihood (MPL) is a recently proposed scoring function for MN structure learning [19], based on the 

computation of the pseudo-likelihood score for Markov networks. In [19] it was shown that MPL is a small sample analytical 
version of the pseudo-Bayesian information criterion (PIC) score, a previous work introduced by [29] as a modification 
of the BIC score for Markov networks. Both MPL and PIC scores approximate the posterior of structures by considering 
P (G | D) ∝ P (D | G) × P (G). Since the data likelihood of the graph P (D | G) is in general extremely hard to evaluate, they 
utilize the well-known approximation called pseudo-likelihood [37]. The contribution of MPL has been designed in order to 
be a tractable alternative, that can be evaluated in closed form for chordal and non-chordal Markov networks.

The MPL score approximates the posterior of an independence structure by using standard Bayesian calculations, with 
the closed-form expression

P (D | G) =
n∏

j=1

q j∏
l=1

�(α jl)

�(α jl + c jl)

r j∏
i=1

�(αi jl + ci jl)

�(αi jl)
, (4)

where n is the number of variables in the domain, q j is the number of configurations of B X j , r j is the number of configu-
rations of variable X j , ci jl is the frequency in D of the i jl configuration (corresponding to the i-th configuration of X j and 
l-th configuration of its blanket B X j ), and αi jl are the hyperparameters, computed according to αi jl = N

r j .q j
, with N being the 

equivalent sample size, used to adjust the prior.
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The above formula can be factorized into variable-wise marginal conditional likelihoods, that is, a sum of variable-wise 
scores. This decomposition is exploited to speed-up the search procedure for finding the MPL-optimal structure. For this an 
efficient algorithm is proposed by its authors in order to ensure applicability in high-dimensional settings. The optimization 
technique proposed exploits the structural decomposition of the score by breaking down the problem into two phases. In 
a first phase, the problem is decomposed into n independent Markov blanket discovery problems, locally optimizing the 
MPL for each node. For this, it uses an approximate deterministic hill-climbing procedure similar to the well-known IAMB 
algorithm [38]. In a second optimization phase, the learned Markov blankets are combined into a coherent structure which 
is MPL-optimal. This phase uses a greedy hill-climbing algorithm, searching for the structure with maximum MPL score, but 
only restricting the search space to the conflicting edges (i.e., edges learned for only one of its two variables). A detailed 
description of this algorithm can be seen at [19, Section 4.2 on p. 10].

2.2.2. The Independence-based score
The independence-based score (IB-score) [28] is also based on the computation of the posterior, but uses the statistics of 

a set of conditional independence tests. This score computes the posterior Pr(G | D) by combining the outcomes of a set of 
conditional independence assertions that completely determine G . Such a set is called the closure of the structure, denoted 
C(G). Thus, when using IB-score, the problem of structure learning is posed as the maximization of the posterior of the 
closure for each structure:

G� = arg max
G∈G Pr(C(G) | D). (5)

Applying the chain rule over the posterior of the closure,

Pr(C(G) | D) =
∏

ci∈C(G)

Pr(ci |c1, . . . , ci−1, D), (6)

the IB-score approximates this probability by assuming that all the independence assertions ci in the closure C(G) are 
mutually independent. The resulting scoring function is computed as

IB-score(G) =
∑

ci∈C(G)

log Pr(ci | D), (7)

where each term log Pr(ci | D) is computed by using the Bayesian statistical test of conditional independence [35,39]. Ap-
pendix C presents a summary of the formulas used by this statistical test, which is also used in our BJP scoring function, 
proposed in the next section.

The C(G) set proposed by the authors of the IB-score is the Markov blanket closure [28, Definition 2], formally proven 
to correctly and completely determining a MN structure. This set is obtained by determining the blanket of each variable 
Xi ∈ XV with the following set of conditional independence and dependence assertions:{

〈Xi ⊥ X j|B Xi 〉 : X j /∈ B Xi

} ⋃ {
〈Xi �⊥X j|B Xi \ {X j}〉 : X j ∈ B Xi

}
. (8)

That is, for each neighbor of Xi (X j ∈ Bi) a conditional dependence assertion between both variables conditioning on Bi \
{X j} is added to C(G); and for each non-neighbor of Xi (X j /∈ Bi ), a conditional independence assertion between both 
variables conditioned on Bi is added to C(G).

Together with the IB-score, an efficient algorithm called IBMAP-HC was presented to learn the structure by using a 
heuristic local search over the space of possible structures. IBMAP-HC has been proven to significantly outperform its 
independence-based competitors in terms of quality. A detailed description of this algorithm can be seen at [28, on p. 6]. 
The optimization made by IBMAP-HC is a heuristic hill-climbing procedure. The search is initialized by computing the score 
for an empty structure (with no edges), and n nodes. The hill-climbing search starts with a loop that iterates by selecting 
the next candidate structure at each iteration. A naïve implementation of hill-climbing would select the neighbor structure 
with maximum score, computing the score for the 

(n
2

)
neighbors that differ in one edge. Such an expensive computation is 

avoided by selecting the next candidate with a heuristic that estimates the optimal neighbor by flipping the most promising 
edge, that is, the edge with the lowest local contribution to the score. For this, the heuristic simply decomposes the pos-
terior of the structure into 

(n
2

)
pairwise scores, since the number of neighbors differing by one edge is the same than the 

number of different pairs of variables. Then, the heuristic simply flips the edge corresponding to the pair with the lowest 
pairwise score. Once the next candidate is selected, its score is computed to be compared to the best scoring structure 
found so far. The algorithm stops when the neighbor proposed does not improve the current score.

3. Blankets Joint Posterior scoring function

We introduce now our main contribution, the Blankets Joint Posterior (BJP) scoring function. Consider some graph G
representing the independence structure of a positive MN. It is a well-known fact that, by exploiting the graphical properties 
of such models, the independence structure can be decomposed as the unique collection of the blankets of the variables 
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[3, Theorem 4.6 on p. 121]. Thus, the computation of the posterior probability of G given a dataset D is equivalent to the 
joint posterior of the collection of blankets of G , that is,

Pr(G | D) = Pr(B X0 , B X1 , . . . , B Xn−1 | D). (9)

In contrast with previous works, where the blanket posteriors are simply assumed to be independent [19,28,29], we apply 
the chain rule to (9), obtaining

Pr(B X0 , . . . , B Xn−1 | D) =
n−1∏
i=0

Pr

(
B Xi

∣∣∣∣∣
{

B X j

}i−1

j=0
, D

)
. (10)

In this way, the posterior probability of each blanket can be described in terms of conditional probabilities, using the training 
dataset D as evidence, together with the blanket of the other variables. Thus, the joint posterior of all the blankets can be 
computed taking advantage of how the blankets are mutually related, instead of assuming them to be independent.

The computation of Pr(B X0 , . . . , B Xn−1 | D) has to be done progressively, first calculating the posterior of the blanket of 
a variable directly from data, and then, the knowledge obtained so far can be used as evidence to compute the posterior 
of the blankets of other variables. However, this decomposition is not unique, since each possible ordering for the variables 
is associated to a particular decomposition. The basic idea underlying the computation of BJP is to sort the blankets by 
their size in ascending order, where by size we mean the number of configurations of the Markov blanket. This ordering 
is optimal, because it avoids the computation of expensive and unreliable probabilities, thus improving data efficiency. This 
is due to the fact that as the size of the blanket increases, greater amounts of data are required for accurately estimating 
its posterior probability. By using the proposed ordering, the posterior for variables with fewer blankets are computed first, 
and this information is used as evidence when computing the posterior for variables with bigger blankets. As a result, the 
information obtained from the more reliable blanket posteriors is used for computing less reliable blankets posteriors. It 
is important to note that, in theory, the correctness of BJP does not depend on which ordering is used. However, this is 
important for practical implementation because it can affect the data efficiency of the score. In Section 3.1 we show a 
complete example of the BJP computation which illustrates the importance of the ordering used. Additionally, Appendix B
extends the example with an empirical test for the performance of BJP when different arbitrary orderings are used.

We now proceed to find a closed-form expression for computing the BJP score. Given an undirected graph G , let ψ
denote the ordering vector which contains the variables sorted by their size in ascending order. Therefore, we reformulate 
(10) as

B J P (G) =
n−1∏
i=0

Pr

(
Bψi

∣∣∣∣∣ {Bψ j
}i−1

j=0 , D

)
. (11)

We now proceed to express the posterior of a blanket in terms of probabilities of conditional independence and depen-
dence assertions. The computation of Pr(Bψi |{Bψ j }i−1

j=0, D) can be derived from the posterior of the independences and 
dependences represented by each blanket:

Pr

(
Bψi

∣∣∣∣∣ {Bψ j
}i−1

j=0 , D

)
=

∏
ψk /∈Bψi

Pr

(
〈ψi ⊥ ψk|Bψi 〉

∣∣∣∣∣ {Bψ j
}i−1

j=0 , D

)
×

∏
ψk∈Bψi

Pr

(
〈ψi �⊥ψk|Bψi \ {ψk}〉

∣∣∣∣∣ {Bψ j
}i−1

j=0 , D

)
.

(12)

In this way, the whole score is the product of the posterior probability of each blanket, computed in terms of posterior 
probabilities conditioned on other blankets. The particular way of determining the posterior of each blanket of (12) is 
inspired by the Markov blanket closure (see Section 2.2.2).

The two factors in (12) can be interpreted as follows:

• The first product computes the probability of independence between ψi and its non-adjacent variables, conditioned on 
its blanket, given the previously computed blankets and the dataset D . It is computed as

Pr

(
〈ψi ⊥ ψk|Bψi 〉

∣∣∣∣∣ {Bψ j
}i−1

j=0 , D

)
=

⎧⎪⎪⎨
⎪⎪⎩

Pr(〈ψi ⊥ ψk|Bψi 〉 | D)

if i < k,

1 if i > k.

(13)

Here, i < k indexes over the variables for which the blanket posterior probability is not already computed. For the 
remaining variables the posterior of independence will be simply inferred as 1.
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Fig. 1. Example of an undirected graph with 4 nodes and hub topology.

• The second product in (12) computes the posterior probability of dependence between ψi and its adjacent variables, 
conditioned on its remaining neighbors, given the blankets computed previously and the dataset D . It is computed as

Pr

(
〈ψi �⊥ψk|Bψi \ {ψk}〉

∣∣∣∣∣ {Bψ j
}i−1

j=0 , D

)
=

⎧⎪⎪⎨
⎪⎪⎩

Pr(〈ψi �⊥ψk|Bψi \ {ψk}〉 | D)

if i < k,

1 if i > k.

(14)

Here, again i < k indexes over the variables for which the blanket posterior is not already computed. For the remaining 
variables the posterior of dependence will be inferred as 1.

The only approximation in BJP is made in (12), by assuming that all the independence and dependence assertions that 
determine the blanket of a variable ψi are mutually independent. This is a common assumption, made implicitly by all the 
constraint-based MN structure learning algorithms [23], and also by the IB-score, MPL, and the PIC scoring functions. For the 
computation of the posterior probabilities of independence Pr(〈ψi ⊥ ψk|Bψi 〉 | D) and dependence Pr(〈ψi �⊥ψk|Bψi \{ψk}〉 | D)

used in (13) and (14), respectively, BJP uses the Bayesian test of [39,35,40], in the same way as the IB-score explained in 
the previous section. Precisely, this statistical test computes the posterior of independence and dependence assertions, and 
has been proven to be statistically consistent in the limit of infinite data. A summary of the formulas used by the Bayesian 
test is shown in Appendix C.

An important property of a scoring function is the correctness. By correctness we mean that, under the assumption 
that the generating distribution is faithful to a Markov network structure, the probabilities computed in (11) and (12) are 
sufficient to calculate the posterior probability of a MN structure. The following theorem establishes that the BJP scoring 
function is indeed correct:

Theorem 1. Let G be an undirected independence structure of a positive graph-isomorph distribution P (XV ). The BJP scoring function 
of G is “correct” in the sense that the posterior probability that it computes is equivalent to the posterior probability of a MN structure.

Proof of Theorem 1. The formal proof of this theorem is presented in Appendix A.

We now briefly discuss the computational complexity of the BJP scoring function. For a fixed MN structure, the compu-
tational cost of BJP is directly determined by the number of statistical tests that must be performed on the data. As stated 
in (11), BJP computes the posterior probability of the blanket for the n variables of the domain. For each variable, it must 
perform n − 1 statistical tests on data, by using (12). Then, one half of the tests are inferred when computing the posterior 
of independences and dependences of (13) and (14). Thus, only n(n−1)

2 tests are required for computing the BJP score of a 
structure.

3.1. Example of BJP score computation

For the sake of clarity, this section shows the complete computation of the BJP score for an illustrative example. Consider 
an example probability distribution Pr(XV ) with four binary variables XV = {X0, X1, X2, X3}, represented by a MN whose 
independence structure G is given by the graph of Fig. 1. Given a dataset D , the BJP score can be computed by following 
steps:

a) Build a vector ψ , with the nodes sorted by their size in ascending order. Since all the variables have the same domain 
size, the following vector is optimal: ψ = (X1, X2, X3, X0), according to their degree as shown in the graph.

b) By following (11), the computation of B J P (G) is given by:

B J P (G) = Pr

(
B X1

∣∣∣∣D

)

×Pr

(
B X2

∣∣∣∣B X1 , D

)
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×Pr

(
B X3

∣∣∣∣B X1 , B X2 , D

)

×Pr

(
B X0

∣∣∣∣B X1 , B X2 , B X3 , D

)
.

c) Compute each term of the above expression by following (12), resulting in:

Pr

(
B X1

∣∣∣∣D

)
= Pr

(
〈X1 ⊥ X2|X0〉

∣∣∣∣D

)

× Pr

(
〈X1 ⊥ X3|X0〉

∣∣∣∣D

)

× Pr

(
〈X1 �⊥X0|∅〉

∣∣∣∣D

)
.

Pr

(
B X2

∣∣∣∣B X1 , D

)
= Pr

(
〈X2 ⊥ X1|X0〉

∣∣∣∣B X1 , D

)

× Pr

(
〈X2 ⊥ X3|X0〉

∣∣∣∣B X1 , D

)

× Pr

(
〈X2 �⊥X0|∅〉

∣∣∣∣B X1 , D

)
.

Pr

(
B X3

∣∣∣∣B X1 , B X2 , D

)
= Pr

(
〈X3 ⊥ X1|X0〉

∣∣∣∣B X1 , B X2 , D

)

× Pr

(
〈X3 ⊥ X2|X0〉

∣∣∣∣B X1 , B X2 , D

)

× Pr

(
〈X3 �⊥X0|∅〉

∣∣∣∣B X1 , B X2 , D

)
.

Pr

(
B X0

∣∣∣∣B X1 , B X2 , B X3 , D

)
= Pr

(
〈X0 �⊥X1|X2, X3〉

∣∣∣∣B X1 , B X2 , B X3 , D

)

× Pr

(
〈X0 �⊥X2|X1, X3〉

∣∣∣∣B X1 , B X2 , B X3 , D

)

× Pr

(
〈X0 �⊥X3|X1, X2〉

∣∣∣∣B X1 , B X2 , B X3 , D

)
.

d) By replacing Equations (13) and (14) in the factors of the above expression, one half of the tests can be inferred, and 
only the following probabilities must be computed from data by using the Bayesian statistical test:

Pr

(
B X1

∣∣∣∣D

)
= Pr

(
〈X1 ⊥ X2|X0〉

∣∣∣∣D

)
× Pr

(
〈X1 ⊥ X3|X0〉

∣∣∣∣D

)
× Pr

(
〈X1 �⊥X0|∅〉

∣∣∣∣D

)
.

Pr

(
B X2

∣∣∣∣B X1 , D

)
= 1 × Pr

(
〈X2 ⊥ X3|X0〉

∣∣∣∣D

)
× Pr

(
〈X2 �⊥X0|∅〉

∣∣∣∣D

)
.

Pr

(
B X3

∣∣∣∣B X1 , B X2 , D

)
= 1 × 1 × Pr

(
〈X3 �⊥X0|∅〉

∣∣∣∣D

)
.

Pr

(
B X0

∣∣∣∣B X1 , B X2 , B X3 , D

)
= 1 × 1 × 1.

The inferred tests are the 1s in each equation. This example allows us to illustrate the intuition behind BJP, since the sam-
ple complexity of the blanket posterior for variables X1, X2, and X3 is lower than that of X0. Moreover, in this example it is 
clear that the posterior distribution of B X0 depends on the posterior distributions of B X1 , B X2 and B X3 . Clearly, the posterior 
of B X0 is harder to evaluate than the posterior of the remaining variables, and then, computing Pr(B X0 |B X1 , B X2 , B X3 , D)

could be more informative than only computing Pr(B X0 |D) independently of the rest of blankets. Appendix B shows two 
experiments using the graph of Fig. 1, which provide empirical evidence of how the ordering affects the performance of BJP.

3.2. BJP versus existent methods

As mentioned before, MPL and IB-score are two recently proposed methods for computing the probabilistic maximum-
a-posteriori structure given data. It is important to note that they have been designed from different points of view. On the 
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one hand, MPL addressed the difficulty of evaluating likelihood-based scores for non-chordal graphs by proposing a metric 
that does not assume chordality. On the other hand, IB-score has been designed for tackling the problems of constraint-
based algorithms: these algorithms proceed by performing statistical independence tests on data, trusting the outcome of 
each test completely. In practice some tests may be incorrect, resulting in the possibility of errors propagating. IB-score 
tackles this problem through a probabilistic maximum-a-posteriori approach that combines the outcomes of statistical inde-
pendence tests. The BJP score proposed in this work is strongly influenced by the IB-score viewpoint. However, the research 
of this work aims at designing a better approximation of the posterior, by relaxing the independence assumption between 
blanket posteriors (made by both IB-score and MPL).

Another important difference is the decomposability properties of each score. On the one hand, the MPL score has an 
analytic expression that factorizes into variable-wise marginal conditional likelihoods, as can be seen in (4). This allows MPL 
to be optimized as proposed by its authors, by decomposing the problem in n independent Markov blanket discovery prob-
lems, locally optimizing the MPL for each node. By optimizing the score in this way, they are exploiting the independence 
assumption between blankets in order to speed-up the search procedure. Instead, BJP tackles the negative effects that this 
assumption has on the quality of the learned structures. On the other hand, the IB-score has an analytic expression that 
depends on the choice of the closure, as can be seen in (7) and (8). The efficient optimization proposed for IB-score is called 
the IBMAP-HC algorithm, and it does not decompose the score. This algorithm optimizes the score of the whole structure, 
without assuming the blankets to be independent.

The independence assumption affects the data efficiency of the scoring functions. In the case of MPL, its main disadvan-
tage is that it over-specifies the node-wise conditional distributions. This has a negative effect on data efficiency, especially 
for networks with hub nodes.1 Regarding IB-score, its main drawback is related to the use of the Markov blanket clo-
sure, which allows to correctly compute Pr(G|D). Again, by assuming all Markov blankets to be mutually independent, the 
IB-score computes redundant probabilities. BJP mitigates the data efficiency problems caused by the redundancies in the 
IB-score by sorting the blankets of the graph by their size in ascending order and then computing the conditional distri-
butions that involve other blankets as evidence. Precisely, in our approach only one probability is computed for each pair, 
and the redundant ones are inferred. For this reason, it is expected that for data scarcity conditions the BJP scoring function 
outperforms both MPL and IB-score.

3.3. Optimization

The goal of this work is to propose a score for approximating the posterior of structures by relaxing the independence 
assumption between blankets. For this reason, we want to evaluate and compare the scoring functions independently of the 
search process used. The exact optimization consists in maximizing the score over all possible undirected graphs for some 
specific problem domain, as shown in (1). Since the discrete optimization space of the possible graphs G grows rapidly 
with the number of variables n, this exhaustive search is clearly intractable even for small domain sizes. For this reason, 
we have designed two different sets of experiments. Firstly, in Section 4, we show a comparison of the performance of BJP 
against MPL and IB-score for low-dimensional problems, using brute force maximization (i.e., exhaustive search). It allows 
us to study the convergence of the scoring functions to the exact solution, without the bias that would be introduced by 
approximate search mechanisms. Secondly, we show several experiments with more realistic, higher dimensional domains. 
In these experiments we used the IBMAP-HC algorithm explained in Section 2.2.2 for maximizing the BJP score, as an 
efficient approximate solution.

4. Experimental evaluation

This section presents several experiments in order to determine the merits of BJP in practical terms. Two sets of 
experiments are presented, one from low-dimensional problems, and another for high-dimensional problems. For the low-
dimensional setting, we used brute force (i.e., exhaustive search) to study the convergence of the scoring functions to the 
exact solution, what we later in Section 4.1 call the consistency experiments. We compare BJP against the two recently 
proposed scoring functions that approximate the posterior of MN structures: MPL and IB-score. The goal is to prove ex-
perimentally that the sample complexity for successfully learning the exact structure of BJP can be better than for the 
competitors, independently of the optimization mechanism used. Exhaustive search is limited to low-dimensional settings 
as the search space grows exponentially with the square of the number of variables, so for the high-dimensional setting, 
we used the IBMAP-HC algorithm for comparing the performance of BJP against several state-of-the-art competitors. These 
experiments were performed in order to prove that BJP can identify structures with fewer structural errors than the com-
petitor state-of-the-art algorithms for realistic scenarios. The software to carry out the experiments has been developed in 
Java, and it is publicly available.2

1 This is because the conditional distributions are specified in terms of complete Markov blankets even if only a subset of a Markov blanket is sufficient 
for shielding a node from a particular part of the network.

2 http://dharma.frm.utn.edu.ar/papers/bjp.

http://dharma.frm.utn.edu.ar/papers/bjp
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Fig. 2. Independence structures for the first set of experiments: model 1 is regular (irr = 0); model 2 has irr = 10; model 3 has irr = 18; model 4 has 
irr = 20; models 5 and 6 have the maximum irregularity for six variables (irr = 26).

For the experiments we selected a set of networks where the topologies exhibit irregularities, which is a common 
property in many real-world networks [41]. According to [42], the irregularity of an undirected graph can be computed by 
summing the imbalance of its edges:

irr(G) =
∑

(i, j)∈E(G)

|dG(i) − dG( j)|, (15)

where dG(i) is the degree of the node i in that graph. Clearly irr(G) = 0 if and only if G is regular. For non-regular graphs 
irr(G) is a measure of the lack of regularity. Since in our experiments we test only domains with discrete binary variables, 
we used the irregularity of the underlying structure as an external control variable that determines the importance of the 
independence assumption between blankets for decomposable scores. Thus, as larger the irregularities the larger is the 
difference between the sizes of the inferred blankets and their matching ones, resulting in larger expected improvements 
against competitors.

4.1. Consistency experiments

A MN scoring function is consistent when the structure which maximizes the score over all the possible structures is the 
correct one, in the limit of infinite data. However, in practice the data is often too scarce to satisfy this condition, and the 
sample size needed to reach the correct structure varies across different scoring functions. This is referred to as the sample 
complexity of the score. The experiments here presented were carried out in order to measure the sample complexity of the 
three different scoring functions: MPL, IB-score and BJP. This is achieved by measuring their ability to return, by brute force, 
the exact independence structure of the MN which generated the data.

To make this comparative study, we selected the six different target structures shown in Fig. 2. These graphs represent 
different cases of irregularity, according to (15). The first target structure is regular (irr = 0), the second has a little irregu-
larity, the third and fourth structures are irregular structures with a hub topology, and the fifth and sixth target structures 
have maximum irregularity for n = 6. As mentioned before, the irregularity is used here as a parameter for determining 
the importance of the independence assumption between blankets. Thus, in terms of sample complexity, we expect larger 
improvements of BJP over the competitors when the irregularity of the underlying structure increases.

For constructing a probability distribution from these independence structures according to (2), random numeric values 
were assigned to the parameters of their maximal clique factors, sampled independently from a uniform distribution over 
(0, 1). Ten distributions were generated for each target structure, considering only binary discrete variables. Then, for each 
one, ten different random seeds were used to obtain 100 datasets for each graph, by using the Gibbs sampling tool of the 
open-source Libra toolkit [43]. The Gibbs sampler was run with 100 burn-in and 100, 000 sampling iterations.

Since we have n = 6 variables, the search space consists of 2
(6

2

)
= 32768 different undirected graphs. The exper-

iment consisted in evaluating the number of true structures returned by each score over the 100 datasets. This is 
called here the success rate of the scoring function. The success rate is computed for increasing dataset sizes ND =
{250, 500, 1000, 2000, 4000, 8000}. Of course, since greater sizes of the dataset lead to better estimations, ND affects the 
quality of the structure learned. Therefore, a score is considered better than another score when its success rate converges 
to 1 for lower values of ND .

Table 1 shows the results of the experiment. The first column shows the target structures, the second shows their 
irregularity, the third shows each sample size ND used, and the fourth shows the success rate. For all the cases, it can be 
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Table 1
Success rate of BJP, IB-score and MPL over 100 datasets for the target structures on Fig. 2. For each row, 
the ranking of the methods is represented by the shade of the cells, such that the lightest cell marks 
the highest success rate and the darkest cell marks the lowest success rate.

Target structure Irr ND Success rate

MPL IB-score BJP

1 0

250 0.00 0.00 0.00
500 0.00 0.00 0.01
1000 0.01 0.05 0.03
2000 0.04 0.15 0.12
4000 0.15 0.25 0.21
8000 0.28 0.35 0.34

2 10

250 0.00 0.00 0.000
500 0.00 0.00 0.01
1000 0.00 0.04 0.02
2000 0.02 0.15 0.16
4000 0.10 0.27 0.25
8000 0.18 0.39 0.39

3 18

250 0.00 0.06 0.04
500 0.03 0.09 0.12
1000 0.10 0.17 0.19
2000 0.17 0.22 0.27
4000 0.22 0.45 0.49
8000 0.34 0.58 0.61

4 20

250 0.00 0.00 0.00
500 0.00 0.03 0.02
1000 0.00 0.06 0.10
2000 0.00 0.14 0.18
4000 0.00 0.29 0.36
8000 0.00 0.44 0.50

5 26

250 0.00 0.01 0.01
500 0.00 0.02 0.01
1000 0.00 0.10 0.11
2000 0.00 0.23 0.26
4000 0.03 0.56 0.54
8000 0.21 0.75 0.76

6 26

250 0.00 0.00 0.00
500 0.00 0.00 0.00
1000 0.00 0.04 0.13
2000 0.00 0.28 0.37
4000 0.02 0.66 0.61
8000 0.27 0.80 0.82

seen how the success rate of the three scoring functions grows with the sample size ND . At each row, the ranking of the 
methods is represented by the shade of the cells, such that the lightest cell marks the highest success rate and the darkest 
cell marks the lowest success rate. The results in the fourth column show that BJP has a better success rate in almost 
all cases. For all the cases, MPL has a slower convergence than IB-score and BJP. For structures 1 and 2, IB-score shows 
better convergence than BJP, but they would eventually converge similarly for greater ND sizes. This is an expected result, 
because these structures are regular, and the approximation of BJP and IB-score are very similar for computing Pr(G|D). In 
contrast, for structures 3, 4, 5 and 6, BJP has in general the best success rate. This is also an expected result, according to 
the irregularity of the underlying structures. Accordingly, the best improvement of BJP over IB-score is for model 6 (which 
has maximal irregularity) and ND = {1000, 2000}, with an improvement of success rate of up to 9%. When compared with 
MPL, BJP obtains the best improvement in success rate of up to 59%, also for model 6 and ND = {4000}.

In general, these results are consistent with the hypothesis of this work, since BJP has been designed to improve the 
computation of Pr(G|D), and the irregularity highlights the cases where an improvement of the sample complexity is ex-
pected, due to the independence assumption between blankets made by the state-of-the-art scores. The following section 
shows the performance of the three scoring functions for more complex domains.

4.2. Structural errors analysis

In this section, experiments in the high-dimensional setting are presented. The goal here is to show that, for more 
practical scenarios, structure learning using the BJP score can obtain structures of better quality than its state-of-the-art 
competitors. In order to ensure tractability, the experiments in this section require approximate search mechanisms for 
the optimization of each score. As described in Section 3.2, the inherent decomposability properties of each function make 
them suitable for different optimization methods. For this reason, a comparison using a single search algorithm for all scores 
would arbitrarily bias the results and would not reflect realistic applications. Therefore, we have decided to evaluate each 
score using the optimization method proposed by its authors as the most favorable alternative, in hopes of achieving a 
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Fig. 3. Structures with a hub topology and 16, 32, 64 and 128 nodes.

Fig. 4. Scale-free structures with 16, 32, 64 and 128 nodes.

reasonably fair comparison. We compared BJP against the following state-of-the-art structure learning methods, which are 
also applicable in high dimensions:

• GSMN: The Grow-Shrink Markov network structure learning algorithm [21]. This is a standard state-of-the-art 
constraint-based algorithm. GSMN proceeds by learning the blanket of each variable with the well-known GS algo-
rithm [40], and then constructs the solution structure by adding an edge between each variable and the variables found 
in its Markov blanket. This algorithm is very efficient, as it is not a search-based algorithm, but it is very prone to errors 
when data is not sufficient for performing accurate statistical independence tests.

• IB-score: The Independence-based score [28], optimized by using IBMAP-HC (the heuristic hill-climbing optimization 
explained in Section 2.2.2).

• MPL: The Marginal pseudo-likelihood score [19], optimized by using the efficient method in two phases proposed by its 
authors (described in Section 2.2.1).

Note that, in the scope of this set of experiments, we use the name of each score to refer to the combination of optimization 
method and scoring function as described above.

The selected structures for the experiments capture the properties of several real-world problems, where the target 
structure has few nodes with large degrees, and the remaining nodes have very small degree. Examples of problems with 
this characteristic include gene networks, protein interaction networks and social networks [41]. Thus, for this comparative 
study, we used three types of structures: networks with hub topologies, scale-free networks generated by the Barabasi–
Albert model [44], and real-world networks, taken from the sparse matrix collection [45] and the Matrix Market repository 
[46]. All these structures have an increasing complexity both in n and in irr. The hub networks are shown in Fig. 3, the 
scale-free networks are shown in Fig. 4, and the real-world networks are shown in Fig. 5. Additionally, Table 2 describes the 
characteristics for the real-world networks we used.

For each target structure we generated 10 random distributions and 10 random samples for each distribution, with the 
Gibbs sampler tool of the Libra toolkit. Thus, a total of 100 datasets were obtained for each graph, with the same procedure 
explained in the previous section. As a quality measure, we report the type-I errors (false positives), type-II errors (false 
negatives), and Hamming distance (sum of false positives and false negatives) between the hundred learned structures and 
the underlying one. We measure the statistical significance of these quality measures by comparing the average and standard 
deviation over the 100 repetitions, where by statistically significant we simply mean that there is no overlap between the 
intervals of the means plus/minus their standard deviations. As in the previous section, the algorithms were executed for 
increasing dataset sizes ND = {250, 500, 1000, 2000, 4000, 8000}, to assess how their accuracy evolves with data availability.
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Fig. 5. Real-world networks.

Table 3 shows the comparison of BJP against its competitors for the hub structures of Fig. 3. The table shows the name 
of the structures, their sizes n, and their irregularities, in the first, second and third columns, respectively. The dataset sizes 
ND are in the fourth column. The next columns show the average and standard deviation of type-I errors, type-II errors, 
and the Hamming distance over the 100 repetitions for all the structure learning algorithms: GSMN, MPL, IB-score and 
BJP. At each row of the table, the ranking of the Hamming distance is represented by the shade of the cells, such that the 
lightest cell marks the lowest Hamming distance (best results) and the darkest cell marks the highest Hamming distance. 
Additionally, the plots of Fig. 6 shows a summary of the Hamming distance differences between BJP and each competitor, 
with a plot for each dataset and a bar for each dataset size ND . Fig. 7 shows the runtime (in seconds) corresponding to the 
whole learning process. All the experiments were performed on an Intel(R) Core(TM) i7-4770 CPU, with 3.40GHz, and 32 
GB of main memory.

When analyzing the results shown in Table 3, it can be seen that, for all the algorithms, the more complex the underlying 
structure (determined by n and irr), the larger is the number of structural errors (Hamming distance column) for any score 
and any value of ND . The results show that BJP obtains the best performance for all the cases, reducing the average 
Hamming distance of the structures learned by its competitors. It can be seen that, for all the target structures, GSMN has 
the slowest convergence in ND . Since GSMN follows a traditional constraint-based approach, it is expected to obtain low 
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Table 2
Characteristics for the real-world networks.

Target structure n Number of edges Description

Karate 34 156 Zachary’s Karate Club∗ . Social network of friendships between 34 members of a karate club at a US 
university in the 1970 [47].
∗https://www.cise.ufl.edu/research/sparse/matrices/Newman/karate.html.

Ibm-32 32 126 Unsymmetric pattern on leaflet advertising∗ . Author: IBM. Editor: A. Curtis, I. Duff, J. Reid. Date: 1971 
conference.
∗https://www.cise.ufl.edu/research/sparse/matrices/HB/ibm32.html.

Curtis-54 54 291 Stiff biochemical ordinary differential equations (ODEs)∗, from the Original Harwell sparse matrix test 
collection [48].
∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/curtis54.html.

Will-57 57 281 Jacobian of emitter-follower-current switch circuit∗.
∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/will57.html.

Can-62 62 140 Structures problems in aircraft design∗.
∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/cannes/can_62.html.

Dolphins 62 159 Dolphins social network∗ . Social network of frequent associations between 62 dolphins in a commu-
nity living off Doubtful Sound, New Zealand, as compiled by [49].
∗http://www.cise.ufl.edu/research/sparse/matrices/Newman/dolphins.html.

Polbooks 105 441 Books about US politics∗ . The network represent frequent co-purchasing of books by the same buyers 
[50].
∗https://www.cise.ufl.edu/research/sparse/matrices/Newman/polbooks.html.

Adj-Noun 112 425 Common adjective and nouns in “David Copperfield”∗ . The graph contains the network of common 
adjective and noun adjacencies for the novel “David Copperfield” by Charles Dickens [51].
∗http://www.cise.ufl.edu/research/sparse/matrices/Newman/adjnoun.html.

Fs-541-1 541 4285 An atmospheric pollution problem∗ . One stage of FACSIMILE stiff ordinary differential equation pack-
age, involving chemical kinetics and two-dimensional transport.
∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/fs_541_1.html

eris-1176 1176 8687 Power Network Problem∗ . Symmetric pattern of Erisman, summer 1973 [52].
∗https://www.cise.ufl.edu/research/sparse/matrices/HB/eris1176.html.

qualities when data are insufficient. When compared with both MPL and IB-score, the BJP score obtains better results, and 
these differences become increasingly larger as the complexity (n and irr) grows. These results are statistically significant 
for all the cases against GSMN and MPL. Against IB-score, BJP performs better for all the cases, except three. In general, 
these results confirm that BJP can outperform competitors in the quality of the learning process, with the larger differences 
when the structures are highly irregular. Regarding the type-I and type-II errors (false positives and false negatives), it can 
be seen that GSMN tends to add many false positives, whereas the other score-and-search methods tend to add many false 
negatives. This is because GSMN adds false positives in the grow phase of the GS algorithm, and then the shrink phase 
must perform tests that contain many variables, which tend to be more unreliable, thus limiting the ability of the algorithm 
to delete incorrect edges. In contrast, IB-score always obtains a lower number of type-I errors than BJP, but its number 
of type-II errors increases significantly. In general, the three score-and-search approaches (MPL, IB-score and BJP) lead to 
produce more type-II errors, because the hill-climbing approaches used start the search from an empty structure.

In terms of the respective runtimes shown (in seconds) in Fig. 7, it can be seen that for all the algorithms, the more 
complex the underlying structure (determined by n and irr), the larger is the runtime for any value of D used. As expected, 
the most efficient approach is GSMN, since it follows a simple traditional constraint-based approach, that performs a poly-
nomial number of statistical tests to learn the structure. Regarding the runtime of the search mechanism used with BJP, 
it can be seen that it compares favorably to IB-score for all the cases. When compared with MPL, BJP performs better for 
the more complex problem (Hub 4), and shows similar runtimes for the other cases. Although we simply used an existent 
optimization method for BJP, it shows a good performance in both quality and runtime, when compared against competitors.

Table 4 shows the comparison of BJP against its competitors for the scale-free networks of Fig. 4. The information of the 
table is organized in the same way as in Table 3. The summary of the Hamming distance differences between BJP and each 
competitor can be seen in the plots of Fig. 8 with a plot for each dataset and a bar for each dataset size ND . In contrast 
with the hub structures, in the scale-free networks the size of the blankets in the underlying network is more variable. This 
can explain the differences in the trends of the Hamming distance, when compared with the results obtained for the hub 
networks. It can be seen that, for all the cases, BJP obtains a lower average Hamming distance than GSMN and MPL. The 
differences with MPL are statistically significant for all the cases, except three. When compared with IB-score, BJP shows 
better average number of errors for all the cases, except three. As illustrated in Fig. 8, the larger differences between BJP 
and the three competitors can be seen for the Scale-free 4 model, with differences of more than 600 edges corrected against 
GSMN. Against MPL and IB-score, again the best differences of BJP can be seen for the Scale-free 4 model, with differences 
of more than 15 edges corrected. In general, these results confirm that the approximation of BJP is more accurate as n and 
irr grow. Regarding the two types of errors (false positives and false negatives), and the runtimes shown (in seconds) in 
Fig. 9, it can be seen that they are similar to the case of the hub networks.

https://www.cise.ufl.edu/research/sparse/matrices/Newman/karate.html
https://www.cise.ufl.edu/research/sparse/matrices/HB/ibm32.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/curtis54.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/will57.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/cannes/can_62.html
http://www.cise.ufl.edu/research/sparse/matrices/Newman/dolphins.html
https://www.cise.ufl.edu/research/sparse/matrices/Newman/polbooks.html
http://www.cise.ufl.edu/research/sparse/matrices/Newman/adjnoun.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/fs_541_1.html
https://www.cise.ufl.edu/research/sparse/matrices/HB/eris1176.html
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BJP

HD Type-I Type-II HD
7.91 (1.04) 0.64 (0.25) 6.79 (0.91) 7.76 (1.04)

6.28 (0.85) 0.60 (0.22) 5.01 (0.72) 5.95 (0.82)
4.87 (0.71) 0.41 (0.22) 3.72 (0.58) 4.47 (0.67)
3.69 (0.59) 0.43 (0.19) 2.51 (0.45) 3.27 (0.54)
2.37 (0.46) 0.33 (0.20) 1.63 (0.36) 2.29 (0.43)
1.77 (0.39) 0.09 (0.16) 1.16 (0.30) 1.59 (0.36)
25.79 (0.25) 2.39 (0.23) 22.69 (0.30) 25.08 (0.33)
22.00 (0.29) 1.93 (0.24) 18.05 (0.37) 19.98 (0.40)
17.50 (0.34) 1.90 (0.24) 13.59 (0.33) 15.49 (0.44)
12.86 (0.34) 1.97 (0.21) 9.61 (0.30) 11.58 (0.31)
9.34 (0.32) 1.64 (0.19) 6.72 (0.24) 8.36 (0.30)
7.05 (0.27) 1.91 (0.20) 5.05 (0.23) 6.96 (0.28)
56.56 (0.31) 2.37 (0.25) 51.68 (0.41) 54.05 (0.47)
50.55 (0.38) 2.03 (0.21) 42.83 (0.56) 44.86 (0.53)
42.34 (0.52) 1.85 (0.24) 34.53 (0.67) 36.38 (0.66)

33.47 (0.63) 1.82 (0.27) 27.42 (0.81) 29.24 (0.78)
26.28 (0.67) 1.46 (0.23) 21.04 (0.84) 22.50 (0.78)
20.81 (0.76) 1.60 (0.27) 17.89 (0.91) 19.49 (0.82)
106.67 (5.59) 1.57 (0.27) 92.24 (6.19) 93.98 (6.31)
97.72 (5.14) 0.87 (0.26) 80.22 (5.43) 81.26 (5.50)
84.36 (4.47) 0.37 (0.16) 64.94 (4.47) 65.48 (4.50)
69.90 (3.75) 0.40 (0.16) 50.63 (3.63) 51.19 (3.65)
57.81 (3.28) 0.67 (0.27) 42.63 (3.37) 43.47 (3.37)
46.96 (3.07) 0.29 (0.17) 38.47 (3.53) 38.93 (3.51)
Table 3
Structures with hub topology: average and standard deviation of type-I errors, type-II errors and Hamming distance over 100 repetitions. For each row, t
shade of the cells, such that the lightest cell marks the lowest Hamming distance and the darkest cell marks the highest Hamming distance.

Target 
structure

n irr ND Structural errors

GSMN MPL IB-score

Type-I Type-II HD Type-I Type-II HD Type-I Type-II

Hub 1 16 392

250 11.84 (1.06) 7.75 (0.35) 19.59 (0.98) 0.90 (0.12) 12.23 (0.13) 13.13 (0.19) 0.24 (0.19) 7.33 (0.96)
500 7.89 (0.81) 6.17 (0.39) 14.06 (0.81) 0.52 (0.09) 11.22 (0.14) 11.74 (0.16) 0.12 (0.15) 5.83 (0.80)
1000 5.02 (0.50) 4.57 (0.34) 9.59 (0.57) 0.24 (0.06) 10.19 (0.13) 10.43 (0.14) 0.05 (0.14) 4.59 (0.68)
2000 3.45 (0.37) 3.60 (0.31) 7.05 (0.48) 0.19 (0.05) 9.20 (0.14) 9.39 (0.15) 0.07 (0.16) 3.29 (0.54)
4000 2.65 (0.30) 2.51 (0.28) 5.16 (0.36) 0.14 (0.05) 8.06 (0.14) 8.20 (0.14) 0.11 (0.13) 2.15 (0.42)
8000 1.84 (0.25) 1.94 (0.24) 3.78 (0.33) 0.12 (0.05) 7.13 (0.14) 7.25 (0.14) 0.09 (0.13) 1.53 (0.35)

Hub 2 32 1916

250 74.31 (2.50) 15.31 (0.47) 89.62 (2.46) 2.84 (0.20) 24.42 (0.17) 27.26 (0.29) 0.84 (0.13) 24.95 (0.23)
500 48.97 (2.29) 12.16 (0.47) 61.12 (2.32) 1.84 (0.17) 22.52 (0.17) 24.36 (0.25) 0.81 (0.14) 21.19 (0.26)
1000 30.33 (1.51) 9.31 (0.49) 39.64 (1.49) 1.00 (0.13) 20.56 (0.17) 21.56 (0.23) 0.49 (0.10) 17.01 (0.31)
2000 19.85 (1.18) 6.70 (0.42) 26.55 (1.24) 0.47 (0.08) 18.47 (0.17) 18.94 (0.20) 0.44 (0.10) 12.42 (0.34)
4000 14.76 (0.94) 5.07 (0.35) 19.83 (1.00) 0.34 (0.08) 16.34 (0.18) 16.68 (0.20) 0.23 (0.07) 9.11 (0.32)
8000 10.30 (0.68) 4.02 (0.34) 14.32 (0.74) 0.29 (0.07) 14.27 (0.17) 14.56 (0.18) 0.30 (0.07) 6.75 (0.28)

Hub 3 64 6624

250 267.81 (2.68) 33.91 (0.74) 301.72 (2.66) 8.97 (0.31) 51.56 (0.28) 60.53 (0.49) 0.40 (0.10) 56.16 (0.31)
500 226.12 (4.36) 28.21 (0.89) 254.33 (4.32) 5.47 (0.27) 47.41 (0.29) 52.88 (0.44) 0.18 (0.05) 50.37 (0.38)
1000 153.75 (4.11) 23.31 (0.80) 177.06 (4.16) 3.34 (0.21) 42.88 (0.32) 46.22 (0.44) 0.20 (0.07) 42.14 (0.50)
2000 92.65 (3.00) 17.81 (0.75) 110.46 (3.11) 2.09 (0.19) 38.26 (0.36) 40.35 (0.43) 0.17 (0.07) 33.30 (0.63)
4000 57.68 (1.74) 13.64 (0.51) 71.32 (1.69) 1.13 (0.14) 33.86 (0.39) 34.99 (0.43) 0.08 (0.04) 26.20 (0.67)
8000 42.06 (1.60) 10.68 (0.49) 52.74 (1.55) 0.68 (0.12) 29.90 (0.36) 30.58 (0.39) 0.10 (0.05) 20.71 (0.77)

Hub 4 128 24496

250 605.32 (2.79) 74.57 (1.04) 679.89 (3.17) 29.66 (0.52) 104.62 (0.41) 134.28 (0.81) 0.06 (0.06) 106.61 (5.58)
500 664.65 (3.81) 60.53 (1.17) 725.18 (3.98) 18.87 (0.39) 95.09 (0.41) 113.96 (0.64) 0.10 (0.05) 97.71 (5.14)
1000 627.37 (5.99) 48.70 (1.24) 676.07 (5.96) 11.82 (0.36) 86.42 (0.44) 98.24 (0.67) 0.10 (0.05) 84.34 (4.47)
2000 473.70 (7.23) 37.92 (1.07) 511.62 (7.24) 6.96 (0.33) 77.29 (0.44) 84.25 (0.60) 0.11 (0.05) 69.90 (3.75)
4000 292.78 (5.61) 28.13 (1.02) 320.91 (5.76) 3.97 (0.23) 68.73 (0.48) 72.70 (0.53) 0.11 (0.05) 57.81 (3.28)
8000 167.22 (4.07) 21.22 (0.79) 188.44 (4.05) 2.24 (0.23) 60.37 (0.52) 62.61 (0.61) 0.11 (0.05) 46.96 (3.07)
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Fig. 6. Hamming distance differences between BJP and competitors for structures with hub topology. 	 HD denotes the improvement in Hamming distance 
over each competitor. a) Differences with GSMN. b) Differences with MPL. c) Differences with IB-score.

Finally, Table 5 show the results for the real-world networks of Fig. 5. Again, the information of this table is organized 
in the same way as in the previous tables, and the differences of BJP are summarized in the plots of Fig. 10. In both, the 
table and the plots, the real network structures are ordered by their complexity (in n and irr). Again, the trends in these 
results are consistent to those in the previous experiments. For all the problems, BJP lowers the average Hamming distance 
of the learned structures for all cases when ND < 4000. The largest differences can be seen for the more irregular networks: 
Polbooks, Adj-noun, fs-541-1 and eris-1176. As can be seen in the plots of Fig. 10, there are differences of more than 4, 0000
edges corrected over GSMN (eris-1176), differences of more than 300 edges corrected over MPL (fs-541-1), and differences 
of more than 120 edges corrected against IB-score (eris-1176). This is coherent, since those are the most complex networks, 
and the largest differences are obtained when data is scarcer. Regarding the two types of errors (false positives and false 
negatives), it can be seen that they are similar to the case of the hub and scale-free networks.

When analyzing the runtimes of real-world networks, shown in Fig. 11, it can be seen that they are consistent to the 
cases of the hub and scale-free networks. An interesting difference can be seen for GSMN, which is the fastest algorithm 
for all the cases, except for eris-1176. This is because for higher domain sizes and dense networks, GSMN tends to add 
many false positives in the grow phase, which requires a shrink phase performing unreliable tests with many variables. It 
produces numerous cascade errors, and it is the source of its expensive computational cost. Regarding the runtime of the 
BJP optimization, it can be seen that for almost all the cases the runtime over MPL and IB-score is improved.

In general, the results discussed confirm that BJP always outperforms the competitors when data are scarce. Also, the 
differences are greater both in quality and runtime, for the more complex models. This confirms the hypothesis that the 
BJP can outperform its competitors in the quality of the learning process, with better results when the structures are highly 
irregular.
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Fig. 7. Structures with hub topology: average and standard deviation of the learning runtime (in seconds) over 100 repetitions.

5. Conclusions

In this work we have introduced a novel scoring function for learning the structure of Markov networks. The BJP score 
computes the posterior probability of independence structures by considering the joint probability distribution of the col-
lection of Markov blankets of the structures. The score computes the posterior of each Markov blanket progressively, using 
information from other blankets as evidence. The blanket posteriors of variables with fewer neighbors are computed first, 
and then this information is used as evidence for computing the posteriors for variables with bigger blankets. Thus, BJP can 
be useful to improve the data efficiency for problems with complex networks, where the topology exhibits irregularities, 
such as social and biological networks. In the experiments, BJP scoring proved that it can improve the sample complexity 
compared to the state-of-the-art competitors. The score is tested by using exhaustive search for low-dimensional problems 
and by using a heuristic hill-climbing mechanism for higher-dimensional problems. The results show that BJP produces 
more accurate structures than the state-of-the-art competitors when data are scarce.

We will guide our future work toward the design of more effective optimization methods, since the hill-climbing opti-
mization has two inherent disadvantages: i) by only flipping one edge per step it scales slowly with the number of variables 
of the domain n, ii) it is prone to getting stuck in local optima. Moreover, we consider that the properties of BJP score have 
considerable potential for both further theoretical development, and applications.
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Appendix A. Correctness of BJP

This appendix shows the proof of Theorem 1, concerning the correctness of our method for computing the posterior of 
MN structures.

Theorem 1. Let G be an undirected independence structure of a positive graph-isomorph distribution P (XV ). The BJP scoring function 
of G is “correct” in the sense that the posterior probability that it computes is equivalent to the posterior probability of a MN structure.
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e ranking of the Hamming distance is represented by the 

BJP

HD Type-I Type-II HD
11.30 (1.05) 1.00 (0.37) 10.20 (0.90) 11.20 (0.80)
10.00 (0.93) 1.30 (0.68) 8.70 (0.83) 10.00 (1.03)
7.10 (1.06) 1.20 (0.29) 6.10 (0.82) 7.30 (0.74)
5.10 (0.69) 0.60 (0.23) 4.60 (0.81) 5.20 (0.67)
3.70 (0.48) 0.50 (0.44) 3.00 (0.61) 3.50 (0.58)
2.30 (0.65) 0.30 (0.22) 2.00 (0.57) 2.30 (0.71)
26.50 (1.12) 3.38 (1.08) 22.50 (1.25) 25.88 (1.23)
22.40 (1.38) 1.62 (0.62) 18.75 (1.24) 20.38 (1.67)
18.30 (1.29) 1.00 (0.56) 16.12 (1.23) 17.12 (1.32)
13.60 (0.86) 1.75 (0.91) 10.38 (0.79) 12.12 (0.98)
10.40 (1.14) 2.12 (0.94) 8.38 (1.28) 10.50 (1.25)
6.56 (1.05) 1.50 (0.62) 5.50 (0.74) 7.00 (0.79)
57.75 (2.60) 0.67 (1.01) 54.67 (1.01) 55.33 (1.01)
52.00 (3.21) 0.67 (0.51) 43.33 (4.14) 44.00 (3.82)
43.25 (6.39) 0.33 (0.51) 35.67 (5.35) 36.00 (4.88)
33.50 (4.56) 3.33 (2.82) 24.33 (3.08) 27.67 (3.65)
26.25 (2.26) 1.33 (1.34) 20.00 (2.32) 21.33 (1.01)
19.00 (1.70) 0.67 (1.01) 15.33 (2.53) 16.00 (3.16)
123.20 (0.70) 3.80 (1.25) 112.60 (1.49) 116.40 (1.76)

110.70 (1.91) 0.20 (0.19) 100.80 (2.53) 101.00 (2.48)
93.00 (2.59) 0.70 (0.48) 82.40 (3.01) 83.10 (3.07)
79.20 (3.30) 1.00 (0.37) 63.50 (3.76) 64.50 (3.83)
62.00 (3.22) 1.10 (0.69) 45.40 (3.20) 46.50 (3.12)
47.90 (2.50) 1.10 (0.84) 33.20 (2.41) 34.30 (2.53)
Table 4
Scale-free networks models: average and standard deviation of type-I errors, type-II errors and Hamming distance over 100 repetitions. For each row, 
shade of the cells, such that the lightest cell marks the lowest Hamming distance and the darkest cell marks the highest Hamming distance.

Target 
structure

n irr ND Structural errors

GSMN MPL IB-score

Type-I Type-II HD Type-I Type-II HD Type-I Type-II

Scale-free 1 16 364

250 10.90 (2.92) 8.80 (0.95) 19.70 (2.60) 0.70 (0.12) 11.65 (0.18) 12.35 (0.24) 0.30 (0.31) 11.00 (1.03)
500 9.10 (2.36) 5.90 (1.18) 15.00 (2.69) 0.39 (0.08) 10.24 (0.16) 10.63 (0.18) 0.60 (0.49) 9.40 (0.81)
1000 6.70 (1.27) 4.70 (0.91) 11.40 (1.31) 0.24 (0.06) 8.90 (0.18) 9.14 (0.20) 0.30 (0.22) 6.80 (1.02)
2000 3.30 (1.21) 3.70 (0.61) 7.00 (1.58) 0.08 (0.04) 7.45 (0.16) 7.53 (0.16) 0.50 (0.24) 4.60 (0.65)
4000 2.90 (1.14) 2.30 (0.48) 5.20 (0.95) 0.02 (0.02) 6.19 (0.15) 6.21 (0.15) 0.40 (0.32) 3.30 (0.57)
8000 1.00 (0.57) 2.00 (0.57) 3.00 (0.86) 0.02 (0.02) 4.90 (0.15) 4.92 (0.15) 0.00 (0.00) 2.30 (0.65)

Scale-free 2 32 1612

250 70.60 (5.99) 16.50 (0.84) 87.10 (6.26) 2.62 (0.17) 24.89 (0.21) 27.51 (0.31) 1.10 (0.45) 25.40 (1.12)
500 43.20 (3.26) 14.80 (1.30) 58.00 (2.47) 1.33 (0.15) 22.75 (0.24) 24.08 (0.31) 0.30 (0.31) 22.10 (1.22)
1000 27.70 (4.14) 11.90 (0.69) 39.60 (3.75) 0.74 (0.12) 20.08 (0.24) 20.82 (0.29) 0.50 (0.24) 17.80 (1.19)
2000 18.90 (1.16) 8.80 (0.60) 27.70 (1.21) 0.48 (0.10) 17.79 (0.22) 18.27 (0.25) 0.90 (0.45) 12.70 (1.03)
4000 12.40 (1.68) 7.20 (0.88) 19.60 (1.82) 0.37 (0.08) 15.76 (0.19) 16.13 (0.21) 1.20 (0.36) 9.20 (1.05)
8000 7.70 (1.14) 4.90 (0.92) 12.60 (1.44) 0.24 (0.07) 14.17 (0.22) 14.41 (0.23) 0.33 (0.25) 6.22 (0.92)

Scale-free 3 64 6428

250 262.30 (5.83) 35.10 (1.85) 297.40 (5.04) 8.33 (0.33) 50.78 (0.39) 59.11 (0.63) 0.25 (0.39) 57.50 (2.61)
500 209.90 (8.14) 29.50 (1.65) 239.40 (8.19) 4.29 (0.24) 45.85 (0.42) 50.14 (0.56) 0.25 (0.39) 51.75 (3.03)
1000 156.90 (6.52) 23.80 (1.71) 180.70 (6.70) 2.42 (0.18) 40.63 (0.42) 43.05 (0.51) 0.00 (0.00) 43.25 (6.39)
2000 104.40 (5.09) 18.90 (1.77) 123.30 (5.60) 1.36 (0.16) 35.35 (0.45) 36.71 (0.51) 0.25 (0.39) 33.25 (4.64)
4000 57.40 (7.50) 15.40 (1.18) 72.80 (7.07) 0.72 (0.11) 30.65 (0.38) 31.37 (0.38) 0.00 (0.00) 26.25 (2.26)
8000 34.70 (2.64) 11.60 (1.38) 46.30 (2.76) 0.55 (0.10) 26.97 (0.38) 27.52 (0.39) 0.00 (0.00) 19.00 (1.70)

Scale-free 4 128 26188

250 599.60 (8.98) 74.80 (3.61) 674.40 (10.44) 26.91 (0.76) 104.51 (0.74) 131.42 (1.37) 0.00 (0.00) 123.20 (0.70
500 667.00 (8.13) 59.40 (2.51) 726.40 (9.40) 15.95 (0.60) 93.49 (0.80) 109.44 (1.23) 0.00 (0.00) 110.70 (1.91
1000 635.80 (12.85) 49.90 (2.03) 685.70 (12.09) 9.14 (0.48) 82.33 (0.82) 91.47 (1.11) 0.10 (0.14) 92.90 (2.56)
2000 492.00 (15.20) 41.20 (2.22) 533.20 (15.53) 4.89 (0.37) 72.58 (0.79) 77.47 (0.99) 0.10 (0.14) 79.10 (3.31)
4000 308.70 (11.72) 31.20 (2.42) 339.90 (10.25) 2.40 (0.27) 63.04 (0.82) 65.44 (0.91) 0.00 (0.00) 62.00 (3.22)
8000 164.90 (8.91) 24.30 (2.03) 189.20 (9.32) 1.51 (0.21) 55.58 (0.82) 57.09 (0.85) 0.00 (0.00) 47.90 (2.50)
th

)
)
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HD Type-I Type-II HD
51.91 (5.67) 2.60 (1.60) 49.30 (6.73) 51.90 (5.57)
44.00 (8.00) 3.40 (1.11) 38.80 (5.02) 42.20 (5.17)
27.25 (8.54) 1.40 (0.68) 24.60 (6.91) 26.00 (7.06)
17.12 (7.95) 1.30 (0.82) 10.00 (4.99) 11.30 (4.89)
7.88 (3.44) 2.20 (1.19) 3.60 (2.86) 5.80 (2.99)
2.60 (0.76) 2.30 (1.29) 0.90 (0.62) 3.20 (1.28)
64.50 (3.16) 6.50 (2.98) 54.30 (5.03) 60.80 (2.20)
50.70 (2.97) 4.40 (1.97) 33.40 (3.17) 37.80 (3.01)
31.70 (2.40) 3.50 (1.11) 25.20 (2.97) 28.70 (2.62)
21.00 (3.86) 0.90 (0.62) 18.30 (2.62) 19.20 (2.88)
10.80 (2.02) 1.00 (0.74) 8.90 (1.77) 9.90 (2.17)
4.70 (1.82) 0.50 (0.50) 3.10 (1.02) 3.60 (1.06)
77.00 (4.22) 0.80 (0.56) 70.40 (3.99) 71.20 (3.67)
59.10 (3.62) 0.20 (0.30) 56.40 (3.17) 56.60 (3.10)
40.10 (2.52) 0.10 (0.22) 39.30 (3.31) 39.40 (3.33)
22.70 (3.61) 0.30 (0.34) 18.60 (5.99) 18.90 (5.82)
7.50 (2.40) 0.60 (0.68) 3.80 (2.30) 4.40 (2.28)

2.12 (1.32) 1.30 (1.00) 0.90 (0.84) 2.20 (0.99)
81.90 (6.47) 0.70 (0.67) 78.70 (6.83) 79.40 (6.58)
63.60 (3.52) 0.10 (0.22) 60.60 (5.90) 60.70 (5.84)
44.50 (3.43) 0.10 (0.22) 42.40 (5.98) 42.50 (5.86)
25.30 (3.72) 0.20 (0.45) 23.60 (4.76) 23.80 (4.56)
10.70 (3.15) 0.40 (0.59) 9.00 (6.72) 9.40 (6.55)
2.70 (0.82) 1.10 (1.07) 2.80 (2.80) 3.90 (2.71)
56.30 (2.21) 1.00 (0.74) 38.40 (1.49) 39.40 (1.97)
40.50 (4.06) 0.00 (0.00) 14.00 (1.05) 14.00 (1.05)
9.50 (2.14) 0.00 (0.00) 7.60 (0.76) 7.60 (0.76)
3.10 (0.78) 0.00 (0.00) 2.60 (0.36) 2.60 (0.36)
2.00 (0.33) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.20 (0.30) 0.00 (0.00) 0.10 (0.22) 0.10 (0.22)

5) 126.90 (8.04) 6.80 (4.48) 118.40 (10.12) 125.20 (6.42)
3) 106.10 (9.39) 5.30 (2.62) 96.80 (9.91) 102.10 (7.91)

71.60 (7.19) 4.40 (1.49) 61.50 (6.02) 65.90 (5.96)
50.60 (5.29) 3.10 (1.77) 44.20 (5.80) 47.30 (5.46)
32.50 (4.54) 1.60 (0.49) 26.10 (5.04) 27.70 (4.86)
20.60 (3.01) 2.70 (0.67) 10.20 (2.99) 12.90 (3.20)

) 435.06 (1.19) 1.53 (0.59) 427.00 (1.74) 428.53 (1.96)
) 428.28 (3.07) 0.73 (0.77) 417.53 (4.06) 418.27 (3.96)
) 414.11 (4.11) 0.07 (0.14) 407.87 (4.14) 407.93 (4.05)
) 399.72 (4.38) 0.00 (0.00) 393.53 (4.68) 393.53 (4.68)
) 381.72 (6.04) 0.87 (1.87) 374.73 (7.59) 375.60 (6.41)
7) 364.07 (7.17) 0.93 (2.01) 356.57 (6.15) 357.50 (5.30)
) 424.30 (0.58) 4.90 (4.34) 417.20 (2.04) 422.10 (2.96)

421.20 (1.84) 1.70 (1.00) 411.20 (2.57) 412.90 (2.75)
) 413.80 (2.35) 0.40 (0.49) 401.20 (3.37) 401.60 (3.26)
) 400.80 (3.61) 0.10 (0.22) 387.40 (5.33) 387.50 (5.23)
) 384.40 (6.23) 0.00 (0.00) 373.80 (5.60) 373.80 (5.60)
) 366.30 (5.90) 0.00 (0.00) 356.30 (4.92) 356.30 (4.92)
8) 2465.70 (0.48) 6.70 (0.34) 2390.30 (1.05) 2397.00 (0.81)
6) 2464.60 (1.06) 3.70 (0.34) 2332.00 (1.00) 2335.10 (0.91)
1) 2462.50 (2.31) 2.70 (0.34) 2329.00 (2.44) 2331.70 (2.42)
7) 2457.40 (3.07) 1.00 (0.00) 2327.70 (2.60) 2328.70 (2.60)
9) 2445.10 (6.09) 0.00 (0.00) 2325.90 (2.85) 2325.90 (2.85)
7) 2396.20 (2.35) 0.00 (0.00) 2323.90 (4.80) 2322.60 (4.41)
Table 5
Real-world networks: average and standard deviation of type-I errors, type-II errors, and Hamming distance over 100 repetitions. For each row, the rankin
the cells, such that the lightest cell marks the lowest Hamming distance and the darkest cell marks the highest Hamming distance.

Target 
structure

n irr ND Structural errors

GSMN MPL IB-score

Type-I Type-II HD Type-I Type-II HD Type-I Type-II

Karate 34 2044

250 64.20 (7.36) 22.10 (5.76) 86.30 (7.64) 3.90 (0.97) 54.70 (3.99) 58.60 (4.31) 2.09 (1.25) 49.82 (6.37)
500 62.20 (5.29) 13.10 (5.17) 75.30 (3.91) 2.10 (0.97) 47.70 (3.01) 49.80 (3.50) 1.38 (1.01) 42.62 (8.21)
1000 54.90 (3.56) 5.10 (3.60) 60.00 (2.92) 1.80 (1.04) 42.20 (2.70) 44.00 (3.37) 2.00 (1.01) 25.25 (8.45)
2000 47.70 (3.10) 1.10 (1.17) 48.80 (3.80) 1.60 (0.89) 38.90 (1.92) 40.50 (1.92) 0.88 (0.71) 16.25 (7.56)
4000 39.40 (6.47) 0.30 (0.48) 39.70 (6.60) 2.60 (1.30) 35.40 (1.64) 38.00 (1.05) 1.12 (1.06) 6.75 (3.45)
8000 32.80 (6.96) 0.00 (0.00) 32.80 (6.96) 4.20 (0.93) 32.40 (1.49) 36.60 (1.01) 0.10 (0.22) 2.50 (0.76)

Ibm-32 32 2228

250 55.60 (3.63) 25.70 (1.33) 81.30 (3.31) 4.80 (1.75) 60.50 (2.14) 65.30 (3.64) 7.50 (2.33) 57.00 (4.44)
500 54.90 (4.38) 15.40 (2.49) 70.30 (4.27) 2.30 (1.11) 55.30 (1.05) 57.60 (1.92) 5.20 (1.78) 45.50 (3.11)
1000 51.70 (3.19) 5.60 (1.25) 57.30 (3.70) 0.50 (0.50) 45.40 (1.30) 45.90 (1.43) 3.00 (1.45) 28.70 (2.90)
2000 47.40 (4.13) 2.00 (1.20) 49.40 (4.17) 0.20 (0.30) 38.30 (1.79) 38.50 (1.92) 2.50 (0.95) 18.50 (3.74)
4000 42.60 (4.69) 0.40 (0.49) 43.00 (4.63) 0.00 (0.00) 30.30 (1.66) 30.30 (1.66) 3.30 (1.25) 7.50 (1.86)
8000 41.50 (4.61) 1.50 (1.16) 43.00 (4.94) 0.10 (0.14) 22.70 (1.12) 22.80 (1.13) 2.00 (1.20) 2.70 (1.56)

Curtis-54 54 3140

250 117.70 (5.56) 18.50 (2.71) 136.20 (5.60) 1.70 (0.94) 74.80 (1.59) 76.50 (2.33) 0.80 (0.45) 76.20 (4.18)
500 118.30 (6.59) 7.80 (1.81) 126.10 (5.95) 0.40 (0.36) 64.00 (2.08) 64.40 (2.03) 0.40 (0.36) 58.70 (3.82)
1000 121.30 (6.52) 2.00 (1.37) 123.30 (5.98) 0.00 (0.00) 52.40 (1.34) 52.40 (1.34) 0.00 (0.00) 40.10 (2.52)
2000 112.10 (5.55) 0.80 (0.87) 112.90 (5.98) 0.00 (0.00) 40.10 (1.26) 40.10 (1.26) 0.10 (0.22) 22.60 (3.57)
4000 93.90 (3.87) 0.20 (0.30) 94.10 (3.81) 0.10 (0.22) 30.20 (1.75) 30.30 (1.73) 0.00 (0.00) 7.50 (2.40)
8000 78.50 (5.21) 0.10 (0.22) 78.60 (5.25) 0.10 (0.22) 23.90 (0.91) 24.00 (0.88) 0.00 (0.00) 2.12 (1.32)

Will-57 57 4156

250 127.00 (5.33) 22.70 (3.89) 149.70 (6.10) 1.50 (0.83) 78.00 (2.15) 79.50 (2.83) 0.60 (0.49) 81.30 (6.62)
500 128.00 (4.69) 9.50 (2.19) 137.50 (5.47) 0.20 (0.30) 66.60 (2.13) 66.80 (2.07) 0.20 (0.30) 63.40 (3.54)
1000 119.70 (7.40) 2.50 (1.25) 122.20 (8.30) 0.00 (0.00) 55.60 (1.67) 55.60 (1.67) 0.10 (0.22) 44.40 (3.46)
2000 109.50 (5.10) 0.70 (0.67) 110.20 (5.04) 0.00 (0.00) 47.60 (0.83) 47.60 (0.83) 0.00 (0.00) 25.30 (3.72)
4000 90.30 (6.42) 0.10 (0.22) 90.40 (6.49) 0.10 (0.22) 38.20 (1.19) 38.30 (1.37) 0.00 (0.00) 10.70 (3.15)
8000 73.70 (4.69) 0.00 (0.00) 73.70 (4.69) 0.00 (0.00) 28.90 (0.84) 28.90 (0.84) 0.10 (0.22) 2.60 (0.89)

Can-62 62 4104

250 220.50 (3.85) 7.20 (1.28) 227.70 (4.68) 0.10 (0.22) 49.50 (3.07) 49.60 (2.98) 0.00 (0.00) 56.30 (2.21)
500 226.30 (9.66) 1.40 (0.89) 227.70 (9.85) 0.10 (0.22) 36.20 (5.47) 36.30 (5.38) 0.00 (0.00) 40.50 (4.06)
1000 213.40 (4.70) 0.10 (0.22) 213.50 (4.80) 0.20 (0.30) 7.80 (2.32) 8.00 (2.42) 0.00 (0.00) 9.50 (2.14)
2000 157.80 (8.49) 0.00 (0.00) 157.80 (8.49) 1.30 (0.67) 3.40 (0.89) 4.70 (0.58) 1.10 (0.70) 2.00 (0.66)
4000 95.80 (7.58) 0.00 (0.00) 95.80 (7.58) 2.40 (1.38) 0.00 (0.00) 2.40 (1.38) 0.40 (0.49) 1.60 (0.49)
8000 51.00 (6.55) 0.00 (0.00) 51.00 (6.55) 1.45 (0.73) 0.00 (0.00) 1.45 (0.73) 0.20 (0.30) 0.00 (0.00)

Dolphins 62 6480

250 134.10 (8.32) 60.10 (6.59) 194.20 (7.91) 13.90 (2.81) 112.80 (4.31) 126.70 (6.20) 6.50 (3.88) 120.40 (11.5
500 127.20 (5.07) 35.20 (7.33) 162.40 (5.86) 6.00 (2.05) 100.60 (5.66) 106.60 (6.70) 2.90 (1.31) 103.20 (10.3
1000 114.00 (5.12) 17.00 (3.50) 131.00 (6.42) 2.10 (0.97) 86.40 (2.96) 88.50 (2.94) 2.60 (1.25) 69.00 (6.92)
2000 101.10 (6.78) 6.70 (1.73) 107.80 (6.64) 0.50 (0.69) 73.70 (2.90) 74.20 (3.13) 1.60 (0.89) 49.00 (5.07)
4000 88.10 (3.83) 4.30 (1.73) 92.40 (4.92) 0.60 (0.68) 62.40 (3.05) 63.00 (3.08) 0.80 (0.45) 31.70 (4.52)
8000 85.40 (5.80) 7.30 (3.86) 92.70 (8.96) 0.20 (0.30) 50.60 (2.40) 50.80 (2.48) 0.70 (0.48) 19.90 (2.85)

Polbooks 105 30374

250 284.90 (6.41) 331.60 (6.48) 616.50 (11.70) 151.12 (19.55) 363.62 (7.21) 514.75 (14.43) 0.17 (0.20) 434.89 (1.26
500 287.00 (11.98) 304.10 (9.59) 591.10 (20.52) 114.29 (20.92) 364.71 (6.32) 479.00 (15.53) 0.06 (0.12) 428.22 (3.13
1000 282.10 (13.68) 276.80 (10.56) 558.90 (23.37) 76.71 (20.20) 362.29 (7.21) 439.00 (23.10) 0.11 (0.16) 414.00 (4.12
2000 269.00 (12.80) 250.50 (7.46) 519.50 (19.67) 50.43 (11.67) 359.00 (8.86) 409.43 (19.53) 0.00 (0.00) 399.72 (4.38
4000 254.70 (19.17) 233.40 (12.42) 488.10 (31.30) 32.00 (6.79) 346.86 (12.26) 378.86 (17.55) 2.33 (3.46) 379.39 (8.43
8000 237.50 (19.82) 216.40 (8.55) 453.90 (27.47) 19.14 (4.24) 334.00 (11.23) 353.14 (12.10) 1.80 (3.89) 362.27 (10.0

Adj-Noun 112 39728

250 326.20 (12.07) 323.20 (6.98) 649.40 (18.72) 141.50 (12.66) 364.10 (5.67) 505.60 (9.13) 0.00 (0.00) 424.30 (0.58
500 320.10 (10.29) 301.00 (7.28) 621.10 (16.54) 89.80 (8.80) 371.50 (6.84) 461.30 (9.60) 0.20 (0.30) 421.00 (1.88)
1000 300.30 (10.94) 266.50 (7.10) 566.80 (17.09) 62.60 (3.47) 368.30 (3.82) 430.90 (6.28) 0.10 (0.22) 413.70 (2.49
2000 287.50 (12.39) 244.30 (7.15) 531.80 (19.11) 43.50 (4.31) 356.20 (4.97) 399.70 (8.45) 0.00 (0.00) 400.80 (3.61
4000 270.40 (9.11) 222.00 (5.12) 492.40 (13.80) 28.90 (2.69) 343.10 (2.91) 372.00 (4.61) 0.00 (0.00) 384.40 (6.23
8000 255.30 (7.01) 199.50 (4.79) 454.80 (11.18) 18.40 (2.90) 328.90 (4.76) 347.30 (6.99) 0.00 (0.00) 366.30 (5.90

fs-541-1 541 1028224

250 2268.00 (61.47) 2290.20 (28.69) 4558.20 (87.40) 204.50 (2.36) 2546.40 (2.90) 2750.90 (2.58) 0.00 (0.00) 2465.70 (0.4
500 2186.40 (62.99) 2192.80 (37.17) 4379.20 (98.13) 154.10 (2.34) 2530.90 (3.32) 2685.00 (2.05) 0.00 (0.00) 2464.60 (1.0
1000 2000.60 (70.20) 2002.20 (58.48) 4002.80 (127.69) 103.50 (1.89) 2421.40 (3.34) 2524.90 (3.20) 0.00 (0.00) 2462.50 (2.3
2000 1805.00 (75.60) 1732.60 (78.13) 3537.60 (151.85) 79.30 (2.28) 2411.30 (4.31) 2490.60 (3.29) 0.00 (0.00) 2457.40 (3.0
4000 1582.20 (77.67) 1428.80 (79.77) 3011.00 (156.92) 59.80 (2.32) 2359.20 (2.30) 2419.00 (2.53) 0.00 (0.00) 2445.10 (6.0
8000 1390.40 (75.13) 1141.20 (53.79) 2531.60 (128.22) 44.20 (2.53) 2247.70 (4.23) 2291.90 (3.49) 0.00 (0.00) 2300.30 (2.4
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Fig. 8. Hamming distance differences between BJP and competitors for scale-free network models. 	 HD denotes the improvement in Hamming distance 
over each competitor. a) Differences with GSMN. b) Differences with MPL. c) Differences with IB-score.

Proof of Theorem 1. In the formulation of the BJP score, the joint distribution of the blankets of G is calculated by com-
puting the probabilities of conditional independence and dependence assertions contained in the blanket of each variable 
of the domain. This proof follows by demonstrating that the joint posterior over the dependences and independences used 
in (11) and (12) is equivalent to the posterior of a MN structure.

From [28, Definition 2], the Markov blanket closure is a set of independence and dependence assertions that are formally 
proven to correctly determine a MN structure. This set is obtained by determining the blanket of each variable Xi ∈ XV with 
the following set of conditional independence and dependence assertions:{

〈Xi ⊥ X j|B Xi 〉 : X j /∈ B Xi

} ⋃ {
〈Xi �⊥X j|B Xi \ {X j}〉 : X j ∈ B Xi

}
.

Clearly, this is exactly the same set used by BJP in (12) to compute the posterior of the blanket of each variable of the 
domain. Since this set determines all members and non-members of each blanket without error, the posterior of (11)
results equivalent to the posterior of the independence structure. Thus, the approximation introduced in (12) is correct in 
the sense that it computes probabilities that are sufficient to calculate the posterior of a MN structure. We demonstrate 
that these probabilities are properly estimated by (13) and (14). We proceed by discussing their correctness separately for 
independence and dependence assertions.

i) For independence assertions: Equation (13) computes the probability of independence between a variable and a non-
adjacent variable, conditioned on its blanket, given the previously computed blankets and the dataset D . In this 
equation, for the case when i < k, which indexes over the variables for which the blanket posterior is not already 
computed, the posterior of the independence assertion 〈ψi ⊥ ψk|Bψi 〉 must be computed from data. This is achieved 
by using the Bayesian statistical test of [35], that has been proven to be statistically consistent, since its mean square 
error tends to 0 as the dataset size tends to infinity. For the case when i > k, which indexes over the variables for 
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Fig. 9. Scale-free networks models: average and standard deviation of the learning runtime (in seconds) over 100 repetitions.

which the blanket posterior is already computed, the independence assertion is inferred as 1, since its independence 
is determined by the blanket of ψk , which is in the evidence 

{
Bψ j

}i−1
j=0. By definition in (12), this case applies to all 

the variables ψk /∈ Bψi (i.e., all the variables that are not connected to ψi ). We argue the correctness for this inference 
by considering an intuitive equivalence commonly used by constraint-based approaches to perform independence tests 
that involve a smaller number of variables [3, p. 980]. If two variables Xi and Xk are not neighbors in G , then by 
applying the local Markov property of (3) once for each, we have that 〈Xi ⊥ Xk|B Xi 〉 and 〈Xi ⊥ Xk|B Xk 〉 hold. Therefore, 
the inference made is correct.

i) For dependence assertions:
A similar argument can be given for the case of the dependence assertions. Equation (14) computes the probability of 
dependence between a variable and an adjacent variable conditioned on its remaining neighbors, given the previously 
computed blankets and the dataset D . Again, for the case when i < k, which indexes over the variables for which the 
blanket posterior is not already computed, the posterior of the dependence assertion must be computed from data. 
For the case when i > k, which indexes over the variables for which the blanket posterior is already computed, the 
dependence assertion is inferred as 1, since its dependence is determined by the blanket of ψk , which is again in the 
evidence 

{
Bψ j

}i−1
j=0. By definition in (12), this case applies to all the variables ψk ∈ Bψi (i.e., all the variables that are 

connected to ψi ). Clearly, if two variables Xi and Xk are neighbors in G , there are no sets separating them in the graph. 
Therefore, the dependence assertion inferred is true. �

Appendix B. Impact of different orderings for blankets

This appendix shows two simulations that illustrate the convenience of the proposed ordering, that sorts the variables by 
their blanket sizes in ascending order. The first simulation illustrates how the sample complexity of statistical tests grows 
with the size of the conditioning set. The second simulation shows the sample complexity of the BJP score, computed for 
the underlying structure of data (i.e., the graph of Fig. 1). For the graph of Fig. 1, a MN random distribution has been 
generated, and then a synthetic dataset D has been sampled from the distribution with a Gibbs sampler. For more details 
about how we generated our synthetic data, see Section 4.

For the first simulation, the posterior probabilities of two independence assertions t1 = 〈X1 ⊥ X2|X0〉 and t2 = 〈X1 ⊥
X2|X0, X3〉 were computed from D with the Bayesian statistical test. Both assertions are correct in the graph of Fig. 1, and 
also must be present in the synthetic dataset generated. In the left plot of Fig. 12 the trends of the log posterior probabilities 
of t1 and t2 are shown, computed from data for increasing dataset sizes D = {250, 500, 1000, 2000, 4000, 8000, 40000,

70000,100000}. The log of the threshold 0.5 is drawn in a dashed line, to show the convergence of the probabilities. 
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Fig. 10. Hamming distance differences between BJP and competitors for real-world networks. 	 HD denotes the improvement in Hamming distance over 
each competitor. a) Differences against GSMN. b) Differences against MPL. c) Differences against IB-score.
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Fig. 11. Real networks: average and standard deviation of the learning runtime (in seconds) over 100 repetitions.
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Fig. 12. Simulation with data sampled from the hub structure of Fig. 1. Left: the posterior of two equivalent independence assertions tested on data, with 
different conditioning sizes. Right: the BJP score computed for different arbitrary orderings.

Although t1 and t2 are equivalent, t2 has two variables in the conditioning set, and clearly requires higher amounts of data 
to converge to log(1) = 0.

For the second simulation, we computed the BJP score using the following orderings of the variables:

(i) X1, X2, X3, X0 (optimal ordering, when sorting the blankets by their size in ascending order).
(ii) X1, X2, X0, X3 (sub-optimal).

(iii) X1, X0, X2, X3 (sub-optimal).
(iv) X0, X1, X2, X3 (worst ordering).

The right plot of Fig. 12 shows the BJP score when using each of these orderings, for increasing datasets sizes D =
{250, 500, 1000, 2000, 4000, 8000, 40000,70000,100000}. Clearly, the optimal ordering (X1, X2, X3, X0) shows the best sam-
ple complexity, and the ordering (X0, X1, X2, X3) shows the worst sample complexity. As it can be seen, the ordering used 
greatly affects the score when data is scarce (D < 2000). For dataset sizes greater than 1000 data points, the BJP score is the 
same for any order. It illustrates how the independence assumption between blankets affects the data efficiency. For small 
dataset sizes, an optimal ordering for computing the blankets joint posterior is expected to improve the sample complexity 
of those methods that assume independence between blankets.

Appendix C. Bayesian statistical test of conditional independence

This appendix describes briefly the Bayesian statistical test of conditional independence [35], and explains how to adapt 
it for discrete variables. The Bayesian test allows us to query a conditional independence between two random variables Xi
and X j , given a conditioning set X Z , in a training dataset D . The statistical test works by comparing the posterior probability 
of two statistical models: the independent model MC I , and the dependent model M¬C I .

The posterior probability of the independent model is computed from D as follows:

P (MC I | D) = 1/

(
1 + 1 − P (MC I )

P (MC I )
· P (D | M¬C I )

P (D | MC I )

)
, (16)

where P (MC I ) denotes the a priori probability of the independent model, P (D | MC I ) is the data likelihood of the inde-
pendent model, and P (D | M¬C I ) is the data likelihood of the dependent model. The posterior probability of the dependent 
model is simply obtained by P (M¬C I | D) = 1 − P (MC I | D).

For computing the above formula, it is required to compute P (D | MC I ) and P (D | M¬C I ). For discrete domains, the data 
likelihood of the independent model can be computed by the product of each of the “slices” of X Z (that is, each possible 
complete assignment or configuration of X Z ), because it is assumed that the data is disjoint and independent for each slice. 
By denoting as K the number of slices, the data likelihood of the independent model is computed by

P (D | MC I ) =
K∏

k=1

P (Dk | Mk
C I ) =

K∏
k=1

gk, (17)

where Dk is the subset of D corresponding to the slice k, and gk is the likelihood in slice k, computed as

gk = P (Dk | Mk
C I ) =

(
�(α)

�(α + M)

I∏
i=1

�(αi + ci)

�(αi)

)⎛
⎝ �(β)

�(β + M)

J∏
j=1

�(β j + c j)

�(β j)

⎞
⎠ . (18)
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This equation corresponds to the use of two independent Dirichlet priors. The α and β values are hyper-parameters, and 
ci, c j are the counts of variables Xi and X j in D K . The hyper-parameters α and β are obtained by summing over all the 
hyper-parameters αi , and β j , respectively. The cardinalities of Xi and X j are I and J respectively. The gamma function � is 
defined as �(x) = ∫ +∞

0 e−t yx−1 dt . When x is a non-negative integer, �(x + 1) = x!.
For the dependent model, the data likelihood is more complex. It consists of a sum over all the possible values of 

independence and dependence for the slices of the conditioning set. As described in [39], it can be computed as

P (D | M¬C I ) =

K∏
k=1

pk gk + qkhk −
K∏

k=1
pk gk

P (M¬C I )
, (19)

where gk is computed with (18), pk = P (Mk
I ) = P (MC I )

1/K is the prior probability of the independent model in the slice k, 
qk = P (Mk¬I ) = 1 − pk is the prior probability of the dependent model in the slice k, and hk is the data likelihood of the 
model for the slice k, computed as

hk = P (Dk | Mk¬C I ) = �(γ )

�(γ + M)

I∏
i=1

J∏
j=1

�(γi j + ci j)

�(γi j)
. (20)

The values γ and γi j are hyper-parameters, and ci j are the frequencies of variables Xi and X j in D K . The hyper-parameter 
γ is obtained by summing over all the hyper-parameters γi j .

The statistical test returns true when P (MC I | D) > P (M¬C I | D) and false otherwise. We recommend to implement the 
above formulas in the logarithmic space, for avoiding arithmetic underflow. In this work, our implementation uses the same 
hyper-parameter values as used in previous works [39,28], which are: γi j = 1, αi = 1, β j = 1 and P (MC I ) = 0.5.
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