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a b s t r a c t 

Multidimensional Bayesian network classifiers have gained popularity over the last few years due to their expressive power and their 
intuitive graphical representation. A drawback of this approach is that their use to perform multidimensional classification, a 
generalization of multi-label classification, can be very computationally demanding when there are a large number of class variables. 
Thus, a key challenge in this field is to ensure the tractability of these models during the learning process. 

In this paper, we show how information about the most common queries of multidimen-sional Bayesian network classifiers affects the 
complexity of these models. We provide upper bounds for the complexity of the most probable explanations and marginals of class 
variables conditioned to an instantiation of all feature variables. We use these bounds to propose efficient strategies for bounding the 
complexity of multidimensional Bayesian network classifiers during the learning process, and provide a simple learning method with an 
order-based search that guarantees the tractability of the returned models. Experimental results show that our approach is competitive 
with other methods in the state of the art and also ensures the tractability of the learned models. 

1. Introduction 

Bayesian network classifiers [1] are one of the most widely used machine learning tools to address the problem of 
classification. Classification consists of assigning an instance to a class that is described by a set of features. 

Multidimensional Bayesian network classifiers (MBCs) [2] extend Bayesian network classifiers to the problem of multidi­
mensional classification. Multidimensional classification involves assigning an instance to a set of classes (instead of a single 
class) given the value of the set of features. This problem is common in several domains like text categorization (a text can 
be assigned to multiple topics), medicine (a patient may suffer from several diseases) or system monitoring (a system may 
break down from multiple failures). 

MBCs are Bayesian networks (BN) with a restricted topology, where no arcs from feature variables to class variables are 
allowed. Each MBC is composed of a class subgraph, a bridge subgraph, and a feature subgraph (see Section 2). Inference in 
MBCs may have a high computational cost for some structures, even when the class and feature subgraphs are restricted to 
trees or polytrees. 
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Although there is work in the literature addressing the problem of computational complexity in MBCs, the focus has 
not been on taking advantage of the most common type of queries of such models. In this paper, we study the computa­
tional complexity of most probable explanations (MPEs) and marginals of class variables in MBCs when an instantiation of 
the feature variables is given. The paper also provides upper bounds on the complexity of these models given additional 
restrictions on their structure that limit the treewidth of a transformation of it that we call the pruned graph. 

Class-bridge (CB) decomposable MBCs [3] are capable of dividing the MPE problem into multiple simpler subproblems 
that can be computed independently in each of the MBC components. We prove that CB-decomposability can also be used 
to efficiently bound the complexity of MBCs during the learning process. We propose a learning method that uses these 
properties to search for tractable MBCs in the space of topological orderings. 

This paper is an extended version of the work published in [4]. We extend the theoretical results to marginal com­
putations, provide an alternative strategy for bounding the complexity of MBCs in the learning method, and extend the 
experiments using additional performance measures and real-world datasets. The rest of the paper is organized as follows. 
Section 2 describes MBCs, introduces CB-decomposability, and reviews previous work on inference complexity and learn­
ing in MBCs. Section 3 presents the new theoretical results with respect to the complexity of computations of MPEs and 
marginals in MBCs. Section 4 describes the method proposed for learning tractable MBCs. Section 5 reports the experimental 
results. Section 6 draws some conclusions and suggests future research lines. 

2. Background 

2.1. Multidimensional classification with Bayesian networks 

A Bayesian network B represents a joint probability distribution over a set of random variables V = {V1, ..., Vn}. It 
is composed of a directed acyclic graph (DAG) Q that represents the conditional dependences among the variables in V, 
and a set of parameters Pr(Vi|Pag(Vi)) (we use Pag(Vi) to refer to the parents of Vi in Q) that represent the conditional 
probability distributions (CPDs) of each Vi e V conditioned on its parents in Q. A joint probability distribution that satisfies 
the Markov condition with Q is given by 

n 

Pr(V1 , . . . , Vn) = rTPr(Vi|Pa<j(Vi)) . (1) 
i=1 

Van der Gaag and de Waal [2] introduced multidimensional Bayesian network classifiers as an extension of Bayesian classi­
fiers to multidimensional classification. MBCs are a special case of Bayesian networks with a restricted structure topology. 
They are defined as follows: 

Definition 1. An MBC is a Bayesian network B over a set of variables V = [V1, V2, ..., Vn}, where V is partitioned into two 
sets C = {C1, ..., Cd}, d > 1, of class variables and J77 = [F1, ..., Fm}, m > 1, of feature variables (d + m =n) . The arcs in Q 
are partitioned into three subsets, AC, AF, AB, such that: 

• AC c C x C is composed of the arcs between the class variables having a subgraph GC = (C, AC) - class subgraph - of 
G induced by C. 

• AF c J7 x J77 is composed of the arcs between the feature variables having a subgraph GF = (J7, AF) - feature subgraph 
- of Q induced by J77. 

• AB c C x J7 is composed of the arcs from the class variables to the feature variables having a subgraph GB = (V, AB) -
bridge subgraph - of G induced by V connecting class and feature variables. 

Fig. 1 shows an example of the structure of an MBC and its corresponding subgraphs. 
The problem of multidimensional classification in MBCs involves getting the most probable explanation (MPE) of the 

class variables given an instantiation of the feature variables, which is given by 

c* = arg max Pr(c|f) = arg max Pr(c, f) , (2) 
ce£2c ce£2c 

where f is an instantiation of J7 and Qc is the set containing all the possible configurations of C. 

2.2. Class-bridge decomposable multidimensional Bayesian network classifiers 

An MBC is class-bridge decomposable [3] if it can be decomposed into multiple connected components, where each com­
ponent is composed of all the nodes that are connected by an undirected path in GC U GB. Basically, the components of an 
MBC are the connected graphs obtained after removing the arcs of the feature subgraph from this MBC. 

Definition 2. A CB-decomposable MBC is a BN B whose class subgraph and bridge subgraph are decomposed into r maximal 
components such that: 
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Fig. 2. MBC structure (a), connected components (b), and moralized connected components (c). 

1. Gc U GB = Ui=1 (^Q U Gsi) , where Gc{ U GB^, i = 1 , ..., r, are its maximal connected components. 
2. Chg(Cj) n Chg (Cj) = 0 , with i, j = 1, ..., r and i = j, where Chg(Cj) and Chg(Cj) denote the children of all variables in 

Cj and Cj respectively (the subsets of class variables in Gct and Gcj). 

Bielza et al. [3] proved that exploiting the CB-decomposability of MBCs can reduce the number of computations required 
to perform multidimensional classification. Specifically, they showed that the MPE can be computed independently in each 
component, given that 

maxce£2c Pr(c|f) a f [ = 1 maxcie£2c. Hc^Ci Pr(c'i|Pa& (cij)) 

fUjeChg(c) Pr(/iJ |Pa^ (FiJ),Pa^ (Fy)) (3) 

where Cj is the set containing the class variables that belong to component i, and HQ is the set containing all the possible 
configurations of Cj. This means that it is possible to maximize over each maximal connected component independently, 
therefore maximizing over lower dimensional spaces. 

Let us consider the MBC shown in Fig. 2, which can be CB-decomposed in two connected components that contain 
nodes {C1, C2, F1, F2} and {C3, C4, F3, F4, F5}, respectively. To classify an instance f = (f1, ..., f5) we should get the MPE of 
(C1, ..., C4) given f. By Equation (3) we know that for any c = (c1, ..., C4), 

maxce£2c Pr(c|f) a I maxC1C2 Pr(c1)Pr(c2)Pr(/1 |c1)Pr(/2|c1, c2, f1, / 4 ) , 

maxC3 C4Pr(C3)Pr(C4|C3)Pr(/3|C3, /2)Pr(/4|c4) 

Pr(/5|C4, / 1 , /4) 

Thus, the MPE can be computed maximizing over ( C1 , C2 ) and ( C3 , C4 ) independently. 

2.3. Complexity of most probable explanations in multidimensional Bayesian network classifiers 

Assuming that all the feature variables are observed, performing multidimensional classification in an MBC B with class 
variables C = {C1, ..., Q} and feature variables J7 = {F1, ... Fm} is equivalent to obtaining the MPE of the class variables 
conditioned on an instance f of the features. If there are unobserved feature variables, performing multidimensional classi­
fication in B is equivalent to obtaining not the MPE in (C1, ..., C&) but the maximum a posteriori hypothesis (MAP). This 
can be intractable even if the treewidth of B is bounded [5]. 

Fig. 3 shows an example of both cases where multidimensional classification in an MBC is equivalent to obtaining the 
MPE and the MAP, respectively. 



(a) (b) 

Fig. 3. Multidimensional classification with an MBC. In (a) the values / = (f1,..., f 5) of all the features are given, and multidimensional classification is 
equivalent to obtaining the MPE (i.e., argmaxcEQc Pr(c|f)). In (b) the values of F1 and F2 are missing, and multidimensional classification is equivalent to 
obtaining the MAP (i.e., argmaxcEQc Pr(c|f3, f4, f 5)). 

Existing research addresses the complexity of multidimensional classification in MBCs as the complexity of computing 
the MPE. Thus, they implicitly assume that MPE queries will not contain missing values (i.e., the values of all the feature 
variables will be given). Otherwise, the resulting MPE would provide the most probable instantiation of ( C1 ,..., Cd , Fm1 , 
..., Fmk ) , where Fm1 , ..., Fmk are the non-instantiated features. Note that the most probable instantiation of ( C1 , ..., Cd ) , 
that is equivalent to the MAP of the class variables given an instantiation of the observed features in this case, may differ 
from the most probable instantiation of ( C1 ,..., Cd , Fm1 ,..., Fmk ) . 

In this paper, we also focus on the case where all the feature variables are observed. Hence, we consider that, to perform 
multidimensional classification, an MBC obtains argmaxcenc Pr(c|f). 

MPE is generally NP-hard [6] and known exact methods for MPE computations in a BN B are exponential in the treewidth 
of G, where Q is the structure of B. Nevertheless, MPE can be computed in polynomial time in B if the treewidth of Q is 
bounded [7]. 

Given MBC structural constraints, further bounds on their inference complexity have been found. De Waal and van der 
Gaag [8] demonstrated that 

treewidth(^) < treewidth(^F) + d , 

where GF is the feature subgraph and d is the number of class variables. This means that B could perform multidimensional 
classification in polynomial time if the addition of the treewidth of the feature subgraph and the number of class variables 
is bounded. 

Furthermore, Kwisthout [6] showed that for any CB-decomposable MBC with structure Q 

treewidth(^) < treewidth(^F) + dmaxl , 

where |dmaxl is the number of class variables of the component with the maximum number of class variables. Hence, the 
MPE can be computed in polynomial time if the treewidth of GF and the number of class variables of each component of 
Q are bounded. 

Pastink and van der Gaag [9] focused on MBCs with an empty feature subgraph. To bound the structure, they used 

treewidth(^F)< treewidth(G') , 

where GF is the structure of an MBC with empty feature subgraph and Q' is the graph obtained after moralizing GF and 
then removing all its feature nodes from the moralized graph. 

When computing the MPE in a BN given an evidence f, we can simplify the structure of the network by pruning every 
arc Vi -> Vj such that Vi appears in f. Pruning arc Vi -> V j for evidence f from a BN means removing arc Vi -> V j and the 
parameters of Vj that are not compatible with f. 

As mentioned above, previous research uses the treewidth of G to bound the inference complexity, exploiting the restric­
tions on the topology of G, but without considering the known query-dependent information, that is, that all the feature 
variables are instantiated when we compute the MPE in B. Here, we take advantage of the above to bound the complexity 
of multidimensional classification in MBCs. 

2.4. Previous work on learning MBCs 

The problem of learning MBCs from data has been addressed before. The literature contains methods for learning differ­
ent families of MBCs, depending on the type of class and feature subgraphs that they can obtain (trees, forests, polytrees or 
DAGs). Here we denote the family of the MBC using <class subgraph> - <feature subgraph> (e.g., tree-DAG has a tree as 
the class subgraph and a DAG as the feature subgraph). Fig. 4 shows some of the most popular MBC families. 

Methods have been proposed for learning tree-tree [2], polytree-polytree [8] and DAG-DAG [3] MBCs. These approaches 
do not explicitly consider the inference complexity of the learned models. Hence, they may lead to MBCs where the MPE 
cannot be solved efficiently, unless the number d of class variables is very small. 

There are also other approaches in the literature that consider the complexity of the MBCs during the learning process. 
Corani et al. [10] proposed a method for learning sparse MBCs with a forest class subgraph and an empty feature subgraph, 
and Borchani et al. [11] introduced the first method to learn CB-decomposable MBCs. However, neither provides guarantees 
regarding the complexity of multidimensional classification in the models. Pastink and van der Gaag [9] proposed a method 
for learning tree-empty MBCs of bounded treewidth, providing an optional step to learn a forest feature subgraph, and 
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Fig. 4. Widely used MBC families ordered from the least general (a) to the most general (c). Note that tree-tree is a special case of polytree-polytree, which 
is likewise a special case of DAG-DAG. 

guaranteeing the tractability of the resulting models. The method computes the treewidth of each candidate and rejects any 
that exceeds the treewidth bound. 

Markov random fields have also been used for multi-label classification. Ghamrawi and McCallum [12] proposed two 
pairwise models, CML and CMLF. CML learns a factor between each pair of class variables and between each pairwise 
combination of a class variable and a feature variable. CMLF also learns the latter factors, but instead of learning the former 
it learns a factor between each combination of two class variables and a feature variable, increasing the expressiveness of 
CML. Exact inference in these models requires computing a factor over all the possible configurations of the class variables. 
Hence, it is intractable when the number of class variables is not small. [13] proposes a method that learns an undirected 
graph between the class variables, and learns a base model (e.g., naïve Bayes) for each pair of connected class variables. 
The base model gives a factor over a pair of class variables given an instance of the feature variables. The drawback of this 
approach is that the number of base models is huge if the graph between the class variables is not sparsely connected. 

In this paper we bound the complexity of (the most general) DAG-DAG MBCs by bounding the treewidth of a transfor­
mation of their structures (similar to the transformation used by Pastink and van der Gaag [9]). However, we do not bound 
the treewidth of their complete structures. Moreover, we propose an additional strategy that takes advantage of the CB-
decomposability of MBCs to compute these bounds efficiently. We use these bounds to learn MBCs where multidimensional 
classification can be performed in polynomial time. We show that even high treewidth MBCs may be tractable given other 
structural constraints. 

3. Theoretical results on MPE and marginal computations 

In BNs with bounded treewidth, both evidence propagation and MPEs can be computed in polynomial time. In the case 
of MBCs (which are, in fact, also BNs), this is also true, but it is possible to exploit the restrictions on the network structure 
and the information about the queries sent to the MBCs. From the structure of MBCs, we know that there are no arcs from 
the feature to the class nodes. Also, the values of all the features should appear in the evidence. 

As multidimensional classification in MBCs involves obtaining the MPE of the class variables given an instantiation of 
all the feature variables, we focus on finding bounds for this problem. Nevertheless, the results are extended to marginal 
computations because it is sometimes worth calculating the probability of a configuration of certain class variables given 
the value of all the features, and the extension is straightforward. 

The complexity of inference in BNs is query dependent, given that the parameters of a network can be updated with the 
value of the evidence variables before performing inference. 

Definition 3. Let Q = (C U J77, AC U AB U AF) be the structure of an MBC B. The pruned graph Q' of Q is the result of 
moralizing Q and then removing the feature nodes from the resulting graph. 

Theorem 1 states that MPE and marginal computations in an MBC are tractable if the treewidth of its pruned graph is 
bounded. This transformation was used by Pastink and van der Gaag [9] to bound the treewidth of tree-empty MBCs. Here, 
we extend it to bound the complexity of (the more general) DAG-DAG MBCs. 

Theorem 1. Let Q = (C U J77, AC U AB U AF) be the structure of an MBC B, and f be an instantiation of J7. If the treewidth of its pruned 
graph Q' and the number of parents of each node that belongs to J7 are bounded, B can compute MPEs and marginals in polynomial 
time given f. 

Proof. Suppose that the CPD of each node Vi e C U J7 is represented by a potential <j>i. cj>i is updated with f by removing the 
entries that are not compatible with f. This can be done in linear time in the size of <ji, that is exponential in the number 
of parents of Vi in Q. Hence, the nodes in J7 can be updated with f in polynomial time if the number of parents of each 
node in J7 is bounded. 

After updating Q with f, the domain of each potential cj>f of Vf e J7 is Pag(Vf) DC. There is an undirected link in Q' 
between each node in Pag{Vf) DC. It is evident that the width of the best elimination order for the resulting potentials 
is equal to the treewidth of Q'. As the width of the best elimination order bounds the complexity of MPE and marginal 
computations, if the treewidth of Q' is bounded, B can compute MPEs and marginals in polynomial time given f. 
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Fig. 5. MBC structure and pruned graph (left), and domain of the potential of each node before and after they are updated with evidence f = (f1,..., f 5) 
(right). Note that the treewidth of the pruned graph is smaller than the number of class variables. 

Fig. 5 shows an example of the structure of an MBC and its pruned graph. It also illustrates that all the variables 
belonging to the domain of the same potential φi e {φ C 1 , ..., φ C4, φF1,...,φ F5} updated with an instance f = (f1, ..., f5) of 
the features are connected by a link in the pruned graph (and vice versa). This means that the treewidth of the pruned 
graph is equal to the width of the best elimination order in the updated potentials. 

Although the computational cost of calculating the treewidth of the pruned graph Q' is less than calculating the 
treewidth of the complete structure Q, the exact computation of the treewidth of a graph is an NP-complete problem 
[14]. 

There are multiple approaches that calculate the exact treewidth of a graph in exponential time [15,16], but they are 
mostly intractable in practice. We can compute whether the treewidth of a graph is less than or equal to a constant k in 
linear time if k is fixed, but obtaining the solution of this inequality is super-exponential in the treewidth [17]. Thus, it is 
intractable unless k is very small. 

As the treewidth of Q is equal to the width of the best elimination order for Q, heuristic methods for searching good 
elimination orders are often applied. Two popular heuristics eliminate, in each iteration, the node of smallest degree in the 
graph [18] or the node that produces the minimum number of fill-in edges [19]. 

Other approaches consist of applying graph recognition techniques [20,21], local search methods [22,23], or evolution­
ary methods [24]. Nevertheless, these methods are usually computationally demanding, especially if we aim to bound the 
treewidth of each candidate during the learning process. 

Fortunately, Corollary 1 shows that if the number of class variables of an MBC B is bounded, then we can perform 
inference in B in polynomial time. 

Corollary 1. Let Q = (C U J7, AC U AB U AF) be the structure of an MBC B, and f be an instantiation of J7. If the number of class 
variables d and the number of parents of each node in T are bounded, B can compute MPEs and marginals in polynomial time given f. 

Proof. Let Q' be the pruned graph of Q. As each node in Q' belongs to C, treewidth(S') < d. Hence, from Theorem 1 we 
know that if the number of parents of each feature and d are bounded, B can compute MPEs and marginals in polynomial 
time given f. • 

As the pruned graph only contains class nodes, it is patent that its treewidth is always smaller than the number of class 
variables in the classifier. Let us consider the MBC shown in Fig. 5 and its pruned graph. The nodes in the pruned graph are 
{C1, ..., C4}, so its treewidth can never be greater than 3. 

When the number d of class variables of B is not small, it is not so simple to decide whether B can perform multidi­
mensional classification efficiently. Nevertheless, if the classifier is CB-decomposable, we can show that simply bounding the 
maximum number of class nodes per component also bounds the inference complexity of the MBCs, as shown in Corollary 2. 

Corollary 2. Let Q = (C U J7, AC U AB U AB) be the structure of a CB-decomposable MBC B, and f be an instantiation of T. If the 
number of class variables in each component ofQ and the number of parents of each node in T are bounded, B can compute MPEs and 
marginals in polynomial time given f. 

Proof. Let Q' be the pruned graph of Q. If Q is CB-decomposable into r components G1, ..., Gr, then Q' is composed of r 
unconnected subgraphs Q\, ...,Q[, such that V/ = Vi n C, i = 1, ..., r, where Vi and V/ are the nodes in Gi and Q[, respec­
tively. As treewidth(S') = maxi{treewidth^i')} < maxi |V/| = maxi |Vi n C|, we know from Theorem 1 that if the number of 
parents of each feature and the number of class variables in each component of Q are bounded, B can compute MPEs and 
marginals in polynomial time given f. 



Data: Dataset D, ordering of class variables Oc = (0C1, • • • , OQ), ordering of feature variables OF = (0F1, • • • , 0Fm), bound k 
Result: MBC structure G, best score S 

1 G+- empty DAG; 
2 for Vj e (0 c1, • • • , 0 Q , 0 F1 , • • • , 0 rm) do 
3 improve <- true; 
4 while improve do 
5 Let Vj be the node that maximizes score(D, Vt, Pag (Vj) U {Vj}), such that adding Vj to Pa s (Vj) does not exceed: 
6 a) The bound k in the treewidth of the pruned graph of G 
7 b) The bound k of class variables per component in G 
8 if score(D, Vf,Pag(Vj) U{Vj}) > score(D, V;,Pag(V;)) then 
9 | Pag(Vj) <- Pag(Vj) UfVj}; 

10 else 
11 I improve <- false; 
12 end 
13 end 
14 end 
15 S < - £ " _ 1 score(D, Vj, Pag (Vj)), with n = d + m; 
16 return G, S ; 

Algorithm 1: Greedy search of tractable CB-decomposable MBCs (greedyMBC). Lines 6 and 7 correspond to the two 
alternatives proposed in this paper to bound MBC complexity. 

Fig. 5 shows that the treewidth of the pruned graph is bounded by the maximum number of class variables per compo­
nent (two in this case), given that there is no path from Q to Cj in the pruned graph if two class nodes Cj and Cj are in 
two different connected components. 

4. Learning tractable multidimensional Bayesian network classifiers 

Given that inference in a BN is tractable if the treewidth of its structure is bounded, most existing algorithms for learn­
ing BNs with low inference complexity bound the treewidth of the networks during the learning process, rejecting any 
candidates that exceed the treewidth bound [25-27]. 

In the case of an MBC, instead of bounding the treewidth of its complete structure, we focus on bounding the treewidth 
of its pruned graph. We adapt order-based search (OBS) [28] to learn tractable MBCs with DAG-DAG structure. As the order 
of the variables in greedy search restricts the structure of the learned networks (i.e., a node can only be set as the parent of 
another node if it has been visited previously), OBS can be easily adapted to learn MBCs by considering only those orderings 
of the variables where the class variables precede the feature variables. In this manner, the parents of class variables must 
necessarily be other class variables. This is consistent with the MBC structure. 

We use Algorithm 1 to learn the structure of MBCs given an ordering of the class (Oc) and feature (Of) variables and a 
bound k on the treewidth of the pruned graph or, alternatively, on the maximum number of class variables per component. 
We do not specify a definite scoring function because any score used to evaluate BNs can be applied. We assume that the 
score is decomposable and must be maximized. 

To bound the inference complexity, we provide two alternatives. The first approach (line 6 of Algorithm 1) involves 
computing the treewidth of the pruned graph (e.g., using the Min-Fill algorithm) of each MBC candidate and rejecting any 
that exceed a limit k that bounds the complexity of multidimensional classification (see Theorem 1). This alternative is more 
accurate than the second option, but may be very computationally demanding. 

The second approach (line 7 of Algorithm 1) consists of using CB-decomposability to bound the complexity of multidi­
mensional classification in the models (see Corollary 2). In this case, we limit the maximum number of class variables per 
component, rejecting any candidates that exceed this bound. The main benefit of this alternative is that the computational 
cost of computing this bound is negligible since it merely involves counting the number of class variables that belong to 
each component of the MBC. 

An effective strategy used to learn BNs in the space of orderings is to perform a greedy process applying local changes 
among the orderings and picking the best change in each step [29]. A tabu list can also be used to reduce the computational 
cost, and random restarts can be useful for avoiding local optima. Algorithm 2 starts with a random ordering of the class 
and feature variables (line 1). In each iteration, it finds the swap between two consecutive nodes in the current ordering 
that maximizes the score and is not on the tabu list (line 6). The tabu list (line 10), that represents pairs of nodes that have 
been swapped recently, is used to prevent the algorithm from reversing recently applied swaps. 

Table 1 compares the properties of our method with other popular MBC learning methods in the state of the art. Note 
that our approach is one of the few that provides theoretical guarantees with respect to the complexity of the models. Also, 
it allows highly expressive structures to be learned since it does not bound the treewidth of the complete graph. 

5. Experimental results 

To test the performance of our approach, we compared it with other state-of-the-art methods, including the tree–tree [2], 
polytree–polytree [8] and pure filter (DAG–DAG) [3] algorithms. We also compared it to a version of the method proposed by 



Data: Dataset V, class variables C, feature variables T, bound k, size of the tabu list r 
Result: MBC structure c7best 

1 Oc, OF <- random permutation of C and T; 
2 Sbest,Sbest^ greedyMBC(D, Oc, OF,k); 
3 tabu <- empty list; 
4 improve <- true; 
5 while improve do 
6 Let O'c, OF be the permutation of C and T obtained by applying a swap Vt >̂ V,- in Oc or OF that maximize S (with Q,S 

greedyMBC(D, O'c,O'F,k)), such that Vi >̂ Vj / tabu; 
B, S <- greedyMBC(i>, Oc, O'F, k); 
if S > Sbest then 

ybest, ^best ^~ y , ^ ; 
push Vj >̂ Vj (best swap in line 6) into tabu; 
Oc , Of +- O c , OF 

else 
I improve <- false; 

end 
if size (tabu) > r then 

| remove first element of tabu; 
end 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 e n d 
19 return Gbest ; 

Algorithm 2: Ordering-based search of tractable CB-decomposable MBCs (CB–OBS). 

Table 1 
Comparison of t he proper t ies of different MBC learning me thods . For each approach, t he table shows the family of 
MBC re turned by the method , w h e t h e r it addresses t he problem of computa t ional complexity of t he learned m o d ­
els, whe the r it provides theoretical guarantees on the tractability of t he models , and which par t of t he s t ructure 
is bounded to ensure tractability. Note tha t Pastink and van der Gaag [9] provides an opt ional s tep to augment 
t he empty feature subgraph to a forest. 

[2] 
[8] 
[3] 
[9] 
[10] 
[11] 
This work 

Family 

Tree–tree 
Polytree-polytree 
DAG–DAG 
Tree–empty 
Forest–empty 
DAG–DAG 
DAG–DAG 

Addresses 
complexity 

x 
x 
x 
x 

Theoretical 
guarantees 

x 

x 

Bound 

Complete graph 

Pruned graph 

Pastink and van der Gaag [9] (small–tw). Instead of the branch and bound approach that they proposed to search the bridge 
subgraph, we used a greedy search process that picks the best parent set of each feature variable that does not exceed 
the treewidth bound in each iteration, given that the computational cost of the former is too high for this experimental 
framework. We used the Bayesian information criterion (BIC) as the scoring function for our method. CB–OBSp and CB–OBSc 
denote our approach when we bound the treewidth of the pruned graph and the number of class variables per component, 
respectively (options a) and b) in Algorithm 1). In all cases, we used a Bayesian estimation of the parameters with all 
hyperparameters equal to 0.05. 

We generated a dataset of 5000 samples from three BNs. ANDES [30] is an intelligent tutoring system for Newtonian 
physics, MUNIN1 [31] is a network for the diagnosis of neuromuscular disorders, and PIGS [32] is a pedigree of breeding 
pigs. We also tested the different approaches on two real-world datasets: ENRON, a dataset for email classification [33], and 
MEDICAL, a dataset for medical text classification [34]. 

In the datasets generated from BNs, we selected one third of the variables at random as class variables. To reduce the 
dimensionality of all the datasets and remove uninformative features, we applied an information gain filter for each of the 
classes (i.e., we select the five features with highest information gain with respect to each class variable), generating a 
subset of selected features for each class variable. The definitive subset of features is the union of the subsets selected for 
each variable. The basic properties of the datasets are described in Table 2. 

To test the performance of the methods, we used six different measures. The mean accuracy of the classifiers averages 
the accuracy values of all the class variables individually, as described below for N samples and d classes: 

1 d N 

accjvj d- N 
i=1 j=1 

J2δ(cirCii , C i i ) , (4) 

where c|. represents the predicted class label for variable Cj in instance i, cy is its true value, and δ(cL cy) = 1 if c|. = cy, 
and 0 otherwise. 



Table 2 
Basic proper t ies of t he datasets . Number of classes, filtered features, and 

instances for each dataset . 

Dataset Classes Features Instances 

ANDES 

MUNIN1 

PIGS 

ENRON 

MEDICAL 

74 

62 

110 

53 

45 

135 

107 

206 

124 

110 

5000 

5000 

5000 

1702 

978 

The global accuracy measures the fraction of instances in which the labels of all the classes were correctly assigned, and 
is given by: 

1 -c-^ , 
accc = — > <5(c-,cj) , (5) 

where 5(cJ, cj) = 1 if cj = c , and 0 otherwise. 
The log-likelihood of the model structure given the test dataset indicates how well the structure of each MBC fits the 

data. 
The multi-class area under the ROC curve (AUC) proposed by Provost and Domingos [35] for a single class variable C is 

defined as: 
N 

AUCJVJ = AUC(c;) • Pr(cj) , (6) 

where AUC (Cj) is the AUC for variable C using q as the target value against the rest of possible classes of C. To adapt the 
results to multidimensional classification, we use macro and micro averages [36] of AUCM over all the class variables. 

Additionally, we computed the marginals of the class variables given the value of the features in ANDES, MUNIN1, 
and PIGS. We give the mean square error (MSE) of the predictions obtained with the learned models with respect to the 
predictions obtained with the real BNs. 

5.1. Results 

In each dataset, we performed a 5-fold cross-validation to estimate the performance of each method. Table 3 compares 
the complexity of the learned models for each dataset. The complexity measures shown in each column are the treewidth 
of the pruned graph (rp), the treewidth of the complete graph (T), computed using the Min-Fill algorithm, the size of the 
factors induced by variable elimination for solving the MPE, and the learning time (time/) in seconds. The time complexity of 
variable elimination is given by the size of the induced factors. Table 4 compares the fitting and accuracy of the models. For 
each dataset and method, we show the mean accuracy (accjvi), the global accuracy (accc), and the log-likelihood (log-lik). 
Table 5 gives the micro-averaged AUC (AUCmicro), the macro-averaged AUC (AUCmacro), and the mean square error in the 
marginal computations (MSE). 

In all tables, we give the mean value ± the standard deviation in 5-fold cross-validation for each measure. In Tables 4 
and 5, we use - to denote that the complexity of a model did not allow us to compute MPEs or marginals because of time 
and space constraints, and we show the best results in bold. 

In all cases, the bound on the number of class variables per component k in CB-OBSc was set to 15. Small values of k 
usually returned MBCs with a very low treewidth, which detracts from classification accuracy, while big values of k did not 
guarantee the tractability of the learned MBCs. The treewidth bound of the pruned graph xp for CB-OBSp, and the treewidth 
bound r for small-tw were set to 5. Other small values of x produced similar results. 

In the experiments, the size of the models returned by CB-OBSp, CB-OBSc and small-tw was always small, and the 
treewidth of the pruned graph was low. On the other hand, some unrestricted methods (i.e., tree-tree, and polytree-
polytree) produced huge models in some scenarios, where multidimensional classification was intractable. Unlike small-tw, 
the CB-OBSp and CB-OBSc methods were able to learn models with a high treewidth for their complete graph and with 
small treewidth for their pruned graph. This means that these methods help to output more expressive structures without 
affecting the complexity of multidimensional classification. 

We compared the experimental results obtained for each measure in all the datasets using the Friedman test with a < 
0.05 and Holm’s [37] and Shaffer’s [38] procedures. Both Holm’s and Shaffer’s procedures associate pairwise comparisons 
with a set of hypotheses, and perform a step-down process with the corresponding set of ordered p-values to adjust the 
value of a. Garcia and Herrera [39] provided a review of statistical comparison procedures. The significant differences 
obtained for each measure are: 

• accjvj: CB-OBSp was found to be significantly better than small-tw by both procedures, and significantly better than 
polytree-polytree by Holm’s procedure. 



Table 3 
Complexity comparison. 

ANDES 

MUNIN1 

PIGS 

ENRON 

MEDICAL 

Method 

CB-OBSp 
CB-OBSc 
Tree–tree 
Polytree-polytree 
DAG–DAG 
Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 
Polytree-polytree 
DAG–DAG 
Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 
Polytree-polytree 
DAG–DAG 
Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 
Polytree-polytree 
DAG–DAG 
Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 
Polytree-polytree 
DAG–DAG 
Small-tw 

τp 

4.3 ±0 .5 
4.7 ±0 .5 
7.3 ±0 .9 
5.0 ±0 .8 
8.8 ± 1.7 
5.0 ±0 .0 

3.7 ±0 .5 
3.3 ±0 .5 
7.0 ±0 .8 
7.0 ±0 .0 
7.0 ±0 .8 
5.0 ±0 .0 

5.0 ±0 .0 
3.0 ±0 .0 
12.0 ±0 .8 
12.0 ±0 .0 
7.0 ±0 .8 
5.0 ±0 .0 

4.2 ±0 .4 
3.6 ±0 .5 
5.0 ±0 .0 
6.8 ± 1.2 
4.4 ±0 .5 
5.0 ±0 .0 

2.0 ±0 .0 
2.4 ±0 .5 
2.4 ±0 .5 
13.2 ±4 .0 
2.4 ±0 .5 
2.4 ±0 .5 

τ 

11 .0±2 .9 
11 .7±0 .9 
24.0 ±2 .2 
26.3 ±2 .1 
36.4 ±3 .0 
5.0 ±0 .0 

10.3 ±0 .5 
10.7 ±2 .5 
22.0 ±0 .8 
24.0 ±0 .8 
28.3 ±1 .2 
5.0 ±0 .0 

11 .0±0 .8 
10.7 ±0 .9 
23.3 ±2 .5 
37 .7±3 .7 
29.5 ±2 .6 
5.0 ±0 .0 

29.2 ±2 .6 
27.4 ±2 .0 
11 .0±0 .6 
13.2 ±1 .9 
25.6 ±3 .4 
5.0 ±0 .0 

5.2 ±0 .4 
5.4 ±0 .5 
12 .6±1 .5 
19.8 ±3 .2 
9.0 ±0 .6 
2 .4±0 .5 

size 

898.0 ± 56.2 
706.0 ±111 .4 
3278.0 ±656 .5 
1123.3 ± 195.0 
8790.8 ±6730 .1 
1444.7 ±46 .7 

406.0 ±62 .1 
348.0 ±8 .2 
1874.0 ±520 .0 
1807.3 ±294 .7 
2270.0 ±869 .2 
976.7 ±8 .2 

7581.0 ±820 .6 
2012.0 ±122 .2 
(4.42 ±2 .55) x 106 

(4.19 ±5 .85) x 106 

79244.2 ±926 .4 
12063.0 ±404 .4 

378.8 ± 4 0 
255.2 ± 2 2 
574.8 ± 55 
1106.0 ± 724 
481.2 ± 71 
574.8 ± 55 

151.6 ± 1 
147.6 ± 8 
230.4 ± 9 
(5.27 ±8.10) x 105 

207.6 ± 6 
198.8 ± 4 

t ime l 

1240.7 ± 12.6 
146.0 ±0 .8 
136.8 ± 1.6 
46.6 ±0 .5 
707.0 ±94 .5 
28.6 ±0 .1 

350.4 ±9 .5 
45.3 ±4 .1 
40.6 ±1 .4 
36.8 ±0 .7 
217.2 ±6 .2 
9.4 ±0 .7 

4246.5 ±27 .9 
333.6 ± 14.2 
484.4 ± 12.0 
445.1 ±1 .2 
7197.2 ±3 .7 
103.6 ±1 .9 

395.6 ± 13.1 
26.4 ±0 .7 
16.9 ±0 .3 
16.1 ±0 .6 
14.2 ±2 .2 
6.0 ±0 .1 

110 .8±4 .4 
8.2 ±0 .2 
5.7 ±0 .3 
5.7 ±0 .3 
11.1 ±0 .7 
3.3 ±0 .0 

• accG : CB–OBSp was found to be significantly better than small–tw by both procedures. 
• log–lik: CB–OBSp was found to be significantly better than small–tw by both procedures, and CB–OBSc was found 

significantly better than small–tw by Holm’s procedure. 
• AUCmacro: CB–OBSp was found to be significantly better than polytree–polytree by both procedures, and significantly 

better than small–tw by Holm’s procedure. 
• AUCmicro: CB–OBSp was found to be significantly better than polytree–polytree by both procedures. 
• MSE: CB–OBSp was found to be significantly better than polytree–polytree by both procedures, and significantly better 

than small–tw by Holm’s procedure. 

Figs. 6 and 7 present graphically the results obtained with Holm’s procedure for the experimental results shown in Tables 4 
and 5 respectively. In the figures, groups of methods that are not significantly different are connected. We use the graphical 
representation proposed by Demšar [40]. 

CB–OBSp performed the best in most cases, whereas the performance of CB–OBSc was similar to the performance of 
the unrestricted methods. The exception is the MEDICAL dataset, where tree–tree and small–tw obtained the best results in 
terms of both AUC measures. Apparently, models with simpler feature subgraphs discriminated better in this dataset. We 
can therefore conclude that limiting the number of class variables per component may degrade the fitness of the models 
compared to directly bounding the treewidth of the pruned graph. Nevertheless, as CB–OBSc yielded results that were 
similar to the results obtained with the unrestricted methods and given the negligible cost of computing this upper bound, 
CB–OBSc is an interesting option when the cost of CB–OBSp is too high. 

6. Conclusions and future research 

In this paper, we addressed the problem of the complexity of multidimensional classification in MBCs. We provided 
theoretical upper bounds for the complexity of these models, and we proved that the complexity of the queries that are 
usually performed in MBCs is bounded by the treewidth of the pruned graph. The treewidth of the pruned graph may be 
small even if the treewidth of the complete structure is high. We proposed a learning method that uses the above properties 
to ensure such tractability. We provided two alternatives for bounding the complexity of the methods. Directly bounding 
the treewidth of the pruned graph achieved a tighter bound, whereas limiting the number of class variables per component 
is more efficient. 



Table 4 
Accuracy and fitness comparison. 

ANDES 

MUNIN2 

PIGS 

ENRON 

MEDICAL 

Method 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

accM 

0.821 ± 0.000 
0.820 ±0 .001 
0.817 ±0 .001 
0.812 ±0 .003 
0.815 ±0 .002 
0.805 ±0 .000 

0.794 ± 0.001 
0.793 ±0 .000 
0.793 ±0 .000 
0.788 ±0 .001 
0.790 ±0 .001 
0.775 ±0 .001 

0.630 ± 0.003 
0.617 ±0 .002 

-
-
0.610 ±0 .003 
0.601 ±0 .001 

0.946 ± 0.007 
0.943 ± 0.007 
0.947 ± 0.006 
0.946 ± 0.007 
0.941 ±0 .007 
0.944 ± 0.009 

0.988 ± 0.002 
0.988 ± 0.002 
0.988 ± 0.002 

-
0.987 ±0 .002 
0.986 ± 0.002 

accc 

0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 

0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 
0.000 ±0 .000 

0.000 ±0 .000 
0.000 ±0 .000 

-
-
0.000 ±0 .000 
0.000 ±0 .000 

0.146 ±0 .102 
0.086 ± 0.042 
0.086 ±0 .031 
0.088 ± 0.032 
0.130 ±0 .100 
0.075 ± 0.044 

0.636 ± 0.048 
0.624 ± 0.049 
0.627 ±0 .045 

-
0.617 ±0 .050 
0.589 ±0 .045 

log-lik 

- 708.157 ± 1.645 
- 711.223 ± 1.834 
- 723.911 ±2 .242 
- 734.722 ±3 .528 

627.756 ±1 .470 
- 781.528 ± 1.052 

731.219 ±0 .869 
- 732.396 ±0 .158 
- 748.809 ± 1.120 
- 755.402 ± 1.865 
- 737.428 ±2 .297 
-810.261 ±0 .906 

1239.132 ± 1.283 
- 1265.118 ± 1.926 
- 1243.061 ±2 .366 
- 1266.529 ± 1.410 
- 1270.030 ±3 .671 
- 1394.773 ± 1.748 

-67 .579 ± 0.038 
-68.974 ± 0.038 
-69.610 ±0 .035 
- 70.855 ±0 .037 
-68 .595 ±0 .039 
- 78.582 ±0 .042 

- 15.410 ±0 .021 
- 15.435 ±0 .020 
- 14.832 ±0 .018 
- 14.916 ±0 .012 
- 15.564 ±0 .021 
- 17.087 ±0 .022 

Small-tw 
Polytree-polytree • 

DAGDAG 

CB-OBSp 
CBOBSc 
Tree-tree 

(a) Comparison of accM with the Holm's test 

Small-tw 
Polytree-polytree 

CB-OBSc 

CB-OBSp 
Tree-tree 
DAG-DAG 

(b) Comparison of accG with the Holm's test 

Small-tw — 
Polytreepolytree 

DAG DAG 

CB-OBSp 
CB OBSc 
Tree—tree 

(c) Comparison of log-lik with the Holm's test 

Fig. 6. Comparison of all classifiers against each o ther wi th t he Holm’s test for t he exper imenta l results shown in Table 4 . 



Table 5 
AUC and MSE comparison. Note tha t marginals were only compared in datasets generated from BNs (i.e., ANDES, MUNIN1, and PIGS). 

Method AUCmacro AUCmicro MSE 

ANDES 

MUNIN1 

PIGS 

ENRON 

MEDICAL 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

CB-OBSp 
CB-OBSc 
Tree–tree 

Polytree-polytree 
DAG–DAG 

Small-tw 

0.907 ± 0.000 
0.906 ±0 .001 
0.902 ±0 .001 
0.896 ±0 .001 
0.900 ±0 .001 
0.886 ± 0.000 

0.893 ± 0.000 
0.892 ±0 .001 
0.887 ±0 .000 
0.884 ±0 .001 
0.887 ±0 .001 
0.868 ±0 .001 

0.836 ± 0.001 
0.821 ±0 .001 

-
-
0.818 ±0 .000 
0.805 ±0 .001 

0.928 ± 0.003 
0.927 ±0 .005 
0.925 ±0 .005 
0.923 ±0 .007 
0.924 ± 0.003 
0.918 ±0 .008 

0.979 ± 0.003 
0.977 ±0 .003 
0.980 ± 0.002 

-
0.975 ±0 .004 
0.979 ± 0.003 

0.834 ± 0.001 
0.831 ±0 .002 
0.827 ±0 .001 
0.820 ±0 .001 
0.829 ±0 .002 
0.810 ±0 .001 

0.812 ±0 .001 
0.810 ±0 .001 
0.804 ±0 .001 
0.800 ± 0.002 
0.807 ±0 .001 
0.784 ± 0.003 

0.815 ± 0.001 
0.800 ±0 .001 

-
-
0.801 ±0 .000 
0.791 ±0 .002 

0.795 ±0 .008 
0.782 ±0 .008 
0.805 ± 0.002 
0.798 ±0 .008 
0.785 ±0 .004 
0.804 ± 0.005 

0.929 ±0 .009 
0.926 ±0 .008 
0.942 ± 0.008 

-
0.912 ±0 .004 
0.942 ± 0.010 

0.004 ± 0.000 
0.005 ±0 .000 
0.007 ±0 .000 
0.013 ±0 .000 
0.009 ± 0.000 
0.017 ±0 .000 

0.003 ± 0.000 
0.004 ± 0.000 
0.006 ± 0.000 
0.009 ±0 .001 
0.007 ±0 .000 
0.017 ±0 .000 

0.008 ± 0.000 
0.014 ±0 .000 

-
-
0.016 ±0 .000 
0.022 ±0 .001 

-
-
-
-
-
-
-
-
-
-
-
-

Polytree-polytree • 
Small-tw 

DAG-DAG 

CB-OBSp 
CBOBSc 
Tree—tree 

(a) Comparison of AUCm;cro with the Holm's test 

Polytree-polytree • 
Small-tw 

DAG-DAG 

CB-OBSp 
Tree-tree 
CB-OBSc 

(b) Comparison of AUCmacro with the Holm's test 

Polytree-polytree • 
Small-tw 
Tree-tree 

- CB-OBSp 
CB OBSc 
DAG DAG 

(c) Comparison of MSE with the Holm's test 

Fig. 7. Comparison of all classifiers against each other wi th t he Holm’s test for t he exper imenta l results shown in Table 5 . 



Experimental results showed that the proposed method is competitive with other state-of-the-art methods in terms of 
accuracy, also ensuring that the learned MBCs can be solved efficiently. We also observed that some models remain tractable 
even with a large treewidth. 

The upper bound provided by the number of class variables per component has the advantage of being able to be com­
puted without increasing the computational cost of the learning process. However, there are MBCs that have a pruned graph 
with low treewidth and also have components with a high number of class variables. Thus, forcing the CB-decomposability 
of the models could lead to the rejection of some tractable models during the learning process. Although it is less expensive 
to calculate the treewidth of the pruned graph than the treewidth of the complete graph, its computational cost may be 
high. We are currently working on a method that searches in the space of elimination orders to learn bounded treewidth 
BNs. We intend to adapt this approach to learn MBCs where the treewidth of the pruned graph is efficiently bounded. 

Most available scoring functions for learning MBCs are generative with the exception of wrapper methods, that are 
extremely computationally demanding when the number of variables in the network is high. Bayesian network classifiers 
that were learned using approximations of the conditional log-likelihood have shown a good performance compared to 
other Bayesian network classifiers learned using generative metrics [41,42]. It would be very interesting to extend these 
strategies to multidimensional classification and MBCs. 

Also, we are interested in addressing the problem of the complexity of MPE computations in MBCs where there are 
uninstantiated feature variables. 

Finally, one of the main problems with models with latent variables is that exact inference usually has to be performed 
during the learning process to complete the values of the hidden variables (e.g., structural expectation-maximization). We 
are interested in adapting the ideas described here to reduce the learning complexity of these models without restricting 
their structure to trees or polytrees. 

Code availability Source code is available upon request from the authors. 
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