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Abstract

In the context of the Semantic Web, assigning individuals to their respective

classes is a fundamental reasoning service. It has been shown that, when purely

deductive reasoning falls short, this problem can be solved as a prediction task

to be accomplished through inductive classification models built upon the sta-

tistical evidence elicited from ontological knowledge bases. However also these

data-driven alternative classification models may turn out to be inadequate

when instances are unevenly distributed over the various targeted classes To

cope with this issue, a framework based on logic decision trees and ensemble

learning is proposed. The new models integrate the Dempster-Shafer theory

with learning methods for terminological decision trees and forests. These en-

hanced classification models allow to explicitly take into account the underlying

uncertainty due to the variety of branches to be followed up to classification

leaves (in the context of a single tree) and/or to the different trees within the

ensemble model (the forest). In this extended paper, we propose revised ver-

sions of the algorithms for learning Evidential Terminological Decision Trees

and Random Forests considering alternative heuristics and additional evidence

combination rules with respect to our former preliminary works. A comprehen-

sive and comparative empirical evaluation proves the effectiveness and stability
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of the classification models, especially in the form of ensembles.

Keywords: ontologies, logic decision trees, Dempster-Shafer theory, instance

classification

1. Introduction1

Sharing knowledge that is encoded along formal ontologies, thus enabling2

rich reasoning capabilities, plays a key role in the context of the Semantic Web3

(SW). However, standard deductive inference mechanisms sometimes show their4

limitations because of the inherent incompleteness of the ontological knowledge5

bases combined with the adoption of an open-world semantics, which is natural6

in such a Web-scale heterogeneous and distributed context.7

In order to tackle the consequences of these distinctive aspects, alternative8

forms of reasoning, based on statistical models that can be induced through9

data-driven methods, have been introduced for performing various tasks such10

as concept retrieval and query answering [1] more effectively. It has been shown11

that these tasks have been cast as classification problems, which amount to12

deciding the membership of an individual with respect to a target concept, and13

they have been solved through inductive learning methods exploiting statisti-14

cal regularities in the underlying knowledge base. Specifically, the resulting15

models have been used by approximate classification procedures applied to the16

knowledge bases also in combination with deductive inference services [2]. The17

application of these methods has shown interesting results such as the ability to18

synthesize new concepts and/or produce inductive classification models inspired19

by Inductive Logic Programming (ILP) like terminological decision trees [3], i.e.20

logic decision trees [4, 5] whose inner node tests are expressed in terminological21

languages (that is Description Logics [6]). Additionally, exploiting such sta-22

tistical models, non logically-derivable yet still consistent assertional knowledge23

may be suggested.24

However, such alternative methods and models have also revealed some25

shortcomings. One of the issues is that they do not allow an explicit repre-26
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sentation of uncertainty to be specifically exploited for managing those cases27

when the classification procedure assigns an uncertain membership. To better28

tackle these cases, an enhanced model, called evidential terminological decision29

tree has been devised, by integrating primitives of the Dempster-Shafer The-30

ory [7]. The main advance with respect to terminological decision trees regards31

the heuristic used to select the concept installed into inner nodes (based on the32

non-specificity measure [8] rather than the classic measures stemming from in-33

formation gain) and the classification procedure (that explores all the possible34

paths departing from a node with an uncertain test result).35

Another issue concerns the distribution of the training data. In general, the36

individuals that are known (or can be logically assessed as) positive and negative37

instances for a given target concept (that is those that are instances of a target38

concept or of the negated target concept) may not be equally distributed. This39

skewness may be noticeably larger when considering individuals whose mem-40

bership cannot be assessed by reasoning under an open-world semantics. This41

class-imbalanced setting may affect the model, resulting in poor performances.42

Various methods have been devised to tackle the general unbalance learning43

problem (see [9] for a survey of the various approaches). As regards the specific44

task of learning instance classification models for inductive query answering on45

SW knowledge bases, we investigated the adoption of methods for ensemble46

models [10] that are made up of a certain number of classifiers, trained by the47

so-called weak learners, and whose final prediction results from the combination48

of the predictions made by each classifier. Specifically, the combination is given49

by a specific rule playing the role of the meta-learner. Particularly, we proposed50

an algorithm for inducing terminological random forests [10] that extends (First51

Order) random forests [11, 12] with the use of Description Logics: the model is52

an ensemble of terminological decision trees [3].53

Employing these models, the membership of a test individual w.r.t. a target54

concept is decided according to a majority vote rule (although various other55

strategies for combining predictions have been proposed [13, 14, 15]): each clas-56

sifier equally contributes to the final decision returning a vote in favor of a57
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single membership. In this way, some other aspects are not considered explic-58

itly, such as the uncertainty about the single membership-label assignments59

and the disagreement that may intervene among weak learners. Particularly,60

the latter issue is crucial for the performance of ensemble models [16]: using the61

aforementioned type of forests, we noted that most misclassification cases were62

related to situations in which votes are evenly distributed with respect to the63

admissible labels. A weighted voting procedure may be an alternative strategy64

to mitigate the problem, but it requires a criterion for setting the weights.65

In this sense, introducing a meta-learner which can manipulate the soft pre-66

dictions made by each classifier (i.e. a prediction with a confidence measure for67

each membership value) rather than hard predictions (where only the predicted68

label is returned) may be a solution. Adopting the random forests as ensem-69

bles, this can be accomplished by considering evidential terminological decision70

trees [7] as base models. Dempster-Shafer theory has already been used in71

combination with ensemble learning procedures (e.g. see [17]). However, most72

of the methods apply to problems that involve simpler knowledge representa-73

tions. Additionally, none of them has been employed for predicting assertions74

on ontological knowledge bases.75

Therefore, we further extended the model proposing a framework for the in-76

duction of Evidential Terminological Random Forests for ontological knowledge77

bases [18]. Employing evidential terminological decision trees, the approach78

does not require the computation of decision templates. After the induction79

of the forest, new individuals are classified by combining the evidence on the80

membership prediction made by each tree through Dempster’s rule [19].81

However, we noted that the proposed framework had some limitations [7, 18].82

Firstly, the heuristic to select the most promising label adopted by evidential83

terminological decision tree learning algorithm did not consider the presence of84

conflicting evidence. Secondly, the combination rule represented a bottleneck85

of the classification step: therefore it is important to investigate alternative86

solutions for improving the efficiency of the classification. Thirdly, the size of87

evidential terminological random forests seemed not to affect the predictive-88
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ness of the ensemble model (due to a weak diversification of the ensemble) but89

represented a source of complexity during the classification step.90

Consequently, in this paper we extended the framework for learning ev-91

idential terminological decision trees and random forests along the following92

directions:93

• we used different heuristics based on other total uncertainty measures94

(than the sole non-specificity measure) to drive the selection of the con-95

cepts to be installed into the nodes of evidential terminological decision96

trees;97

• we used further combination rules to pool the evidence obtained by98

traversing each tree;99

• we used further combination rules as meta-learner for evidential termino-100

logical random forests;101

• we set up a comprehensive and comparative experimental evaluation show-102

ing the effectiveness of the proposed extensions when performing inductive103

instance retrieval.104

The remainder of the paper is organized as follows: the next section intro-105

duces basics on the targeted representation language and the problem we aim106

to solve, that is inducing classifiers for the SW context; Sect. 3 recalls the ba-107

sics on Dempster-Shafer Theory, required for understanding the framework of108

the evidential tree-based models presented in Sect. 4. In Sect. 5, the empirical109

evaluation of the classification models is described, while Sect. 6 discusses re-110

lated approaches. Sect. 7 draws conclusions and illustrates some perspectives111

for further developments.112

2. Basics of Description Logics and Problem Definition113

In this section we recall the basics of Description Logics (DLs), that is the114

family of knowledge representation languages at the core of the standard Web115
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ontology language1 (OWL - DL).116

In DLs, a domain is modeled in terms of a set of atomic concepts, NC =117

{A,B, · · · } and atomic roles, NR = {R,S, · · · }. Two noteworthy concepts are118

the top concept, denoted with >, and the bottom concept, denoted with ⊥. DLs119

are endowed with a set of operators to combine atomic concepts and forming120

complex descriptions, such as complement, conjunction and disjunction. A set121

of constants, dubbed as individuals and denoted with NI = {a, b, · · · }, is to be122

considered as the names of the objects of the domain to be represented.123

The semantics of the constructs is defined in terms of interpretations. An124

interpretation is a couple I = (∆, ·I), where its domain ∆I is a non-empty set of125

objects while ·I is the interpretation function that maps each concept C ∈ NC126

onto a set of objects CI ⊆ ∆I and each role R ∈ NR onto a binary relation127

RI ⊆ ∆I ×∆I . In addition, >I = ∆I and ⊥I = ∅. The semantics of complex128

concept descriptions is defined recursively depending on the available operators129

for building complex concepts. For instance, for the case of ALC, the semantics130

of complex description is defined as follows:131

• (D u E)I = DI ∩ EI132

• (¬D)I = ∆I \DI133

• (∀R.D)I = {a ∈ ∆I |∀b ∈ ∆I , (a, b) ∈ RI → b ∈ DI}134

• (∃R.D)I = {a ∈ ∆I |∃b ∈ ∆I , (a, b) ∈ RI ∧ b ∈ DI}135

Finally, each individual name is mapped onto an element of ∆I .136

A knowledge base is a pair K = (T ,A) where T and A denote its TBox and137

ABox. The TBox contains intensional knowledge about the domain, modeled138

as inclusion axioms C v D (meaning that D subsumes C) and interpreted139

as CI ⊆ DI for every interpretations I. Given two concepts C and D, C is140

equivalent to D if for every interpretations I, CI = DI . Alternatively, C and D141

are equivalent if C v D and D v C. The ABox A contains factual knowledge,142

1www.w3.org/OWL
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i.e. assertions concerning individuals. In the ABox there are two kinds of143

assertions: concept C(a) and role assertions R(a, b). The set of individuals144

occurring in A are denoted by Ind(A).145

Knowledge bases are also equipped with deductive reasoning capabilities.146

An important reasoning service for our purposes is instance checking : an indi-147

vidual a is an instance of a concept C if, for every model of K, C(a) holds. This148

can be denoted with K |= C(a). We will be also interested in the case where149

K |= ¬C(a). These instances will be exploited as examples (positive and neg-150

ative examples respectively) in our learning procedures. Note that, due to the151

reasoning under the Open World Assumption (OWA) that is generally adopted152

in this context, it may happen that C(a) and ¬C(a) are satisfied by different153

models of K. This means that neither K |= C(a) nor K |= ¬C(a) holds, i.e.154

there is insufficient knowledge to decide the membership of a w.r.t. the target155

concept using standard deductive inference services. Such individuals will be156

considered as instances with uncertain membership w.r.t. C.157

In order to overcome this inherent limitation, it is possible to resort to de-158

cision procedures that are based on inductive (statistical) classification models.159

They can be learned by fitting a function from available examples (individuals160

for which the membership w.r.t. C is known) that amounts to solving a mini-161

mization problem based on a notion of misclassification risk. A general learning162

task aiming at classification models can be defined as follows:163

Definition 1 (learning problem).164

Given165

• a target concept C166

• a set of instances E167

• a set of labels L to denote the membership w.r.t. C168

• a joint probability distribution between E and L, namely P (E,L), mea-169

suring the chance of an element of E to be assigned with one of the labels170
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• a set of hypotheses H = {h : E → L}, i.e. classification functions that171

can predict a label for their arguments172

• a loss function L : E× L → [0,+∞[ to assign a penalty for predicting an173

incorrect label for a given instance174

Find a function h∗ ∈ H such that:175

h∗ = arg min
h∈H

EP [L(h(a), l)] (1)

This definition requires the expected risk to be computed over the data gen-176

erating distribution P , which is usually unknown. Therefore a more concrete177

definition will be specified for the case of DL knowledge bases, aimed at inducing178

a classification function that minimizes an empirical risk of error on the training179

set, and it can be reformulated for the targeted representation as follows:180

Definition 2 (learning classifiers for DL knowledge bases).181

Given182

• a target concept C in the signature of a knowledge base K = 〈T ,A〉183

• a set of membership labels L = {−1, 0,+1} to denote, resp., the positive,184

uncertain and negative membership w.r.t. C185

• a loss function L : Ind(A)× L → [0,+∞[186

• a training set of examples for which the correct labels are known, i.e. the187

values of a correct classifier2 f : Ind(A)→ L, Tr = P ∪N ∪U where:188

P = {a ∈ Ind(A) | f(a) = +1} i.e. {a ∈ Ind(A) | K |= C(a)}189

N = {a ∈ Ind(A) | f(a) = −1} i.e. {a ∈ Ind(A) | K |= ¬C(a)}190

U = {a ∈ Ind(A) | f(a) = 0} i.e. {a ∈ Ind(A) | K 6|= C(a) ∧ K 6|= ¬C(a)}191

• a set of classification functions, or hypotheses, H = {h : Ind(A)→ L}192

2i.e. whose analytic form is not available.
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Find a classification function h∗ ∈ H, approximating f , such that193

h∗ = arg min
h∈H

1

|Tr|
∑
a∈Tr

L [h∗(a), f(a)] (2)

Note that the hypothesis setH acts as a form of bias and can be properly defined194

in order to exclude trivial solutions (overfitting) such as classifiers induced by195

a rote learner based on functions that merely memorize the correct labeling for196

the training examples (that would be equivalently described by the disjunction197

of very specific concepts – one per positive example). Conversely, the aim is to198

obtain a solution that is able to ensure a good generalization, that is the ability199

to correctly predict the membership for unseen individuals, i.e. individuals that200

have not been considered during the training phase. In this paper, we present201

a solution to this learning problem based on a tree classification model which202

combines logics and evidence-based prediction.203

3. Basics of the Dempster-Shafer Theory204

In this section basics of Dempster-Shafer Theory are summarized since it205

represents the main building block for the formalization of the evidential tree-206

based models presented in Sect. 4.207

The Dempster-Shafer Theory (DST) [20] can be regarded as a generalization208

of the Bayesian subjective probability theory. The framework offers an alterna-209

tive to traditional probabilistic theory for the mathematical representation of210

uncertainty: a probability mass can be assigned to a set or an interval without211

knowing the probability of the specific elements. As argued in [20], this aspect212

may be a valuable tool when knowledge is obtained from expert elicitation.213

In the DST, the frame of discernment is a set of exhaustive and mutually214

exclusive hypotheses Ω = {ω1, ω2, . . . , ωn} about a domain. Moving from the215

frame of discernment we can defined the basic belief assignment216

Definition 3 (BBA and focal element). A basic belief assignment (BBA)217

is defined as a mapping where m : 2Ω → [0, 1] so that m(∅) = 0 and218 ∑
A∈2Ω m(A) = 1. If m(A) > 0, A is a focal element for m.219
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Note that BBAs extend the standard probability measures. The key dif-220

ference regards the relaxation of the monotonicity property of the probability221

measures. Indeed the degrees of belief are ascribed to sets of events rather than222

to single events. This means that for a BBA, given A,B ∈ 2Ω, A ⊆ B does not223

imply m(A) ≤ m(B). This property derives from committing the value m(B)224

only to the set B and not to any of its subsets. Conversely, in the probability225

theory, the probability of an event A is exactly the sum of probabilities assigned226

to the single a ∈ A.227

Other functions can be derived from BBAs such as belief and plausibility.228

Definition 4 (belief). The belief in A, denoted by Bel(A), represents a mea-

sure of the support committed to A given the available evidence:

Bel(A) =
∑
B⊆A

m(B).

Definition 5 (plausibility). The plausibility of A, Pl(A), represents the total

belief that may be committed to A when further evidence becomes available:

Pl(A) =
∑

B∩A6=∅

m(B).

Note that, differently from the BBA m, Bel and Pl are monotonic. As described229

in the following, this is taken into account when these measures are used with230

the models proposed in this paper.231

3.1. Combination Rules232

Combination rules are operators for pooling information obtained from mul-233

tiple sources. These sources provide different assessments for the frame of234

discernment of the domain of interest. DST traditionally assumes that these235

sources are independent, although this constraint has been progressively relaxed236

with the introduction of new rules.237

Many operations have been proposed in the literature [19]. In the sequel,238

we briefly survey the most important combination rules. In the rest of the239

paper, we will denote the application of one of such combination rules on two240

(or multiple) BBAs with the symbol ⊕ (e.g. m1,2 = m1 ⊕m2).241
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3.1.1. Dempster’s Rule242

The original combination rule of multiple BBAs known as Dempster’s rule is243

a generalization of Bayes’ rule [21]. The resulting BBA can be computed with:244

∀A ⊆ Ω m1,2(A) =


1

1−c
∑
B∩C=Am1(B) ·m2(C) if A 6= ∅

0 otherwise

(3)

where

c =
∑

B∩C=∅

m1(B)m2(C) (4)

This rule emphasizes the agreement between the sources adopting the normal-245

izing factor c to distribute the conflicting evidence. It has come under serious246

criticism when the amount of conflict among sources is significant leading to247

counterintuitive results.248

Example 1 (Dempster’s rule). Let us consider two BBAs m1 and m2 de-

fined over a simple frame of discernment Ω = {ω1, ω2, ω3} whose focal elements

are reported below:

m1({ω1}) = 0.99, m1({ω3}) = 0.01, m2({ω2}) = 0.99, m2({ω3}) = 0.01

Applying the rule, the pooled BBA value for {ω3} is:

m1,2({ω3}) =
1

1− 0.99 · 0.99− 0.99 · 0.01− 0.99 · 0.01
· 0.01 · 0.01 = 1

Note that this result is due to the agreement of the evidence in favor of {ω3}249

and the disagreement between {ω1} and {ω2}.250

To prevent cases like the one reported above, which may affect the effectiveness251

of the models described in this paper, we investigated the effectiveness of further252

rules.253

3.1.2. Dubois-Prade Disjunctive Pooling Rule254

This rule [22] takes into account the union of the probability masses (dis-255

junctive rule): this prevents the generation of conflict as there is no rejection of256
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information coming from the various sources. The combination rule is defined257

as follows:258

∀A ⊆ Ω m1,2(A) =
∑

B∪C=A

m1(B)m2(C). (5)

The union does not generate any conflict and does not reject any informa-259

tion asserted by the sources. As such, no normalization is required (unlike the260

Dempter’s rule). The drawback of this rule is that it may yield a more impre-261

cise result than desirable. It is easy to see that this rule is commutative and262

associative.263

3.1.3. Mixing264

This rule (also known as averaging) represents an extension of the average265

for probability distributions computed on the BBAs and describes the frequency266

of the various values within a range of possible values. The resulting BBA can267

be obtained merely as a weighted average of the masses according to the various268

features:269

∀A ⊆ Ω m1,...,n(A) =
1

n
wim(A) (6)

where a normalized weight vector w is generally considered. The values of the270

weights should reflect a degree of confidence in the sources. This rule is commu-271

tative, idempotent and quasi-associative3. For our purpose, we are interested272

in associative combination rules to prevent the final decision to be affected by273

the pooling order of the considered BBAs, namely Dempster’s rule and Dubois-274

Prade rule. In the experiments we will consider also mixing rule to investigate275

3 A quasi-associative operation is an operation that can be broken down in two associative

sub-operations. For instance, the mathematical average is quasi-associative: the value is

obtained as the sum of a list of numbers divided by the number of the elements in the

list (both the sum of the terms and the counting of the element in the list are associative

operations)
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the effectiveness of the predictive models when a quasi-associative rule is em-276

ployed.277

3.2. Measures of Total Uncertainty278

In the context of the DST, various measures of uncertainty can be considered.279

These measures are typically defined as generalizations of Shannon’s entropy280

or of other types of measures of uncertainty proposed in Probability Theory.281

Alternatively, they can be determined according to the conflict existing among282

the BBAs to be pooled according to a given combination rule. In this section,283

we briefly recall some measures. For more details, see [8].284

The non-specificity measure [23] quantifies the degree of imprecision related285

to a BBA:286

NS(m) =
∑
A∈2Ω

m(A) log(|A|) (7)

The measure of confusion is defined on the ground of a BBA and the belief287

measure, as reported below [24]:288

Confusion(m) = −
∑
A∈2Ω

m(A) log(Bel(A)) (8)

The measure of dissonance [25] is based on a BBA and the plausibility and289

is defined as follows:290

Dissonance(m) = −
∑
A∈2Ω

m(A) log(Pl(A)) (9)

In the sequel, we will adopt these criteria to select the best features that291

compose the model proposed in this paper.292

4. Evidence-based Terminological Trees and Forests293

The original notions of terminological decision trees and random forests will294

be now recalled before introducing the new methods for the induction and usage295

of the evidence-based versions of these classification models.296
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Paper

Paper u ∃hasTopic.SW

Paper u ∃hasTopic.(SW ∩ Uncertainty)

URSWPaper ¬URSWPaper

¬URSWPaper

¬URSWPaper

Figure 1: A TDT for predicting if a paper may have appeared in URSW proceedings

4.1. Terminological Decision Trees and Random Forests297

Classification can be performed by inducing terminological decision trees298

(TDTs) [3]. A TDT is basically a binary tree whose leaves contain labels that299

denote the (positive/negative) membership with respect to the target concept;300

each inner node, dubbed also decision or test node, contains a DL concept301

description D (in conjunctive form) and the descending edges from such a node302

represent the result of a test over D (positive, negative).303

Fig. 1 illustrates a simple example of a TDT that can describe the individ-304

uals of a knowledge base that are papers appeared in the URSW proceedings305

(target concept URSWPaper). Note that, given a node with a concept descrip-306

tion D, its left child may be either a leaf or another decision node containing a307

concept description E such that E v D, whereas the right child may be either308

another leaf or a decision node containing a concept description E′ for which309

E′ v ¬D is intended. For instance, the root node contains the concept Paper310

while its left child is another decision node containing the concept description311

Paper u ∃hasTopic.SW and its right child is a leaf with a negative label.312

Similarly to other supervised models, the predictiveness of a TDT can be313

affected by the class-imbalance problem. In Machine Learning, this problem con-314

cerns the skewness of the training data distributions. Especially in multi-label315

settings, the problem occurs when the number of training examples belonging316

to a particular category (the majority class) overwhelms the number of those317

belonging to the others.318
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In order to tackle this problem, the most common approaches that have been319

proposed are based on a sampling strategy [26]. One of the simplest methods is320

an under-sampling strategy that randomly discards instances belonging to the321

majority class in order to re-balance the dataset. However, this method causes322

a loss of information due to the possible removal of useful (critical) examples323

that may be essential for inducing a predictive model.324

A terminological random forest (TRF) is an ensemble model trained through325

a procedure that combines a random under-sampling strategy with ensemble326

learning [10]. A TRF is basically made up of a certain number of TDTs, where327

each of them is built by considering a (quasi-)balanced dataset. The ensemble328

model assigns the final classification for a new individual by appealing to a329

majority vote procedure. Therefore each TDT returns a crisp prediction: each330

provides an equal contribution to the final decision regarding the membership331

label, as no measure of confidence is available per single prediction.332

In order to consider also this kind of information and tackling other relevant333

problems related to the uncertainty about the class assignments (e.g. cases of334

ties in conflicting predictions) and the disagreement between classifiers that may335

lead to misclassifications [10], we need to resort to other models for the ensemble336

approach.337

4.2. Evidential Terminological Decision Trees338

To better take into account the mentioned forms of uncertainty, it has been339

shown how approximate class-membership prediction can be carried out by in-340

ducing evidential terminological decision trees (ETDTs) [7], an extension of the341

TDTs based on the DST. ETDTs are defined in a similar way with respect to342

TDTs. However, unlike TDTs, each inner node contains a pair 〈D,m〉 where,343

besides the concept description D, there is a BBA m based on the membership344

of the individuals w.r.t. D.345

Fig. 2 reports an example of ETDT used for deciding whether a paper has346

been published in the proceedings of URSW. Similarly to a TDT, each decision347

node contains a concept description D, while the left (resp. right) child may348
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m = (p:0.30, n:0.36, u:0.34)

Paper

m = (p:0.50, n:0.16, u:0.14)

Paper u ∃hasTopic.(SW uMachineLearning)

m = (p:0.60, n:0.40, u:0.0)

Papers u ∃hasTopic.(SW uMachineLearning u EvidentialReasoning)

m = (p:1.0, n:0.0, u:0.0)

URSWPaper

m = (p:0.0, n:1.0, 0.0)

¬URSWPaper

m = (p:0.5, n:0.4, u:0.1)

¬(Paper u ∃hasTopic.(SW uMachineLearning)) u ∃hasTopic.TrustManagement)

m = (p:0.9, n:0.0, u:0.1)

URSWPaper

m = (p:0.0, n:0.9, u:0.1)

¬URSWPaper

m = (p:0.0, n:0.0, u:1.0)

¬URSWPaper

Figure 2: An ETDT for deciding if a paper has appeared in the URSW proceedings

either be a leaf (containing the corresponding label) or another decision node349

with a concept description E v D (resp. E v ¬D). In addition, each node350

contains also a BBA, which can be estimated from the training instances used351

to learn the model, as described in the sequel.352

4.2.1. Growing ETDTs353

Before presenting the learning procedure we need to introduce the some354

notation. Moving from the formulation of the learning problem [10] (defined355

in Sect. 2), we will use the subset of the definite classification labels, Ω =356

{−1,+1} ⊂ L, as the frame of discernment of the problem (see Sect. 3).357

Therefore the positive membership label +1 corresponds to the subset {+1}358

of the frame of discernment, the negative membership label −1 corresponds to359

the subset {-1}, and the case of uncertain-membership will be denoted with the360

label 0 corresponding to {−1,+1}.361

Practically, to learn an ETDT model, a divide-and-conquer approach is362

adopted where a set of (more specific) concept descriptions is generated from363

the one contained in parent nodes. For each specialization, a BBA is also com-364

puted. Then the best description (and the corresponding BBA) is selected, e.g.365
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Algorithm 1 The routines for inducing ETDTs

1 const θ ∈ ]0, 1] {min.\ purity threshold parameter}
2

3 function InduceETDTree(〈P,N,U〉, C, D, m, P̂r): T

4 input 〈P,N,U〉: training set; C: target concept; D: concept,m: BBA; P̂r: priors
5 output T : ETDT
6 begin
7 T ← new ETDT
8 if |P| = 0 and |N| = 0 then

9 if P̂r(+1) ≥ P̂r(−1) then {pre−defined constants wrt the whole training set}
10 T.root← 〈C,m〉
11 else
12 T.root← 〈¬C,m〉
13 else if (m({−1} ' 0) and (m({+1}) > θ) then
14 T.root← 〈C,m〉
15 else if (m({+1} ' 0) and (m({−1}) > θ) then
16 T.root← 〈¬C,m〉
17 else
18 S← ∅
19 for E ∈ ρ(D) {assignBBA for each candidate}
20 mE ← computeBBA(E, 〈P,N,U〉)
21 S← S ∪ {〈E,mE〉}
22 〈E∗,m∗〉 ← selectBestCandidate(S)

23 〈〈Pl,Nl,Ul〉, 〈Pr,Nr,Ur〉〉 ← split(E∗, 〈P,N,U〉)
24 T.root← 〈E∗,m∗〉
25 T.left← induceETDT(〈Pl,Nl,Ul〉, C, E∗,m∗, P̂r)

26 T.right← induceETDT(〈Pr,Nr,Ur〉, C,¬E∗,m∗, P̂r)
27 return T
28 end

the one having the smallest non-specificity w.r.t. the previous level.366

Alg. 1 illustrates the training procedure. It distinguishes various cases: the367

non-recursive ones are those for which leaves are defined while the final one368

determines the inner nodes, hence the subtree structure, recursively.369

The first case copes with the lack of examples (|P| = 0 and |N| = 0) routed370

to the node resorting to the prior probability (estimates).371

The following cases determine the label for a leaf-node when it is (sufficiently)372

pure, i.e. no positive (resp. negative) example is found (or just a few) while most373

of the examples are negative (resp. positive). This purity condition is evaluated374

by considering the BBA m given as an input to the algorithm (m({−1} ' 0 and375

m({+1}) > θ or m({+1} ' 0 and m({−1}) > θ), where θ is a purity threshold.376

The values of a BBA function for the membership values are obtained from the377

distribution of positive, negative and uncertain-membership instances w.r.t. the378

current concept.379

Finally, the last (recursive) case concerns the availability of a nonnegligible380
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number of both negative and positive examples. In this case, the current concept381

description D has to be specialized by means of an operator exploring the search382

space of downward refinements of D. Following the approach described in [10,383

12], the refinement step produces a set of candidate specializations ρ(D). A384

BBA mE is then built for each candidate E ∈ ρ(D). Again, the function385

can be obtained by counting the number of positive, negative and uncertain-386

membership instances). Then the best pair 〈E∗,m∗〉 ∈ S according to the non-387

specificity measure is determined by the selectBestCandidate procedure and388

finally installed in the current node. Specifically, the procedure tries to find the389

pair 〈E∗,m∗〉 having the smallest non-specificity measure. As an alternative, the390

best concept description can be selected in order to maximize either confusion391

measure or the dissonance measure w.r.t. the previous level.392

After the assessment of the best test concept description E∗, the individuals393

are partitioned by the procedure split for the left or right branch according394

to the result of the test w.r.t. E∗, maintaining the same group4 (Pl/r,Nl/r,395

or Ul/r). Note that a training example a is replicated in both children in396

case both K 6|= E∗(a) and K 6|= ¬E∗(a) (test with a non-definite, positive or397

negative, outcome). The divide-and-conquer strategy is applied recursively until398

the instances routed to a node satisfy one of the stopping conditions discussed399

above.400

From a learning-as-search perspective, one may regard the induction of an401

ETDT as a search process in a hypothesis space H defined by the set of all402

possible ETDTs ruling out those having a sole inner node in the form of a pair403

(>,m).404

4.2.2. Prediction405

Given a test individual a and the induced ETDT, the membership can be406

assessed by following one or more paths in the tree. The procedure is reported407

4Note that the group is related to the membership w.r.t. the target class, while the branch

direction depends on the outcome of the test w.r.t. E∗.

18



Algorithm 2 Class-membership prediction routine through ETDT

1 const ε ∈ ]0, 1] {decision threshold parameter}
2

3 function classifyByETDT(a, T ) : l
4 input a: individual; T: ETDT
5 output l ∈ L
6 begin
7 M ← getLeafBBAList(a, T ) {list of BBAs located at leaf−nodes}
8 m̄←

⊕
m∈M

m

9 for each ∅ 6= s ∈ 2Ω do

10 Compute Bel(s) from m̄

11 if |Bel({−1})− Bel({+1})| ≤ ε then
12 predlabel← 0 {case of uncertain membership}
13 else

14 predlabel← arg max
l∈Ω

Bel({l}) {cases of definite membership}

15 return predlabel
16 end

in Alg. 2.408

Specifically, the algorithm traverses recursively the ETDT by performing a409

test w.r.t. the concept contained in each node that is reached: let a ∈ Ind(A)410

and D the concept installed in the current node, if K |= D(a) (resp. K |= ¬D(a))411

the left (resp. right) branch is followed. If neither K 6|= D(a) nor K 6|= ¬D(a) is412

verified, both branches are followed.413

After the exploration of an ETDT (via getLeafBBAList), the list M414

likely contains multiple BBAs. In this case, the BBAs are pooled according to415

a combination rule (see Sect. 3) producing m̄.416

The final decision about the membership to be assigned to the test indi-417

vidual is made by computing the belief measures for the positive, negative and418

uncertain membership cases based on the pooled BBA. If the measures for the419

definite cases are approximately equal (their difference is below a given thresh-420

old ε), the algorithm will assign the uncertain membership label 0. Conversely,421

the algorithm selects the definite label (l ∈ Ω) with higher belief.422

4.3. Evidential Terminological Random Forests423

An evidential terminological random forest (ETRF) is an ensemble of ET-424

DTs. We will focus on the procedures for producing an ETRF and for predicting425

class-membership of input individuals exploiting an ETRF.426
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Algorithm 3 The routines for inducing ETRFs

1 const θ ∈ ]0, 1] {min.\ purity threshold parameter}
2

3 function InduceETRF(Tr, C, n): F
4 input Tr : training set;C : target concept;n ∈ N
5 output F: ETRF
6 begin

7 P̂r← estimatePriors(Tr, C): {C prior membership probability estimates}
8 F← ∅
9 parfor i← 1 to n

10 Di ← BalancedBootstrapSample(Tr)
11 let Di = 〈P,N,U〉
12 mi ← computeBBA(C, 〈P,N,U〉)
13 Ti ← induceETDTree(Di, C,>,m, P̂r);
14 F← F ∪ {Ti}
15 return F
16 end

4.3.1. Growing ETRFs427

Alg. 3 describes the procedure for producing an ETRF. To this purpose, the428

target concept C, a training set Tr ⊆ Ind(A) and the desired number of trees n429

are required. Tr may contain not only positive and negative examples but also430

instances with uncertain membership w.r.t. C.431

Similarly to a bagging approach, the training individuals are sampled with432

replacement in order to obtain n subsets Di ⊆ Tr, with i = 1, . . . , n. It is pos-433

sible to apply various sampling strategies to obtain the various samples Di. In434

this study we followed the same approach already used in our previous work [10].435

Firstly, the initial data distribution is considered by adopting a stratified sam-436

pling strategy w.r.t. the class-membership values to ensure the availability of437

instances of the minority class. In the second phase, undersampling can be438

performed on the training set in order to obtain (quasi-)balanced Di sets (i.e.439

with a class imbalance that will not affect much the training process). This440

means that if the majority class is the negative one, the exceeding part of the441

negative examples is randomly discarded. In the dual case, positive instances442

are removed. In addition, the sampling procedure removes also all the instances443

of uncertain membership.444

In Alg. 3, procedure BalancedBootstrapSample implements this strat-445

egy returning the samples Di. For each Di, an ETDT T is built by invoking446

the procedure induceETDT. Note that, the procedure for learning an ETDT447
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Algorithm 4 Class-membership prediction routines for ETRFs

1 const ε ∈ ]0, 1] {decision threshold parameter}
2

3 function classifyByETRF(a, F, C) : l
4 input a: individual; F : ETRF; C: target concept
5 output l ∈ L
6 begin
7 M []← new map {trees to BBAs}
8 parfor each T ∈ F do
9 M [T ]← getTreeBBA(a, T )

10 m←
⊕

m∈M
m {pooling according to a combination rule}

11 for each ∅ 6= s ∈ 2Ω do

12 Compute Bel(s) from m̄

13 if |Bel({−1})− Bel({+1})| ≤ ε then
14 predlabel← 0 {case of uncertain membership}
15 else

16 predlabel← arg max
l∈Ω

Bel({l}) {cases of definite membership}

17 return predlabel
18 end
19

20 function getTreeBBA(a, T ) : m̄
21 input a: individual; T: ETDT
22 output m̄: BBA
23 begin
24 M ← getLeafBBAList(a, T ) {list of BBAs}
25 m̄←

⊕
m∈M

m

26 return m̄
27 end

for the forest requires the introduction of some further amount of randomiza-448

tion: the recursive case of Alg. 1 was modified so that the computation of the449

BBAs and the selection of the best refinement are made considering a subset450

RS ⊆ ρ(D) of randomly selected candidate specializations. This may be crucial451

to improve the performance w.r.t. the one of a single classifier through a good452

diversification among the trees.453

4.3.2. Prediction454

Given an ETRF, predictions can be made relying on the resulting classifica-455

tion model. The related procedure, sketched in Alg. 4, works as follows.456

Given the individual to be classified, for each tree Ti of the forest, the pro-457

cedure getTreeBBA returns a BBA obtained by pooling the various BBAs458

found at the leaves reached from the root in a traversal path down the tree.459

After polling all the trees in the ensemble, a set of BBAs deriving from the460

previous phase are exploited to decide the classification for the test individual a.461
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Function classifyByETRF takes an individual a and a forest F . Then, the462

algorithm iterates on the forest trees collecting the BBAs via function get-463

TreeBBA.464

Then, the BBAs are pooled according to a further combination rule, which465

can be different from the one employed during the exploration of a single ETDT.466

Additionally, this combination rule should be also an associative operator [19].467

In this way, the result should not be affected by the pooling order of the BBAs.468

In [18] we combined these BBAs via Dempster’s rule. Using this rule, the469

disagreement among the classifiers, that corresponds to the conflict exploited470

as a normalization factor, is explicitly considered by the meta-learner. Again,471

the final decision is then made according to the belief function value computed472

from the pooled BBAs m.473

4.4. Simplifying the Ensemble474

In the previous works [10, 18], we noticed that a limited number of ETDTs475

was usually sufficient to obtain a good performance. Growing forests with larger476

numbers of trees did not improve significantly on predictiveness (in some cases477

the performance even worsened). Moreover, the efficiency of the induction and478

classification procedures obviously decayed owing to the increased number of479

trees. Therefore, in this section, we illustrate how DST constructs can support480

the simplification of an ETRF to increase the efficiency of the classification481

phase while preserving its effectiveness.482

The proposed solution (see Alg. 5) assumes that the prediction made using483

an ETRF of progressively increasing size may lead to a poorer (or similar) per-484

formance depending on the amount of conflictual evidence coming from a larger485

number of trees. This basically implies that the confidence in the predictions486

may decrease up to some point when the resulting predictions may even differ487

from the expected ones.488

The algorithm for pruning the ensemble is incremental, this means that it489

works by considering one tree at a time. Specifically, given a forest F, the490

algorithm produces a new forest F′ as follows: it combines the pooled BBAs491
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Algorithm 5 Conflict-based ensemble simplification

1 function Simplification(F) : F′

2 input F: TRF

3 output F′: TRF
4 begin
5 M []← new array
6 for each T ∈ F do
7 M [T ]← getBBAfromTree(T )
8

9 m←M [T1]

10 F′ ← {} {initialize with the first ETDT in the forest}
11 for each T ∈ F do
12 c←

∑
B∩C=∅m(B)(M [T ])(C)

13 if c ≤ ν then

14 F′ ← F′ ∪ {T}
15 m← m⊕M [T ]
16

17 if F′ = ∅ then

18 F′ ← F′ ∪ {T1, T2} {return a forest with size=2, in case of oversimplification}
19

20 return F′

21 end

coming from each ETDT in the forest in order to compute the conflict measure c492

(see Eq. 3). If the conflict does not go beyond a given threshold, namely ν, the493

current tree T is added to F′.494

The BBA drawn from a T ∈ F′ and returned to the main procedure is495

computed as follows: T is traversed following all the possible paths until all the496

leaves are reached in order to collect the BBAs. Subsequently, the BBAs are497

combined according to an associative rule (to avoid order-dependent results).498

This is implemented in the procedure getBBAFromTree. The resulting BBA499

is then returned to the main procedure and used to determine c.500

A particular case occurs when the conflict exceeds the threshold ν. In this501

case, to prevent the production of an empty ETRF, the algorithm returns a502

default forest composed by only two ETDTs.503

5. Empirical Evaluation504

The evaluation reported in this section aimed at assessing the effectiveness505

of ETRFs and ETDTs proposed in this paper5.506

5The source code is available at: https://github.com/Giuseppe-Rizzo/SWMLAlgorithms
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Table 1: Ontologies employed in the experiments

Ontology DL Lang. #Axioms #Concepts #Roles #Individuals

BCO ALCHOF(D) 1098 196 22 112

BioPax ALCIF(D) 2617 74 70 323

NTN SHIF(D) 1516 47 27 676

HD ALCIF(D) 8811 1498 10 639

Financial ALCIF(D) 3509 60 16 1000

monetary ALCIF(D) 7562 323 247 2466

DBpedia ALCH 78663 251 132 16606

Table 2: Distribution of the positive, negative and uncertain instances w.r.t the artificially

generated target concepts for the various ontologies considered in the experiments

Ontology % Pos. % Neg. % Unc.

BCO 17 53 30

Biopax 40 40 20

NTN 24 13 63

HD 24 11 65

Financial 26 47 30

Monetary 36 44 20

DBPedia 16 14 70

5.1. Setup of the Experimental Sessions507

The experiments have been carried out on various Web ontologies (see508

Tab. 1) that are available on public repositories6. For each ontology, 15 query509

concepts have been randomly generated by combining 2 through 8 (primitive510

or defined) concepts of the ontology (using the conjunction and disjunction op-511

erators or universal and existential restrictions). Each concept was generated512

so that at least 40 positive examples and 40 negative examples can be found513

among the individuals of the knowledge base.514

Tab. 2 illustrates the average rate of the positive, negative, uncertain exam-515

ples (computed considering all the individuals of Ind(A)) over the number of516

query concepts.517

6See http://owl.cs.manchester.ac.uk/tools/repositories/
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We compared the methods and models proposed in this paper with a variety518

of other approaches in the literature related to the task of inductive classification519

with DL knowledge bases. Specifically, we selected:520

• purely logical approaches, such as TDTs [3], CELOE [27], TRFs [10] and521

the previous versions of ETDTs [7] and ETRFs;522

• an instance-based method, i.e. the k-nearest neighbor algorithm embed-523

ding a suitable distance measure as illustrated in [1];524

• a kernel method for linear models, i.e. the kernel perceptron [28] adopting525

a kernel function for individuals in DL knowledge bases [29, 1].526

In the experiments with the ETDTs the three total uncertainty measures527

reported in Sect. 3.2 have been considered: non-specificity, confusion and dis-528

sonance. We repeated the experiments varying also the combination rules for529

pooling the BBAs collected after tests with uncertain results are performed.530

The rules adopted in the evaluation were: Dempster’s rule, Dubois-Prade’s rule531

and the mixing rule.532

The experiments on TRFs and ETRFs required a setup of the stratified533

sampling rate and the forest size. Three sampling rates have been picked, 50%,534

70% and 80%, while the forest size has been set to 10, 20 and 30 trees. In535

the induction of (E)TDTs, the number of randomly selected specializations was536

determined as the square root of candidate refinements: n(C) =
√
| ρ(C) |.537

We ran the ETRF learning algorithm by varying three further parameters: the538

heuristics for inducing the ETDTs, the combination rule for pooling the BBA539

collected during the traversing process and the combination rules adopted as540

meta-learner. Besides, we performed experiments with the ETRFs induction541

algorithm with and without the simplification strategy, setting the threshold ν542

to 0.4. Also, we set the value of parameter ε (Alg. 2 and Alg. 4) to 0.3 for forcing543

the answer in favor of a definite membership, and the value for parameter θ544

(Alg. 1), used to control the growth of a tree (either a TDT or an ETDT), was545
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heuristically7 set to 0.9.546

Concerning the k-NN algorithm, we set the neighborhood size to k = log |Tr|.547

The distance measure between individuals have been chosen from the family548

of measures proposed in [1] by setting its parameter p to 2 and using atomic549

concepts in the signature of the knowledge base as a feature set.550

In the experiments with CELOE, we set a noise rate of 25% (representing551

the maximum number of admissible false negative cases).552

Finally, the kernel perceptron required the choice of the kernel function, of553

the learning rate and of the number of epochs for the training phase. In the554

experiments, we used the kernel function between individuals of a DL knowledge555

base proposed in [29, 1], and we set a learning rate of 0.05 and a number of556

epochs of 200.557

For each learning problem (each target concept considered for each558

dataset/ontology), we estimated the average performance of the models under559

comparison through a 10-fold cross validation procedure. The baseline (correct560

classification labels) for the various instances in the training and test sets w.r.t.561

the target concepts was computed by a DL reasoner. Specifically, the macro-562

averaged F1-measure has been computed over the three membership values. In563

addition, the following indices have been measured [3, 10, 7].564

• match rate (M%), the percentage of test individuals for which the induc-565

tive model agrees with the baseline (both positive, negative, or unknown);566

• commission rate (C%), the fraction of test cases where the predicted mem-567

bership is opposite w.r.t. the baseline (i.e. positive vs. negative or vice-568

versa);569

• omission rate (O%), the proportion of test cases for which the inductive570

method cannot determine the definite membership that holds in the base-571

line (i.e. unknown vs. positive or negative);572

7 For each learning algorithm considered in the evaluation, the values have been tuned

using a leave-one-out procedure.
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• induction rate (I%). the percentage of test cases where the inductive573

method can predict a definite membership while it could not be determined574

for the baseline (i.e. positive or negative vs. unknown).575

5.2. Outcomes576

Table 3: Outcomes for ETDTs adopting the mixing rule in the classification step. The

outcomes do not change significantly employing other combination rules

Ontology Non-specificity Dissonance Confusion

BCO

F1 83.56 ± 05.06 84.15 ± 06.14 84.15 ± 06.14

M% 85.48 ± 11.01 91.31 ± 14.79 91.31 ± 14.79

C% 07.56 ± 08.08 00.86 ± 02.61 00.86 ± 02.61

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 06.96 ± 05.97 07.83 ± 15.35 07.83 ± 15.35

BioPax

F1 82.16 ± 08.32 82.43 ± 06.47 86.98 ± 08.32

M% 86.63 ± 14.60 87.00 ± 07.15 87.00 ± 07.15

C% 11.02 ± 12.95 11.57 ± 02.62 11.57 ± 02.62

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 02.35 ± 05.23 01.43 ± 08.32 01.43 ± 08.32

NTN

F1 23.06 ± 26.14 14.65 ± 05.43 12.87 ± 26.54

M% 23.87 ± 26.18 14.87 ± 24.18 13.85 ± 26.18

C% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 75.13 ± 26.18 85.13 ± 24.18 86.15 ± 26.17

HD

F1 85.48 ± 11.01 91.31 ± 14.79 91.31 ± 14.79

M% 10.69 ± 01.47 10.69 ± 01.47 10.69 ± 01.47

C% 00.07 ± 00.17 00.07 ± 00.17 00.07 ± 00.17

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 89.24 ± 01.46 89.24 ± 01.46 89.24 ± 01.46

Tables 3 through 17 present the outcomes of the various experiments. Pre-577

liminarily, note that for brevity, in the case of (E)TRFs, we report only the578

outcomes for ensemble models composed by 20 trees and induced using a 50%579

sampling rate as the performance had no significant variation in the experiments580

with the other values of such parameters. A similar consideration applies also581

to the experiments with (E)TDTs.582

The results seem to be promising: ETDTs and ETRFs were competitive583

against other learning systems (see Tab. 3–4, 6–7, 8–9, 15–16). In some cases,584
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Table 4: Outcomes for ETDTs adopting the mixing rule in the classification step.

Ontology Non-specificity Dissonance Confusion

Financial

F1 87.42 ± 08.23 88.23 ± 08.43 88.23 ± 08.43

M% 83.43 ± 04.43 87.43 ± 17.42 87.43 ± 07.42

C% 04.00 ± 03.35 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 12.57 ± 13.45 07.53 ± 12.24 07.54 ± 12.24

monetary

F1 85.48 ± 11.01 91.31 ± 14.79 91.31 ± 14.79

M% 87.43 ± 13.45 93.47 ± 12.24 93.46 ± 12.24

C% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 12.57 ± 13.45 07.53 ± 12.24 07.54 ± 12.24

DBpedia

F! 60.78 ± 23.08 60.78 ± 23.08 60.78 ± 23.08

M% 53.84 ± 23.16 53.84 ± 23.16 54.46 ± 23.16

C% 35.28 ± 23.30 35.28 ± 23.30 35.28 ± 23.30

O% 00.00 ± 00.00 00.00 ± 00.00 00.54 ± 00.03

I% 10.86 ± 01.69 10.86 ± 01.69 10.72 ± 13.30

the new models outperformed the others in terms of match rate, especially585

k-NN and Perceptron. In general, we noted that the match rate obtained586

with ETDTs was particularly high for ontologies endowed with a large number587

of disjointness axioms, such as Biopax ,Monetary and, to some extent, Fi-588

nancial. The maximal average match rate were over 80% (for ETDTs) and589

over 90% (for ETRFs). As regards the F1, it was particularly large on the590

aforementioned ontologies and improved in the experiments with ETRFs.591

Table 5: Average run-time (secs) for the classification using ETDTs varying the combination

rule

Ontology Dempster Dubois-Prade Mixing

BCO 3.5 3.5 2.4

BioPax 7.5 7.5 7.5

NTN 4.5 4.5 2.5

HD 3.5 3.6 3

Financial 5 5 4.5

monetary 10.3 10.3 10.3

DBpedia 10 10 4
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5.2.1. ETDTs592

In the experiments with the ETDTs (see Tab. 3), the match rate was larger593

and the commission rate was smaller using either the confusion or the dissonance594

measure with respect to the outcomes observed when the non-specificity measure595

was adopted. This was likely due to the fact that, adopting the non-specificity596

measure, the heuristic basically tended to select concepts with a definite mem-597

bership w.r.t. the target concept, with little or no increase of homogeneity in598

the child nodes. As a consequence, even extending the branches with more de-599

scendants, no significant gain was observed and the resulting ETDTs tended600

to overfit the training instances. Conversely, adopting the confusion and dis-601

sonance, the algorithm was biased towards shorter (and more predictive) trees602

where pure leaves were obtained more easily.603

As regards the employment of different combination rules to classify individ-604

uals through ETDTs, we observed that none led to significant improvements.605

On one hand, in the case of ontologies with properly defined constraints such606

as concept disjointness, e.g. BioPax, the classification procedure tended to tra-607

verse single branches thanks to intermediate tests with definite decisions. This608

low degree of uncertainty yielded an analogous behavior w.r.t. the case of TDTs609

and, consequently, to similar outcomes. On the other hand, in the case of610

ontologies with a limited number of disjointness axioms more individuals ex-611

hibited an uncertain membership w.r.t. the test concepts, so the classification612

algorithm tends to traverse more branches reaching a larger number of BBAs613

(at the leaves): the pooled BBAs obtained through the three combination rules614

were very similar. Consequently, also the measures of belief used to decide615

the final classification did not change significantly. This suggested that quasi-616

associative rules, such as mixing, could be taken into account as alternative617

strategies for combining evidence (despite their being order-dependent) that618

are able to preserve the predictiveness of the classification models. This is an619

advantage because classification through ETDTs via mixing rule was more ef-620

ficient than with the adoption of the other rules. This benefit was particularly621
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Table 6: Outcomes for the ETRFs obtained adopting the three heuristics for the best concept

selection and Dempster’s rule as meta-learner, with and without the use of the pruning

Ontology No simplification simplification

Non-specific. Dissonance Confusion Non-specific. Dissonance Confusion

BCO

F1 90.76 ± 06.67 91.76 ± 06.87 91.87 ± 07.23 95.23 ± 02.27 95.23 ± 02.27 95.23 ± 02.27

M% 87.43 ± 09.13 88.23 ± 08.56 88.42 ± 08.43 92.31 ± 04.27 92.32 ± 04.27 92.31 ± 04.27

C% 03.16 ± 03.09 02.44 ± 03.39 02.27 ± 03.38 02.81 ± 02.45 02.81 ± 02.45 02.91 ± 02.45

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 09.41 ± 03.56 09.33 ± 03.46 09.31 ± 03.43 04.88 ± 03.45 04.88 ± 03.45 04.88 ± 03.45

BioPax

F1 90.37 ± 05.56 91.38 ± 05.57 92.43 ± 05.89 92.78 ± 05.84 92.78 ± 05.86 93.45 ± 04.57

M% 93.45 ± 07.15 94.45 ± 07.14 94.45 ± 07.15 96.57 ± 06.15 95.98 ± 06.14 96.87 ± 06.23

C% 05.22 ± 07.42 04.22 ± 07.42 04.22 ± 07.24 01.07 ± 01.67 01.71 ± 02.50 00.77 ± 01.74

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 01.33 ± 07.16 01.33 ± 07.16 01.97 ± 07.16 02.36 ± 04.24 02.31 ± 04.13 02.30 ± 08.15

NTN

F1 04.15 ± 03.25 04.15 ± 03.25 04.15 ± 03.25 35.25 ± 03.87 35.23 ± 03.87 35.23 ± 03.87

M% 05.50 ± 07.28 05.50 ± 07.28 05.50 ± 07.28 26.40 ± 05.15 26.43 ± 05.15 26.43 ± 05.14

C% 06.52 ± 07.54 06.52 ± 07.54 06.52 ± 07.54 06.52 ± 07.54 06.52 ± 07.54 06.52 ± 07.54

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 87.99 ± 08.84 87.99 ± 08.84 87.99 ± 08.84 67.05 ± 05.35 67.05 ± 05.35 67.07 ± 05.35

HD

F1 08.32 ± 00.15 08.32 ± 00.15 08.32 ± 00.15 28.15 ± 02.17 28.15 ± 02.17 28.15 ± 02.17

M% 10.29 ± 00.00 10.29 ± 00.01 10.29 ± 00.02 32.56 ± 00.43 33.43 ± 00.43 33.56 ± 00.42

C% 00.57 ± 00.05 00.57 ± 00.05 00.57 ± 00.05 00.14 ± 00.26 00.14 ± 00.27 00.14 ± 00.28

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 89.14 ± 00.26 89.14 ± 00.26 89.14 ± 00.26 67.44 ± 00.26 67.44 ± 00.26 67.44 ± 00.26

evident in the experiments with larger ontologies like DBpedia. For this ontol-622

ogy, on average the classification of an individual adopting the mixing rule was623

60% faster than with the Dubois-Prade rule. Tab. 5 summarizes the average624

time (in seconds) required by an ETDT for classifying an individual.625

5.2.2. ETRFs and simplification procedure626

Concerning the experiments with the ETRFs (Tab. 6 - 8), as expected, the627

ensemble models showed on average a superior performance with respect to the628

ETDTs, and in most of the cases we observed a decrease of standard deviation.629

As previously mentioned, the F1 increased with respect to the experiments with630

ETDTs, suggesting that the sampling strategy brought benefits to the predic-631

tiveness of ETRFs mitigating the of bias classification models towards the most632
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Table 7: Outcomes for the ETRFs obtained adopting the three heuristics for the best concept

selection and Dempster’s rule as meta-learner, with and without the use of the pruning

Ontology No simplification simplification

Non-specific. Dissonance Confusion Non-specific. Dissonance Confusion

Financial

F1 90.14 ± 06.76 92.46± 07.43 96.79 ± 03.17 96.79 ± 03.17 96.79 ± 03.17 96.79 ± 03.17

M% 93.43 ± 05.06 93.89 ± 05.16 94.03 ± 05.23 97.12 ± 03.10 97.13 ± 04.12 97.12 ± 04.15

C% 01.07 ± 01.67 01.71 ± 02.50 00.77 ± 01.74 00.60 ± 00.03 00.54 ± 00.03 00.77 ± 01.74

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 02.28 ± 08.13 02.31 ± 08.17 02.30 ± 08.15 02.28 ± 08.13 02.31 ± 08.17 02.30 ± 08.15

monetary

F1 95.23 ± 03.24 96.45 ± 03.76 96.57 ± 03.17 97.43 ± 02.14 97.43 ± 02.14 97.43 ± 02.14

M% 93.43 ± 05.06 95.89 ± 05.16 94.56 ± 04.46 96.65 ± 04.35 99.43 ± 08.13 99.55 ± 08.15

C% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 06.57 ± 05.06 04.11 ± 05.16 01.97 ± 07.16 03.35 ± 04.35 00.57 ± 08.13 00.45 ± 08.15

DBpedia

F1 60.43 ± 02.15 60.43 ± 02.15 61.25 ± 02.24 68.34 ± 02.15 68.43 ± 02.15 68.34 ± 02.15

M% 53.84 ± 05.43 53.84 ± 05.43 54.46 ± 05.43 70.44 ± 03.31 70.43 ± 03.31 70.44 ± 03.31

C% 00.08 ± 00.01 00.08 ± 00.02 00.08 ± 00.01 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 45.28 ± 23.30 45.28 ± 23.30 45.28 ± 23.30 29.56 ± 03.31 29.57 ± 03.31 29.56 ± 03.31

probable membership value. Such a stability of the ensemble models was likely633

due to the mediation operated by the the meta-learner over the various models,634

that positively influenced the final decision towards correct label assignments.635

Again, the choice of the combination rule for the BBAs at the leaves of a sin-636

gle ETDT did not affect significantly the performance of the considered tree637

models. Conversely, using further combination rules as meta-learners had a638

stronger influence on the performance. In particular, adopting Dubois-Prade639

rule we observed a decrease of the induction rate and an increase of the match640

rate. A similar outcome was obtained using the mixing rule. Unlike Dempster’s641

rule, the adoption of the Dubois-Prade and mixing rules tended to reduce the642

evidence in favor of a definite membership. This means that the belief related643

to the hypotheses of positive and negative memberships were generally low and644

their difference often did not exceed the threshold ε.645

A similar effect was observed in the experiments with the simplifica-646

tion method proposed in the paper: smaller ensembles tended to predict an647
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Table 8: Outcomes for ETRFs adopting the three heuristics for the best concept selection and

the Dubois-Prade rule as a meta-learner, with and without the use of the pruning

Ontology No simplification simplification

Non-specific. Dissonance Confusion Non-specific. Dissonance Confusion

BCO

F1 87.13 ± 05.67 90.45 ± 03.56 90.48 ± 03.78 89.94 ± 02.13 89.13 ± 02.19 89.13 ± 02.15

M% 90.44 ± 09.13 93.24 ± 08.56 93.40 ± 08.35 93.17 ± 04.27 94.45 ± 04.27 94.44 ± 04.15

C% 03.16 ± 03.09 02.43 ± 03.39 02.29 ± 03.45 02.81 ± 02.45 02.81 ± 02.45 02.91 ± 02.45

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 06.40 ± 03.56 04.33 ± 03.27 04.31 ± 03.46 04.01 ± 03.45 02.73 ± 03.45 02.74 ± 03.56

BioPax

F1 90.98± 03.79 92.45 ± 03.79 92.45 ± 03.79 93.76 ± 04.25 94.33 ± 05.25 94.33 ± 05.25

M% 93.45 ± 07.15 94.45 ± 07.14 94.45 ± 07.15 96.57 ± 06.15 95.98 ± 06.14 96.87 ± 06.23

C% 05.22± 07.42 04.22± 07.42 04.22± 07.24 01.07 ± 01.67 01.71 ± 02.50 00.77 ± 01.74

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 01.33 ± 07.16 01.33 ± 07.16 01.97 ± 07.16 02.36 ± 04.24 02.31 ± 04.13 02.36 ± 08.15

NTN

F1 47.98 ± 03.46 47.98 ± 03.46 47.98 ± 03.46 56.78 ± 03.24 56.78 ± 03.24 56.78 ± 03.24

M% 57.68 ± 03.43 57.68 ± 03.43 57.68 ± 03.43 60.40 ± 05.45 60.40 ± 05.45 60.40 ± 05.45

C% 06.52 ± 07.54 06.52 ± 07.54 06.55 ± 07.54 06.55 ± 07.54 06.55 ± 07.55 06.55 ± 07.55

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 35.88 ± 08.84 35.88 ± 08.84 35.88 ± 08.84 33.05 ± 05.73 33.05 ± 05.73 33.05 ± 05.73

HD

F1 50.44 ± 00.13 50.44 ± 00.13 50.44 ± 00.13 65.43 ± 00.35 67.43 ± 00.43 65.43 ± 00.13

M% 59.49 ± 00.03 59.49 ± 00.03 59.49 ± 00.03 67.56 ± 00.43 68.43 ± 00.43 67.56 ± 00.42

C% 00.47 ± 00.05 00.47 ± 00.05 00.47 ± 00.05 00.14 ± 00.26 00.14 ± 00.27 00.14 ± 00.28

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 40.04 ± 00.26 40.04 ± 00.26 40.04 ± 00.26 32.30 ± 00.26 32.30 ± 00.26 32.30 ± 00.26

uncertain-membership more easily than the forests obtained without the appli-648

cation of the pruning strategy. However, thanks to simplification strategy, the649

size of the resulting forests was considerably reduced: after pruning, the average650

size of the ETRFs did not exceed 10 trees. Tab. 12 reports the average forest651

sizes8.652

5.2.3. Evaluating cases of induction653

One of the most important consequences of the credulous behavior of ETDTs654

and ETRFs was the large induction rates, which represent the cases of non655

8The sizes have been averaged over the folds and, the resulting values have been further

averaged over the number of target concepts.
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Table 9: Outcomes for ETRFs adopting the three heuristics for the best concept selection and

the Dubois-Prade rule as a meta-learner, with and without the use of the pruning

Ontology No simplification simplification

Non-specific. Dissonance Confusion Non-specific. Dissonance Confusion

Financial

F1 90.89 ± 03.25 90.97 ± 03.36 91.23 ± 03.76 96.85 ± 03.25 96.85 ± 03.25 96.85 ± 03.25

M% 93.43 ± 05.06 93.89 ± 05.16 94.03 ± 05.23 97.12 ± 03.10 97.13 ± 04.12 97.12 ± 04.15

C% 01.07 ± 01.67 01.71 ± 02.50 00.77 ± 01.74 00.60 ± 00.03 00.54 ± 00.03 00.77 ± 01.74

O% 03.22 ± 00.15 02.19 ± 00.15 02.90 ± 00.14 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 02.28 ± 08.13 02.31 ± 08.17 02.30 ± 08.15 02.28 ± 08.13 02.31 ± 08.17 02.30 ± 08.15

monetary

F1 92.39 ± 04.97 94.76 ± 05.76 94.45 ± 07.15 95.57 ± 06.15 97.21 ± 05.67 97.43 ± 03.35

M% 93.43 ± 05.06 95.89 ± 05.16 94.56 ± 04.46 96.65 ± 04.35 99.43 ± 08.13 99.55 ± 08.15

C% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 06.57 ± 05.06 04.11 ± 05.16 01.97 ± 07.16 03.35 ± 04.35 00.57 ± 08.13 00.45 ± 08.15

DBpedia

F1 59.89 ± 03.78 59.89 ± 03.78 50.23 ± 02.43 68.12 ± 03.24 68.12 ± 03.24 68.12 ± 03.24

M% 63.84 ± 05.43 63.84 ± 05.43 54.46 ± 05.43 70.43 ± 03.31 70.43 ± 03.31 70.43 ± 03.31

C% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 35.16 ± 23.30 35.16 ± 23.30 35.16 ± 23.30 29.56 ± 03.31 29.56 ± 03.31 29.56 ± 03.31

logically derivable definite classifications whose correctness requires a validation656

from a domain expert.657

However, the number of new assertions resulting from the inductive classifi-658

cation models was very large, especially in the experiments with NTN, HD, and659

DBPedia. As a consequence, there was a drastic decrease of the F -measure as660

it considers such cases as label mismatches, whereas the induction rate treats661

them as non conflictual assertions that could be exploited in a perspective of662

integration and evolution of the KBs.663

Devising a different strategy for tackling these cases of induction, we de-664

signed and performed new experiments, considering a modified version of the665

ontologies. The new versions were obtained by introducing disjointness axioms666

in accordance with the strong disjointness assumption (SDA) which states that667

sibling concepts in the subsumption hierarchy can be considered as disjoint [30].668

In this way, the cases of individuals with uncertain-membership can be mini-669

mized or totally avoided and a ground truth with definite membership labels can670

33



Table 10: Outcomes for ETDTs under Strong Disjointness Assumption

.

Ontology Non-specif. Dissonance Confusion

NTN

F1 92.17 ± 07.56 93.78 ± 07.43 93.78 ± 07.43

M% 93.45 ± 07.67 94.67 ± 07.85 94.67 ± 07.85

C% 06.55 ± 07.67 05.33 ± 07.85 05.33 ± 07.85

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

HD

F1 94.12 ± 03.57 94.12 ± 03.57 94.12 ± 03.57

M% 96.46 ± 04.56 96.46 ± 04.56 96.46 ± 04.56

C% 03.54 ± 04.56 03.54 ± 04.56 03.54 ± 04.56

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

DBpedia

F1 91.05 ± 02.43 91.05 ± 02.43 91.05 ± 02.43

M% 92.35 ± 03.97 92.35 ± 03.97 92.35 ± 03.97

C% 07.65 ± 03.97 07.65 ± 03.97 07.65 ± 03.97

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

be provided to evaluate induction cases. Tab. 10 and 11 illustrate the results671

of the new experiments with NTN, HD and DBpedia. Note that, under the672

SDA, most of the cases previously classified as cases of induction were deemed673

as matching cases via both ETDTs and ETRFs. Again, the performance of the674

ETRFs overcame the one obtained through a single tree in terms of F1, match675

rate and also with a decrease of the standard deviation. With the adoption of676

the SDA, the match rates were less biased by the parameter ε tuned for ETDTs677

and ETRFs.678

5.2.4. Experiments with ETDTs and ETRFs with Special Probabilistic BBAs679

For the sake of completeness, we tested the effectiveness of a modified version680

of the ETDT and ETRF models (and related algorithms) such that the BBAs in681

their nodes had only singletons as focal elements. To this purpose, the function682

computeBBA in Alg. 1 has been adapted as follows: the probability mass683

assigned to m(Ω) has been proportionally distributed to the singletons {−1} and684

{+1} (preserving the sum (1) of the focal elements).685

Similarly to the previous experiments, Tab. 13 and 14 illustrate the outcomes686

of this comparison only for NTN, HD and DBpedia ontologies, where the687

results significantly changed w.r.t. the original versions (in the experiments with688
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Table 11: Outcomes for the ETRFs under Strong Disjointness Assumption

Ontology No simplification simplification

Non-specif. Dissonance Confusion Non-specif. Dissonance Confusion

NTN

F1 96.23 ± 03.13 96.32 ± 04.43 96.32 ± 04.18 95.87 ± 04.56 96.74 ± 03.85 96.74 ± 03.85

M% 96.57 ± 04.23 96.60 ± 04.17 96.60 ± 04.17 95.87 ± 04.56 96.74 ± 03.85 96.74 ± 03.85

C% 03.43 ± 04.23 03.40 ± 04.17 03.40 ± 04.17 04.13 ± 04.56 03.26 ± 03.85 03.26 ± 03.85

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

HD

F1 97.23 ± 00.16 97.43 ± 00.16 97.43 ± 00.17 97.23 ± 00.16 97.43 ± 00.16 97.43 ± 00.16

M% 98.56 ± 00.43 98.80 ± 00.45 98.70 ± 00.34 98.60 ± 00.44 98.76 ± 00.32 98.76 ± 00.33

C% 01.44 ± 00.43 01.20 ± 00.45 01.30 ± 00.34 01.40 ± 00.44 01.24 ± 00.32 01.24 ± 00.33

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

DBpedia

F1 99.43 ± 00.12 99.43 ± 00.12 99.43 ± 00.12 99.43 ± 00.12 99.43 ± 00.12 99.22 ± 03.14

M% 99.20 ± 03.21 99.26 ± 03.17 99.16 ± 03.21 99.21 ± 03.13 99.21 ± 03.12 99.22 ± 03.14

C% 00.80 ± 03.21 00.74 ± 03.17 00.84 ± 03.21 00.70 ± 03.13 00.79 ± 03.12 00.78 ± 03.14

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

Table 12: Average size of forests (number of trees) after the pruning

Ontology Forest size after the pruning

10 trees 20 trees 30 trees

BCO 6.76 6.43 5.76

BioPax 5.56 5.43 5.76

NTN 7.87 7.45 7.43

HD 8.43 7.65 6.56

Financial 4.34 4.43 4.43

monetary 8.44 7.65 7.42

DBpedia 8.44 7.23 7.33

the other ontologies, the results did not change because the BBAs of the trees689

have already singletons as focal elements). The tables report the outcomes690

obtained inducing ETDTs and ETRFs with the mixing rule (for pooling the691

BBAs in the leaf-nodes) and Dubois-Prade’s rule as a meta-learner. Similar692

values have been obtained in the evaluation with the other rules.693

Generally speaking, we noted a decay of the performance in terms of F -694

measure, both for ETDTs and ETRFs w.r.t. the original versions, especially in695

terms of (an increased) commission rate. On a close inspection of the models,696

we observed that the BBAs at the leaves nodes computed with the new proce-697
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Table 13: Outcomes for ETDTs with BBAs having singletons as focal elements

.

Ontology Non-specif. Dissonance Confusion

NTN

F1 73.23 ± 12.54 76.24 ± 12.43 73.15 ± 12.44

M% 73.42 ± 11.43 77.32 ± 07.85 74.23 ± 07.85

C% 13.32 ± 12.43 09.15 ± 04.34 09.15 ± 03.85

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 13.26 ± 08.84 13.26 ± 08.84 13.26 ± 08.84

HD

F1 67.16 ± 13.43 67.16 ± 13.43 67.16 ± 13.43

M% 70.01 ± 07.26 70.01 ± 07.26 70.01 ± 07.26

C% 14.65 ± 04.56 14.65 ± 04.56 14.65 ± 04.56

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 15.33 ± 01.35 15.34 ± 01.35 15.34 ± 01.34

DBpedia

F1 86.43 ± 03.35 86.43 ± 03.35 86.43 ± 03.35

M% 87.85 ± 13.23 87.85 ± 13.23 87.85 ± 13.23

C% 00.37 ± 00.30 00.37 ± 00.29 00.37 ± 00.29

O% 00.30 ± 00.06 00.30 ± 00.06 00.30 ± 00.06

I% 11.27 ± 08.73 11.27 ± 08.73 11.27 ± 08.73

dure tended to favor the majority class with high assigned values. When such698

functions are pooled through a combination rule, the final decision was strongly699

biased towards such class. As a consequence, the models determined a wrong700

membership value for the test individuals. Another remarkable difference is in701

the lower induction rate, that was likely due to the induction of trees in which702

the focal values of the BBAs, m({+1}) and m({−1}), located in the leaf-nodes703

were often (approximately) equal. Such cases represented the main source for704

ties, resulting in a label 0 returned. In this sense, even resorting to forests in-705

stead of single trees did not allow to considerably improve the performance: the706

membership assessed by one tree was further confirmed by the other trees in707

the forest.708

5.2.5. Comparison with other inductive systems709

As previously described, ETDTs and ETRFs showed a more credulous be-710

havior w.r.t. the other learning systems used in the experiments, in particular711

compared to the instance-based methods and CELOE (see Tab. 15 and 16).712

The k-NN showed a very cautious behavior: the neighborhood of the test in-713
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Table 14: Outcomes for the ETRFs with BBAs having only singletons as focal elements

Ontology No simplification simplification

Non-specif. Dissonance Confusion Non-specif. Dissonance Confusion

NTN

F1 74.08 ± 08.15 74.08 ± 08.15 74.08 ± 08.15 75.16 ± 10.54 75.16 ± 10.54 75.16 ± 10.54

M% 75.34 ± 09.23 75.23 ± 09.23 75.24 ± 09.24 76.87 ± 09.14 76.88 ± 09.14 76.88 ± 09.14

C% 13.32 ± 12.21 13.43 ± 12.21 13.42 ± 12.20 13.32 ± 12.21 13.32 ± 12.21 13.32 ± 12.21

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 11.34 ± 08.76 11.34 ± 08.76 11.34 ± 08.84 09.81 ± 04.23 09.81 ± 04.23 09.81 ± 04.23

HD

F1 73.25 ± 07.42 73.26 ± 07.42 73.25 ± 07.42 73.25 ± 07.42 73.25 ± 07.42 73.25 ± 07.42

M% 74.32 ± 05.13 74.32 ± 05.13 74.32 ± 05.13 74.32 ± 05.13 74.32 ± 05.13 74.32 ± 05.13

C% 10.31 ± 04.56 10.31 ± 04.56 10.31 ± 04.56 10.31 ± 04.56 10.31 ± 04.56 10.31 ± 04.56

O% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 15.33 ± 01.35 15.34 ± 01.35 15.34 ± 01.34 15.33 ± 01.35 15.34 ± 01.35 15.34 ± 01.34

DBpedia

F1 86.43 ± 03.35 86.43 ± 03.35 86.43 ± 03.35 86.43 ± 03.35 86.43 ± 03.35 86.43 ± 03.35

M% 87.85 ± 13.23 87.85 ± 13.23 87.85 ± 13.23 87.85 ± 13.23 87.85 ± 13.23 87.85 ± 13.23

C% 00.37 ± 00.30 00.37 ± 00.29 00.37 ± 00.29 00.37 ± 00.30 00.37 ± 00.29 00.37 ± 00.29

O% 00.30 ± 00.06 00.30 ± 00.06 00.30 ± 00.06 00.30 ± 00.06 00.30 ± 00.06 00.30 ± 00.06

I% 11.27 ± 08.73 11.27 ± 08.73 11.27 ± 08.73 11.27 ± 08.73 11.27 ± 08.73 11.27 ± 08.73

dividuals was often made up of uncertain individuals. This explains both the714

very high match rate achieved with this algorithm in the experiments with NTN715

and the high omission rate observed in the experiments with DBpedia. In the716

experiments with CELOE, introducing a stricter definition of negative example717

than the one originally adopted in [27], made the algorithm more sensitive to718

lack of disjointness axioms and, consequently, led to omission cases rather than719

commission errors. Conversely, in case of ontologies with an explicit specifica-720

tion of disjointness axioms, the match rate tended to be very high (in some cases721

close to 100%), thanks to a strategy that aims at maximizing the F -measure.722

Finally, in the experiments with perceptron, we observed a drop of the723

match rate and an increase of commission and induction cases. On one hand, the724

higher commission rates were due to overfitting models, likely owing to the large725

number of epochs adopted in the experiments. On the other hand, the higher726

induction rates were due to the decision procedure adopted in the classification727

phase, which tended to assign a definite membership rather than an uncertain728

membership to test individuals.729
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Table 15: Outcomes for other learning systems

Ontology TDT TRF k-NN CELOE Perceptron

BCO

F1 76.23 ± 03.01 84.78 ± 02.43 84.78 ± 02.43 100.0 ± 00.00 83.45 ± 12.45

M% 80.44 ± 11.01 87.99 ± 07.85 87.83 ± 12.43 100.0 ± 00.00 86.27 ± 15.79

C% 07.56 ± 08.08 04.32 ± 04.68 12.77 ± 04.77 00.00 ± 00.00 02.47 ± 03.70

O% 05.04 ± 04.28 00.09 ± 00.27 00.02 ± 00.04 00.00± 00.00 00.00 ± 00.00

I% 06.96 ± 05.97 07.61± 06.82 00.40 ± 00.00 00.00± 00.00 09.36 ± 13.96

BioPax

F1 64.23 ± 13.26 71.43 ± 03.24 77.23 ± 03.46 100.0 ± 00.00 63.43 ± 15.46

M% 66.63 ± 14.60 75.93 ± 17.05 75.49 ± 17.05 75.30 ± 16.23 65.30 ± 16.23

C% 31.03 ± 12.95 22.11 ± 16.54 18.54 ± 17.80 18.74 ± 17.80 18.74 ± 17.80

O% 00.39 ± 00.61 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

I% 01.95 ± 07.13 01.97 ± 07.16 01.97 ± 07.16 01.97 ± 07.16 11.97 ± 05.76

NTN

F1 63.24 ± 10.98 81.43 ± 03.35 95.23 ± 03.23 78.91 ± 08.43 96.14 ± 08.43

M% 68.85 ± 13.23 83.42 ± 07.85 96.82 ± 03.43 83.42 ± 07.85 96.81 ± 07.46

C% 00.37 ± 00.30 00.00 ± 00.00 00.02 ± 00.04 00.02 ± 00.04 00.02 ± 00.04

O% 09.51 ± 07.06 13.40 ± 10.17 00.00 ± 00.00 00.02 ± 00.04 00.00 ± 00.00

I% 21.27 ± 08.73 03.16 ± 04.65 03.16 ± 04.65 00.00 ± 00.00 03.17 ± 04.65

HD

F1 54.23 ± 14.15 62.85 ± 10.43 66.54 ± 17.11 65.00 ± 17.63 66.42 ± 16.43

M% 58.31 ± 14.06 67.95 ± 16.99 67.96 ± 17.00 67.95 ± 17.03 68.00 ± 16.98

C% 00.44 ± 00.47 00.02 ± 00.05 00.01 ± 00.05 00.02 ± 00.05 00.02 ± 00.05

O% 05.51 ± 01.81 06.38 ± 02.03 06.38 ± 02.03 06.38 ± 02.03 06.38 ± 02.03

I% 35.74 ± 15.90 25.61 ± 18.98 25.61 ± 18.98 25.61 ± 18.98 25.59 ± 18.98

5.2.6. Efficiency of the methods730

A final remark is related to the efficiency of the proposed approaches. Con-731

sidering Tab. 17 it can be noted that the averaged run-times of the ETDT and732

ETRF models spanned from less than 35s to almost 13000s. The efficiency of733

the solutions proposed in this paper depends on the size of training sets and734

the number of concepts and roles contained in the signature of the knowledge735

bases. While the former affected the performance in terms of the number of736

tests to be performed in the training/test phase, which was intensively used by737

ETDTs and ETRFs, the latter affected the generation of the complex concept738

descriptions installed into the nodes. Also, the pruning procedure employed for739

optimizing the ensemble models represented a further complexity source in the740

training phase but simpler models brought an increased efficiency in the pre-741

diction phase. Overall, the efficiency of the new models in both training and742
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Table 16: Outcomes for other learning systems

Ontology TDT TRF k-NN CELOE Perceptron

Financial

F1 66.23 ± 36.01 96.23 ± 02.56 96.23 ± 02.56 99.12 ± 00.73 74.32 ± 00.87

M% 67.06 ± 36.09 96.70 ± 00.48 96.70 ± 00.65 99.70 ± 00.68 79.50 ± 00.68

C% 00.00 ± 00.00 02.00 ± 03.43 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

O% 32.94 ± 36.09 00.00 ± 00.60 00.30 ± 00.68 00.30 ± 00.68 00.00 ± 00.00

I% 00.00 ± 00.00 01.30 ± 00.50 00.00 ± 00.00 00.00 ± 00.00 20.50 ± 00.68

monetary

F1 66.12 ± 15.23 94.13 ± 07.74 100.0 ± 00.00 100.0± 00.00 65.43 ± 15.96

M% 68.93± 15.87 94.53± 07.68 100.0± 00.00 100.0± 00.00 68.93± 15.87

C% 06.14± 07.20 05.47± 07.68 00.00± 00.00 00.00± 00.00 06.14± 07.20

O% 16.94± 09.74 00.00± 00.00 00.00± 00.00 00.00± 00.00 00.00± 00.00

I% 00.00± 00.00 00.00± 00.00 00.00± 00.00 00.00± 00.00 00.00± 00.00

DBpedia

F1 08.12 ± 01.21 08.12 ± 01.21 08.12 ± 01.21 56.13 ± 20.43 58.12 ± 15.47

M% 10.86 ± 01.69 10.86 ± 01.69 10.86 ± 01.69 58.84 ± 20.35 63.93 ± 15.07

C% 43.12 ± 00.57 43.12 ± 00.57 43.12 ± 00.57 30.28 ± 20.10 25.18 ± 14.48

O% 46.02 ± 01.64 46.02 ± 01.69 46.02 ± 01.69 00.00 ± 00.00 00.00 ± 00.00

I% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 10.86 ± 01.69 10.86 ± 01.69

test phase is comparable to the one of TDTs and TRFs and also close to the743

average execution time with the k-NN. Indeed, one of the main bottlenecks of744

the lazy learning approach was related to the (exhaustive) search of the near-745

est neighbors for each test individual. Moreover, we noted that the evidential746

models were more efficient than perceptron. In this case, the run-times of747

Perceptron were affected mainly by the inefficiency of the training phase in748

which, for each epoch, all the training examples are processed to determine the749

coefficients of the classification model.750

6. Related Work751

The knowledge made available in a decentralized form across the Semantic752

Web is often contradictory, imprecise and incomplete [31]. Machine learning can753

be exploited for setting up methods providing alternative forms of reasoning.754

In this work, we specifically focused on the task of assessing the membership of755

an individual with respect to a target concept. This problem has been largely756

investigated in the literature and various approximate classification models have757
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Table 17: Ranges of average run-time (training / test) per experiment (s)

Ontology ETDT ETRF TDT TRF k-NN CELOE Perceptron

[min, max] [min, max] [min, max] [min, max] [min, max] [min, max] [min, max]

BCO [35, 40] [120, 453] [35, 40] [120, 452] [65, 87] [15, 37] [480,520]

BioPax [67, 87] [123, 456] [70, 103] [145, 523] [83, 245] [23, 60] [345, 725]

NTN [432, 785] [876, 1256] [578, 876] [914, 1243] [123, 456] [12,65] [765, 1343]

HD [446, 879] [1245, 1278] [446, 895] [1567, 1568] [123, 456] [12,65] [1234, 1456]

Financial [1845, 2567] [18765,42345] [1845, 2567] [18765,42345] [12456,12876] [87,247] [24569,56797]

monetary [2476, 4587] [3687,45890] [2444, 4598] [3687,45890] [14876,15321] [124,256] [49872,58931]

DBpedia [3211, 4237] [12345,12789] [3211, 4237] [12345,12789] [8769,14321] [87,231] [23456,60432]

been proposed [1].758

Non-parametric methods are among the most common solutions. Among759

the others, the k-nearest neighbor procedure [1] (also employed in the experi-760

ments) and the reduced Coulomb energy network [32] have been proposed. Both761

approaches exploit a language-independent distance measure between individ-762

uals in a DL knowledge base. Such a metric is computed based on a set of763

projection functions that express the behavior of an individual w.r.t. a set of764

concepts (treated as logic features). Essentially the aim is selecting prototypi-765

cal individuals and classifying unseen ones on the ground of the similarity w.r.t.766

the closest prototypes, the neighborhood, that in the latter case is mediated767

by a network model (similar to the radial basis function networks [33]). Other768

related solutions are based on the explicit adaptation of kernel methods. For769

instance, in the evaluation, we used the kernel perceptron [28] adopting a kernel770

function that is closely related to the distance measure adopted by the classifiers771

described above [29].772

Other solutions stem from concept learning algorithms devised in ILP to773

solve a closely related problem. The goal is to obtain an explicit intensional774

definition (a concept description in terms of the language bias of choice) de-775

scribing the available examples that should be general enough to account also776

for unseen instances. Various algorithms of this kind have been proposed, e.g.777

DL-Foil [34], CELOE [27] and the mentioned method for the induction of778

terminological decision trees [3]. The latter extend decision trees for multi-779
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relational representations (such as first-order logic fragments [4, 5] and selection780

graphs [35, 36]) towards SW representations. A related approach, based on781

models called Semantic Decision Trees, has been proposed in [37]. Although782

they are indeed quite similar to the mentioned TDTs [3], their empirical evalu-783

ation did not compare these models and it was limited to very small knowledge784

bases. All these approaches are based on the use of a refinement operator in or-785

der to progressively build such description(s). However, such concept learning786

methods often do not provide a strategy for representing uncertainty, although787

various efforts have been devoted to investigate the effectiveness of models com-788

bining multi-relational representation languages and uncertainty, in the context789

of Statistical Relational Learning [38] or Probabilistic Inductive Logic Program-790

ming [39]. Among the existing solutions it is possible to mention Bayesian791

Logic Programs [40] and Markov Logic Networks (MLNs) [41]. Focusing on792

MLNs, a domain closure assumption is required thus diverting from the open-793

world semantics of the FOL fragments adopted as standard representations in794

the SW context [42]. However, the assumptions for inducing MLNs can be re-795

laxed by using an EM algorithm to learn from incomplete data [43]. In this796

perspective, a recent work [44] has proposed a functional-gradient boosting al-797

gorithm based on EM in order to learn, under the OWA, the structure and the798

parameters of the models simultaneously.799

The need to circumvent the exponential growth of the model (and hence800

of the number of parameters) required by the groundings justified the works801

on approximation methods [45] and lifted inference techniques [46, 47] Alterna-802

tively, tensor models have also been proposed [48, 49] although the limitations803

in terms of scalability of such complex statistical models remains. That is why804

currently representation learning approaches [50] have attracted the attention805

of the community. They trade the focus on the mere relational structure of the806

rich SW KBs with a low rank representation which is more manageable with807

standard geometric-statistical approaches.808

Note that, due to the different expressiveness of the languages underpinning809

ILP and SRL methods w.r.t. those for the SW representations, the application810
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of such solutions is not straightforward. This problem has been considered since811

the early works that apply machine learning methods to DL knowledge bases.812

For instance,in [51], the authors have shown that there may be an exponential813

blowup in knowledge base size and there may be some formulae without a coun-814

terpart in DLs. Further issues have been discussed in [52] where the author815

argues that ad-hoc solutions may avoid both exploring a larger search space816

(represented by the set of all possible Horn clauses) and the limitations of the817

complex reasoning services required by logic programming.818

In order to better represent the inherent uncertainty related to the specific819

semantics of the SW knowledge bases, the DST [21] offers an interesting al-820

ternative, which explicitly considers the ignorance deriving from the inherent821

incompleteness of the KBs and the availability of further evidence. Additionally,822

the DST has been successfully integrated in various machine learning algorithms823

to enhance the predictiveness of the models. For instance, DST primitives have824

been integrated in the k-nearest neighbor algorithm [53], where each example825

in the neighborhood is considered as a distinct source of evidence in favor of a826

class that is subsequently combined through Dempster’s rule [21]. In the SW827

context, a DL-compliant version of this approach has been proposed for solving828

the class-membership prediction problem [54]. The DST has been integrated829

also with algorithms for learning neural networks [55] and decision trees [56].830

Indeed, the latter inspired our idea of evolving TDTs towards the ETDTs [7].831

Differently from the original version of such a model (which is intended for832

a propositional representation), the induction of an ETDT is guided by the833

non-specificity measure whereas the original model considers also conflictual834

evidences. In this paper we have extended our investigation considering further835

total uncertainty measures.836

The DST has been employed in the context of ensemble learning for pooling837

the prediction coming from the weak learners [13, 15]. Various ensemble combi-838

nation methods resort to decision templates, which are obtained by fitting, for839

each classifier against each class, a mean vector (called reference vector). When840

these models are employed, predictions are typically made by computing the841
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similarity between a decision profile of an unknown instance with the decision842

templates. Unlike such approaches, the decision procedure employed with the843

ETRFs combines the predictions returned in the form of BBAs. In this sense,844

this procedure is similar to the one proposed in [57]: each classifier returns a845

BBA that is combined by the meta-learner implementing a combination rule.846

Again, ETRFs work on multi-relational representation language, similarly to847

their original version, namely the Terminological Random Forests [10]. This848

ensemble model, which represents a subtype of the First Order Logic Random849

Forests [12] that is compliant with DLs, has been devised to tackle the problem850

of class-imbalance in datasets drawn from Semantic Web knowledge bases (and851

to overcome the limits of other solutions, such as those adopting sole sampling852

methods [26]), which is an issue that had not been tackled before. A random853

forest model for Semantic Web knowledge bases has been also proposed in [58]854

but, unlike TRFs and ETRFs, the solution exploits only atomic concepts as855

features.856

One of the contributions of this paper concerns the adoption of a pruning857

procedure for ETRFs, which mitigates some problems derived from the use of858

many classifiers (e.g. the inefficiency in the prediction step) and can determine859

a good forest size per learning problem. In general, the problem of determining860

such number is still an open issue: even in the case of simpler representation861

languages (attribute-value and propositional logic), there were only few works862

that propose solutions which are often based on the use of statistical tests (e.g.863

McNeimar’s test) [59]. Instead, this number is a parameter whose value is864

typically intended as user-provided [60]. Only in a recent work regarding the865

application of random forests on data streams [61], the authors argued that the866

ideal number of classifiers is strictly related to the number of class labels of the867

dataset.868
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7. Conclusion and Extensions869

We have proposed and extended a framework for inducing evidential ter-870

minological decision trees and random forests, as developments of the termino-871

logical decision trees and random forests, devised as solutions of the problem872

of class-membership prediction for Semantic Web knowledge bases. Following873

the lessons learned with previous versions, the new models tackle various short-874

comings affecting the quality of the models, especially the cases of uncertain875

classification and imbalanced datasets due to the inherent incompleteness of876

the knowledge bases of interest. The resulting models combine predictions that877

are represented as basic belief functions rather than votes, exploiting evidence878

combination rules proposed in the context of the Dempster-Shafer Theory for879

making the final decision. In addition, for evidential terminological random880

forests, a strategy for optimizing the ensemble has been proposed.881

Extensive experiments have been performed to assess the validity of the882

proposed models, also considering datasets drawn from various Web ontolo-883

gies, varying conditions and parameter settings, and in comparison with other884

inductive models and learning strategies. The experiments have shown how885

the proposed classification model can achieve a better predictiveness than the886

previous versions of terminological decision trees and random forest. In various887

cases, the results are better than the other learning systems.Moreover, the mod-888

els tended to assign a definite membership yielding to induce a large number889

of non logically derivable assertions whose correctness was assessed under the890

Strong Disjointness Assumption [30].891

Besides, the predictiveness of the evidential terminological decision trees892

was found not to depend on the rule adopted for combining evidence while the893

predictiveness of evidential terminological random forests was not affected by894

the choice of either the forest size or the sampling rate The standard deviation is895

also lower than the one observed with the original TRFs. The evaluation showed896

that the simplification procedure proposed to optimize the ensemble favors the897

prediction of uncertain membership .898

44



In the future, we plan to extend the method along various directions. One899

regards considering an explicit semi-supervised learning approach for DL clas-900

sifiers so to assign a definite membership to the uncertain examples. In this901

case, it could be possible to devise solutions inspired from multi-view learning902

approaches [62]. In addition, it can be interesting to investigate the effectiveness903

of kernels derived from evidential random forests, as proposed in [63].904

Further ensemble techniques and novel rules for combining the answers of the905

weak learners could be employed. For example, weak learners can be induced906

from subsets of training instances generated by means of a procedure based on907

cross-validation rather than sampling with replacement. Further investigations908

may concern the application of strategies aiming at the optimization of the909

ensembles during the induction of the classifier rather than ex post, i.e. after the910

training phase has been completed.911

Finally, the (ensemble) methods could be naturally parallelized and the re-912

sulting decision procedure based on induced models could be made available as913

a service i.e. a non-standard inference service to complement standard query an-914

swering or reasoning services. In this perspective, using specific frameworks such915

as Apache Spark9 or GPUs may be an interesting alternative to be considered.916
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