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Abstract

The space of nonempty convex and compact (fuzzy) subsets of Rp, Kc(Rp), has

been traditionally used to handle imprecise data. Its elements can be character-

ized via the support function, which agrees with the usual Minkowski addition,

and naturally embeds Kc(Rp) into a cone of a separable Hilbert space. The sup-

port function embedding holds interesting properties, but it lacks of an intuitive

interpretation for imprecise data. As a consequence, it is not easy to identify

the elements of the image space that correspond to sets in Kc(Rp). Moreover,

although the Minkowski addition is very natural when p = 1, if p > 1 the shapes

which are obtained when two sets are aggregated are apparently unrelated to

the original sets, because it tends to convexify. An alternative and more intu-

itive functional representation will be introduced in order to circumvent these

difficulties. The imprecise data will be modeled by using star-shaped sets on Rp.

These sets will be characterized through a center and the corresponding polar

coordinates, which have a clear interpretation in terms of location and impre-

cision, and lead to a natural directionally extension of the Minkowski addition.

The structures required for a meaningful statistical analysis from the so-called

ontic perspective are introduced, and how to determine the representation in

practice is discussed.
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1. Introduction

For the last decades the statistical analysis of imprecise-valued random vari-

ables has awakened a great interest from both the epistemic and the ontic view-

points (see, for extensive comparative discussions, e.g., [4, 7]). These random

variables associate outcomes of a random experiment (modelled through proba-5

bility spaces) with elements in generalized spaces, such as the space of compact

real intervals, the space of convex, and compact subsets of Rp, the space of fuzzy

numbers, or the space of convex and compact p-dimensional fuzzy sets. From

the ‘ontic’ perspective, the one considered in this paper, (fuzzy) set-valued data

are regarded as whole entities (see, e.g., [2, 4, 5, 6]), in contrast to the epistemic10

approach, which deals with (fuzzy) set-valued data as imprecise measurements

of precise data (see, e.g., [7, 8, 11, 17]).

The elements of the above-mentioned spaces are generally parametrized by

vectors/functions to derive more operational statistical techniques. For instance,

any real compact interval can be characterized by its contour or endpoints (in-15

fimum/supremum), or by its midpoint (related to the location) and spread (re-

lated to the imprecision). For the space of fuzzy numbers, each level set is a

real compact interval, so the corresponding level-wise characterization is usu-

ally considered. Zadeh’s extension principle, which agrees with the Minkowski

arithmetic, is fully meaningful and has been extensively used for statistical pur-20

poses (see, e.g., [9, 16, 19]). For the p−dimensional case, the contour of the

compact and convex (fuzzy) sets is usually identified by the support function

(see, e.g.,[10, 22]). By operating with it, the location/imprecision can also be

characterized with the so-called generalized mid-spread representation [26] or

alternative characterizations based on the Steiner point and shape deviations25

expressed in terms of the support function (see, e.g., [1, 23] and references
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therein). Nevertheless, neither the support function, nor the elements of the re-

lated representations, have a fully intuitive meaning, even if theoretically they

provide a valid characterization. Moreover, the convexification property of the

Minkowski arithmetic also makes it difficult to relate the meaning of two ag-30

gregated compact and convex sets with the original shapes when p > 1. These

shortcomings are discussed for the set-valued case and illustrated through exam-

ples. An alternative functional representation based on the theory of star-shaped

sets (see, e.g., [22]) is proposed, and the foundations to develop statistics in this

new framework are set up.35

The rest of the manuscript is structured as follows. In Section 2 the current

paradigm based on the support function is formally introduced and some exam-

ples showing its lack of interpretability in some cases are discussed. In Section

3 a new parametrization is considered, based on a point related to the location,

and a polar function, related to the imprecision. The main properties of this40

characterization are discussed. The new framework considers star-shaped sets as

a natural setting, but it includes the usual convex and compact sets as particular

cases. Examples to illustrate the new parametrization are provided. Section 4

introduces a pre-processing step to general star-shaped sets in order to establish

their location in practice in a robust way. Finally, Section 5 summarizes some45

conclusions and future research.

2. Current framework

Let Kc(Rp) be the space of nonempty compact and convex subsets of Rp.

This space is normally endowed with the Minkowski arithmetic, which general-

izes the standard interval arithmetic as follows:

A+ γB = {a+ γb | a ∈ A, b ∈ B} for all A,B ∈ Kc(Rp) and γ ∈ R.

Given A ∈ Kc(Rp), the well-known support function characterizes the con-

tour of A (see, e.g., [22]). It is defined as sA : Sp−1 → R such that

sA(u) = sup
a∈A
〈a, u〉 for all u ∈ Sp−1,
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where Sp−1 denotes the unit sphere in Rp and 〈·, ·〉 is the standard inner product

in Rp with associated norm ‖ · ‖. The support function sA is continuous and

square-integrable on Sp−1.50

From now on, given a ∈ Rp and ε > 0, B(a, ε) will denote the open ball

centered at a and with radius ε, that is

B(a, ε) = {x ∈ Rp | ‖a− x‖ < ε},

and B(a, ε) will denote the corresponding closed ball.

The space Kc(Rp) can be embedded into the separable Hilbert space of the

square integrable functions H = L2(Sp−1, ζ), with ζ the normalized Lebesgue

surface measure on Sp−1, by means of the mapping s : Kc(Rp) → L2(Sp−1)

defined by s(A) = sA. The support function is not linear, but semi-linear, i.e.

sA+γB(u) = sA(u) + |γ|sB(sign(γ)u),

for all A,B ∈ Kc(Rp), γ ∈ R and u ∈ Sp−1. Thus, s preserves the Minkowski

addition and product by non-negative scalars, and it makes Kc(Rp) to be iso-

morph to a cone of L2(Sp−1, ζ) by using the induced L2 distance on Kc(Rp).

The embedding s allows the development of statistical analyses in Kc(Rp) by ap-55

plying powerful techniques for Hilbert spaces (see, for instance, [15]). It should

be underlined that once the support functions are used to characterize com-

pact convex sets, the different developments refer to equivalence classes, since

the elements in L2(Sp−1, ζ) represent classes of functions that are equal almost

surely.60

Unfortunately, the support function of a convex set is not easy to visualize.

In general, a graphical representation of sA seems to be unrelated with the shape

of A, as it is illustrated in the following simple example.

Example 1: Figure 1 illustrates the computation of the support function of

the rectangle drawn in green color, centered at (0,0) and with corners (±10,±1).65

The unit sphere is the solid black line circumference. For any fixed point u in the

unit sphere, the rectangle is orthogonally projected on the line passing by the

origin and with direction given by u (dotted black line), leading to an interval
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over this line. The value of the support function at u is the maximum value of

this projection in the direction given by u (the length of the red segment in this70

particular case). Given any u in the unit sphere, the function drawn in blue

represents the point where such a maximum is attained, and the distance to the

origin corresponds to the value of the support function. This representation can

only be done if the origin belongs to the set, otherwise there will be directions in

the unit sphere for which the support function becomes negative. The graphic75

is complemented with the representation of the support function in the sphere

parametrized by angles in [0, 2π) (Figure 2).

Both the blue shapes generated by the projection of the sets over all the

directions and the value of the support function itself are difficult to relate with

the original shapes, even it they determine the contour uniquely.80
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Figure 1: Graphical computation and representation of the support function of the green

rectangle – Kc(R2)

In an attempt to alleviate the lack of interpretability of the support function,

the so-called mid-spread representation was introduced in [26] by decomposing

it as

sA = midA + sprA

where midA, sprA ∈ H are defined such that

midA(u) = (sA(u)− sA(−u))/2

sprA(u) = (sA(u) + sA(−u))/2
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Figure 2: Support function of the green rectangle shown in Figure 1 being the unit sphere

parametrized by angles in [0, 2π)

for all u ∈ Sp−1. Note that the projection of A in the direction u leads to

the interval [−sA(−u), sA(u)] and, consequently, midA(u) coincides with the

midpoint of the projection of A over the direction u ∈ Sp−1, and sprA(u) is the

spread of this projection, which is always non-negative. In addition, midA is an

odd function and sprA is an even function. Thus, both functions are orthogonal85

in H.

These functions generalize the concepts of midpoint and spread of the inter-

vals in Kc(R) to Kc(Rp), by considering the interval-valued projections of A in

all the directions u ∈ Sp−1. This representation shows some advantages from

an interpretation perspective, which is exploited in order to define a generalized

L2-type metric in Kc(Rp) weighting the importance of the location against the

imprecision (see [26]) as

dθ,2(A,B) =
√
||midA −midB ||2 + θ||sprA − sprB ||2 , (1)

where θ ∈ (0, 1] and || · || is the usual L2-type norm for functions defined on

Sp−1 with respect to ζ, i.e. ||f ||2 =
∫
Sp−1 f

2(u)dζ(u), f ∈ H.

The generalized mid-spread representation inherits, nevertheless, some draw-

backs from the support function from an operational view. Namely, a non-90

negative function f ∈ L2(Sp−1, ζ) can be identified with the spread function

of a given convex set, but it is not easy to check whether a general function

f ∈ L2(Sp−1, ζ) characterizes the midpoint function of an element in Kc(Rp),
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as it happens with sA. In other words, given an element f ∈ L2(Sp−1, ζ), it

can remain unknown whether f is the support function (or the generalized mid-95

point) of any set in Kc(Rp). Any sub-linear function f : Rp → R determines

a convex and compact set [22], however verifying the condition of sub-linearity

is not obvious, so such a characterization is of very limited use in practice in

this sense. This fact is a challenge when, after applying a statistical technique

in the Hilbert space by using any of these representations, one tries to go back100

and get statistical conclusions on the original elements in Kc(Rp). The same

issues apply for the alternative decompositions based on the support function

(e.g., [1, 23]).

On the other hand, it is well-known that the embedding via the support

function is coherent with the Minkowski arithmetic in the sense that

s(A+ γB) = s(A) + γs(B) for all A,B ∈ Kc(Rp) and γ ≥ 0.

That is, the arithmetic in Kc(Rp) agrees with the usual arithmetic for functions

in L2(Sp−1, ζ) via the isometry. The Minkowski addition is very natural when105

dealing with intervals, nevertheless, it is not always the best choice in Kc(Rp)

for p > 1, since it tends to convexify shapes. Thus, the Minkowski sum of two

or more convex bodies may change completely the shape of the resulting set,

and it does not preserve the area, as illustrated in Example 2.

Example 2: The Minkowski sum, also known as dilation, makes the area110

of the sum to increase enormously when the imprecision follows (almost) or-

thogonal directions. For instance, in Figure 3, the set obtained by computing

the Minkowski sum (gray rectangle) of the horizontal green rectangle and the

vertical red one is shown. Here, the sum of two elements in Kc(R2) with areas

of 40 and 60 respectively results in a convex set with area of 506 and with a115

quite different shape (dilated by the combination the two orthogonal directions

of imprecision). The contrast is even higher if the green and red rectangles

are replaced by segments with null area with a resulting sum of arbitrary area,

nevertheless these null sets are of little interest in Kc(R2).
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Figure 3: Minkowski sum of green and red rectangles – Kc(R2)

3. New framework: Basic concepts120

The new proposal is based on an alternative directional extension of the

Minkowski addition that is connected with a natural center-radial character-

ization of the sets. In the interval case, given A ∈ Kc(R) consider cA ∈ A,

A∗ = A − cA and the function ρA∗ : {−1, 1} → [0,∞) with ρA∗(−1) = inf A∗,

ρA∗(1) = supA∗. This leads to a center-radial or polar characterization of A125

by means of the pair (cA, ρA∗) being usually cA chosen as the mid point of the

interval. The function ρA∗ simply identifies the boundaries of the interval A∗.

It can be equivalently rewritten as ρA∗(u) = sup{α |αu ∈ A∗} and agrees with

the support function of A∗ for the interval case. Thus, for any A,B ∈ Kc(R)

and γ ∈ R the Minkowski addition and product by scalar can be expressed in130

the following terms:

• Minkowski addition: (cA, ρA∗) + (cB , ρB∗) = (cA + cB , ρA∗ + ρB∗)

• Product by scalar: γ(cA, ρA∗(·)) = (γcA, |γ|ρA∗(sign(γ) ·))

In higher dimensions the polar representation of a generalization of the con-

vex bodies, namely, the star-shaped sets (see, e.g., [22]) will be considered. A

subset of Rp, A ⊂ Rp, is called a star-shaped set iff there exists c ∈ A so that

γc+ (1− γ)a ∈ A for all a ∈ A and all γ ∈ [0, 1] (2)

In such a case, A is also called star-shaped set with respect to c, emphasizing

with this terminology that Equation 2 is verified for this particular point c ∈ A.135
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If the set A is closed, then all the segments joining any point in the boundary

of the set and the “central” point c belong to the set, which means that the set

can be characterized by a center, with serves a location of the set, and a polar

or radial function.

It should be noted that a set A ⊂ Rp could be a star-shaped set w.r.t.

different points c ∈ A. The set of points in A verifying Equation (2) is called

kernel of A and is denoted as ker(A), that is

ker(A) = {c ∈ A | γc+ (1− γ)a ∈ A for all a ∈ A and all γ ∈ [0, 1]}.

The kernel of a star-shaped set is the intersection of all its maximal convex140

subsets (see [25]). Thus, it is convex, and if the star-shaped set is closed, then

its kernel is closed too. In addition, if A is a star-shaped set w.r.t. 0 ∈ A, then

for any c ∈ Rp the set c + A is a star-shaped set w.r.t. c. So, initially, we will

focus on the star-shaped sets w.r.t. 0, and the selection of an appropriate center

to represent the location of any star-shaped set will be discussed later on.145

3.1. Characterization of a class of star-shaped sets w.r.t. 0

The space of star-shaped sets of Rp w.r.t. 0 will be denoted by χ
0(Rp), that

is,

χ0(Rp) =
{
A ⊂ Rp | γa ∈ A for all a ∈ A and all γ ∈ [0, 1]

}
.

Obviously, χ0(Rp) contains all the elements A ∈ Kc(Rp) for which 0 ∈ A, but

there are star-shaped sets w.r.t. 0 that are not convex sets (see, e.g., Figure 5).

In order to characterize the star-shaped sets w.r.t. 0, the polar or radial

function will be used. As usual, R will denote the extended real line.150

Definition 3.1. Given A ⊂ Rp so that 0 ∈ A, the polar or radial function

ρA : Sp−1 → R is defined as

ρA(u) = sup{γ ∈ [0,∞) | γu ∈ A} for all u ∈ Sp−1.

Conversely, every f : Sp−1 → R has an associated star-shaped set w.r.t. 0 given

by

Kf = {γu | γ ∈ [0,∞), γ ≤ |f(u)|, u ∈ Sp−1} ∈ χ0(Rp).
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In the previous definition the polar function has been defined generically for

any A ⊂ Rp containing the origin of coordinates. Nevertheless, its main utility

is when dealing with star-shaped sets w.r.t. 0.

Given A ⊂ Rp the following two disjoint subsets of Rp are considered:

AE =
{
uρA(u) |u ∈ Sp−1, ρA(u) <∞

}
⊂ Rp,

AI =
{
uγ |u ∈ Sp−1, γ ∈ [0, ρA(u))

}
⊂ Rp.

By construction, KρA = AE ∪ AI , AE is contained in the boundary of A and,

obviously, A ⊂ KρA and AI = ∅ if, and only if, A = {0}. In addition, if155

A ∈ χ0(Rp) then AI ⊂ A.

Let A ⊂ Rp so that AE ⊂ A (which happens, for instance, if A is a closed

set). By using the previous decomposition of KρA , it is easy to check that

A ∈ χ
0(Rp) if, and only if, A = KρA . In particular, the radial function ρA

characterizes any closed set A ∈ χ
0(Rp) by a directional identification of its160

boundary (see Figure 4).
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Figure 4: Computation of the polar function ρ of a set in X0(R2) (green rectangle). The polar

function corresponds to the distance to 0 of the boundary point in the direction u ∈ S1.

By definition, ρA is a non-negative function. Given A ∈ χ
0(Rp), for each

directional interval

Iu(A) = {γ ∈ R | γu ∈ A},

inf Iu(A) = −ρA(−u) and sup Iu(A) = ρA(u) for all u ∈ Sp−1. There are

elements A ∈ χ0(Rp) which are not perfectly characterized by its polar function

in the sense that A 6= KρA . In this respect, the next theorem states that

if A ∈ χ
0(Rp) is a Lebesgue measurable subset of Rp, then KρA provides a165
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good approximation of A. To this aim let λB denote the Lebesgue measure on

B ⊂ Rp, whenever it can be defined.

Theorem 3.1. Let A ∈ χ0(Rp) be a Lebesgue measurable set. Then λRp(AE) =

0 and, consequently, KρA = A almost sure-λRp .

Proof. Let A ∈ χ0(Rp) be a Lebesgue measurable set and let Aε = (1 + ε)A \170

1
1+εA. Obviously, for all ε > 0, AE ⊂ Aε.

If A is bounded, then

λRp(Aε) =

(
(1 + ε)p −

(
1

1 + ε

)p)
λRp(A),

which tends to 0 as ε → 0. Consequently, AE is Lebesgue measurable and

λRp(AE) = 0.

If A is not bounded, let An = A ∩ B(0, n) for all n ∈ N. Since An is bounded,

λRp(AnE) = 0 for all n ∈ N. It is easy to check that AE ⊂ ∪n∈NAnE , whence175

λRp(AE) = 0.

Finally, given that AI ⊂ A ⊂ AE ∪AI = KρA ,

KρA \A ⊂ KρA \AI = AE .

Thus, KρA \A is a null Lebesgue measurable set, i.e., KρA = A a.s.-λRp .

Note that if A 6= {0}, then given B = AI 6= ∅, it is verified that ρB = ρA.

Thus, BE = AE and BI = AI , and by applying the previous theorem to B = AI ,

the next result follows.180

Corollary 3.1. Let A ∈ χ0(Rp). Then A is a Lebesgue measurable set if, and

only if, AI is a Lebesgue measurable set.

Formally, two elements A,B ∈ χ
0(Rp) will be considered equivalent when-

everKρA = KρB (or equivalently, whenever ρA = ρB), and thus, a representative

set of each of the equivalence classes is given by Kf for f : Sp−1 → R. According185

to Theorem 3.1 and Corollary 3.1, given A ∈ χ
0(Rp) a Lebesgue measurable

set, if B ∈ χ0(Rp) is equivalent to A, then BI = AI , BE = AE and KρB = KρA .

As a results, B is also Lebesgue measurable and B = A almost sure-λRp .
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From now on, X0(Rp) will represent the quotient space, and A ∈ X0(Rp) will

denote the unique element in the equivalence class [A] so that A = KρA . Thus,190

the previous theorem states that any [A] ∈ X0(Rp) is characterized by its polar

representation whenever A is Lebesgue measurable. The practical interest will

focus on Lebesgue measurable star-shaped sets, thus, measurability conditions

will be investigated later on (see Theorem 3.2).

Given A,B ∈ X0(Rp) and γ ∈ R, the addition and product by scalar are

defined as A + B = KρA+ρB ∈ X0(Rp) and γA = K|γ|ρA(sign(γ)·) ∈ X0(Rp).

Consequently, ρA+B = ρA + ρB and ργA(·) = |γ|ρA(sign(γ)·). This arithmetic

is associated with a directional propagation of the “imprecision”, and extends

the interval Minkowski arithmetic as follows,

Iu(A+B) = Iu(A) + Iu(B) for all u ∈ Sp−1.

Obviously, both internal operations agree in the sense that A+A = 2A.195

In general, A + B /∈ Kc(Rp), even if A and B are convex sets, which is the

reason for the consideration of star-shaped sets (see Figure 5).
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Figure 5: Addition (dark gray set) of two star-shaped sets (green and red rectangles). The

Minkowski addition is depicted in light gray for comparative purposes.

The unnormalized Lebesgue surface measure on Sp−1 defined by the cone

volume will be considered from now on. The measure is given by,

ϑp(A) = λRp({αa |α ∈ (0, 1], a ∈ A}) for all A ∈ βSp−1 ,

12



being βSp−1 the Borel σ-algebra of the subspace Sp−1 ⊂ Rp. The complete

measurable space (Sp−1, βSp−1 , ϑp) is obtained in the usual way. The so-called

normalized Lebesgue (surface) measure on Sp−1 reduces to

ζ(A) = ϑp(A)/ϑp(Sp−1).

Consider the mapping φ : Rp \ {0} → Sp−1 × (0,∞) given by φ(x) =

(x/||x||, ||x||p) for all x ∈ Rp\{0} with inverse mapping given by φ−1(u, γ) = γu

for all u ∈ Sp−1 and all γ ∈ (0,∞). The mapping φ is a continuous bijection

with continuous inverse (see, e.g. [13]) verifying that,

λRp
(
φ−1((a, b]× E))

)
= λ((a, b])ϑp(E),

for all 0 < a < b <∞ and all E ∈ βSp−1 . Consequently

λRp
(
φ−1(U)

)
= (λ× ϑp)(U) and λRp

(
A
)

= (λ× ϑp)
(
φ(A)

)
for all U ∈ βSp−1 × β(0,∞) and all A ∈ βRp\{0}. Thus, φ is a measure-preserving

homeomorphism. In addition, by applying the Theorem 2.49 in [13] to the

function IKf (note that σ = pϑp in that theorem), the following relationship for

polar integration is fulfilled,∫
Sp−1

|f(u)|pϑp(du) = λRp(Kf ) for all f ∈ Lp(Sp−1, ϑp). (3)

According to Equation (3), the defined addition does not preserve the vol-

ume, that is, λRp(A + B) does not coincide in general with λRp(A) + λRp(B).

Indeed, the volume can be computed as the integral of the corresponding func-200

tion ρp w.r.t. ϑp so, for instance, if p = 2, ρ2
A+B contains the extra factor

2ρAρB and consequently area(A+ B)≥ area(A)+area(B). In some settings an

arithmetic preserving the volume could be interesting, for instance, in problems

where comparing average volumes is needed (e.g., [21]). Although that is not

the aim of this work, it would be possible to consider such an arithmetic with a205

simple modification within this framework.

The hypograph of the non-negative function ρA, with A ∈ χ
0(Rp), can be

defined as follows,

Hypo(ρA) = {(u, γ) ∈ Sp−1 × [0,∞), γ ≤ ρA(u)}.

13



Note that the usual notion of hypograph of a general function (non necessarily

non-negative) is, actually, Hypo(ρA)∪
(
Sp−1×(−∞, 0)

)
. Thus, the measurability

of both hypographs is equivalent for non-negative functions. In addition,

Hypo(ρpA) = φ(A \ {0}) ∪
(
Sp−1 × {0}

)
.

The following result establishes an important relationship between the mea-

surability of A and ρA with respect to the corresponding Lebesgue measures.

Theorem 3.2. Let A ∈ χ0(Rp), then the following properties are equivalent:

(a) A is a Lebesgue measurable set of Rp.210

(b) The hypograph of ρpA is a Lebesgue measurable set of Sp−1 × [0,∞).

(c) ρA is a Lebesgue measurable function.

In addition, A has finite Lebesgue measure iff ρA ∈ Lmax{2,p}(Sp−1, ϑp).

Proof. The equivalence between (b) and (c) is direct for R valued functions (see

[3]). Moreover, note that ρA(u) = supn∈N min(ρA(u), n) for all u ∈ Sp−1 and215

consequently ρA is a Lebesgue measurable function if, and only if, the func-

tion min(ρA, n) is Lebesgue measurable for all n ∈ N (see [12]). The truncated

function min(ρA, n) can be understood to take values on R and thus the equiv-

alence between (b) and (c) is deduced straightforwardly. In addition, since φ

is an homeomorphism, A ⊂ Rp is a Lebesgue measurable set if, and only if,220

φ(A \ {0}) ∪
(
Sp−1 × {0}

)
= Hypo(ρpA) is a Lebesgue measurable set, which

proves the equivalence between (a) and (b).

Finally, note that according to Equation 3 and Theorem 3.1 λRp(A) =

λRp(KρA) =
∫
Sp−1 ρ

p
A(u)ϑp(du), where the measurability of the involved sets

is guaranteed by the equivalence stated in the current Theorem. In the partic-225

ular case of p = 1, the measure of the interval A is finite if, and only if, ρA is

bounded, and thus, in particular, ρA ∈ L2(S0).

The interest will focus on those elements A ∈ X0(Rp) so that ρA is integrable,

that is

X1
0(Rp) = {A ∈ X0(Rp) | ρA ∈ L1(Sp−1, ϑp)}.
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Actually, as it will be clarified in Section 3.2, L2 polar functions will be consid-

ered. This is a usual and non-restrictive condition when dealing with functions.

As a consequence of Theorem 3.2, any A ∈ X1
0(Rp) is a Lebesgue measurable230

set that is characterized by its polar representation, as λRp(AE) = 0. That is,

A = KρA a.s.-λRp . The space X1
0(Rp) is composed of equivalent classes, induced

by those of L1(Sp−1, ϑp). Thus, given A,B ∈ X0(Rp) so that ρA and ρB are

integrable, then A ∼ B if, and only if, ρA = ρB a.s-ϑp. The next results states

an alternative characterization for A ∼ B.235

Theorem 3.3. Let A,B ∈ X1
0(Rp), then

A ∼ B if, and only if, A = B a.s.-λRp

Proof. Firstly, A ∼ B iff ρA = ρB a.s.−ϑp iff ρpA = ρpB a.s.−ϑp. Let assume

that ρpA ≤ ρpB , otherwise consider the minimum and maximum functions. Let

S ⊂ Sp denote the set where ρpA and ρpB differ. By using the measure-preserving

homeomorphism φ introduced in Section 3.1,

λRp(A ∪B \A ∩B) = (ϑp × λR)({φ(A ∪B \A ∩B)}) =

(ϑp × λR)
({

(u, α) |α ∈ [ρpA(u), ρpB(u)], u ∈ S
})

=

∫
Sp

(
ρpB(u)− ρpA(u)

)
ϑp(du),

which implies the result.

As a consequence, A ∼ B if, and only if, A = KρA = KρB = B a.s.-λRp .

Note that given a non-negative function f ∈ L1(Sp−1, ϑp) then the set

f−1({∞}) has null Lebesgue measure and, consequently, the function f0 =

f ·If−1([0,∞)) is measurable and almost sure equal to f . In addition, it is easy to240

check that the star-shaped sets Kf and Kf0 are almost sure equal. As a result,

A ∼ B if, and only if, Kρ0A
= Kρ0B

(or equivalently, whenever ρ0
A = ρ0

B), and

thus, a representative set of each of the equivalence classes is given by Kf for

f : Sp−1 → R (note that R does not need to be considered for the representa-

tives of the classes). From now on A ∈ X0(Rp) will denote an element in the245

equivalence class [A] so that A = Kρ0A
.
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3.2. Star-shaped sets parametrization

General star-shaped sets will be parametrized by a location and the polar

function of the “centered” set. To this aim, the space (Rp × X1
0(Rp),+, ·) is

considered in order to represent location and imprecision. The arithmetic is250

naturally defined by:

• (x,A) + (y,B) = (x+ y,A+B),

• γ(x+A) = (γx, γA),

for all (x,A), (y,B) ∈ Rp × X1
0(Rp) and all γ ∈ R.

Consider now the vector space (Rp × {f : Sp−1 → R},+, ·), where for each

(x1, f1), (x2, f2) ∈ Rp × {f : Sp−1 → R} and γ ∈ R, the addition and product

by scalar are given by (x1, f1) + (x2, f2) = (x1 + x2, f1 + f2) and γ(x1, f1) =

(γx1, γf1). If we define the mapping

Γ : Rp × X1
0(Rp)→ Rp × {f : Sp−1 → R}

given by Γ(x,A) = (x, ρA) for all (x,A) ∈ Rp × X1
0(Rp), it is direct to check255

that Γ(Rp × X1
0(Rp)) = Rp × {f : Sp−1 → R+} is a convex cone of the vector

space (Rp×{f : Sp−1 → R},+, ·) with inverse mapping Γ−1(x, f) = (x,Kf ) for

all (x, f) ∈ Rp × {f : Sp−1 → R+}.

By considering an appropriate metric structure for the vector space, the

mapping Γ will allow us to endow the location-imprecision star-shaped-based

sets space with a useful metric. The aim is to take advantage of the structure

of Hilbert spaces, which are metric vector spaces very useful in order to de-

velop inferential statistics. They are widely used for handling functional data

or fuzzy data among others (see, for instance, [14], [20], and [26]). In this sense,

recall that (L2(Sp−1, ϑp),+, ·,
〈
·, ·
〉
L2) is a separable Hilbert space with associ-

ated norm ||.||L2 , being the inner product defined for all f1, f2 ∈ L2(Sp−1, ϑp)

as 〈
f1, f2

〉
L2 =

∫
Sp−1

f1(u)f2(u)ϑp(du).

Consider the space

H = Rp × L2(Sp−1, ϑp).
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Fix τ ∈ (0, 1), and define for any (x1, f1), (x2, f2) ∈ H and γ ∈ R, (x1, f1) +

(x2, f2) = (x1 + x2, f1 + f2), γ(x1, f1) = (γx1, γf1) and

〈
(x1, f1), (x2, f2)

〉
τ

= (1− τ)
〈
x1, x2

〉
+ τ
〈
f1, f2

〉
L2 .

Then,
〈
·, ·
〉
τ

is an inner product in H with norm || · ||τ and (H,+, ·,
〈
·, ·
〉
τ
) is a

separable Hilbert space. The parameter τ ∈ (0, 1) will allow us to weight the260

relative importance of “location” versus “imprecision” by using the mapping Γ.

A similar approach to the one in [24] could be followed in order to chose an

appropriate value for τ in practice.

In order to use H as the image vector space, the class of star-shaped sets

X1
0(Rp) needs to be constrained to those sets with L2 polar functions. As al-

ready mentioned, this is a usual and non-restrictive condition when dealing with

functions. Thus, we will consider the space

X2
0(Rp) = {A ∈ X1

0(Rp) | ρA ∈ L2(Sp−1, ϑp)}.

As a consequence of Theorem 3.2, when p ≤ 2, A ∈ X2
0(Rp) if, and only if, A

has finite Lebesgue measure. Furthermore, if p > 2, there are sets in A ∈ X2
0(Rp)265

with no finite Lebesgue measure.

The space Rp × X2
0(Rp) can be endowed with a metric structure by means

of the mapping Γ introduced previously. To this aim, given τ ∈ (0, 1), for any

(x,A), (y,B) ∈ Rp × X2
0(Rp), define

dτ ((x,A), (y,B)) = ||Γ(x,A)− Γ(y,B)||τ

=
√

(1− τ)‖(x− y)‖2 + τ
∥∥ρA − ρB∥∥L2 ,

(4)

and consider the space of equivalence classes in Rp × X2
0(Rp) (that will be de-

noted in the same way) induced by the following equivalence relation: (x,A) ∼

(y,B) iff x = y and A ∼ B, for all x, y ∈ Rp and all A,B ∈ X2
0(Rp). Let

L2(Sp−1, ϑp)
+ = {f ∈ L2(Sp−1, ϑp) | f ≥ 0} (i.e. the equivalence classes con-270

taining at least one positive function). Then,

Theorem 3.4. The following properties hold,
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(a) Γ(Rp × X2
0) = Rp × L2(Sp−1, ϑp)

+ is a closed and convex cone.

(b) (Rp × X2
0, dτ ) is a complete and separable metric space.

(c) Γ : Rp × X2
0 → Rp × L2(Sp−1, ϑp)

+ is a isometric isomorphism.275

(d) dτ is invariant by isometries in the following sense: given T1, T2 : Rp → Rp

two isometries with T2(0) = 0, then

dτ ((T1(x), T2(A)), (T1(y), T2(B))) = dτ ((x,A), (y,B))

for all (x,A), (y,B) ∈ Rp × X2
0(Rp).

(e) d2
τ ((0, A), (0, {0}))/τ =

∫
S1 ρ

2
A(u)ϑp(du) = area(A) for all A ∈ X2

0(R2).

Proof. It is straightforward to check (a), (e) and to prove that dτ is a metric

(recall that Rp × X2
0 is composed of equivalence classes). By construction, (c)

holds. In addition, Rp × L2(Sp−1, ϑp)
+ is a closed subspace of the complete280

and separable metric space Rp × L2(Sp−1, ϑp), and thus, it is complete and

separable. Consequently, as Γ is an isometric isomorphism, then Rp×X2
0 is also

complete and separable, so (b) holds. Finally, (d) can be proven by using the

same arguments as in the proof of Proposition 4.4 in [26].

3.3. Random L2 Star-shaped sets285

Let us consider a probabilistic setting in which the characteristic of interest

associated with the outcome of a random experiment is expressed through star-

shaped sets. This random mechanism can be suitably modeled by means of a

random L2 star-shaped set (R2S), defined as follows.

Definition 3.2. Let (Ω,A, P ) be a probability space. A mapping X : Ω →290

Rp × X2
0 will be called a random L2 star-shaped set if it is a Borel measurable

mapping with respect to A and the Borel σ-field generated by the topology

induced by the metric dτ on Rp × X2
0.

The statistical analysis of random star-shaped sets will extend the traditional

setting, by considering the essential concepts and tools to develop meaningful295

statistics for this kind of variable. Furthermore, the embedding of the space of
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experimental data Rp × X2
0 into Rp × L2(Sp−1) will allow us to take advantage

of powerful statistical results for random elements in separable Hilbert spaces.

Given a mapping X : Ω → Rp × X2
0, consider the marginal mappings cX :

Ω → Rp and AX : Ω → X2
0 so that X = (cX , AX) . Let ρX : Ω → L2(Sp−1),300

given by ρX(ω) = ρAX(ω), be the associated polar mapping. Note that Γ(X) =

Γ(cX , AX) = (cX , ρX). In this way, cX represents the location of X and the ρX ,

the imprecision.

Then the concept of random L2 star-shaped set can be equivalently formal-

ized as follows.305

Proposition 3.1. Given (Ω,A, P ) a probability space, a mapping X : Ω →

Rp × X2
0 is an R2S if, and only if, cX and AX are random elements, i.e. they

both are Borel measurable mappings w.r.t. the corresponding σ-fields generated

by the topologies induced by the euclidean metric and the L2 norm, respectively.

Moreover, X is an R2S if, and only if, Γ ◦X is an H−valued random element,310

and this happens if, and only if, cX and ρX are random elements w.r.t. the

corresponding σ-fields.

According to Proposition 3.1, if X is an R2S, then it is measurable w.r.t.

βdτ for any value τ ∈ (0, 1). The Borel measurability condition for R2Ss allows

us to properly consider traditional statistical notions such as the distribution315

induced by an R2S or the stochastic independence of R2Ss, among others.

The most used characterizing summary measures (moments) of the distribu-

tion of a random variable are the expected value, describing its central tendency

values, and the variance, to measure the variability or dispersion of the values

of the variable w.r.t. that central element. The probabilistic formalization of320

R2Ss together with the consideration of a metric space of star-shaped sets allow

us to introduce these summary measures based on Fréchet concepts in general

metric spaces. Namely, the mean value can be defined as the element in the

space minimizing the mean squared distance to the values of the variables, and

the variance is defined as this minimum. This approach agrees with the classi-325

cal definition of expected value in Hilbert spaces based on the Bochner integral.
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Formally,

Definition 3.3. Given (Ω,A, P ) a probability space and X : Ω → Rp × X2
0

an R2S associated with it so that E(‖cX‖) < ∞ and E(‖ρX‖L2) < ∞, then

the expected value of X is defined as the element E(X) ∈ Rp × X2
0 so that330

Γ(E(X)) = E(Γ(X)), where the expectations in H are considered in terms of

Bochner integrals.

Remark 3.1. Under the considered conditions on X, both Bochner and Pettis

expectations agree and, particularly, the expected value verifies that〈
E(Γ(X)), u

〉
τ

= E
(〈

Γ(X), u
〉
τ

)
for all u ∈ H and any τ ∈ (0, 1).

Moreover, if E(‖cX‖2) <∞ and E(‖ρX‖2L2) <∞ (equivalently E(d2
τ (X, 0) <∞

irrespectively of the value of τ ∈ (0, 1) chosen), then E(X) is the unique element

in Rp × X2
0 so that

E(d2
τ (X,E(X))) = min

(c,A)∈Rp×X2
0

E(d2
τ (X, (c, A))). (5)

In this situation the variance can be defined as the value of this minimum.

Definition 3.4. Given (Ω,A, P ) a probability space and X : Ω → Rp × X2
0

an R2S associated with it so that E(d2
τ (X, 0) < ∞, the variance of X, σ2

X or

V ar(X), is defined as

V ar(X) = E
(
d2
τ (X,E(X))) = E(||Γ(X)− E(Γ(X))||2τ

)
= V ar(Γ(X)) <∞.

To complement these concepts, the covariance, usually employed in regres-

sion contexts, is considered. In this sense,335

Definition 3.5. Given (Ω,A, P ) a probability space and X,Y : Ω → Rp × X2
0

two R2Ss associated with it so that E(d2
τ (X, 0)) <∞ and E(d2

τ (Y, 0)) <∞, the

covariance of X and Y , σX,Y or Cov(X,Y ), is defined as

Cov(X,Y ) = E
(〈

Γ(X)− E(Γ(X)),Γ(Y )− E(Γ(Y ))
〉
τ

)
∈ R

The covariance between X and Y cannot be formulated in terms of the

original variables, but based on the transformed ones, Γ(X) and Γ(Y ), due to

the lack of linearity of the original space.
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3.4. Estimation of moments and the Central Limit Theorem

Let X be a random L2 star-shaped set, and consider (X1, X2, . . .) an i.i.d.340

sequence of R2Ss defined on the same probability space and with the same

distribution as X. Recall that from the characterization of R2Ss shown in

Proposition 3.1, we can consider for each i ∈ N the random elements cXi : Ω→

Rp, AXi : Ω→ X2
0 and ρXi : Ω→ L2(Sp−1) so thatXi = (cXi , AXi) and Γ(Xi) =

(cXi , ρXi). Thus, {cXi}i∈N are i.i.d. random vectors in Rp, {AXi}i∈N are i.i.d.345

random elements taking values in X2
0 and {ρXi}i∈N are i.i.d. random elements

taking values in the separable Hilbert space L2(Sp−1) with common distribution

cX , AX and ρX respectively. For any fixed n ∈ N, {Xi}ni=1, {cXi}ni=1, {AXi}ni=1

and {ρXi}ni=1 will denote the corresponding simple random samples.

The sample expectation or mean of X is defined in terms of the arithmetic

on the space Rp × X2
0 as

X =
1

n

n∑
i=1

Xi. (6)

The arithmetic with positive scalars is directly related with the arithmetic in350

Rp × L2(Sp−1) through the embedding Γ. It is straightforward to show that

Γ(X) = (cX , ρX) coincides with (cX , ρX) = Γ(X).

The sample variance is defined as the sample counterpart of V ar(X) in (3.4),

i.e.

σ̂2
X =

1

n

n∑
i=1

d2
τ (Xi, X) . (7)

Expressing d2
τ (Xi, X) in terms of the corresponding distances on Rp and

L2(Sp−1) it is shown that σ̂2
X can be expressed as

σ̂2
X = (1− τ)σ̂2

cX + τ σ̂2
ρX , (8)

which highlights the role of the parameter τ as a balance of the weight of the

variance of locations and imprecisions in the overall variance.

As a consequence of the well-known Strong Law of Large Numbers (SLLN)355

in separable Banach spaces, the following result holds.

Theorem 3.5. Let (X1, X2, . . .) be an i.i.d. sequence of R2Ss defined on the

same probability space (Ω,A, P ).
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• If E(‖cX1
‖) < ∞ and E(‖ρX1

‖L2) < ∞, then X
a.s.−P−→ E(X). Indeed

cX
a.s.−P−→ E(cX), AX

a.s.−P−→ E(AX) and ρX
a.s.−P−→ E(ρX).360

• If E(d2
τ (X1, 0)) <∞, then σ̂2

X
a.s.−P−→ V ar(X). Indeed σ̂2

cX

a.s.−P−→ V ar(cX),

σ̂2
AX

a.s.−P−→ V ar(AX) and σ̂2
ρX

a.s.−P−→ V ar(ρX).

The so-called covariance operator plays a fundamental role in the establish-

ment of the Central Limit Theorem (CLT). In this sense, let X be an R2S so

that E(d2
τ (X, 0)) <∞. The covariance operator of Γ(X) is the linear mapping

CΓ(X) : H → H verifying

Cov
(〈

Γ(X), u
〉
τ
,
〈
Γ(X), v

〉
τ

)
=
〈
CΓ(X)(u), v

〉
τ

for all u, v ∈ H,

that is,

CΓ(X)(u) = E
(〈

(Γ(X)− E(Γ(X))), u
〉
τ
(Γ(X)− E(Γ(X)))

)
for all u ∈ H.

The condition E(d2
τ (X, 0)) < ∞, implies that CΓ(X) is a self-adjoint, positive

and nuclear operator (see [27]). Thus, according to the Spectral Theorem, there

exists an orthonormal basis of H, {vn}n∈N, consisting of eigenvectors of CΓ(X)

with corresponding non-negative eigenvalues {λn}n∈N ⊂ R+ decreasing towards

0 so that the covariance operator can be decomposed as

CΓ(X)(u) =

∞∑
n=1

λn
〈
u, vn

〉
vn, for all u ∈ H.

Consequently,

Γ(X) = E(Γ(X)) +

∞∑
n=1

Znvn

where {Zn}n∈N is the collection of centered and uncorrelated real random vari-

ables with corresponding variances {λn}n∈N given by Zn =
〈
Γ(X)−E(Γ(X)), vn

〉
for all n ∈ N. Note that the orthonormal basis {vn}n∈N entails a decomposi-365

tion of the H−valued random element Γ(X) such that V ar(X) = V ar(Γ(X)) =∑∞
n=1 λn.

Theorem 3.6. Let (X1, X2, . . .) be an i.i.d. sequence of R2Ss defined on the

same probability space (Ω,A, P ) so that E(d2
τ (X1, 0)) <∞, then
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i) n1/2
(
Γ
(

1
n

∑n
i=1Xi

)
− E(Γ(X1))

)
→ ZΓ(X1) weakly in H,370

ii) nd2
τ

(
1
n

∑n
i=1Xi, E(X1)

)
τ
→ ‖ZΓ(X1)‖2τ weakly in R,

where ZΓ(X1) is a centered Gaussian H−valued random element with CZ =

CΓ(X1).

Note that i) is just the Central Limit Theorem in separable Hilbert spaces

(see [18]) applied to the i.i.d. sequence (Γ(X1),Γ(X2) . . .). The result cannot be375

stated directly for the sequence of R2Ss (X1, X2, . . .) due to the lack of linearity

of the space Rp × X2
0. Once the norm is computed, in view of its relation

with the distance dτ , the weak limit for the distance (or the squared distance)

between the sample mean and the expectation can be deduced by applying the

Continuous Mapping Theorem (item ii)).380

4. Location of an arbitrary star-shaped set

Once a star-shaped set is observed, the first step in order to use the star-

shaped sets parametrization introduced previously is to decompose it as a center

plus a star-shaped set with respect to 0. A reasonable initial proposal is to

choose the center of gravity of the kernel as location parameter.385

The main drawback of this direct approach is associated with the lack of

robustness of the kernel against slight perturbations of a star-shaped set. In

order to illustrate this fact, consider the two closed star-shaped sets represented

in Figure 6.
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Figure 6: Kernel (brown) of two similar closed star-shaped sets and corresponding centers of

gravity
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The first one is a simple rectangle and, thus, its kernel, represented in brown390

color, is the whole set. The second one, which will be denoted by A, has been

obtained as the union of the initial rectangle with a line segment. Its kernel

reduces to the brown segment represented in the picture. Although both star-

shaped sets are almost ‘identical’, their kernels are drastically different, and

thus, the center of gravity of the kernels, represented by the black dots, are395

different.

Moreover, if cA denotes the center of gravity of ker(A), then it can be

checked that the polar function of A− cA belongs to the same equivalence class

as the polar function of B− cA (see Figure 7). That is, KρA−cA
and KρB−cA

are

identical sets according to the distance dτ , although their kernels are absolutely400

different.
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Figure 7: Star-shaped set B and an ’arbitrary’ center cB (black dot)

This illustration highlights the need for a robust definition of center against

simple perturbations. The main problem is associated with the possible exis-

tence of negligible subsets in the boundary of any star-shaped set A that would

restrict the kernel of A to a lower dimensional subspace. These subsets should405

be removed, and this pre-processing step should lead to a new star-shaped set

equivalent to the original one (and, thus, with the same measure).

Given any B ⊂ Rp, consider the subspace determined by the linear span of

all the finite collections of vectors determined by B. That is, given b ∈ B,

span(B) =

{
b+

k∑
i=1

γi(bi − b) | k ∈ N, b 6= bi ∈ B, γi ∈ R

}
.

Let A be a star-shaped set and denote by clB, intB, ∂B and Bc the closure,
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interior, boundary and complementary of a subset B of span(A) with respect to

the topological subspace span(A) respectively. Note that as ker(A) is a convex410

set, then λRp(ker(A)) > 0 if, and only if, span(ker(A)) = Rp. In this case, as

the topological interior of ker(A) is not the empty set, then the measurability of

the set follows as it is stated in the next result. Considering the developments

in span(A), instead of in Rp, will help to preserve as much information about

the sets as possible, because, even if they are null sets in Rp, their location could415

be relevant, and they should not be considered all equivalent to {0}.

Theorem 4.1. Let A be a star-shaped set verifying that λRp(ker(A)) > 0 then,

∂(A − c) = (A − c)E for all c ∈ int(ker(A)). Consequently, A is a Lebesgue

measurable set, being its boundary a null set.

Proof. Without loss of generality it can be assumed that 0 = c ∈ int(ker(A)).

As AE ⊂ ∂A, it remains to check that ∂A ⊂ AE . Let 0 6= a ∈ A, then

a = ku for certain u ∈ Sp−1 and k > 0. Assume that a /∈ AE , then there exists

0 < k < M < ∞ so that Mu ∈ A. As 0 ∈ int(ker(A)) there exists ε > 0 so

that Bε ⊂ int(ker(A)) being Bε = {x ∈ Rp|‖x‖2 < ε}. In addition, since A is a

star-shaped set, then

C = {α(Mu) + (1− α)v|α ∈ (0, 1), v ∈ Bε} ⊂ A.

Some algebra shows that a = ku ∈ int(C), which implies that a ∈ int(A).420

Consequently, given c ∈ int(ker(A)), it follows that (A − c)I = int(A − c),

which is a measurable set. Thus, according to Corollary 3.1 and Theorem 3.1,

A− c can be concluded to be a Lebesgue measurable set and its boundary is a

null set, which finalizes the proof.

The common star-shaped sets in practice have null Lebesgue measurable425

boundary, so the pre-processing step will focus mainly on such sets. Indeed,

to handle star-shaped sets in practice, the usual approach will consist in ap-

proximating them by means of p-polytopes parametrized by the directions of

their vertexes and its norms, obtaining the rest of the p-polytopes by linear

interpolation. The pre-processing for star-shaped sets with non-null Lebesgue430
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measurable boundary is a challenging theoretical problem that is left partially

open due to its lack of practical interest at this stage. Note that according to the

previous theorem, star-shaped sets with non-null Lebesgue measurable bound-

ary have its kernel restricted to a subspace of lower dimension than the span of

the original set. In Section 4.1 an example of one of such sets contaminated by435

a null set that restricts, even more, its kernel is shown for illustrative purposes.

The aim is to establish a consistent pre-processing procedure in such a way

that it will be based just on the set to be pre-processed, and not on the gen-

eral space. Thus, given any star-shaped set A, the subspace spanned by A

will be considered as working space. We can assume without loss of generality440

that span(A) = Rp (for the particular case in which A is a singleton the re-

sults are trivial, otherwise we can apply the corresponding isometry T so that

span(T (A)) = Rd for certain d < p). Note that, once the span is considered,

the previous theorem guarantees, in particular, the measurability of any convex

subset of Rp.445

Definition 4.1. Let A ⊂ Rp be a measurable star-shaped set verifying that

A = cl(int(A)). Then, it is said that A is a prototype star-shaped set. The class

of prototype star-shaped sets of Rp is denoted by PS(Rp).

Recall that the closure and interior is considered w.r.t. the topological sub-

space of the span of the set. Consequently, any non-empty closed and convex450

subset of Rp is a prototype star-shaped set, that is, Kc(Rp) ⊂ PS(Rp). In addi-

tion, for any measurable star-shaped set A verifying that λRp(A∩∂(A)) = 0 (so

A = int(A) a.s.-λRp) and λRp(∂(int(A))) = 0 (so int(A) = cl(int(A)) a.s.-λRp)

it holds that cl(int(A)) ∈ PS(Rp).

The following theorem provides with some properties that clarifies the use-455

fulness of prototypes star-shaped sets.

Theorem 4.2. Let A,B ⊂ Rp be Lebesgue measurable star-shaped sets with

span(A) = span(B) = Rp, then

i) int(A)∪ ker(A) is a star-shaped set so that ker(A) ⊂ ker(int(A)∪ ker(A))
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ii) cl(A) is a star-shaped set so that ker(A) ⊂ ker(cl(A))460

iii) If int(A) 6= ∅ then ker(A) ⊂ ker(cl(int(A)))

iv) If A = cl(int(A)) a.s.-λRp and B = cl(int(B)) a.s.-λRp then,

A = B a.s.-λRp if, and only if, cl(int(A)) = cl(int(B))

v) If A ∈ PS(Rp) and B = A a.s.-λRp then ker(B) ⊂ ker(A).

Proof. Regarding item i), let c ∈ ker(A). The convexity of ker(A) guarantees

that λc+ (1− λ)a ∈ ker(A) for all a ∈ ker(A) and all λ ∈ [0, 1]. If int(A) 6= ∅,

given a ∈ int(A) with a 6= c there exists ε > 0 so that B(a, ε) ⊂ int(A) ⊂ A.465

Thus, λc+ (1− λ)x ∈ A for all x ∈ B(a, ε) and all λ ∈ [0, 1], which implies that

λc+B((1− λ)a, (1− λ)ε) ⊂ A for all λ ∈ [0, 1). Consequently, λc+ (1− λ)a ∈

int(A) ∪ ker(A) for all λ ∈ [0, 1], and the result is proven.

In order to prove item ii), let c ∈ ker(A) (consider c = 0 without loss of

generalization) and a ∈ cl(A). Let us assume that there exists λ ∈ (0, 1) so470

that λc + (1 − λ)a = (1 − λ)a /∈ cl(A). Then we can select ε > 0 so that

B((1− λ)a, ε) ∩A = ∅. Thus, for any x ∈ B((1− λ)a, ε), it follows that δx /∈ A

for any δ ≥ 1 and, consequently, B(δ(1 − λ)a, δε) ∩ A = ∅ for all δ ≥ 1. By

selecting δ = (1 − λ)−1, we reach a contradiction, because a ∈ cl(A). Thus,

λc + (1 − λ)a ∈ cl(A) for all λ ∈ [0, 1] and, as consequence, cl(A) is an star-475

shaped set verifying that ker(A) ⊂ ker(cl(A)).

Concerning item iii), first of all it will be proved that if int(A) 6= ∅, then

ker(A) ⊂ cl(int(A)). Following the proof of item i): given a ∈ int(A) 6= ∅ with

a 6= c, then λc+(1−λ)a ∈ int(A) for all λ ∈ [0, 1). Thus, given 0 < γ < ‖c−a‖

for any λ > 1 − γ/‖c − a‖, it is verified that λc + (1 − λ)a ∈ B(c, γ) and,480

consequently, c ∈ cl(int(A)).

If int(A) 6= ∅, by taking into account that int(A) ∪ ker(A) ⊂ A, then

ker(A) ⊂ ker(int(A) ∪ ker(A)) ⊂ ker(cl(int(A) ∪ ker(A))), where the last

content is guaranteed by item ii). Note that int(A) ⊂ int(A) ∪ ker(A) ⊂

int(A) ∪ cl(int(A)) = cl(int(A)), and thus, cl(int(A) ∪ ker(A)) = cl(int(A)),485

which proves the assertion.

27



With respect to item iv), obviously, if cl(int(A)) = cl(int(B)), then A = B

a.s.-λRp . Conversely, let us assume that A = B a.s.-λRp , then cl(int(A)) =

cl(int(B)) a.s.-λRp , and thus, cl(int(A))∪ (cl(int(B)))c is a null Lebesgue mea-

surable set. The set int(cl(int(A))) ∪ (cl(int(B)))c is contained in a null set,490

and as it is open, then it must be the empty set. Therefore, int(cl(int(A))) ⊂

cl(int(B)), and thus, int(cl(int(A))) ⊂ int(cl(int(B))). In the same way, it can

be checked that int(cl(int(B))) ⊂ int(cl(int(A))), and thus, int(cl(int(A))) =

int(cl(int(B))), so the result follows.

Finally, in order to prove item v), first of all it will be checked that ker(B) ⊂

A. In this way, let consider c ∈ ker(B) and assume that c /∈ A. Let a ∈ int(A)

so that δ = 2|c− a| > 0. Note that a ∈ B(c, δ) ∩ int(A), and thus, there exists

ε > 0 verifying that B(a, ε) ⊂ B(c, δ) ∩ int(A). Obviously, λRp(B(a, ε) ∩ Bc) ≤

λRp(A ∩Bc) = 0 and, consequently,

λRp(B ∩B(c, δ)) ≥ λRp(B ∩B(a, ε)) = λRp(B(a, ε))− λRp(B(a, ε) ∩Bc) > 0.

Let us assume, without loss of generality, that c = 0. As c ∈ Ac, there exists

η > 0 so that B(0, η)∩A = ∅, with η < δ. Note that B∩B(0, δ) is a star-shaped

set being c = 0 contained in its kernel, and thus,

(η/δ)(B ∩B(0, δ)) ⊂ (B ∩B(0, η)) ⊂ B ∩Ac.

However,

λRp((η/δ)(B ∩B(0, δ))) = (η/ delta)pλRp(B ∩B(0, δ)) > 0,

which leads to a contradiction. Consequently, applying item ii) we have that495

ker(B) = ker(B) ∩A ⊂ ker(cl(B)) ∩A 6= ∅.

Given a ∈ int(A) and ε > 0 so that B(a, ε) ⊂ int(A), it is straightforward

to check that B(a, ε) ∩ B 6= ∅, so it follows that A ⊂ cl(A ∩ B). Obviously,

cl(A∩B) ⊂ cl(B)∩A ⊂ A, and thus, A = cl(B)∩A = cl(A∩B). Consequently,

ker(cl(B)) ∩A ⊂ ker(A), so the result follows.500
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According to Theorem 4.2, any two different prototype star-shaped sets

(spanning the same space) are also almost surely different sets. Consequently,

given A ∈ PS(Rp), the family of measurable star-shaped sets of Rp that are

almost sure equal to A in Lebesgue sense can be considered:

[A] =
{
B ⊂ Rp measurable star-shaped set so that

span(A) = span(B) and A = B a.s.− λspan(A)

}
.

For any A,B ∈ PS(Rp) with A 6= B and span(A) = span(B), it is verified

that [A] ∩ [B] = ∅. In addition, any A ∈ PS(Rp) is the star-shaped set element

of its class with “maximal” kernel (if B ∈ [A] then ker(B) ⊂ ker(A)), so

prototype star-shaped sets are appropriate to introduce the pursued definition505

of kernel robust against simple perturbations. Nevertheless, it has to be noted

that there are measurable star-shaped sets not belonging to any prototype star-

shaped class. These sets must have, in particular, non-null Lebesgue measurable

boundary and its corresponding pre-processing is not addressed in this paper, as

mentioned before. Irrespectively of this fact, it should be recalled that for any510

measurable star-shaped set A, once its location cA ∈ ker(A) is fixed, Theorem

3.1 guarantees that A is perfectly characterized by its center cA and its polar

function ρA−c (since A− c = KρA−c a.s.-λRp), even if λRp(∂(A)) > 0.

Let A be a star-shaped set and recall that it is assumed, without loss of

generality, that span(A) = Rp. The pre-processing will be as follows:515

(1) If λRp(A) = 0, then replace A by cl(ker(A))

(2) If λRp(A) > 0 and there exists B ∈ PS(Rp) verifying that A ∈ [B], then

replace A by B.

If λRp(A) = 0 then ker(A) ⊂ A is a null Lebesgue measurable set. According

to Theorem 4.1 also ∂(ker(A)) is a null set, and thus, A and its replacement (a520

closed convex set) are equal a.s-λRp . In this case, as any subset of A is a null-

set, we consider that there is no need for a further identification of negligible

subsets in its boundary that could restrict its kernel even more. Of course, more

elaborated techniques are left to be developed in this respect. Consequently, in
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both cases the pre-processing replaces A by an equivalent (following the same525

idea as in Theorem 3.3) prototype star-shaped set. Note that in the Figure 6,

the left star-shaped set is a prototype, and the right star-shaped set belongs

to its class, so the pre-processing step transforms the contaminated star-shaped

set into the “uncontaminated” one (an equivalent one with maximal kernel).

In the particular case of A being a singleton, no replacement is carried out as530

span(A) = A. Obviously, there are also some star-shaped sets having non-null

Lebesgue measurable boundary that are preserved with no modification (and

thus, its kernel does not change with the pre-processing step). An example of

one of such sets is provided in Section 4.1.

In practice, a class wide enough of prototype star-shaped sets is composed535

by those with bounded kernel. This class includes all kind of bounded prototype

star-shaped sets and, more generally, all prototype star-shaped sets with finite

Lebesgue measure w.r.t. the corresponding span. For this class of sets, the

location is defined as follows:

Definition 4.2. Let A be a prototype star-shaped set with bounded kernel. Then540

the location of A, cA, is defined as the center of mass of ker(A) w.r.t. the

Lebesgue measure defined on span(ker(A)).

Note that, in particular, if A is a singleton, i.e. A = {a}, then cA = a.

For measurable star-shaped sets not belonging to any prototype star-shaped

class, the selection of an appropriate center remains an open problem for future545

theoretical research as it has been pointed out.

4.1. Star-shaped sets with non-null Lebesgue measurable boundary

The pre-processing of star-shaped sets with non-null Lebesgue measurable

boundary is challenging. These are basically theoretical sets: it is not expectable

to find one of those sets in practice, since it would be technically difficult to pro-550

vide the information of the points composing one of those sets. Nevertheless, for

illustrative purposes, a star-shaped set with non-null boundary will be shown.

Some “noise” will be added to the set so that the corresponding kernel is re-

stricted, and an appropriate pre-processing would be requited to remove it.

30



The so-called Smith-Volterra-Cantor set is considered as starting point. This555

set is constructed iteratively by removing some intervals from [0, 1]. If instead

of the unit interval, the unit sphere in R2 is considered, proceed as follows: let

Q1 be the first quadrant of S1 (analogously with the other quadrants). In the

first step, remove the “middle” 1/4 of the quadrant (those u ∈ S1 with u ≥ 0

and
〈
u, (0, 1)

〉
∈ (3/8, 5/8)). The removed subset is open with mass (1/4)ϑ(Q1).560

The remaining points split Q1 in two subsets that are closed. In the n-th step,

for each of the obtained 2n−1 closed subsets, remove its central open 1/22n part.

So, a total mass of (1/2n+1)ϑ(S) is removed from the unit sphere at each step

(when the procedure is carried out for all quadrants). As usual, the limit set

C is a countable intersection of closed sets, so it is closed. Since its interior is565

empty, it is equal to its boundary. Moreover, as the remaining set has a mass

of ϑ(S)
∑∞
n=1(1/2n+1) = (1/2)ϑ(S), then it has a mass of (1/2)ϑ(S) too.

Let f(u) = 1, if u ∈ C, and f(u) = 0 otherwise. Note that the hypograph

of f is C × [0, 1], and Kf = φ−1(C × (0, 1]) ∪ {(0, 0)} is a closed set of Rp

(recall φ defined at the end of Section 3.1 and the fact that C × (0, 1] is closed570

in S1 × (0,∞)) with kernel {(0, 0)}). Indeed, its interior in Rp is empty, and its

mass is λRp(Kf ) = ϑp(C) = (1/2)ϑ(S).

Consider now the set A = [0, 1] × Kf , that is again closed, with empty

interior, mass (1/2)ϑ(S) and kernel [0, 1] × {0} × {0}. Consider the closed

and convex polygon B with vertexes {(0.5, 0, 0), (0, 0, 1), (0, 0,−1)}. The star-575

shaped set A ∪ B is closed, the interior is empty and the mass of its boundary

is greater than 0, but its kernel is restricted to the set [0, 0.5] × {0} × {0} due

to the star-shaped set B. Note that B has mass 0, as it is restricted to a

lower dimensional subspace. Thus, A = A ∪ B a.s.-λRp , and an appropriate

pre-processing should be able to detect the existence of this null mass set and580

to remove it. Nevertheless, the task is not easy, and it could be non-computable

in a finite time.
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5. Conclusions and future research

Set-valued experimental data have been used to model imprecision in the

characteristics observed in statistical experiments. The interval case is a re-585

markable example. When sets in higher dimensions are observed, the gener-

alized setting of compact and convex sets is frequently considered. These are

normally represented through the support function and, by extension of the in-

terval case, the Minkowski arithmetic is considered. We have shown that this

does not always have an intuitive meaning. The main aim has been to pro-590

vide an alternative way to characterize sets, so that a meaningful statistical

framework for set-valued experimental data can be established. For that, the

general framework of star-shaped sets have been formalized, and the so-called

center-radial parametrization has been analyzed in detail. This new represen-

tation is intuitive in terms of location/imprecision, and allows us to set up a595

statistical framework inherited by the powerful one available in Hilbert spaces.

As happens with the representation based on the support function, the natural

arithmetic endows the corresponding space with a conical structure, not linear,

which is related to the propagation of the imprecision. Thus, this must be taken

into account to formalize the specific statistics. Nevertheless, in contrast to the600

representation based on the support function, the identification of the cone in

the corresponding Hilbert space is trivial, and analogous to the interval case

(i.e., non-negativity constraints), which greatly simplifies the developments.

The main statistical objects (namely, the concept of random element, ex-

pectation, variance and covariance) have been introduced, and the basic prob-605

abilistic results (namely, the SLLN and the CLT) have been stated. On this

basis, hypothesis testing and related inferences regarding the moments could be

established. In order to show how to establish in practice the representation, a

natural and robust way to determine the center has been discussed, but special

attention should also be payed to the alignment of the sets, as rotations would610

affect artificially the results.

All the concepts and results in this paper can be extended level-wise to the
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case of fuzzy subsets of Rp. The mathematical extension is simple, but the

notation and practical implementation are cumbersome, and they are left as

future research.615
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