
ar
X

iv
:1

70
7.

09
32

4v
2 

 [
cs

.A
I]

  8
 D

ec
 2

01
7

Empirical Evaluation of Abstract Argumentation: Supporting the

Need for Bipolar and Probabilistic Approaches

Sylwia Polberg and Anthony Hunter∗

University College London, Department of Computer Science
66-72 Gower Street, London WC1E, United Kingdom

Abstract

In dialogical argumentation, it is often assumed that the involved parties will always correctly identify the in-

tended statements posited by each other and realize all of the associated relations, conform to the three acceptability

states (accepted, rejected, undecided), adjust their views whenever new and correct information comes in, and that a

framework handling only attack relations is sufficient to represent their opinions. Although it is natural to make these

assumptions as a starting point for further research, dropping some of them has become quite challenging.

Probabilistic argumentation is one of the approaches that can be harnessed for more accurate user modelling. The

epistemic approach allows us to represent how much a given argument is believed or disbelieved by a given person,

offering us the possibility to express more than just three agreement states. It comes equipped with a wide range

of postulates, including those that do not make any restrictions concerning how initial arguments should be viewed.

Thus, this approach is potentially more suitable for handling beliefs of the people that have not fully disclosed their

opinions or counterarguments with respect to standard Dung’s semantics. The constellation approach can be used

to represent the views of different people concerning the structure of the framework we are dealing with, including

situations in which not all relations are acknowledged or when they are seen differently than intended. Finally, bipolar

argumentation frameworks can be used to express both positive and negative relations between arguments.

In this paper we will describe the results of an experiment in which participants were asked to judge dialogues in

terms of agreement and structure. We will compare our findings with the aforementioned assumptions as well as with

the constellation and epistemic approaches to probabilistic argumentation and bipolar argumentation.
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1 Introduction

At the heart of abstract argumentation lies Dung’s framework developed in [27], which treats arguments as abstract

atomic entities that can be connected through an attack relation. Since its introduction, this framework has been en-

dowed with numerous new semantics as well as generalized in various ways. These generalizations include structures

that can represent new types of relations, such as support, as well as those that handle properties such as preferences or

probabilities of arguments or relations [9]. Despite the available approaches, dialogical argumentation appears to rely

heavily on frameworks handling only attacks between arguments, such as Dung’s framework. It also makes certain

assumptions that are supported by the argumentation theory, but not always by empirical results. Argumentation, in

many ways, simplifies human reasoning and appears to consider people to be in principle rational, good reasoners, that

may be simply uninformed. Unfortunately, this approach might not always be adequate.

One of the core concepts of defeasible reasoning and therefore abstract argumentation is the fallibility of human

perception. Thus, we need to be able to reason even with incomplete information and be prepared to retract our

conclusions in the face of new data. From a certain perspective, most of the abstract argumentation approaches can

be quite conservative in their handling of these issues. Although the defeasibility of arguments and notions such as

undercutting attack are widely acknowledged, at the same time there is an assumption that a universal attack relation

exists. In other words, it is believed that every person participating in a given dialogue will interpret arguments and the

relations between them in exactly the same way, and every time new information is presented, it will be understood

and linked to the existing arguments in the “intended and correct” way. However, this does not seem realistic in various

scenarios. For example, the transcript of a TV debate “as it is” can be perceived differently from its processed version,

i.e. one in which arguments are identified, organized and clearly presented w.r.t. the chosen argument structure. Not

all relevant pieces of information have to be explicitly stated and it can happen that people taking part in the debate

may be purposefully ambiguous. Consequently, we may have to deal with arguments that have implicit premises or

conclusions and thus run the risk of participants interpreting them differently. Therefore, we need to acknowledge

that people can view the nature of the framework associated with a given dialogue differently and that we should be

able to represent such differences and uncertainties. Furthermore, these issues can themselves become a part of the

discussion, which due to the aforementioned assumptions is rarely considered.

The fact that dialogical argumentation relies so heavily on attack–based frameworks for modelling purposes has

also affected the way we perceive dialogues on a higher level. This approach became rather heavily conflict–centered,

by which we understand that people participating in a dialogue view each other as opponents whose arguments should

be defeated and knowledge “rectified”. Although this view may very well work in a court room, it has negative effects

in the context of, for example, physical or mental health, as seen in [41]. For these applications, it may be more

fruitful to consider dialogue parties as partners rather than opponents and use a more support–oriented approach in the

discussion. Thus, rather than giving arguments against the current views of our dialogue partners, we try to motivate

them or give them arguments for changing their behaviour and opinions. A given piece of information can also be

framed in a positive or negative way, which affects the way people react to it [59, 57]. Hence, not only negative, but

also positive relations between arguments can play a role in dialogical argumentation, and the use of various types of

support should be considered.

Finally, the applicability of argumentation semantics in dialogical argumentation is not sufficiently verified [19].

The use of two or three values, as promoted by Dung’s semantics, oversimplifies the varying degrees to which we

may agree or disagree with a given argument. For example, while a mother of an 8 year old girl might disagree

with her staying the night at her best friend’s house, this is probably nowhere near to her disagreement with the child

going alone to a heavy metal concert. Thus, there is a need for expressing varying degrees of agreement with a given

argument. Another issue lies in the nature of the semantics themselves. For example, successful persuasion is often

seen as synonymous with winning a dialogue game w.r.t. a given semantics, such as grounded or admissible. However,

it is easy to see that in the cases such as a doctor persuading a patient to stop smoking or to go on a diet, holding a

dialectically winning position and actually convincing a person to do or not to do something can be two completely

different things. A person taking part in a dialogue might also exhibit a number of perception biases or reasoning

paradoxes and, due to inability or lack of cooperation, withhold information from the doctor. Hence, he or she does

not have to reason in a way that adheres to the current argumentation semantics [45, 44].

To summarize, there is a need for empirical evaluation of argumentation approaches, which so far have received

limited attention [55, 19, 56]. Although this task can be quite challenging, as what we are dealing with is human
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perception and judgment which are not always perfect, it is necessary. One has to realize that due to the nature of

abstract argumentation, the validity of its approaches is typically inherited from other methods or obtained through

novelty and technical correctness. For example, in order to defend the introduction of a new framework, we can

explain how it can be instantiated with a given formalism, and show that the answers the framework produces exhibit

certain desirable properties connected to the formalism we instantiated it with. The validity of the new framework thus

depends on the validity of the formalisms it is linked to. Another possible way to argue in favour of a new approach

is through the abstract argumentation itself, where the new semantics or framework is shown to be considerably

different or more expressive than the existing ones. This method is often paired with presenting a realistic motivating

example that argues in favor of the new framework or semantics. Although both of these strategies promote new

ideas and innovation, there comes a time when they need to be verified in real life. Without empirical evidence, we

can accidentally increase a gap between applying argumentation and successfully applying argumentation in real life

situations.

In this paper we describe the results of an empirical study in which participants are presented with dialogues

separated into five stages. At every stage, they are asked to declare why and how much they agree or disagree with

the presented statements and how they view the relations between them. The purpose of this study was to investigate

certain aspects of abstract argumentation as used by laypeople, rather than to make a number of initial assumptions

that we prove or disprove based purely on the behaviour of experts. We have been able to draw a number of important

observations and gained some evidence concerning various formalisms available in abstract argumentation. However,

we would like to note that due to the exploratory nature of our experiments, our results should be treated as indicative

and as a basis for further studies, rather than as an indisputable proof for or against a given argumentation approach.

Observation 1 The data supports the use of the constellation approach to probabilistic argumentation – people

may interpret statements and relations between them differently, and not necessarily in the intended manner.

The constellation approach can represent our uncertainty about the argument graphs describing our opponents

views.

Observation 2 People may explicitly declare that two statements are connected, however, they might not be sure of

the exact nature of the relation between them. We therefore also need to express the uncertainty that a person

has about his or her own views, which can potentially be addressed with the constellation approach or with the

introduction of a suitable framework.

Observation 3 The data supports the use of epistemic approach to probabilistic argumentation:

– people may assign levels of agreement to statements going beyond the 3–valued Dung’s approach,

– the epistemic postulates, in contrast to the standard semantics, can be highly adhered to and due to their

nature, allow us to analyze why classical semantics may fail to explain the participants behaviour,

– the extended epistemic postulates allow us to model situations where the perceived “strength” of a relation

might not necessarily be tightly connected with the level of agreement assigned to its source.

Observation 4 The data supports the use of bipolar argumentation frameworks – the notion of defence does not

necessarily account for all of the positive relations between the statements viewed by the participants.

Observation 5 The data supports the use of bipolar argumentation in combination with the prudent/careful ap-

proaches – many additional attacks perceived by the participants can be explained by the existing notions of

indirect conflicts in these settings.

Observation 6 The data shows that people use their own personal knowledge in order to make judgments and might

not necessarily disclose it.

Observation 7 The data shows that presenting a new and correct piece of information that a given person was not

aware of does not necessarily lead to changing that person’s beliefs.

This paper is organized as follows. In Sections 2 to 4 we review the necessary background on Dung’s argumenta-

tion frameworks, bipolar argumentation frameworks and probabilistic argumentation. In Section 5 we explain the set
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up of our experiment and analyze its results in Section 6. This includes the analysis of 1) the argument graphs created

for the experiment as well as those provided by the participants, 2) the satisfaction rates of various epistemic postulates

on the provided frameworks, 3) the connection between the level of agreement assigned to a given statement and the

way the relations it carries out are perceived, and 4) changes in participants’ opinions throughout the experiment. We

close this paper with the discussion on the works related to our study and pointers for future work.

2 Dung’s Argumentation Framework

We start with a review of abstract argumentation as proposed by Dung in [27]. He introduced the following, straight-

forward framework, that can be easily depicted using a graph where nodes play the role of arguments and edges

represent conflicts:

Definition 2.1. A Dung’s abstract argumentation framework (AF for short) is a pair F = (A,R), where A is a set

of arguments and R ⊆ A×A represents an attack relation.

An argument A ∈ A is an attacker of B ∈ A iff (A,B) ∈ R. By abuse of notation, we say that a set of elements

attacks another element if it contains an appropriate attacker. The way we decide which arguments can be accepted or

rejected (or neither) is called a semantics. Depending on whether a set of arguments or a labeling is returned, we deal

with the extension–based and labeling–based semantics [11, 2].

An extension is a set of arguments E ⊆ A that satisfies the requirements imposed by a given semantics. The

classical semantics [27] are built on the notion of defence:

Definition 2.2. Let F = (A,R) be a Dung’s framework. An argument A ∈ A is defended by a set E ⊆ A in F 1 if

for every B ∈ A s.t. B attacks A, there exists C ∈ E that attacks B. A set E ⊆ A is:

(cf) conflict–free in F iff for no A,B ∈ E , A is an attacker of B.

(ad) admissible in F iff it is conflict–free in F and defends all of its members.

(pr) preferred in F iff it is maximal w.r.t. set inclusion admissible in F .

(co) complete in F iff it is admissible in F and all arguments defended by E are contained in E .

(st) stable in F iff it is conflict–free in F and for every A ∈ A \ E there exists an argument B ∈ E that attacks A.

(gr) grounded in F iff it is the least complete extension of F .

A B C D E

Figure 1: Sample argument graph

Example 1. Consider the Dung’s framework F = (A,R) with A = {A, B, C, D, E} and the attack relation

R = {(A,B), (C,B), (C,D), (D,C), (D,E), (E,E)}, as depicted in Figure 1. It has eight conflict–free extensions

in total: {A,C},{A,D}, {B,D}, {A}, {B}, {C}, {D} and ∅. As B is attacked by an unattacked argument, it cannot

be defended against it. Consequently, {A,C},{A,D}, {A}, {C}, {D} and ∅ are our admissible sets. From this

{A,C}, {A,D} and {A} are complete. We end up with two preferred extensions, {A,C} and {A,D}. However,

only {A,D} is stable. Finally, {A} is the grounded extension.

More types of extension–based semantics have been proposed in the recent years [2] and even though we will not

consider all of them here, we would like to recall certain notions that will be useful in the next sections. As observed

in the prudent and careful semantics [22, 23], based on the interplay of attack and defence, there might be additional

positive and negative indirect interactions between the arguments that go beyond direct attack and defence:

1Defence is often also referred to as acceptability: we say that A is acceptable w.r.t. E iff E defends A.
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Definition 2.3. Let F = (A,R) be a Dung’s framework and let A,B ∈ A be two arguments:

• A indirectly attacks B iff there exists an odd–length path from A to B in F .

• A indirectly defends B iff there exists an even–length path from A to B in F . The length of this path is not

zero.

• A is controversial w.r.t. B iff A indirectly attacks and indirectly defends B.

Additionally, for arguments A,B,C ∈ A, the pair (A,B) is super–controversial w.r.t. C iff A indirectly attacks C
and B indirectly defends C.

Originally, these notions were used to impose stronger restrictions on the conflict–free sets. Although we will not

recall the semantics themselves, the aforementioned notions will be useful to us in the context of this work. In partic-

ular, we will test whether certain elements of the argument graphs sourced from the participants of our experiments

could potentially be the manifestations of the above definitions.

Example 1 (Continued). In the considered framework, we can observe that each of C, D and E function as indirect

attackers and defenders of E. In addition to that, we can consider C and D as indirectly attacking each other. They

also serve as their own defenders. We can observe that C and D also respectively indirectly attack and defend B.

Let us now focus on the labeling–based semantics, in particular those corresponding to the classical extension–

based ones. An argument labeling is a total function L : A → {in, out, und} [11, 2]. By in(L), out(L) and und(L)
we denote the arguments mapped respectively to in, out and und(ecided) by L. We will often write a labeling as a

triple (I, O, U), where I , O and U are sets of arguments mapped to in, out and und. We can now introduce the notion

of legality, on which many semantics are based.

Definition 2.4. Let F = (A,R) be a Dung’s framework and let L : A → {in, out, und} be a labeling:

• X ∈ in(L) is legally in iff all its attackers are in out(L).

• X ∈ out(L) is legally out iff it has an attacker in in(L).

• X ∈ und(L) is legally und iff not all of its attackers are in out(L) and it does not have an attacker in in(L).

Definition 2.5. Let L : A → {in, out, und} be a labeling:

(lab-cf) L is conflict–free iff every A ∈ out(L) is legally out and there are no arguments A,B ∈ in(L) s.t. A is an

attacker of B.

(lab-ad) L is admissible iff every A ∈ in(L) is legally in and every A ∈ out(L) is legally out.

(lab-co) L is complete iff it is admissible and every A ∈ und(L) is legally und.

The preferred, stable and grounded labelings are obtained from the complete ones by using the constraints from

Table 1.

Restriction on a complete labeling L Semantics

No argument A ∈ A s.t. L(A) = und stable (ST)

Maximal no. of A ∈ A s.t. L(A) = in preferred (PR)

Maximal no. of A ∈ A s.t. L(A) = out preferred (PR)

Maximal no. of A ∈ A s.t. L(A) = und grounded (GR)

Minimal no. of A ∈ A s.t. L(A) = in grounded (GR)

Minimal no. of A ∈ A s.t. L(A) = out grounded (GR)

Table 1: Relation between different labelings

The properties of the labeling–based semantics and their correspondence to the classical extension–based family

have already been studied in [11, 2]:
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Theorem 2.6 ([2]). Let F = (A,R) be a Dung’s framework and E ⊆ A be a σ–extension of F , where σ ∈
{cf, ad, co, gr, pr, st}. Let E+ = {B | there exists A ∈ E s.t. A is an attacker of B}. Then (E , E+, A \ (E ∪ E+)) is a

σ–labeling of F . Let L be a σ–labeling of F , where σ ∈ {cf, ad, co, gr, pr, st}. Then in(L) is a σ–extension of F .

Example 1 (Continued). Let us come back to the previously analyzed framework. Its admissible labelings are visible

in Table 2. We can observe that one admissible extension can be associated with more than one labeling. However, out

of the possible interpretations, only L3, L9 and L13 are complete. They are now also in one–to–one relation with the

complete extensions. L3 is the grounded labeling, while L9 and L13 are preferred. Only L13 is stable; we can observe

that this is the only labeling in which no argument is assigned und.

Extension ∅ {A} {A} {C} {C} {D} {D} {A,C} {A,C} {A,D} {A,D} {A,D} {A,D}

L
ab

el
in

g

# L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

A und in in und und und und in in in in in in

B und und out out und und und und out und und out out

C und und und in in out out in in out out out out

D und und und out out in in out out in in in in

E und und und und und und out und und und out und out

Table 2: Admissible labelings of the framework ({A,B,C,D,E}, {(A,B), (C,B), (C,D), (D,C), (D,E),
(E,E)})

3 Bipolar Argumentation

In Dung’s framework, from direct attacks we can derive defence, which can be seen as a type of a positive indirect

relation between arguments. However, defence does not account for all the possible forms of support between argu-

ments, and a structure going beyond attack was required. Consequently, the notion of abstract support and the bipolar

argumentation framework [12, 13, 15] were introduced, followed by the deductive [5], necessary [43, 42] and evi-

dential supports [46, 47, 53], with the latter two developed in their own dedicated frameworks. Although there are

significant differences between these supports and the way that their dedicated frameworks model them, particularly

in the context of support cycles, they have also been partially recreated in bipolar argumentation frameworks in order

to perform a comparative study [15]. Further results on this topic can be found in [53, 49]. The bipolar argumentation

framework itself is defined as follows:

Definition 3.1. The bipolar argumentation framework (BAF for short) is a tuple (A,R,S), where A is a set of

arguments, R ⊆ A×A represents the attack relation and S ⊆ A×A the support.

We say that there is a sequence of supports between arguments A,B ∈ A if there is a sequence of arguments

(A,C1, ...Cn, B) s.t. ASC1, C1SC2, . . . , CnSB.

One of the ways bipolar argumentation frameworks model support on the semantics level is by transforming it into

attack [15, 17]. The base framework is extended with indirect conflicts, stemming from the interplay of existing attacks

and supports. The resulting structure can then be evaluated like a Dung’s framework, particularly when semantics that

are at least complete are concerned. The type of support we try to model affects what sort of additional indirect attacks

are created. Although this approach does not account for all possible support semantics [49], it is sufficient for the

purpose of this work. Typically, the following indirect conflicts are distinguished:

Definition 3.2. Let BF = (A,R,S) be a BAF. The indirect attacks of BF are as follows:

• there is a supported attack from A to B iff there exists an argument C s.t. there is a sequence of supports from

A to C and (C,B) ∈ R.

• there is a secondary attack2 from A to B iff there exists an argument C s.t. there is a sequence of supports

from C to B and (A,C) ∈ R.

2This attack was also referred to as diverted in [13].
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A C B

(a) Supported attack

A C B

(b) Secondary attack

A C B

(c) Mediated attack

A C B

(d) Extended attack

A C BD

(e) Super–mediated attacks (squiggly edges) and existing sup-

ported and mediated attacks (dotted edges)

CA D B

(f) Super–extended attacks (squiggly edges) and existing sec-

ondary and extended attacks (dotted edges)

Figure 2: Indirect attacks in BAFs. Solid edges represent direct attacks, dashed edges represent support, and squiggly

or dotted edges represent indirect attacks.

• there is an extended attack3 from A to B iff there exists an argument C s.t. there is a sequence of supports

from C to A and (C,B) ∈ R.

• there is a mediated attack from A to B iff there exists an argument C s.t. there is a sequence of supports from

B to C and (A,C) ∈ R.

• there is a super–mediated attack from A to B iff there exists an argumentC s.t. there is a sequence of supports

from B to C and a direct or supported attack from A to C.

• there is a super–extended attack4 from A to B iff there exists an argumentC s.t. there is a sequence of supports

from C to A and a direct or secondary attack from C to B.

Additionally, the interactions between these auxiliary conflicts can also lead to the creation of new attacks. In

particular, the super–mediated attack is a mixture of supported and mediated attacks (more details can be found in

[49]). Nevertheless, the above notions are sufficient for the remainder of this report. We can see them exemplified in

Figure 2.

We would like to stress that even though there are many types of conflicts available, it does not mean that all

of them need to be used – the choice depends on what we intend to use a given BAF for. Usually, only some of the

conflicts are studied at a time, particularly if we consider specialized forms of support rather than just the abstract type.

What needs to be stated explicitly is that BAFs were meant as research frameworks for analyzing the different types

of support and the consequences of their interplay with attack. Therefore, there is no “absolute” way to choose what

sort of indirect attacks need to be taken into account and different interpretations of support might call for different

attacks. In our experiment, we will focus on finding the existing notions that would allow us to reproduce the relations

identified by the participants, rather than on fixing the interpretation of the used supports and stating that given indirect

conflicts should have been used.

Example 2. Consider the bipolar argumentation framework BF = (A,R,S) with A = {A, B, C, D, E}, R =
{(C,B), (C,D), (D,C), (E,E)} and S = {(A,B), (D,E)}, depicted in Figure 3. We can create the following

indirect conflicts for this framework. Since D supports E, which is a self–attacker, we can create a supported attack

3We recall only one form of the extended attack, as other ones are already subsumed by the direct and secondary attacks.
4In [17] this attack is referred as an n+-attack.
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(D,E) and a (super) mediated one (E,D). These conflicts also lead to the super–mediated attack (D,D). Due to the

same support, we can create a secondary attack (C,E) and a (super) extended one (E,C). As C attacks B, which is

supported by A, we can create a (super) mediated attack (C,A).
If we decide to use all of the aforementioned attacks, then the Dung’s framework associated with BF is F =

(A,R′), where R′ = R ∪ {(C,A), (C,E), (D,D), (D,E), (E,C), (E,D)}. The sets ∅ and {C} are its admissible

and complete extensions. {C} is the stable and preferred extension, while ∅ is grounded. Following the approach from

[15], we can treat these extensions as the extensions of BF .

If we consider only the secondary and (super) extended attacks, we obtain a Dung’s graph with the set of attacks

R′′ = R ∪ {(C,E), (E,C)}. The admissible extensions of this framework are ∅, {A}, {C}, {D}, {A,C}, {A,D},

{B,D} and {A,B,D}. Out of this, {A}, {A,C} and {A,B,D} are complete, with the first set being grounded and

the other two preferred. Only {A,C} is stable.

A B C D E

Figure 3: Sample bipolar argument graph. Solid edges represent attack, dashed edges represent support and squiggly

edges represent indirect attacks.

4 Probabilistic Argumentation

The proposals for probabilistic argumentation extend Dung’s framework to address various aspects of uncertainty

arising in argumentation. The two main approaches to probabilistic argumentation are the constellations and the

epistemic approaches [32]. In the constellations approach, the uncertainty is in the topology of the graph. This

approach is useful when one agent is not sure what arguments and attacks another agent is aware of. This can be

captured by a probability distribution over the space of possible argument graphs, where each graph has a chance of

being the real model of the agent. In the epistemic approach, the topology of the argument graph is fixed, but there is

uncertainty as to the degree to which each argument is believed. It thus provides us with a more fine–grained approach

towards modelling the acceptability of arguments. In this section we provide a brief revision of these two probabilistic

formalisms and for further reading concerning the differences between them we refer the readers to [32, 52].

4.1 Epistemic Probabilistic Argumentation

We now turn to the epistemic approach to probabilistic argumentation [58, 32, 33, 4, 36]. In this section we review

and extend the results from [34].

Definition 4.1. A mass distribution over arguments A is a function P : 2A → [0, 1] s.t.
∑

E⊆A P (E) = 1. The

probability of an argument A ∈ A is P (A) =
∑

E⊆A s.t. A∈E P (E).

The probability of a single argument is understood as the belief that an agent has in it, i.e. we say that an agent

believes an argumentA to some degree when P (A) > 0.5, disbelieves an argument to some degree when P (A) < 0.5,

and neither believes nor disbelieves an argument when P (A) = 0.5. This belief can be interpreted in various ways

[32], for example, if we assume that an argument has a standard premise–conclusion structure, then the degree of

belief in an argument can be seen as the degree to which the agent believes the premises and the conclusion drawn

from those premises.

Just like argument graphs come equipped with different types of semantics that are meant to capture various intu-

itions as to what is a “good” collection of arguments (and/or attacks), the probabilistic frameworks are accompanied by

9



a number of postulates that capture the properties of a probability distribution. While classical semantics tend to repre-

sent a number of properties at the same time, a single postulate focuses on a single aspect at a time. Thus, while there

are many epistemic postulates, they tend to be quite simple. They also allow a more detailed view on the participant

behaviour and can allow us to analyze the cases in which classic semantics may fail to explain it. Consequently, they

can provide more feedback to argumentation systems, such as for computational persuasion, than normal semantics

do. For example, the low performance of the argumentation semantics such as complete does not really inform the

system what aspect of the participant reasoning does not meet the semantics requirements. In contrast, through the use

of the postulates we could analyze whether the issue lies within conflict–freeness, defense or not accepting/rejecting

arguments that should be accepted/rejected.

We will recall some of the existing postulates for the epistemic semantics and introduce certain argument–centered

alternatives of the properties from [52], namely the preferential postulate PRE, strict STC, protective PRO, restrained

RES, discharging DIS, guarded GRD, trusting TRU, anticipating ANT, demanding DEM, binary BIN and n–valued

VALn. The available postulates can be grouped in various ways. In what follows, we separate them into the following,

not necessarily disjoint, types: preferential (rational), explanatory and value families.

4.1.1 Preferential Postulates

The first family of postulates focuses on resolving a conflict between two arguments and deciding how believed or

disbelieved the attacker and attackee should be. They are primarily of the form “for every A,B ∈ A, if (A,B) ∈ R,

then X holds”, where X specifies the conditions on the beliefs assigned to the attacker and the attackee. The intuitions

behind the introduced postulates are as follows. Let us assume that we believe an argument attacking another argument.

The question now is what should be our belief in the attackee. The least restrictive, PRE postulate, allows us to believe

the attackee as long as it is believed more than the attacker. If we follow RAT, then we do not believe the attackee,

and if STC, then we disbelieve it. In a dual manner, the PRO postulate ensures that if we believe the attackee, we

disbelieve its attackers. The RES postulate strengthens PRO and STC and is equivalent to saying that if two arguments

are in conflict, at least one of them should be disbelieved. Hence, we no longer have the option to be undecided about

an argument.

Definition 4.2. A probability mass distribution P for F is:

(PRE) preferential if for every A,B ∈ A s.t. (A,B) ∈ R, if P (A) > 0.5 and P (B) > 0.5, then P (A) < P (B).

(RAT) rational if for every A,B ∈ A s.t. (A,B) ∈ R, P (A) > 0.5 implies P (B) ≤ 0.5.

(STC) strict if for every A,B ∈ A s.t. (A,B) ∈ R, P (A) > 0.5 implies P (B) < 0.5.

(PRO) protective if for every A,B ∈ A s.t. (A,B) ∈ R, P (B) > 0.5 implies P (A) < 0.5.

(RES) restrained if for every A,B ∈ A, if (A,B) ∈ R then P (A) ≥ 0.5 implies P (B) < 0.5.

4.1.2 Explanatory Postulates

We now come to the explanatory family. The purpose of the postulates of this type is to demand that the degree of

belief assigned to an argument is justified by the degrees of belief associated with the arguments related to it. They

are roughly of the form “for every argument B ∈ A, if P (B) meets a condition X then it has an attacker A s.t.

P (A) meets condition Y ” or “for every argument B ∈ A, if for all of its attackers A, P (A) meets condition Y ,

then P (B) meets a condition X”. For instance, DIS demands that if an argument is disbelieved, then it possesses

a believed attacker. GRD postulate relaxes this requirement by allowing the use of undecided attackers as well. On

the other hand, the TRU property requires us to believe an argument when we have no reason against it, i.e. when

all of its attackers are disbelieved. ANT modifies TRU by saying that lack of believed attackers is a good reason to

believe the attackee. Finally, the DEM property requires that a completely disbelieved argument has to be paired with

a completely believed attacker, and a completely believed argument can only be attacked by completely disbelieved

arguments.

Definition 4.3. A probability mass distribution P for F is:
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(DIS) discharging if for every B ∈ A, if P (B) < 0.5 then there exists an argument A ∈ A s.t. (A,B) ∈ R and

P (A) > 0.5.

(GRD) guarded if for every B ∈ A, if P (B) < 0.5 then there exists an argument A ∈ A s.t. (A,B) ∈ R and

P (A) ≥ 0.5.

(TRU) trusting if for every B ∈ A, if P (A) < 0.5 for all A ∈ A s.t. (A,B) ∈ R, then P (B) > 0.5.

(ANT) anticipating if for every B ∈ A, if P (A) ≤ 0.5 for all A ∈ A s.t. (A,B) ∈ R, then P (B) > 0.5.

(DEM) demanding if for every A ∈ A, if P (A) = 1, then for every B ∈ A s.t. (B,A) ∈ R, P (B) = 0, and if

P (A) = 0, then ∃B ∈ A s.t. (B,A) ∈ R and P (B) = 1.

4.1.3 Value Postulates

All of the previously listed postulates are relatively general and tell us whether to believe or disbelieve an argument,

but not to what degree. This is where the value family of postulates comes in. The FOU and SFOU postulates tell us

how much we should believe initial arguments. OPT and SOPT provide us with lower bounds for the degrees of belief

we have in an element based on the beliefs we have in its attackers. The BIN postulate prohibits any indecisiveness we

may have about the arguments. MIN, NEU, MAX permit the use of only 0, 0.5 and 1 degrees of belief respectively,

while TER allows for all three. Finally, with VALn postulate we can distinguish those distributions that assign to their

arguments no more than n distinct values in total.

Definition 4.4. A probability mass distribution P for F is:

(SFOU) semi–founded if P (A) ≥ 0.5 for every initial A ∈ A.

(FOU) founded if P (A) = 1 for every initial A ∈ A.

(SOPT) semi–optimistic if P (A) ≥ 1−
∑

B∈{A}− P (B) for every A ∈ A that is not initial.

(OPT) optimistic if P (A) ≥ 1−
∑

B|(B,A)∈R P (B) for every A ∈ A.

(BIN) binary if for no A ∈ A, P (A) = 0.5.

(TER) ternary if P (A) ∈ {0, 0.5, 1} for every A ∈ A.

(NEU) neutral if P (A) = 0.5 for every A ∈ A.

(MAX) maximal if P (A) = 1 for every A ∈ A.

(MIN) minimal if P (A) = 0 for every A ∈ A.

(VALn) n–valued if |{x | ∃A ∈ A s.t. P (A) = x}| ≤ n.

4.1.4 Multi–type Postulates

Finally, we have the postulates that can be seen as shared between the families. In particular, on the intersection of

the rational (preferential) and value types are the COH, INV and JUS postulates. COH gives us the upper bound of

the belief we might have in an argument based on its (strongest) attacker. By combining this upper bound with the

lower bound from the OPT postulate, we receive the JUS property. The INV postulate requires that the belief in the

attackee is dual to the belief in the attacker. Please note that the DEM, SFOU and FOU postulates can be seen as

shared between the value and explanatory families, rather than belonging to just one of them. We leave it to the reader

to classify them as he or she sees fit.

Definition 4.5. A probability mass distribution P for F is:

(COH) coherent if for every A,B ∈ A s.t. (A,B) ∈ R, P (A) ≤ 1− P (B).

(INV) involutary if for every A,B ∈ A, if (A,B) ∈ R then P (A) = 1− P (B).

(JUS) justifiable if it is coherent and optimistic.
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4.1.5 Properties of Epistemic Postulates

In Proposition 4.6 and Figure 4 we show some of the relations between the presented postulates, extending the results

available in [35]. These properties make it more explicit which postulates are more restrictive than the others and show

additional connections between the different families of postulates we have presented.

Proposition 4.6. Let F be an argument graph and let PX be the collection of all distributions onF satisfying postulate

X . The following holds:

POPT (F ) = PSOPT (F ) ∩ PFOU (F ) PTER(F ) ∩ PTRU (F ) ⊆ PFOU (F )

(PCOH(F ) ∩ PTER(F )) = (PPRO(F ) ∩ PSTC(F ) ∩ PTER(F ))

PINV (F ) ∩ PFOU ⊆ PDEM (F )

P PPRE

PRATPSFOU

PSTC PPROPTRU PGRD PFOU PSOPT

PCOHPANT PDIS POPT PINV

PMAX PNEU PJUS PMIN

PRES

∅

P∅ PTER

PBIN

PNEU

PMIN

PMAX

PDEM

Figure 4: Classes of probability functions where Pµ1
→ Pµ2

denotes Pµ1
⊆ Pµ2

Example 1 (Continued). Let us come back to the argument graph F = ({A,B,C,D,E}, {(A,B), (C,B), (C,D),
(D,C), (D,E), (E,E)}) from Figure 1. In Table 3 we have listed a number of probability distributions and marked

which postulates are or are not satisfied by them under F . For the sake of simplicity, we have only focused on the

resulting argument probabilities, not on the full description of the distributions.

4.1.6 Relation to Labeling–based Semantics

In the previous sections we could have observed that the epistemic approach offers a wide variety of postulates de-

scribing certain properties that a given probability function may or may not possess. In this section, we would like to

show how some of the combinations of these postulates can capture the intuitions behind the standard labeling based

semantics. This information will become useful once we analyze the postulate adherence in our experiment.
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# A B C D E P
R

E

R
A

T

S
T

C

P
R

O

R
E

S

C
O

H

JU
S

IN
V

D
IS

G
R

D

T
R

U

A
N

T

D
E

M

S
F

O
U

F
O

U

S
O

P
T

O
P

T

P1 0.6 0.5 0.2 0.4 0.8 × × × × × × × × × × × × X X × × ×

P2 0.3 0.5 0.6 0.2 0.5 X X × X × × × × × × × × X × × × ×

P3 0.7 0.4 0.6 0.4 0.5 X X X X × × × × X X X × X X × X ×

P4 1 0.5 1 0 0.4 X X × X X × × × × × × × X X X × ×

P5 1 0 1 0 0.5 X X X X × X X × X X X × X X X X X

P6 1 0 0.5 0.4 0.5 X X X X × X × × × X × × X X X × ×

P7 0.5 0 1 0 0.5 X X X X × X × × X X × × X X × X ×

P8 0.5 1 0.5 0.5 0.5 X X X × × × × × X X × × × X × X ×

P9 0.6 1 0.4 0.7 0.5 X × × × × × × × X X X X × X × X ×

P10 0.5 0.5 0.5 0.5 0.5 X X X X × X × X X X × × X X × X ×

Table 3: Satisfaction of epistemic postulates on Dung’s framework from Figure 1.

Definition 4.7. Let F = (A,R) be an argument graph and let P be a probability distribution. The epistemic labeling

associated with P is LP = (I, O, U), where I = {A ∈ A | P (A) > 0.5}, O = {A ∈ A | P (A) < 0.5}, and

U = {A ∈ A | P (A) = 0.5}. A labeling L and a probability function P are congruent, denoted L ∼ P , if for all

A ∈ A we have that L(A) = in ⇔ P (A) = 1, L(A) = out ⇔ P (A) = 0, and L(A) = und ⇔ P (A) = 0.5.

Please note that if L ∼ P , then L = LP , i.e. if a labeling and a probability function are congruent then this

labeling is also an epistemic labeling of this function.

Proposition 4.8. Let P be an epistemic distribution and let F = (A,R) be a Dung’s framework.

• P ∈ PRAT (F ) ∩ PDIS(F ) iff LP ∈ cf(F ).

• P ∈ PPRO(F ) ∩ PDIS(F ) iff LP ∈ ad(F ).

• P ∈ PPRO(F ) ∩ PSTC(F ) ∩ PDIS(F ) ∩ PTRU (F ). iff LP ∈ co(F ).

If we were to consider retrieving the extension–based semantics through epistemic postulates, the above results

should be rephrased in the following manner: if a probability distribution satisfies the given postulates, then the set of

in arguments of the associated labeling is an extension of a given type, and if a set of arguments is an extension of a

given type, then there exists a probability distribution satisfying the given postulates s.t. the set of believed arguments

coincides with the extension. The only relaxation we are aware of is in the case of conflict–free semantics, where a set

of arguments is conflict–free iff the associated probability distribution is rational.

Example 1 (Continued). For every labeling listed in Table 2, we can create a congruent probability function and show

that it satisfies the required postulates. For example, we can consider the admissible labeling L6 and its congruent

distribution s.t. P (A) = P (B) = P (E) = 0.5, P (C) = 0 and P (D) = 1. The protective and discharging postulates

are easily satisfied, however, the trusting and strict ones are not – in particular, A should have been believed and B, E
disbelieved. Addressing these issues would produce a distribution that is associated with the complete labeling L13.

Let us now look at the distributions in Table 3. All P3, P5, P7, P8 and P10 are both rational and discharging.

It is easy to verify that the associated labelings LP3
= LP5

= {A : in, B : out, C : in, D : out, E : und},

LP7
= {A : und, B : out, C : in, D : out, E : und}, LP8

= {A : und, B : in, C : und, D : und, E : und} and

LP10
= {A : und, B : und, C : und, D : und, E : und} are conflict–free. All of them, with the exception of LP8

, are

also admissible – at the same time, we can observe that P8 is not protective. Finally, only LP3
and LP5

are complete,

which is reflected by P3 and P5 being the only of the listed functions that are additionally strict and trusting.

Therefore, as we can observe, epistemic probability, understood as the degree of belief, can also express various

levels of agreement in the Dung’s sense, i.e. accepting, rejecting and being undecided about an argument.
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4.2 Constellation Probabilistic Argumentation

Here we review the constellation approach to probabilistic argumentation from [31], which extends the methods from

[28] and [38]. The constellation approach allows us to represent the uncertainty over the topology of the graph.

Each subgraph of the original graph is assigned a probability which is understood as the chances of it being the

actual argument graph of the agent. It can be used to model what arguments and attacks an agent is aware of. If our

uncertainty is about which arguments appear in the graph, then only the full (induced) subgraphs of the argument graph

have a non–zero probability. If we are only uncertain about which attacks appear, then it is the spanning subgraphs of

the argument graph that can have a non–zero probability.

Definition 4.9. Let F = (A,R) and F ′ = (A′,R′) be two argument graphs. F ′ is a subgraph of F , denoted F ′ ⊑ F ,

iff A′ ⊆ A and R′ ⊆ (A′ ×A′) ∩ R. The set of subgraphs of F is Sub(F ) = {F ′ | F ′ ⊑ F}. A subgraph (A′,R′)
is full iff A′ ⊆ A and R′ = (A′ ×A′) ∩R. A subgraph (A′,R′) is spanning iff A′ = A and R′ ⊆ R.

Definition 4.10. A subgraph distribution is a function P c : Sub(F ) → [0, 1] with
∑

F ′∈Sub(F ) P
c(F ′) = 1. A

subgraph distribution P c is a full subgraph distribution iff if (A′,R′) is not a full subgraph, then P c((A′,R′)) =
0. A subgraph distribution P c is a spanning subgraph distribution iff if (A′,R′) is not a spanning subgraph,

P c((A′,R′)) = 0.

The constellation semantics can be seen as a two–level construct. Each graph in the subgraph distribution is

evaluated with a given base semantics, the results of which are later paired with the probabilities of the frameworks

producing them, thus leading to constellation semantics. Although we will not be using this particular method for

evaluating argument graphs in this paper, we briefly recall and exemplify it so that it is more clear that it is different

from the epistemic approach. Further details can be found in [32, 52].

Determining the probability that a set of arguments or a labeling follows the semantics of a particular type (e. g.

grounded, preferred, etc.) is done by collecting the probabilities of the subgraphs producing the desired extensions or

labelings. In a similar fashion, we can derive the probability of an argument being accepted in a labeling of a given

type.

Definition 4.11. For E ⊆ A and σ ∈ {cf, ad, co, pr, gr, st}, the probability that L : E → {in, out, und} is a σ–labeling

is:

Pσ(L) =
∑

F ′∈Sub(F ) s.t. L∈σ(F ′)

P c(F ′)

Definition 4.12. Given a semantics σ ∈ {ad, co, pr, gr, st}, the probability that A ∈ A is assigned an in status in a

σ–labeling is

Pσ(A) =
∑

F ′∈Sub(F ) s.t. L∈σ(F ′) and A∈in(L)

P (F ′)

Example 3. Consider the graph F = ({A,B}, {(A,B)}. Its subgraphs are F1 = ({A,B}, {(A,B)}, F2 =
({A,B}, ∅), F3 = ({A}, ∅), F4 = ({B}, ∅) and F5 = (∅, ∅). Out of them, F1, F3, F4 and F5 are full, and F1 and

F2 are spanning. Consider the following subgraph distribution P c: P c(F1) = 0.09, P c(F2) = 0.81, P c(F3) = 0.01
and P c(F4) = 0.09 and P c(F5) = 0. The probability of a given set being a grounded extension is as follows:

Pgr({A,B}) = P c(F2) = 0.81; Pgr({A}) = P c(F1) + P c(F3) = 0.1; Pgr({B}) = P c(F4) = 0.09; and Pgr({}) =

P c(F5) = 0. Therefore Pgr(A) = 0.91 and Pgr(B) = 0.9.

For further reading concerning the constellation approach to probabilistic argumentation we refer the readers to

[31, 28, 38, 25]. Computational results can be found in [26, 29, 30], and in [39, 50] we can find approaches combining

the constellation probabilities with generalizations of Dung’s framework. Finally, in [24] we can find a characterization

of one of the versions of the constellation approach in terms of probabilistic logic.

5 Experiment Description

In this section we explain how the experiment was carried out. The purpose of our study was to gather the opinions

on dialogues concerning the topic of flu vaccines. To this end, we prepared two separate dialogues and asked the
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participants we recruited online to judge at least one of them. In the following sections we will show the dialogues we

have used, explain the tasks given to the participants and describe the recruitment process.

5.1 Dialogues & Tasks

The dialogues presented to the participants can be seen in Tables 4 and 5. The first dialogue discusses the use of the

flu vaccine by hospital staff members, while the second concerns the safety of the children flu vaccine. Every dialogue

is split into five steps in which two fictional discussants, person 1 (P1) and person 2 (P2), take turns in presenting their

opinions. A given statement, once uttered, is visible throughout the rest of the dialogue. Although the general topic is

the same, i.e. concerns flu vaccinations, we can observe that the statements used in the dialogues do not overlap. The

dialogues have been created based on the information found on the Centers for Disease Control and Prevention (CDC

USA) and National Health Services (NHS UK) websites.

Table 4: Dialogue 1 between people P1 and P2. This dialogue starts with P1 claiming that hospital staff do not need

to receive flu shots, to which P2 objects. The two counterarguments of P1 are then defeated by P2. The table presents

at which steps a given statement was visible, who uttered it and what was its content.

Steps Person Statement Content

1 to 5 P1 A Hospital staff members do not need to receive flu shots.

1 to 5 P2 B
Hospital staff members are exposed to the flu virus a lot. Therefore, it would be

good for them to receive flu shots in order to stay healthy.

2 to 5 P1 C
The virus is only airborne and it is sufficient to wear a mask in order to protect

yourself. Therefore, a vaccination is not necessary.

3 to 5 P2 D
The flu virus is not just airborne, it can be transmitted through touch as well.

Hence, a mask is insufficient to protect yourself against the virus.

4 to 5 P1 E
The flu vaccine causes flu in order to gain immunity. Making people sick, who

otherwise might have stayed healthy, is unreasonable.

5 P2 F
The flu vaccine does not cause flu. It only has some side effects, such as

headaches, that can be mistaken for flu symptoms.

Table 5: Dialogue 2 between people P1 and P2. This dialogue starts with P1 claiming that the vaccine is not safe, to

which P2 objects, and the discussion proceeds to revolve around whether it contains mercury–based compounds or

not. The table presents at which steps a given statement was visible, who uttered it and what was its content.

Steps Person Statement Content

1 to 5 P1 A The flu vaccine is not safe to use by children.

1 to 5 P2 B The flu vaccine does not contain poisonous components and is safe to use.

2 to 5 P1
C The vaccine contains some mercury compounds.

D
The mercury compounds are poisonous and therefore the vaccine is not safe to

use.

3 to 5 P2
E The child vaccine does not contain any mercury compounds.

F
The virus is only accompanied by stabilizers and possibly trace amounts of an-

tibiotics used in its production.

4 to 5 P1 G
The vaccine contains a preservative called thimerosal which is a mercury-based

compound.

5 P2 H
Children receive the nasal spray vaccine and thimerosal has been removed from it

over 15 years ago.

During the experiment, at every stage of the dialogue the participants were presented with three tasks - Agreement,
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Explanation and Relation - with an additional Awareness question at the end of the dialogue:

• Agreement: the participants were asked to state how much they agree or disagree with a given statement. They

were allowed to choose one of the seven options (Strongly Agree, Agree, Somewhat Agree, Neither Agree nor

Disagree, Somewhat Disagree, Disagree, Strongly Disagree) or select the answer Don’t Know.

• Explanation: the participants were asked to explain the chosen level of agreement for every statement. In

particular, we requested them to provide us with any reason they may have for disagreement that was not

mentioned in the dialogue and to explain reasons for changing their opinions compared to the previous step in

the discussion (if applicable).

• Relation: the participants were asked to state how they viewed the relation between the statements. For every

listed pair, they could say whether one statement was A good reason against, A somewhat good reason against,

Somewhat related, but can’t say how, A somewhat good reason for, A good reason for the other statement or

select the answer N/A (i.e. that the statements were unrelated). The questions were kept with the flow of the

dialogue, i.e. the source of a given relation is preceded by the target in the presented discussion. For example,

we would ask how statement F is related to A, but not the other way around. Thus, the temporal aspects of the

dialogues are taken into account by the graph, similarly as is done in the analysis of online discussions [8, 10].

This also reduced the number of questions we had to ask and therefore simplified the task for the participants.

• Awareness: the participants were asked which of the presented statements they were familiar with prior to the

experiment. By this we understand that, for example, someone they know may have expressed the opinion

contained in a given statement, they might have read it in some source, or generally heard about it before. To

put it simply, we wanted to know what statements the participants were aware of, independently of whether they

agreed or disagreed with them.

5.2 Recruitment

The recruitment of the participants was done using the Amazon Mechanical Turk (AMT for short) and the survey itself

was carried out using the SurveyMonkey, which are both common platforms for experiments of this type. In addition

to the tasks explained in the previous section, the participants were subjected to an additional language exercise, two

attention checks and a comprehension test in order to ensure that they had sufficient skills to complete the test and

that they worked honestly. The language exercise was on an intermediate level in terms of difficulty. The attention

checks presented the participants with two sentences requesting them to choose particular answers. They were meant

to disqualify the participants who were too distracted during the experiment or simply resorted to random clicking

in order to complete the survey. Finally, in the comprehension exercise, they were asked to select the answers that

described what the statements presented in the dialogue concerned. Prior to the survey, the participants were warned

of such tests. We also provided them with explanations and examples of the tasks they would be asked to complete,

including what should be understood as a reason for or against or what we meant by being aware of a given statement.

We also requested the participants not to use Google or Wikipedia in order to verify the statements in the dialogues.

At the very end of these instructions the participants obtained the code used to unlock the actual questionnaire without

which they could not proceed. Moreover, it was also necessary for them to accept the terms and conditions of our

experiment, which included familiarizing themselves with these explanations. Hence, we took all reasonable steps in

informing the participants what to expect.

We ran the survey until we had collected 80 survey responses (40 per dialogue) in which the participants had suf-

ficiently high scores in the language, attention and comprehension tests. As we have noted previously, the participants

- if they wished to do so - were allowed to judge both of the dialogues. We have found 11 people that have completed

both tests, which means we have recruited a total of 69 unique participants. The total number of entries (not partici-

pants) was equal to 156, this brings us to an acceptability rate of around 51%. The analysis of the demographics data

on our participants can be found in the auxiliary appendix at [51]. This research project has been approved by the

designated ethics officer in the Computer Science Department at University College London. The participants could

withdraw from the experiment at any point in time and could refuse to provide any piece of information they deemed

too private.
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6 Results

In this section we will review the results of our study. We will first describe the argument graphs obtained from our

participants as well as the ones we had in mind when creating the dialogues. Given these structures, we will discuss if

and how the declared levels of agreement satisfy the epistemic postulates we have recalled in Section 4.1. Finally, we

will discuss the changes in participants’ beliefs throughout the dialogues.

Before we start, we would like to introduce some necessary notions. As we have explained previously, in addition

to declaring that one statement is a good reason for or against another statement, a possible answer in the relation task

was Somewhat related, but can’t say how. In order to be able to represent this dependency that a participant could not

classify, we propose the notion of a tripolar argument graph:

Definition 6.1. The tripolar argument graph is a tuple TF = (A,R,S,D) where A is a set of arguments, R ⊆
A×A is the set of attacks, S ⊆ A×A is the set of supports and D ⊆ A×A is the set of dependencies.

Please note that we introduce the tripolar graph only for representation purposes and we do not define any semantics

for it. When required, we can simply extract a Dung’s or bipolar graph from it. Its primary purpose is simply to

mark relations which, potentially due to confusion or the difficulty of the experiment, the participants had problems

classifying. Consequently, unlike in [48, 18, 21], it does not necessarily mean that the relation is really neither an

attack nor a support, or that the relation might not exist.

In the following sections the ability to compare two graphs will be important for us. To this end, we introduce

various types of subgraphs. To put it simply, if all arguments and links contained in one framework are present in

another framework, we say that the first framework is a subgraph of another. If the links are perceived in the same

manner (e.g. if it is an attack in one graph, it is also attack in the other), we are dealing with a correct subgraph, which

is the most commonly considered type. We can then relax this notion in a number of ways. For example, if we allow

links such as attacking or supporting to become classified as dependent, we can use the notion of a confusion subgraph.

In a dual fashion, by allowing the dependent links to be classified as attacking or supporting, we create a precision

subgraph. Finally, if we only concern ourselves with verifying whether the arguments connected in one framework are

connected in another, independently of what the nature of that connection might be, we can use the notion of a lenient

subgraph:

Definition 6.2. Let TF = (A,R,S,D) and TF ′ = (A′,R′,S ′,D′) be two tripolar argument graphs. We say that:

• TF ′ is a correct subgraph of TF iff A′ ⊆ A, R′ ⊆ R, S ′ ⊆ S and D′ ⊆ D.

• TF ′ is a confusion subgraph of TF iff A′ ⊆ A, R′ ⊆ R ∪D and S ′ ⊆ S ∪ D and D′ ⊆ D.

• TF ′ is a precision subgraph of TF iff A′ ⊆ A, R′ ⊆ R and S ′ ⊆ S and D′ ⊆ D ∪R∪ S.

• TF ′ is a lenient subgraph of TF iff A′ ⊆ A and (R′ ∪ S ′ ∪ D′) ⊆ (R∪ S ∪ D).

We say that a tripolar framework TF is clarified if D = ∅.

Given the fact that the new types of subgraphs were introduced as a way to relax the classical correct subgraph

notion, there certain relations between them. We can observe that every correct subgraph is also a confusion and a

precision subgraph, and every confusion subgraph or precision subgraph is a lenient subgraph. However, not every

confusion subgraph meets precision requirements and not every precision subgraph meets confusion requirements.

Example 4. Let us consider the graphsTF1 = ({A,B,C,D}, {(A,B), (B,C)}, {(A,C)}, ∅), TF2 = ({A,B,C,D},

{(A,C)}, {(A,B), (B,C)}, ∅), TF3 = ({A,B,C,D}, {(A,B), (B,C)}, {(A,C), (A,D)}, ∅) and TF4 =
({A,B,C,D}, {(A,B)}, {(A,C), (A,D)}, {(B,C)}). We can observe that any framework is its own subgraph

of any type. In addition to that, TF1 is a correct subgraph of TF3. It is a confusion subgraph of both TF3 and TF4, a

precision subgraph of TF3 and a lenient subgraph of all of the listed frameworks. On the other hand, TF2 is not a cor-

rect, confusion or precision subgraph of any other framework apart from itself. It is however a lenient subgraph of all

of the listed structures. TF3 is not a correct subgraph of any other framework apart from itself and is a confusion and

lenient subgraph of TF4. TF4 is only its own correct and confusion subgraph, and a precision and lenient subgraph

of TF3 and TF4.
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In addition to being able to represent the answers provided by the participants, we would also like to be able to

measure the disagreement between the various frameworks we obtain at a given stage of the dialogue. For this purpose,

we create a notion distance between frameworks conceptually similar to the ones from [21, 7, 14]. The distance is

measured in terms of links by which two given frameworks differ. In particular, if the given arguments are seen as

unrelated in one structure, but as attacking/supporting or dependent in the other, we set the difference to 2 and 1
respectively. If a link has opposing polarities (i.e. attacking vs supporting) in the frameworks, the distance is set again

to 2. If it is attacking or supporting in one and dependent in another, the distance is set to 1. Finally, if the nature of a

given relation is seen in the same way, then the difference is naturally 0. The distance between the frameworks is then

simply a sum of all such differences:

Definition 6.3. Let TF = (A,R,S,D) and TF ′ = (A,R′,S ′,D′) be two tripolar frameworks defined over the same

set of arguments s.t. R∩S ∩D = ∅ and R′ ∩S ′ ∩D′ = ∅. Let RelTF = R∪S ∪D and RelTF ′

= R′ ∪S ′ ∪D′ be

the sets of all relations in both structures. The difference between TF and TF ′ on edge α is defined in the following

manner:

• If α /∈ RelTF ∩RelTF ′

:

diff(TF, TF ′, α) =











0 if α /∈ RelTF ∪RelTF ′

1 if α ∈ D ∪ D′

2 otherwise

• If α ∈ RelTF ∩RelTF ′

:

diff(TF, TF ′, α) =































1 if α ∈ D ∧ α /∈ D′

1 if α /∈ D ∧ α ∈ D′

2 if α ∈ S ∧ α ∈ R′

2 if α ∈ R ∧ α ∈ S ′

0 otherwise

The distance between TF and TF ′ is then defined as:

d(TF, TF ′) =
∑

α∈RelTF∪RelTF ′

diff(TF, TF ′, α)

D

R S

N/A

2

1 1

1
2 2

Figure 5: Difference measure between attacking, supporting, dependent and nonexistent relations

The introduced notion of a distance between the frameworks meets the requirements of a metric, i.e. the following

holds:

Lemma 6.4. Let TF1 = (A,R1,S1,D1), TF2 = (A,R2,S2,D2) and TF3 = (A,R3,S3,D3) be tripolar frame-

works defined over the same sets of arguments and s.t. for i ∈ {1, 2, 3}, Ri ∩ Si ∩ Di = ∅. The following holds:

1. d(TF1, TF2) ≥ 0.
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2. d(TF1, TF2) = 0 ⇐⇒ TF1 = TF2
5.

3. d(TF1, TF2) = d(TF2, TF1).

4. d(TF1, TF3) ≤ d(TF1, TF2) + d(TF2, TF3).

Finally, in order to be able to analyze which postulates may or may not be satisfied by the participants, we need to

map the declared levels of agreement to actual numerical values. By this we understand that if an argument X is as-

signed an answer such as Strongly Disagree by a participant, then there is a numerical value y associated with Strongly

Disagree s.t. for the purpose of this analysis we can say that P (X) = y. From such assignments, a full probability

distribution over the powerset of arguments can be reproduced [36]. However, given the way the probabilities are used

by the epistemic postulates that we have recalled, knowing that P (X) = y is sufficient for our purposes. We propose

the following assignments:

• Strongly Agree – 6/6.

• Agree – 5/6.

• Somewhat Agree – 4/6.

• Neither Agree nor Disagree – 3/6.

• Somewhat Disagree – 2/6.

• Disagree – 1/6.

• Strongly Disagree – 0/6.

Additionally, the Don’t know answer is available in the questionnaire. Unless stated otherwise, for calculation

purposes we assign it the same value as Neither Agree nor Disagree (i.e. 3/6). It is a possible way of shifting from

a four–valued setting (in, out, undecided and unknown) to a three–valued one (in, out, undecided), where inability to

make a decision is treated similarly as indecisiveness.

Finally, we create the graphs based on the answers in relation task in the following manner. The Reason for answer

we will mark as support, Reason against as attack, and the Somewhat related, but can’t say how as dependent. The

declared strength of the attack or support relation will only become relevant once we analyze its connection to the

agreement level assigned to its source in Section 6.3.

6.1 Argument Graphs

In this section we will analyze the argument graphs we have received from the participants based on their responses to

the relation tasks. In what follows we will distinguish the following types of graphs:

• the intended graph is meant to depict the minimal set of relations we considered reasonable for a given set of

arguments.

• the augmented graph is obtained by adding to the intended graph the indirect relations from the prudent/careful

or bipolar argumentation approaches (Definitions 2.3 and 3.2).

• the participant–sourced graphs:

– the declared graph is constructed from the answers given to us by the participants in the Relation tasks,

where the Reason for answer we will mark as support, Reason against as attack, and the Somewhat related,

but can’t say how as dependent. The arguments correspond to the statements appearing at a given step of

the dialogue.

– the expanded graph is constructed from the declared graph, extended with the statements extracted from

the answers that the participants have provided in the Explanation task.

5In this context we say that TF1 = TF2 iff R1 = R2, S1 = S2 and D1 = D2.
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– the common graph is the declared graph created by the highest number of participants at a given step in

the dialogue.

The intended graph simply depicts certain minimal constraints we had in mind for this experiment. For example,

we had intended the statement “Hospital staff members are exposed to the flu virus a lot. Therefore, it would be good

for them to receive flu shots in order to stay healthy.” to attack “Hospital staff members do not need to receive flu

shots.”. Please note that this graph does not necessarily contain all of the possible interactions between the statements.

For example, we decided against putting any supporting links in. The purpose of this graph was merely to encompass

the minimal constraints we had intended the participants to recognize. Consequently, this does not necessarily mean

that it contains all the possible relations that could be extracted from the dialogue.

The augmented graph is built from the intended graph through the addition of additional relations, similarly as

indirect edges can be added to bipolar graphs for evaluation (see Section 3 and [49] for further details). The purpose

of this graph is to check whether the relations declared by the participants in addition to the ones stated in the intended

graph can in fact be reproduced through the use of notions from Definitions 2.3 and 3.2. In particular, we will augment

the intended graph with attacks using the definitions of indirect conflicts from the aforementioned definitions and with

supports using the definition of indirect defense. We will then observe that these notions do not necessarily give us

all the possible relations defined by the participants and analyze how the ones that are not accounted for could be

explained.

At this point we would like to stress that in this report, we will follow the abstract interpretation of supports, i.e.

one in which it is understood simply as a positive relation between arguments without any further requirements [12].

As stated in Section 3, we will not impose any restrictions as to which indirect conflicts should be used. The reason

for this is two–fold. First of all, there is no consensus as to which indirect conflicts should be associated with a given

specialized form of support, such as deductive or necessary [49, 17, 54]. Second of all, we are not aware of any

empirical study verifying that people indeed associate with a given type of support the indirect attacks ascribed to it in

theory. There also appears to be no study testing whether a given supporting edge is assigned the same interpretation

both by theory and by actual people. All of these are extremely interesting questions, however, they are beyond the

scope of this particular study.

We would also like to explain our approach to reproducing supports obtained from the participants through defense

in the augmented graph. First of all, both defenses and supports are forms of positive relations between arguments.

Hence, interactions between them are unavoidable, particularly given the results in [49, 17]. Taking into account that

our participants are not argumentation experts and their task was to mark positive relations in the dialogue, what they

have identified could fall into either support or defense category. This will always be the case in any experiment that

takes into account people from all walks of life, not just specialists in our area, and we cannot discard parts of their

answers and extract as supports only those relations that in our opinion are “real”. What we therefore show in Sections

6.1.1.2 and 6.1.2.2 is that even though many of the positive links identified by the participants can be reproduced

through defense, there are support edges that cannot be explained in this way.

The expanded graph contains an auxiliary statement P that embodies the additional reasons for and against the

statements in the dialogues that the participants may have given in their explanations and that have not appeared in the

dialogue. For example, P could contain a statement such as “Masks are insufficient to prevent the flu, gloves are also

needed.” or “The vaccine does cause flu, everyone I know gets very sick after the shot.”.

In this section we will perform two types of analyses. We first consider the intended graphs created for both of the

dialogues (Sections 6.1.1.1 and 6.1.2.1) and see how they are reflected by the graphs obtained from the participants.

Based on this information we create the notions of the total and core samples, used throughout the rest of this paper.

We then focus on looking at the declared and common graphs in Sections 6.1.1.2 and 6.1.2.2. In particular, we explain

up to what extent the common graphs can be reproduced from the intended graphs by the use of indirect defenses and

attacks from the prudent/careful and bipolar setting (see Definitions 2.3 and 3.2).

6.1.1 Dialogue 1

6.1.1.1 Intended Graph Analysis

The minimal graphs we had wanted the participants to acknowledge at every stage of Dialogue 1 are presented in

Figure 6. The first thing we would like to analyze is how the intended graphs are related to the ones declared by the
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participants.

In the first chart in Figure 7 we can see for how many participants the intended graph was a subgraph of a given

type of their declared graph. The portion of the participants who have correctly recognized the intended relations at a

given step of the dialogue does not exceed 50%, with the worst performance of 30% at the final step of the dialogue.

The results look somewhat more interesting once we look at the confusion subgraph, which - as the name suggests

- assumes the participants may become confused and specify the link as simply dependent rather than attacking or

supporting. The biggest difference in the number of participants between the correct and confusion subgraphs can be

seen in the last step of the dialogue, which might point to participants’ exhaustion or to the complexity of the pieces

of information presented in the dialogue. Finally, we can consider looking at the lenient subgraphs, in which it only

matters that the statements we have seen as related are also seen as such by the participants, independently of the

nature of this relation. The high number of participants whose declared graphs contained the intended graph in this

lenient approach tells us that the participants had no major problems in recognizing the related statements, however,

marking the type of this connection has caused some issues. All of the declared graphs that have not met the leniency

requirements missed at least one of the (C,B), (E,B) or (F,E) attacks. Nevertheless, in all of the approaches we

can see that the lowest number of participants satisfying a given subgraph relation can be seen in the last two steps of

the dialogue in which statements E and F were presented.
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Figure 6: The intended argument graphs for Dialogue 1. Solid edges represent the attack relation.

Although the first chart in Figure 7 presents how many participants recognized the intended graphs at a given step

in the dialogue, it does not show how many participants recognized the intended graphs at a given number of steps.

For example, even though 18 (resp. 20) participants recognized the intended graph correctly at the first step (resp.

second step) of the dialogue, it does not necessarily mean that 18 participants recognized the intended graph correctly

at both of these steps. Consequently, in the second chart in Figure 7 we present at how many steps the participants

have recognized the intended graph in a particular way (correct, confusion, lenient). The lenient requirements are quite

easily satisfied, just like in the previous case. However, we can observe that a relatively small number of participants

(7 w.r.t. the correct and 12 w.r.t. the confusion subgraph) recognized the intended graph in all dialogue stages. We

believe this indicates that the relation task might have been more confusing than we had anticipated. Consequently, we

have decided to report the results from all of the participants – we will refer to them as the total sample from now on

– as well as from those that have recognized the intended framework in at least four out of five dialogue stages w.r.t.

the confusion subgraph approach – we will refer to them as the core sample. The samples contain respectively 40 and
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16 participants.
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Figure 7: Analysis of intended graph containment in Dialogue 1

6.1.1.2 Participant–Sourced Graphs Analysis

In this section we would like to take a closer look at the graphs declared by the participants throughout the first

dialogue. Although we have already analyzed whether the participants have recognized the intended graph, we have

not yet seen what relations - in addition to the ones in Figure 6 – they have also observed. We can observe that at

every step of the dialogue, the number of unique declared graphs we have obtained is smaller than the number of

participants (auxiliary data appendix is available at [51]). This is a natural effect of the fact that different participants

could answer the relation tasks in the same manner at some of the dialogue stages. Nevertheless, the further we are in

the dialogue, the more common the graphs that have only been declared by one participant become. As seen in Figure

8, also the bigger the chances that the framework declared by a participant will not be clarified (i.e. it will contain

dependent links, see Definition 6.2), which was to be expected given the increasing number of edges at every stage.

Although at every step we can find a graph that has been declared by the largest number of participants, the obtained

structure rarely accounts for more than 50% of the (total) sample. Thus, not every participant perceives the dialogue

in the same manner, in part because they do not appear to be always aware of the same facts and arguments (we will

discuss this issue further in Section 6.4). This disparity in knowledge and perception lends support to the use of the

constellation approach in opponent modelling. In particular, if we treat the portion of participants declaring a given

graph as a probability, what we obtain at every stage of the dialogue is actually a subgraph distribution.

As we have stated before, at every stage of the dialogue we can find a framework that has been declared by the

largest number of participants. We present these structures in Figure 9. Only in the first step of the dialogue we obtain

2 equally common graphs, one in which (B,A) edge is seen as attacking and one in which it is supporting (both are

declared by 18 participants). These proportions change notably once we look at the core sample, where the (B,A) link

is primarily attacking. We believe this behaviour can be put down to the initial confusion caused by the experiment,

particularly that afterwards the edge is seen mostly as attacking by the participants from both samples.

We can observe that w.r.t. the intended graphs, the participants have declared significantly more relations in the

common graphs. However, as we will see, many of these edges can in fact be explained by the existing notions of

indirect relations. We will first look at the common graphs from the perspective of the prudent/careful semantics

(Definition 2.3). In other words, we perform a conflict–centered analysis, where the positive edges between the

statements are seen only as a result of the interplay between the attacks. By extending the intended graphs with

additional conflicts stemming from the indirect attacks and additional supports corresponding to the indirect defenses,
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Figure 8: Portion of unclarified graphs (i.e. with nonempty set of dependencies) obtained in Dialogue 1
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Figure 9: The common argument graphs for Dialogue 1 based on the total sample. With the exception of the bottom

framework in Step 1, they are also common in the core sample. The thicker edges represent the relations appearing in

the intended graph. Solid edges stand for attack and dashed for support links.

we obtain the augmented graphs visible in Figure 10. The augmented graphs obtained in the first three steps are

identical with the common frameworks declared by the participants. The differences between them start appearing

once the statement E is introduced in the fourth step of the dialogue. In particular, in the augmented framework, the

(E,D) attack and (E,C) support are unaccounted for. Once F is presented in the fifth step of the dialogue, also the

(F,D) support and (F,C) attack are missing.

This situation could be interpreted as a sign that the intended framework is too conservative and that the missing

edges should have been included in it in the first place. However, there are also other possible interpretations that do not

resort to modifying the intended graph. According to Definition 2.3, E is controversial w.r.t. D as it is an attacker of B,

which is defended by D. Similarly, F is controversial w.r.t. C, as F attacks A which is defended by C. Consequently,

it might be the case that the (E,D) and (F,C) attacks are manifestations of these issues 6. The missing (E,C) and

6Please note that controversy could also lead the D attacking E and C attacking F , but such relations could not have been defined by the
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(F,D) supports could then be explained in two ways. If we were to use the aforementioned controversy as a basis

for additional conflicts and add them to the (intended or augmented) graph, the absent supports could potentially be

created by allowing indirect defense to also take into account these new conflicts in their definition. This could perhaps

give rise to “controversial defense”, the existence of which we are not aware of in the literature. Another possible,

and perhaps more natural approach, is to consider the statements that indirectly attack (defend) the same statement as

positively related. In this respect, we can see E and C as working towards the same goal, which is defending A and

attacking B. Nevertheless, we are not aware of this aspect being explored in the context of attack–based graphs.

Let us now look again at the common graphs, but from the perspective of bipolar argumentation. Like in the previ-

ous case, we extend the intended graph with support relations corresponding to the indirect defenses from Definition

2.3. However, instead of extending the graph with the indirect conflicts in the prudent/careful sense, we will use the

ones offered by bipolar argumentation. The obtained augmented graphs are visible in Figure 11. By adding the sec-

ondary or supported attacks (in this particular case, they overlap) to the intended graphs, we recreate the augmented

structures visible in Figure 10. By considering the (super) mediated attacks that adhere to the flow of the dialogue (i.e.

the source of the attack has to appear later than the target), we can create the (E,D) and (F,C) attacks, which were

missing in the previous approach. Consequently, we are now only missing the (E,C) and (F,D) supports. This issue

can be addressed in two ways. One method is to repeat the process of adding defense–based support to the graph. This

turns E into a supporter of C (it provides defense against D) and F into a supporter of D (it provides defense against

E). Another approach is to consider (E,C) as a supporting link that should have been included in the intended graph

in the first place. In such a situation, the (F,C) conflict can be reproduced by a secondary attack, while the (F,D)
support would still require a repetition of the step in which we add the defense–based support.

We can observe that both approaches offer a way of reconstructing the common graphs (with the exception of

the ({A}, ∅, {(B,A)}, ∅) at step 1) from the intended one. The purely conflict–based approach would require the

introduction of certain auxiliary notions. The bipolar approach uses methods already available in the literature, but in

turn requires some of the procedures to be repeated.
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Figure 10: The intended argument graphs for Dialogue 1 extended with indirect conflicts and defenses from Definition

2.3. Solid edges represent the attack relation and dashed edges represent the defense–generated support relation. Thick

edges represent the relations appearing in the intended graphs.

In addition to the presented graphs, in Table 6 we can see how often a given relation was declared as attacking,

participants due to the experiment set up.
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Figure 11: The intended argument graphs for Dialogue 1 extended with support coming from indirect defenses from

Definition 2.3, secondary/supported attacks and super–mediated attacks following the dialogue flow. Dash dotted gray

edges represent the additional supports obtainable if we again add defense–based support. Solid edges represent the

attack relation and dashed edges represent the support relation. Thick edges represent the relations appearing in the

intended graphs.

supporting, dependent or nonexistent (in [51] we can find the same data w.r.t the dialogue steps). There are various

differences between how a given relation was perceived by the participants belonging to the core and total samples.

However, we can observe that for a given link, the most commonly associated type by one sample is the same as in

the other. The only exceptions are the (F,A) and (F,C) links, which were considered primarily attacking in the core

sample and dependent in the total sample. There appear to be more differences in what is the second and the third

most common type. For example, a relation primarily seen as attacking and secondly as supporting in the total sample

is more likely to be seen as primarily attacking and secondly dependent in the core one. However, we believe these

differences are an effect of the method we have used to select the core sample and are most likely not indicative of

any particular behaviour patterns. Finally, we can note that if we extracted graphs based on the data found in Table 6

for the core sample, we would recreate the common graphs for that sample. In the total case, we would not obtain the

additional support graph from step 1, and due to the issue with the (F,A) and (F,C) links, the common graphs would

be precision subgraphs of the structures extracted from the table.

In [51] we have also calculated the average distance from one framework to other declared frameworks obtained

from the participants, understood as the average of all distances from a given structure to the remaining 39 ones in the

total sample and 15 in the core one, i.e.:

Definition 6.5. Let n be the number of participants and let {G1, . . . , Gn} be the frameworks they have declared. The

average distance from a framework Gi, where 1 ≤ i ≤ n, to other frameworks is defined as:

avg dist(Gi) =

∑n
j=1 d(Gj , Gi)

n− 1
(1)

The results for the total sample can be seen in Figure 12, while the overall summary of our findings is presented

in Table 7. In this table we present the average distance from the common framework at a given step to all of the

other frameworks as well as the general analysis of all of the obtained average distances. We provide the minimum,

maximum and median of the obtained values, and the overall average distance (i.e. the average of the averages).
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Core Sample Total Sample

Relation in R in S in D N/A in R in S in D N/A

(B, A) 85 1.25 13.75 0 60.50 31.50 8 0

(C, A) 12.50 84.38 3.13 0 29.38 63.75 5.63 1.25

(C, B) 89.06 3.13 7.81 0 68.75 20 7.50 3.75

(D, A) 81.25 6.25 12.50 0 53.33 30.83 15 0.83

(D, B) 2.08 97.92 0 0 10 84.17 5.83 0

(D, C) 91.67 0 8.33 0 66.67 25 8.33 0

(E, A) 21.88 62.50 15.63 0 30 45 16.25 8.75

(E, B) 81.25 3.13 15.63 0 53.75 16.25 21.25 8.75

(E, C) 12.50 71.88 15.63 0 28.75 43.75 20 7.5

(E, D) 68.75 3.13 28.13 0 53.75 10 27.50 8.75

(F, A) 50 6.25 43.75 0 27.50 30 40 2.5

(F, B) 12.50 68.75 18.75 0 10 62.50 25 2.5

(F, C) 62.50 6.25 31.25 0 30 27.50 37.50 5

(F, D) 0 68.75 31.25 0 0 55 37.50 7.5

(F, E) 81.25 0 18.75 0 52.50 22.50 20 5

Table 6: Occurrences of the declared relations in Dialogue 1 (values are expressed as %)

We can observe that the further we are in the dialogue, the higher these values become, which is natural given the

increasing size of the frameworks. The average distance calculated for the common framework tends to be smaller

than the overall average and less or equal to the obtained median. In the core sample, all of the averages for the

common frameworks are also the minimum ones from all of the obtained values. We can therefore observe that the

fact that this framework is defined by the largest number of participants and is close to or identical with the framework

induced by Table 6 is reflected in the obtained distances between the structures declared by the participants.
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Step 1 1.03 0.92 1.03 1.02 1.03 0.33 0.33 1.80 0.52 0.33

Step 2 1.67 1.67 4.54 2.40 1.92 0.40 0.40 3.87 0.72 0.40

Step 3 3.44 3.44 7.33 4.75 4.23 1.33 1.33 7.60 2.22 1.33

Step 4 6.74 6.74 13.36 8.78 8.39 2.07 2.07 11.93 3.44 2.07

Step 5 11.33 10.62 18.77 13.40 12.62 5.13 5.13 13.13 7.17 6.87

Table 7: Analysis of the average distance values for the declared frameworks for Dialogue 1, where average distance

is formulated in Definition 6.5. We include the average distance from the common framework to other frameworks,

minimum and maximum average distances amongst all the averages, median, and overall average.
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Figure 12: The list of average distances from the graph declared by a given participant to the graphs of the remaining

participants at a given step in Dialogue 1.
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6.1.2 Dialogue 2

6.1.2.1 Intended Graph Analysis

The graphs depicting the minimal set of relations we had intended the participants to recognize in the second

dialogue are presented in Figure 13. We will now discuss the reason why the (G,F ) edge is grayed out. Argument

G was meant to be a counterargument for E and F . In the first case the contradiction is more obvious. In the

second instance, the fact that the virus is accompanied only by stabilizers and antibiotics means it is not accompanied

by thimerosal, which is only a preservative. Thus, the contradiction depends on the distinction between stabilizers

and preservatives. Based on the explanations provided by some of the participants we can however observe that

these two notions were occasionally confused, which additional research has shown to be a common situation in

reality. Consequently, thimerosal was seen as an example of a stabilizer and as a result, G could have been in fact

understood as supporting F rather than attacking it. Hence, declaring this relation differently was a conscious and

somewhat justified decision, not a result of misunderstanding the exercise or an unintentional choice (a “misclick”).

Nevertheless, removing this link from the intended graph does not significantly affect the core sample and would allow

one more person in w.r.t. the original approach. This indicates that the majority of people marking (G,F ) differently

than intended have also had other issues that prevented them from entering the core sample. Thus, this issue deserves

attention on its own, and for now we will evaluate the answers without modifying the initially set methodology.
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Figure 13: The intended argument graphs for Dialogue 2. Solid edges represent the attack relation. The crossed gray

edges represent attacks that some participants have interpreted as supports in a way that can be considered justified.

Similarly as in the case of Dialogue 1, in Figure 14 we present how many participants recognized the intended

graph at a given step of the dialogue, and how many participants recognized the intended graph in a given number

of steps. We create the core sample for Dialogue 2 by gathering participants who have acknowledged the intended

graph w.r.t. the confusion subgraph relation in at least 4 stages. Hence, from now on we will be working with the total
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sample of size 40 and the core sample of size 15.
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Figure 14: Analysis of intended graph containment in Dialogue 2

6.1.2.2 Participant–Sourced Graphs Analysis

Let us now look at the graphs given to us by the participants of Dialogue 2 (full data can be found in the data

appendix in [51]). Just like in the previous dialogue, the further we are in the discussion, the more single–participant

graphs we obtain. However, in this case, the maximal dispersion occurs during the fourth rather than fifth step, in

which the participants tend to agree a bit more again. As the dialogue progresses, the number of clarified graphs

decreases, as seen in Figure 15. Although there are some differences between the decrease in this dialogue and in

Dialogue 1, particularly concerning the second stage, the end states are not that different. It therefore appears that

participants in both samples had similar issues in deciding on the nature of some of the edges.

In Figure 16 we have depicted the common graphs at every stage of the dialogue, where thick edges represent the

relations contained in the intended graph. Just like in Dialogue 1, at the very first step the participants are asked only

about the (B,A) relation. Although more people have seen the (B,A) relation as attacking rather than supporting (22

vs 14 in the total sample), both groups are important enough to be reported. Many people who have marked (B,A) as

supporting did not make it to the core sample, in which the attacking interpretation is dominant.

Similarly as we had done in the case of the first dialogue, we will now analyze whether the relations contained in

the common graphs, but not in the intended ones, could possibly be explained with additional notions such as indirect

attacks and defenses. Let us first consider creating the augmented graphs with the use of the indirect attacks and

defenses from the prudent/careful setting (see Definition 2.3). The results are visible in Figure 17. Starting from step

2, there are differences between the common and the augmented frameworks. They are primarily caused by C and F
being initially disconnected from other statements. In total, we are missing eight edges – four attacks (C,B), (F,A),
(F,C) and (F,D), and four supports – (C,A), (D,C), (F,B) and (F,E). We will now try to explain them following

the conflict–centered perspective.

Let us start with the (C,B) conflict and the (D,C) and (C,A) supports. Statement C simply presents a “fact” that

vaccine contains a particular substance, which in this case is a mercury compound. As such, it does not contradict any

previous information. However, it becomes conflicting once it is paired with the information that mercury compounds

are poisonous, contained in statement D. This supporting (D,C) link possibly reflects this pairing and makes the

(C,B) attack perfectly reasonable. One can therefore argue that either (C,B) or both (C,B) and (D,C) should have

been included in the intended graph. If only (C,B) was added to the graph, we could potentially reproduce the (D,C)
support by treating statements working towards the same goal as positively related, similarly as proposed in the case
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Figure 15: Portion of unclarified graphs (i.e. with nonempty set of dependencies) obtained in Dialogue 2

of (E,C) and (F,D) supports in Dialogue 1. Adding only (C,B) or both (C,B) and (D,C) would also lead to the

introduction of the (C,A) support through indirect defense.

A similar analysis could be carried out for the relations associated with F . Statement F serves as a further backing

for E, which was recognized as support by the participants. Consequently, including the (F,E) support and (F,C) and

(F,D) attacks in the intended graph (or, based on the aforementioned explanation, just the (F,C) and (F,D) attacks)

would lead to the reproduction of the remaining missing relations through the use of indirect attack or defense.

Let us now look at the intended graphs augmented with supports corresponding to the indirect defenses from the

prudent/careful setting and with indirect attacks associated with the bipolar setting. By using secondary/supported

attacks and defense–induced support, we obtain the augmented frameworks identical to the ones present in Figure

17. Thus, again we are missing the same set of relations as in the conflict–centered analysis: four attacks – (C,B),
(F,A), (F,C) and (F,D) – and four supports – (C,A), (D,C), (F,B) and (F,E). In this case, the (super) mediated

attacks do not offer any additional insight. By considering (super) extended attacks, we can retrieve the (C,B) attack,

though only starting from the fourth step of the dialogue. In the same fashion we can also obtain the (F,A), (F,C)
and (F,D) conflicts at the last stage of the discussion. Nevertheless, these changes occur later than the arguments

are introduced and our main issue is not resolved. In the conflict–centered analysis, we had proposed adding certain

attacks (or both attacks and supports) to the intended graph in order to bridge the gap between the common graph and

the augmented graph. In this, more support–centered, analysis, we can consider adding the (D,C) and (F,E) supports

to the intended graph. Adding the (D,C) support would allow us to recreate the (C,B) conflict as an extended attack.

The inclusion of the (F,E) support would lead to the recreation of the missing (F,C) and (F,D) attacks as supported

attacks in the augmented graph.

We are thus left with the recreation of the (F,A) attack and the (C,A) and (F,B) supports. In order to do so, we

can repeat the procedure of adding indirect defenses and conflicts, i.e. we extend the augmented graph in the way we

extended the intended one. Then F becomes a supported and secondary attacker of A through the secondary/supported

attack (E,A) or the supported attack (F,D). Additionally, F is now an indirect defender of B through the supported

attack (F,D). Finally, (C,A) can be recreated through indirect defense generated by the the extended conflict (C,B).
We can observe that although certain supports can be recreated through indirect defense, this is not the only possible

reason why the participants have declared these relations. For example, we can also observe the similarity between

statement A and the conclusion of D and the fact that G is a more detailed reiteration of C. If we view (F,E) support

as a relation that should have been in the intended graph, then given the fact that E is a defense–mimicking supporter

of B, the (F,B) support could be seen as a particular mixture stemming from the support transitivity. Consequently,

it is possible to be recreate some of the missing supports using a different methodology.

To summarize, we can observe that recreation of the common graph from the intended one in Dialogue 2 requires

the addition of at least 2 relations carried out by C and F . However, just like in Dialogue 1, we would still need to

introduce auxiliary notions when recreating the common graphs via the prudent/careful approach only and perform a

two–step recreation via the bipolar approach.
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Figure 16: The common argument graphs for Dialogue 2 based on the total sample. With the exception of the bottom

framework in Step 1, they are also common in the core sample. The thicker edges represent the relations appearing in

the intended graph. Solid edges stand for attack and dashed for support links.
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Figure 17: The intended argument graphs for Dialogue 2 extended with indirect conflicts and defenses from Definition

2.3. The thicker edges represent the relations appearing in the intended graph. Solid edges stand for attack and dashed

ones for defense–generated support.
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In addition to the graph reproduction analysis, in Table 8 we list how often a given relation was perceived as attack-

ing, supporting, dependent or nonexistent during the dialogue (more detailed tables can be found in [51]). Similarly

as in the case of Dialogue 1, we can observe that the dominating assignment for a given edge is the same in both core

and total samples, though the second and third most common choices often differ. By focusing on the most common

edges, we can reconstruct the graphs from Figure 16.

Core Sample Total Sample

Relation in R in S in D N/A in R in S in D N/A

(B, A) 85.33 2.67 12 0 66.50 26.50 7 0

(C, A) 13.33 73.33 13.33 0 27.50 58.75 13.13 0.63

(C, B) 75 3.33 21.67 0 68.13 12.50 16.25 3.13

(D, A) 11.67 81.67 6.67 0 27.50 65.63 6.88 0

(D, B) 85 3.33 11.67 0 76.25 12.50 9.38 1.88

(D, C) 11.67 60 25 3.33 27.50 51.88 16.25 4.38

(E, A) 73.33 8.89 17.78 0 58.33 26.67 14.17 0.83

(E, B) 8.89 86.67 4.44 0 18.33 73.33 8.33 0

(E, C) 91.11 0 8.89 0 65 17.50 12.50 5

(E, D) 84.44 0 15.56 0 61.67 21.67 13.33 3.33

(F, A) 73.33 11.11 15.56 0 58.33 29.17 11.67 0.83

(F, B) 8.89 84.44 6.67 0 13.33 75.83 10 0.83

(F, C) 82.22 0 17.78 0 53.33 30.83 12.50 3.33

(F, D) 82.22 0 17.78 0 55.83 29.17 12.50 2.50

(F, E) 2.22 88.89 8.89 0 11.67 75.83 9.17 3.33

(G, A) 16.67 63.33 20 0 23.75 58.75 16.25 1.25

(G, B) 60 10 30 0 61.25 16.25 21.25 1.25

(G, C) 10 83.33 6.67 0 25 63.75 8.75 2.50

(G, D) 16.67 70 13.33 0 21.25 65 11.25 2.50

(G, E) 86.67 3.33 10 0 70 16.25 10 3.75

(G, F) 80 6.67 13.33 0 63.75 18.75 15 2.50

(H, A) 73.33 0 26.67 0 45 25 27.50 2.50

(H, B) 13.33 73.33 13.33 0 12.50 67.50 17.50 2.50

(H, C) 86.67 0 13.33 0 60 20 12.50 7.50

(H, D) 73.33 6.67 20 0 52.50 22.50 22.50 2.50

(H, E) 0 93.33 6.67 0 5 77.50 12.50 5

(H, F) 0 73.33 26.67 0 7.50 72.50 15 5

(H, G) 80 6.67 13.33 0 50 32.50 10 7.50

Table 8: Occurrences of the declared relations in Dialogue 2 (expressed as %)

In [51] we have also calculated the average distance from one framework to other declared frameworks obtained

from the participants, understood as the average of all distances from a given structure to the remaining 39 ones in the

total sample and 14 in the core one (see also Definition 6.5). The results in the case of the total sample are visible in

Figure 18, with the overall summary of our findings visible in Table 9. In this table we present the average distance

from the common framework at a given step to all of the other frameworks as well as the general analysis of all of the

obtained average distances. We provide the minimum, maximum and median of the obtained values, and the overall

average distance (i.e. the average of the averages).

The same observations as in the case of Dialogue 1 can be made for Dialogue 2. The average distance calculated

for the common framework tends to be smaller than the overall average and less or equal to the obtained median. In

the case of the core sample, all of the averages for the common frameworks are also the minimum ones from all of the

obtained values. This is also true in the case of the total sample, with the exception of the third step of the dialogue. The

fact that the common framework is defined by the largest number of participants and is identical with the framework

induced by Table 8 is reflected in the obtained distances between the structures declared by the participants.
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Step 1 0.82 0.82 1.23 0.97 0.82 0.29 0.29 1.86 0.48 0.29

Step 2 3.38 3.38 7.74 4.74 4.21 1.93 1.93 8.14 2.95 2.00

Step 3 9.82 9.77 18.08 13.07 13.41 5.00 5.00 15.57 7.70 5.79

Step 4 13.28 13.28 25.49 17.91 16.87 6.64 6.64 21.64 10.15 8.29

Step 5 16.26 16.26 37.13 22.59 22.29 7.21 7.21 25.64 11.43 8.36

Table 9: Analysis of the average distance values for the declared frameworks for Dialogue 2, where average distance

is formulated in Definition 6.5. We include the average distance from the common framework to other frameworks,

minimum and maximum average distances amongst all the averages, median, and overall average.
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Figure 18: The list of average distances from the graph declared by a given participant to the graphs of the remaining

participants at a given step in Dialogue 2.
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6.2 Postulate Satisfaction

In this section we analyze if and how the postulates we recalled in Section 4.1 are reflected in the behaviours of

the participants. In order to do so, we will evaluate the probability distributions extracted from the agreement tasks

against the intended, expanded, declared and common graphs (see the end of the introduction of Section 6 on page

19 concerning how these distributions were obtained). Given the fact that the postulates are defined only for Dung’s

frameworks, we need to consider the attack subgraphs of the aforementioned graphs in order to perform the analysis.

Although this means that the frameworks contain information not yet harnessed by the postulates, in Sections 6.1.1.2

and 6.1.2.2 we could have observed that many of the supporting links could be explained with indirect defence or lead

to additional indirect conflicts. Thus, we believe that the effect of the positive relations in the obtained graphs to be

reasonably, even if not completely, reflected by the negative relations. Therefore, the analysis performed only on the

attack graph is still valuable.

The results will be presented in the following manner. For every participant, we calculate the proportion of steps

on which a given postulate was satisfied according to a given graph. For example, if we have five dialogue steps and

the obtained statement probabilities conformed to the rational postulate on four of them, we obtain the adherence rate

of 80% (or 0.8). The values we report are the averages of these scores on the total and core samples. We then analyze

the differences between the results obtained between the graphs and samples. The additional statistical analysis can

be found in Section 9.

6.2.1 Dialogue 1

The results concerning the average adherence rates of the postulates we have recalled in Section 4.1 on the intended,

declared, expanded and common graphs are presented in Figures 20 (total sample) and 21 (core sample). Let us first

look at the total sample. In the majority of cases, the results obtained on the intended and common graphs do not differ

significantly, which can be seen as supporting our graph augmentation approach from Section 6.1.1.2 (see also Table 10

in Section 9.1.1). All of the results appear to be closely related on postulates that, in general, have a high satisfaction

rate or belong to the preferential family. Thus, the adherence rates between the graphs are closely connected for

postulates such as preferential, strict, protective and restrained, coherent, involutary and semi–optimistic. Since the

ternary and binary postulates do not depend on the structure of the graph in question, they do not contribute to this

particular observation. Nevertheless, once the satisfaction rate goes down and we look at the valued or explanatory

postulates, the results begin to diverge and it is mostly the intended and common graphs that still behave similarly (see

Table 10 in Section 9.1.1).

We can thus observe good adherence to the postulates and a similarity between the results on all of the graphs

in the case the preferential branch of our epistemic postulates. The obtained satisfaction rates slowly decrease as

the more specialized versions are considered, reaching the minimum on the justifiable postulate. Low adherence to

this property is most likely caused by the optimistic property, which is also rarely satisfied. In principle, postulates

considered shared between preferential and value based families do not perform as well as the ones classified as

only preferential. We would also like to observe that the preferential postulate is highly satisfied not just due to its

“leniency”, but also because it reflects the reasoning of various participants. For example, some of the participants

satisfying the preferential, but not the rational postulate in the first step of the dialogue, justified their agreement with

both of the statements by saying that e.g. “A: I agree that Hospital staff members don’t need to receive flu shots unless

they want to. They should not be required to. ” and “B: It is also true that hospital workers are exposed to the flu a lot

so if they choose to it would be beneficial for them to receive the shot.”, or “It’s been shown, I think, that mysteriously,

nurses and doctors are less prone to catching the diseases they treat in general.” and “Extra precautions couldn’t hurt

during a particularly nasty flu season.”. To summarize, these results mean that participants are in general capable of

reasoning well when it comes to considering the conflicts between two statements.

Lower satisfaction rate of the postulates and/or bigger dissimilarities between the results on different graphs (see

Table 10 in Section 9.1.1) can be observed particularly in the case of postulates that are highly affected by the personal

knowledge of the participants and by accuracy of modelling the perceived attacks. For example, these are the cases in

which the results for the expanded graph – which is precisely the declared graph augmented with statements extracted

from explanations - differ from the results for the declared graph. What was considered an initial argument may not

have been seen in the same way by the participants, thus reducing the adherence to the optimistic postulate. This, along

36



with the reluctance of the participants to choose the extreme values (see the ternary postulate), may explain the lower

performance of the founded property. In particular, by relaxing the founded restriction of complete belief to the semi–

founded one, which simply requests non–disbelief, we obtain much better results. All of the guarded, discharging,

trusting and anticipating postulates are intended to grasp the idea of believing an argument when there is no reason

against it and disbelieving an argument only if there is a reason for it. Consequently, they are highly dependent on

the accuracy of the graphs we create for the participants in terms of their knowledge, and are as such more difficult

to measure and estimate than the postulates of the preferential family. The fact that the demanding postulate appears

to be the least affected by it might be connected to the ternary postulate – again, if the extreme values are not chosen,

this property is satisfied more easily.

We can observe that the semi–optimistic postulate is commonly satisfied, even twice as often as the coherent

one. This has certain important implications. The purpose of these properties is to set respectively lower and upper

bounds on the belief we have in a statement in the face of its attackers. For example, given the performance of the

protective and strict postulates, it appears that while the participants are capable of choosing what to believe and what

to disbelieve, they can be more “generous” with their belief than anticipated by some of the postulates.

We can now consider the results obtained for the core sample. We can observe that the average satisfaction rate

of the postulates that the participants appeared to adhere to in the total sample increased in the core sample. In other

words, the preferential, rational, strict, protective and restrained postulates are, on average, satisfied more often. The

results obtained between the graphs appear to be much more closely connected than in the total sample (see Table 10 in

Section 9.1.1). Significant differences between the adherence rates can be observed primarily in the case of declared

and expanded graph. They are also bigger than in the case of the total sample, i.e. the average of the differences

between adherence rates of participants between the declared and expanded graphs is bigger in the total sample only

in the case of the involutary and demanding postulates. This may be caused by the participants being more forthcoming

with their personal knowledge and thus the expanded graphs being more precise. It would also explain the somewhat

better results on the explanatory and optimistic, founded and justifiable postulates, which are more dependent on

such factors. Finally, we can consider the binary and ternary postulates. In both samples, the binary postulate has

a high adherence rate, which means that the participants were capable of deciding whether to believe or disbelieve

the presented statements using their own knowledge and the information found in the dialogue. Thus, the text itself

could not have been overly complicated for the participants. The low adherence to the ternary postulate in both of the

samples, combined with the low indecisiveness of the participants, shows that people often exhibit various degrees of

belief and disbelief and are reluctant to completely accept or completely reject a given statement.

In addition to the postulates available in Figures 20 and 21, we have also considered a slight modification of

the VALn property. This postulate tells us how many distinct probabilities have been used in a given probability

distribution. We can recall that from every user we obtain five distributions, one per every step of the dialogue.

However, in some dialogue steps the number of used arguments is not sufficient to make any important observations

w.r.t. the VALn postulate. Consequently, rather than counting the distinct values in a single distribution, we count the

distinct values used in all five distributions defined by a participant 7. The results are presented in Figure 19 (see also

the auxiliary data appendix at [51] for a more detailed table). We can observe that the vast majority of the participants

did not use 3 or less values during the dialogue, independently of whether we consider the total or the core sample. The

preferred options appear to be 4 and 6 (total sample) or 4 and 5 (core sample) values. These results are significantly

different from what we would expect if the participants were providing us with random answers and show that what

we obtained were in fact conscious choices8.

The above observations indicate that the two (or three) valued perception of acceptance exhibited by the classical

Dung’s semantics oversimplifies human modelling and might be insufficient to model the beliefs of the majority of

participants. This also confirms the findings of [55]. We may also recall that rational, strict, protective, discharging and

trusting postulates were related to classical conflict–free, admissible and complete semantics. While the performance

of the preferential branch indicates that in general the statements accepted by the participants are not conflicting, the

discharging and trusting results show that admissibility and completeness may be more problematic to satisfy. Thus,

7In this analysis, we treat Don’t know the same as Neither Agree nor Disagree due to the fact that they both evaluate to 3/6.
8Under the assumption that every value is equally likely to be selected, if the participants were answering randomly throughout Dialogue 1 then

the probability of them using exactly 7 values throughout the dialogue is 0.704, probability of them using exactly 6 values is 0.272, of using 5

values is 0.024, of using 4 is 0.00048, and of 3 or less is 0.0000015. Exact multinomial test shows there are significant differences between the
obtained and the expected probabilities (obtained p–value was small enough that it was rounded up to 0 by the used software).
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breaking down the classical semantics into smaller, separate properties, might give us a more detailed insight into the

reasoning of the participants and provide more feedback in situations in which classical semantics are not satisfied.

Consequently, more fine–grained approaches than Dung’s semantics should be considered in order to provide a more

accurate human modelling.
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Figure 19: Usage of different levels of agreement in Dialogue 1

38



0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Preferential

Rational

Strict

Protective

Restrained

Coherent

Involutary

Justifiable

Binary

SemiOptimistic

SemiFounded

Ternary

Founded

Optimistic

Demanding

Guarded

Discharging

Trusting

Anticipating

Preferential

Coherent

Binary

Demanding

Beliefs on declared graphs Beliefs on expanded graphs

Beliefs on common graphs Beliefs on intended graphs

Figure 20: Postulate satisfaction on the total sample in Dialogue 1

39



0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Preferential

Rational

Strict

Protective

Restrained

Coherent

Involutary

Justifiable

Binary

SemiOptimistic

SemiFounded

Ternary

Founded

Optimistic

Demanding

Guarded

Discharging

Trusting

Anticipating

Preferential

Coherent

Binary

Demanding

Beliefs on declared graphs Beliefs on expanded graphs

Beliefs on common graphs Beliefs on intended graphs

Figure 21: Postulate satisfaction on core sample Dialogue 1

40



6.2.2 Dialogue 2

In Figures 22 and 23 we can observe the average adherence rates to the epistemic postulates in the total and core

samples in Dialogue 2. Let us focus on the total sample first. Some of the observations we have made in the case

of Dialogue 1 carry over to Dialogue 2. Similarly as in the first dialogue, the results obtained for the declared,

expanded and common graphs appear to be similar in the case of preferential family (see Table 19). However, unlike

in the previous case, the behaviour of the intended graph on this family appears to be more distinct from the rest.

Fortunately, with the exception of the preferential postulates, the similarities between the results on the common and

intended graphs, present in first dialogue, hold here as well. This behaviour may indicate that the intended graphs

were too conservative in terms of the considered attacks w.r.t. the common graphs (see also Section 6.1.2.2). We can

also note that similarly as in the first dialogue, the adherence to the rational family of postulates decreases the more

specialized the property is. Again, the justifiable postulate is barely adhered to.

The differences between the results on the declared graph and other graphs in the case of explanatory and value–

based families are more visible than in the first dialogue (see also Table 10 in Section 9.1.1 and Table 19 in Section

9.2.1). In principle, the largest number of differences can be observed between the intended and declared graphs, and

exceeds our findings in the first dialogue. Additionally, many of the postulates we have considered do not perform as

well as in the first dialogue in terms of the declared graphs. Nevertheless, the rational, semi–optimistic, semi–founded,

guarded, discharging and particularly demanding properties appear to achieve better results than in the previous dia-

logue. We believe some of this behaviour (including also the lower performance of the strict and restrained postulates)

can be explained with the behaviour of the binary property. The low satisfaction rate of this particular postulate means

that the participants had problems in deciding whether to believe or disbelieve the presented statements using their own

knowledge and the information found in the dialogue. This dialogue presented more specialized information than the

first dialogue and without access to, for example, Wikipedia, the participants had problems verifying the statements.

The presence of the undecided assignments appears to have benefited some of the postulates that are easily satisfied

with neutral distributions. We can observe that all of the properties that have experienced an increase in adherence

belong to this group. At the same time the undecided assignments harmed those postulates that try to force more

decisiveness, such as strict or protective properties, or force belief or disbelief in the face of undecided attackers (e.g.

restrained or anticipating postulates). Consequently, in addition to the postulates vulnerable to participants who do

not share all of their knowledge (see the analysis of Dialogue 1), we can also identify those that are vulnerable or

benefiting from the indecisive participants.

We can now consider the results obtained for the core sample. The average adherence rates of the postulates in the

core sample are quite close to the ones from the total sample. The results obtained for different graphs also appear to

be more closely connected (see Table 19 in Section 9.2.1). The most visible changes can be observed in the case of the

explanatory family of postulates (with the exception of the demanding property), which have all increased their values.

The results w.r.t. the expanded graphs on the guarded and discharging postulates become even more distinct from the

declared graphs in terms of the average difference of participant responses between these graphs. It therefore appears

that the participants were more forthcoming with their personal knowledge, in particular with the additional reasons

against believing certain statements. We therefore again identify the properties more vulnerable to such information.

In Figure 24 we can observe the number of participants who have chosen a given number of distinct probabilities

throughout the dialogue 9 (see also the auxiliary data appendix at [51] for a more detailed table). Similarly to Dialogue

1, the majority of participants choose 4 or more values, though in this case 5 values appear more often in the total

sample than 4 values, and they are picked equally often in the core sample. This increase may be related to a wider

use of the Neither Agree nor Disagree and Don’t know values, which is visible in the difference of the adherence to

the binary postulate between the dialogues. Also in this case it is easy to see that the selection of the values by the

participants is clearly not random10 and thus the tendency of the participants to choose more than 3 values is their

conscious choice.

9The presented results treated Don’t know as the same as Neither Agree nor Disagree.
10Under the assumption that every value is equally likely to be selected, if the participants were answering randomly throughout Dialogue 2 then

the probability of them using exactly 7 values throughout the dialogue is 0.876, probability of them using exactly 6 values is 0.121, of using 5

values is 0.003, of using 4 is 0.00002, and of 3 or less is 0.0000000095. Exact multinomial test shows there are significant differences between
the obtained and the expected probabilities (obtained p–value was small enough that it was rounded up to 0 by the used software).
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Figure 22: Postulate satisfaction on the total sample in Dialogue 2
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6.3 Statements vs Relations

Relations in argumentation frameworks are often defined in terms of the argument structure we are dealing with.

Consequently, they are seen as secondary to arguments, and as such their acceptability is rarely considered. One

of the exceptions is the attack–based semantics for argumentation frameworks, in which the status assigned to a

relation corresponds to the status assigned to its source [60] and vice versa. The same behaviour is replicated by other

frameworks allowing the attacks to appear in extensions [3, 20] if we limit ourselves to non–recursive graphs. In this

section we would like to verify this view by analyzing the answers to the agreement tasks and relation tasks.

We will perform our analysis in the following manner. For every relation of a given type, by which we understand A

good reason against, A somewhat good reason against, A good reason for, A somewhat good reason for and Somehow

related, but can’t say how, we create a distribution based on the levels of agreement assigned to the statements carrying

them out. Moreover, for every possible level of agreement, we gather the types of relations that the statements assigned

a given level carry out. This allows us to observe whether by knowing the value ascribed to a relation we can guess

the value assigned to its source and vice versa. In particular, this allows us to verify whether the connection between

the values assigned to arguments and relations is as strong as we might think based on some of the research in abstract

argumentation. Therefore, what we would expect to obtain is either 1) relations considered “somewhat good” to be

carried out primarily by the statements that the participants disagree with and “good” relations to be sourced primarily

by the statements that the participants agree with, or 2) relations considered “somewhat good” to be carried out

primarily by the statements that have low levels of agreement or disagreement and relations considered “good” to be

sourced primarily by the statements that have high levels of agreement or disagreement. In both cases we expect the

Somewhat related, but can’t say how edges to be primarily associated with statements of an undecided or unknown

status. Our analysis will be carried out on the original as well as pooled data, i.e. one in which certain categories can

be merged. Both relation types and agreement levels can be grouped by strength or polarity:

• Agreement grouping:

– By strength: we group the agreement levels according to how strongly believed or disbelieved they are. We

distinguish between Strong Belief (created from Strongly Agree and Strongly Disagree), Moderate Belief

(combining Agree and Disagree), Weak Belief (grouping Somewhat Agree and Somewhat Disagree), and

Neither (created from Neither Agree nor Disagree and Don’t Know) categories.

– By polarity: we group the agreement levels according to whether they represent belief or disbelief. We dis-

tinguish between Believed (grouping the Somewhat Agree, Agree and Strongly Agree levels), Disbelieved

(created from Somewhat Disagree, Disagree and Strongly Disagree), and Neither (formed from Neither

Agree nor Disagree and Don’t Know) categories.

• Relation grouping:

– By strength: we group relations according to whether they are good or somewhat good reasons. We

distinguish between Strong Relations (formed from A good reason for and A good reason against), Normal

Relations (grouping A somewhat good reason for and A somewhat good reason against), and Dependencies

(representing Somehow related, but can’t say how).

– By polarity: we group relations according to whether they are positive or negative. We distinguish between

Attacks (formed from A good reason against and and A somewhat good reason against), Support (grouping

A good for and A somewhat good reason for), and Dependencies (representing Somehow related, but can’t

say how).

We consider pooling data in order to be able to more clearly investigate certain trends that may become more

apparent with fewer categories.

6.3.1 Dialogue 1

6.3.1.1 Effect of a Relation on its Source

45



In Figure 25 we can observe how the levels of agreements of the sources of relations of a given kind are distributed.

The results show that this agreement distribution is in principle dependent on the nature of the relation in question 11.

Nevertheless, the distributions visible in Figure 25 do show certain similarities and we carry out additional pairwise–

analysis.

We can observe that the distributions of relations marked as being good reasons are relatively similar, as also

supported by the results in Table 11 in Section 9.1.2. In both cases, independently of whether we choose the core or

total sample, the dominating belief assigned to the source is Strongly Agree, with Agree and Strongly Disagree next in

line.

Although some similarities can also be observed between the relations considered as somewhat good reasons for

or against a given statement, they are more visible in case of the core sample (Table 11 in Section 9.1.2). In the total

sample, the proportions of source agreement levels are in principle distinct. It appears that more participants have

chosen disagreement rather than agreement types of sources, though it does not appear that one particular belief is

substantially more common than the other in the total sample. In the core sample, the Somewhat Disagree option

appears to be chosen slightly more often. No particular pattern appears to hold for the Somewhat related, but can’t say

how relation.

Although none of the agreement distributions is random (see Table 12 in Section 9.1.2), we can observe that the

“weaker” the relation, the more blurred the picture becomes. Consequently, if we were given a relation, informed of

its type and then asked to guess what should the belief in its source be, our best chances of answering correctly are in

the case of edges marked as good reasons.

Let us now look at the results obtained for the pooled data. Given the similarity in the behaviour of the relations

marked as good reasons for and against in both samples and the somewhat good reasons for and against in the core

sample, we will now pool our data according to its strength. We first consider grouping both arguments and relations

according to this criterion. We obtain the distributions visible in Figure 26a. The results show that they depend on

the chosen relation type, both in the overall 12 and pairwise analysis (see Table 13 in Section 9.1.2), and that they are

not random (see Table 14 in Section 9.1.2). We can observe that strong relations are primarily carried out by strong

arguments, i.e. those that the participants strongly agree or disagree with. The slightly weaker relations appear to be

carried out more by moderately believed arguments, however, the obtained result accounts for less than 50% of the

cases. The sources of relations marked as dependencies do not seem to follow any particular pattern. We can only

observe that weakly believed arguments are the least common sources.

Let us now consider pooling arguments by polarity and relations by strength. The obtained distributions are de-

picted in Figure 26b. We can observe that in this case, strong relations are primarily carried out by believed arguments.

Normal relations tend to be carried out by disbelieved arguments, though only in the core sample such sources account

for more than 50% of the answers. Finally, relations marked as dependencies appear to be carried out by all possible

types of arguments, to the point that the results obtained in the case of the core sample are similar to random (see

Table 14 in Section 9.1.2). Nevertheless, results in Table 13 in Section 9.1.2 show that despite pooling, the nature of

the source is dependent on the type of relation we consider13 .

Let us now briefly consider pooling relations and arguments according to polarity. Given the similarities in the

behaviour of relations marked as good reasons in the original data, it is not surprising that the results obtained for

attacks and supports are similar in both core and total samples (see also Table 13 in Section 9.1.2), despite the fact that

the overall analysis shows that source distributions depend on the chosen relation14. In both cases, the pooled belief

marked as Neither is the least common option, with Believed being the most common choice with the exception of the

Support relations on the core sample. Again, relations marked as Dependencies do not follow any particular pattern,

even to the point that the answers can be considered random (see Table 14 in Section 9.1.2). This similarity between

attacks and supports persists even if we consider pooling agreement levels according to strength (see Tables 13 and 14

11G–test for independence yields G–value 317.77 with 28 degrees of freedom and p–value less than 2.2×10−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.

12G–test for independence yields G–value 208.01 with 6 degrees of freedom and p–value less than 2.2× 10−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.

13G–test for independence yields G–value 175.33 with 4 degrees of freedom and p–value less than 2.2× 10−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.

14G–test for independence yields G–value 62.846 with 4 degrees of freedom and p–value of 7.312× 10−13. This result was obtained using the
library Deducer (likelihood.test function) in R.
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Figure 25: The levels of agreements assigned to the sources of relations of a given type in Dialogue 1. We use

the following abbreviations: Strongly Agree (SA), Agree (A), Somewhat Agree (SoA), Neither Agree nor Disagree

(NAD), Somewhat Disagree (SoD), Disagree (D), Strongly Disagree (SD), Don’t Know (DK)

in Section 9.1.2), again despite overall result indicating that all of the relations are distinct 15.

To conclude, we can observe that the dependent relations do not appear to favour sources marked as Neither in any

particular way, which does not agree with the models we have recalled at the start of the section. Nevertheless, certain

interesting patterns can be observed for strong and normal relations. In particular, strong relations tend to be carried

out by arguments that are believed (polarity pooling) and strongly believed (strength pooling). Grouping relations by

polarity leads to similar behaviour of attack and support relations, which may mean that future experimental data on

one of them might be generalized to the other.

15G–test for independence yields G–value 69.849 with 6 degrees of freedom and p–value of 4.391× 10−13. This result was obtained using the
library Deducer (likelihood.test function) in R.
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Figure 26: The levels of agreements assigned to the sources of relations of a given type in Dialogue 1 according to

a given type of pooling. We use the following abbreviations: Strong Belief (SB), Normal Belief (NB), Weak Belief

(WB), Neither (N), Disbelief (D), Belief (B).
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6.3.1.2 Effect of an Argument on the Relations it Carries Out

Let us now consider the dual problem i.e. what relations are carried out by an argument assigned a given agreement

level? In Figure 27 we can find the data extracted from the answers of our participants. Although in principle the

relation distribution does depend on the strength of the argument carrying it out 16, we perform additional pairwise

analysis. We can observe that while in the previous case the charts of relations with the same status but opposite

polarity shared certain similarities, the grouping in this case is somewhat different. The graphs of Strongly Agree,

Agree and potentially Strongly Disagree do tend to put more focus on the good reason for and against edges, however,

they in general lead to different results (see Table 15 in Section 9.1.3). The Somewhat Agree, Somewhat Disagree

and Disagree statements on the other hand appear to lead more to relations marked as somewhat good reasons for or

against. The similarity in the types of relations these three agreement levels carry out is also reflected by the results

in Table 15 in Section 9.1.3. The Somewhat good reason against and Somehow related, but can’t say how are the

two most common choices when it comes to the statements that the participants neither agreed nor disagreed with, the

latter being the dominant relation resulting from the elements marked as Don’t know. These two levels of agreement

also lead to similar distributions (see Table 15 in Section 9.1.3).

Based on the results in Table 16 in Section 9.1.3, we can also observe that our results are in principle not random.

The results for agreement levels marked as Somewhat in the core sample are not significant, however, given the

distributions in Figure 27, this might be related to the sample size.
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Figure 27: The types of relations carried out by statements of a given level of agreement in Dialogue 1. We use the

following abbreviations for the relation types: A good reason against (- -), A somewhat good reason against (-), A

good reason for (++), A somewhat good reason for (+), Somewhat related, but can’t say how (?)

In many cases, this initial analysis points to the statements with a particular level of agreement favouring relations

of a corresponding “power”. Thus, we will now consider pooling our results by strength, as visible in Figure 28a.

16G–test for independence yields G–value 317.77 with 28 degrees of freedom and p–value less than 2.2×10
−16 . This result was obtained using

the library Deducer (likelihood.test function) in R.
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All of the belief strengths affect the associated relation distributions in the total sample17, although the results for

the moderate and weak belief appear to be more closely related on the core sample (see Table 17 in Section 9.1.3).

Nevertheless, the obtained distributions are not random (see Table 18 in Section 9.1.3) and we can observe certain

interesting patterns emerging. Strong belief leads primarily to strong relations and weak belief leads primarily to

normal relations (obtained results account for 55% to 72% of the answers, depending on the sample). Relations

caused by the arguments with moderate belief are almost evenly split between strong and normal relations. Arguments

that are classified as Neither often carry out dependencies, however, they do not account for 50% of all of the possible

relations.

Let us now consider pooling agreement levels according to belief and relations according to strength. By doing

so, we obtain the distributions visible in Figure 28b. We can observe that believed arguments lead primarily to strong

relations, disbelieved to normal relations, and neither to dependencies. However, clear dominance is visible only in

the case of believed arguments. In all cases, the chosen agreement level leads to a different relation distribution18 that

is not random (see Tables 17 and 18 in Section 9.1.3).

Finally, let us briefly consider agreement levels paired with relations pooled by polarity. Although tests show that

the obtained results are in principle distinct, many similarities become apparent in the pairwise analysis19. If we group

levels by polarity, we obtain the result that the proportions of the relation types carried out by believed and disbelieved

arguments are not significantly different (see Tables 17 and 18 in Section 9.1.3). This similarity may in part be due

to the connections between the Somewhat Agree, Somewhat Disagree and Disagree agreement levels. It might also

explain the fact that when we consider merging arguments by strength, the similarities between the weak and moderate

or strong levels of agreement become visible (see Tables 17 and 18 in Section 9.1.3).

To conclude, we can observe that the tendencies observable in Figures 28a and 28b seem to agree with what

the models we have previously recalled would assume. However, the domination of the desired relations is not as

significant in all situations as we would expect. Similarly as in the previous relation analysis, the tendencies for

strongly believed (strength pooling) and believed (polarity pooling) arguments are the most visible.

6.3.2 Dialogue 2

6.3.2.1 Effect of a Relation on its Source

In Figure 29 we can observe how the levels of agreements on the sources of relations are distributed. The tests

show that the agreement distributions depend on the type of the relation we consider, both in the overall 20 and pairwise

analysis w.r.t. the total sample and in almost all cases w.r.t. the core sample (see Table 20 in Section 9.2.2). In all

cases, the obtained distributions are not random (Table 21 in Section 9.2.2).

As in the previous dialogue, we can observe certain similarities in the distributions of relations marked as good

reasons for and against, particularly in the case of the core sample (Table 20 in Section 9.2.2). However, it is easy to

see that these results are substantially different from the ones observed in Dialogue 1 (see Figure 25). In this case, the

Agree and Neither Agree nor Disagree options appear to be the two most common choices. Nevertheless, none of them

exceeds 25% of the given answers. The options representing agreement appear to be favoured over those representing

disagreement, which we will take into consideration when analyzing pooled results.

The Agree and Neither Agree nor Disagree answers are also common when it comes to relations marked as A

somewhat good reason against. However, depending on whether we are dealing with the total or core sample, the

Somewhat Agree or Somewhat Disagree value is more frequent. It is worth noticing is that the strongest possible

values – Strongly Agree and Strongly Disagree – are the least common. These values are also rarely chosen in the case

of the A somewhat good reason for relation. For this edge, the Neither Agree nor Disagree level of agreement is the

most common value, both in the total and in the core sample.

17G–test for independence yields G–value 208.01 with 6 degrees of freedom and p–value less than 2.2× 10
−16 . This result was obtained using

the library Deducer (likelihood.test function) in R.
18G–test for independence yields G–value 175.33 with 6 degrees of freedom and p–value less than 2.2× 10

−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.

19When pooling arguments by strength, G–test for independence yields G–value 69.849 with 6 degrees of freedom and p–value of 4.391×10−13 .
When pooling arguments by polarity, G–test for independence yields G–value 62.846 with 4 degrees of freedom and p–value of 7.312 × 10−13 .
This result was obtained using the library Deducer (likelihood.test function) in R.

20G–test for independence yields G–value 390.02 with 28 degrees of freedom and p–value less than 2.2×10−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.
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Figure 28: The types of relations carried out by statements of a given level of agreement in Dialogue 1 according to

a given pooling. We use the following abbreviations for relation types: Strong Relation (SR),Normal Relation (NR),

Dependency (D).

Finally, we reach the relations marked as Somewhat related, but can’t say how. This is the only case in which

the domination of a single value – Neither Agree nor Disagree – is clearly visible, particularly in the case of the core

sample. Additionally, in the total sample we can observe that the Don’t know option may also be of some importance.

Thus, we can observe that independently of the chosen relation type, the Neither Agree nor Disagree agreement level

of the source appears to be quite common, often with Agree, Somewhat Agree or Somewhat Disagree not far behind.

The observed behaviour of the relations is also notably different from what we have seen in Dialogue 1.

Let us now analyze pooled data. We start by grouping relations by strength, and pool agreement levels first by

strength and afterwards by polarity. We obtain the distributions visible in Figures 30a and 30b. The results show that

the way the sources are distributed depends on the chosen relation type, both in the overall 21 and pairwise analysis

(see Table 22 in Section 9.2.2). Furthermore, the results are also not random (Table 23 in Section 9.2.2). Let us

now look more closely at the results with strength pooling on both agreement levels and relations. We can observe

that unlike in the first dialogue, the distribution associated with the strong relations does not appear to follow any

particular pattern. We can only note that weak belief is the least common type of a source. In a similar fashion, normal

relations are carried out by strongly believed arguments the least often, with the remaining types of sources being

spread relatively evenly. Finally, while in Dialogue 1 relations marked as Dependencies did not appear to follow any

patterns, in Dialogue 2 the dominance of sources grouped as Neither is clear.

The dominance of Neither sources in Dependencies is also quite clear if we look at the results of arguments pooled

by polarity and relations by strength. We can observe that in this analysis, strong relations tend to be carried out by

21In case both arguments and relations have been pooled by strength, the G–test for independence yields G–value 232.25 with 6 degrees of
freedom and p–value less than 2.2 × 10−16. In pooling arguments by polarity and relations by strength, we obtain G–value 167.86, 4 degrees of
freedom and again p–value less than 2.2× 10−16. This result was obtained using the library Deducer (likelihood.test function) in R.
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Figure 29: The levels of agreements assigned to sources of relations of a given type in Dialogue 2. We use the fol-

lowing abbreviations: Strongly Agree (SA), Agree (A), Somewhat Agree (SoA), Neither Agree nor Disagree (NAD),

Somewhat Disagree (SoD), Disagree (D), Strongly Disagree (SD), Don’t Know (DK)

believed arguments. Although this repeats the results of Dialogue 1, in this case the dominance is not entirely clear

and believed sources do not account for 50% of the relations. Additionally, unlike in Dialogue 1, the disbelieved

arguments appear to be the least common sources. No particular pattern emerges when we look at normal relations –

we can only observe that the sources marked as Neither appear to be somewhat less common than other types.

Let us now briefly consider pooling relations and arguments according to polarity. Despite the fact that the overall

analysis shows that source distributions depend on the chosen relation22, pairwise analysis gives us a different result.

Although the similarities in the behaviour of relations marked as good reasons in the original data were only apparent

in the core sample, the pooled results obtained for attacks and supports are similar in both core and total samples

(see also Table 22 in Section 9.2.2). Similarly as in the first dialogue, the Believed level is the most common choice.

However, in this dialogue, the relations marked as Dependencies do follow a pattern and are carried out primarily by

arguments marked as Neither. In all cases, our results are not random (see Table 23 in Section 9.2.2). Let us now

pool agreement levels according to strength. The overall test shows that the source distribution depends on the chosen

relation 23. However, a detailed analysis shows that agreement distributions associated with attacks and supports still

22G–test for independence yields G–value 132.84 with 4 degrees of freedom and p–value less than 2.2× 10
−16 . This result was obtained using

the library Deducer (likelihood.test function) in R.
23G–test for independence yields G–value 142.15 with 6 degrees of freedom and p–value less than 2.2× 10−16 . This result was obtained using

the library Deducer (likelihood.test function) in R.
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share certain similarities (see Tables 22 and 23 in Section 9.2.2), even though it becomes apparent mostly on the core

sample.

To conclude, although there are certain characteristics present in both dialogues, not all of the findings from

Dialogue 2 coincide with those from Dialogue 1. This is particularly the case when we consider pooling relations

by strength. Results associated with agreements pooled by strength are quite distinct from the results in Dialogue 1.

It is worth observing that relations marked as Dependency, which previously did not follow any particular pattern,

now favour agreement levels marked as Neither. While strong relations in both dialogues do tend to favour believed

arguments more than disbelieved or neither in polarity pooling of agreement levels, the domination of this value in

Dialogue 1 is not replicated in Dialogue 2.
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Figure 30: The levels of agreements assigned to the sources of relations of a given type in Dialogue 2 according to

a given type of pooling. We use the following abbreviations: Strong Belief (SB), Normal Belief (NB), Weak Belief

(WB), Neither (N), Disbelief (D), Belief (B).

53



6.3.2.2 Effect of an Argument on the Relations it Carries Out

In Figure 31 we can find the data showing what sort of relations are carried out by the statements with a particular

agreement level. In general, the choice of agreement level affects the resulting relation types24. However, in the

pairwise analysis, certain similarities become more visible (see Table 24 in Section 9.2.3).

We may notice that some of the observations made in the case of Dialogue 1 carry over to Dialogue 2. In particular,

the charts created for Strongly Agree, Agree and Strongly Disagree tend to put more focus on the good reason for and

against edges. Nevertheless, the distributions are technically speaking distinct, and the similarity between the strong

agreement and disagreement is detected only in the core sample. The Disagree level, depending on the sample we

are dealing with, favours A good reason against and Somewhat good reason for edges, with A good reason for and A

somewhat good reason against next in line.

The Somewhat Agree and Somewhat Disagree charts are quite similar, as also supported by results in Table 24

in Section 9.2.3. In this case, the A somewhat good reason against agreement level is perhaps more common than

other options. The Neither Agree nor Disagree agreement level appears to favour the Somewhat related, but can’t

say how option the most and the Somewhat good reason for/against answers the least. Finally, we can observe that

the distributions obtained from the total and core samples in the case of the Don’t know chart are quite different; one

favours the A good reason for answer, while the other the Somewhat good reason for/against options. We can observe

that the distributions associated with the agreement levels are in principle not random (see Table 25 in Section 9.2.3),

though there appear to be certain difficulties with the Disagree and Somewhat Disagree values in the core sample.
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Figure 31: The types of relations carried out by statements of a given level of agreement in Dialogue 2. We use the

following abbreviations for the relation types: A good reason against (- -), A somewhat good reason against (-), A

good reason for (++), A somewhat good reason for (+), Somewhat related, but can’t say how (?)

Let us now consider pooling our results. We start by grouping arguments and relations by strength, as visible in

24G–test for independence yields G–value 390.02 with 28 degrees of freedom and p–value less than 2.2×10
−16 . This result was obtained using

the library Deducer (likelihood.test function) in R.
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Figure 32a. All of the belief strengths affect the associated relation distributions, both in the overall25 and pairwise

analysis (see Table 26 in Section 9.2.3). Additionally, the answers extracted from the users are not random (see Table

27 in Section 9.2.3). We can observe that the strong relations account for at least 50% of connections carried out by

arguments that are strongly or moderately believed. Weak belief appears to be split evenly between the strong and

normal relations. Arguments that are neither believed nor disbelieved can lead to all three types of relations, though

strong relations are more favoured than others. Consequently, not all of the observations made in the case of Dialogue

1 are repeated in Dialogue 2.

Let us now consider grouping arguments by polarity and relations by strength (see Figure 32b). Again, all of the

belief strengths affect the associated relation distributions, both in the overall26 and pairwise analysis (see Table 26 in

Section 9.2.3). The answers extracted from the users are also not random (see Table 27 in Section 9.2.3). Nevertheless,

there are certain similarities between the obtained distributions. In particular, we can observe that strong relations

appear to be the most common relations carried out by arguments marked as Believed or Neither, independently of

the sample, and by Disbelieved in the core sample. In particular, in the first and the last case these relations account

for over 60% of all edges. What is worth observing is that dependent links are the least common when it comes to

arguments that are believed or disbelieved. Nevertheless, it is easy to see that the results obtained for agreement levels

marked as Neither and Disbelieved in the second dialogue are different from the first dialogue.

We will now now briefly consider agreement levels paired with relations pooled by polarity. Although tests show

that the obtained results are in principle distinct, certain similarities become apparent in the pairwise analysis27. If we

group agreement levels by polarity, we obtain the result that the proportions of the relation types carried out by the

believed and disbelieved arguments are not significantly different (see Table 26 in Section 9.2.3), particularly in the

case of the total sample. When we consider merging arguments by strength, certain similarities between the weak,

moderate and strong levels of agreement become visible (see Tables 26 and 27 in Section 9.2.3).

To conclude, despite various differences between Dialogue 1 and Dialogue 2, it again appears that analysis in

which relations are pooled by polarity leads to situations where relation distributions might not in all cases depend on

the agreement level of the source. When pooling relations by strength, we can also observe that similarly to Dialogue 1,

the strongly believed (strength pooling) and believed (polarity pooling) arguments lead primarily to strong relations.

However, the remaining pooled agreement levels do not appear to follow exactly the same patterns. Even though

certain shifts towards weaker relations can be observed in Figure 32a, their progress can be seen as “slower” than in

Dialogue 1.

25G–test for independence yields G–value 232.25 with 6 degrees of freedom and p–value less than 2.2× 10−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.

26G–test for independence yields G–value 167.86 with 4 degrees of freedom and p–value less than 2.2× 10−16 . This result was obtained using
the library Deducer (likelihood.test function) in R.

27When pooling arguments by strength, G–test for independence yields G–value 142.15 with 6 degrees of freedom and p–value less than
2.2 × 10−16 . When pooling arguments by polarity, G–test for independence yields G–value 132.84 with 4 degrees of freedom and p–value less
than 2.2× 10−16. This result was obtained using the library Deducer (likelihood.test function) in R.

55



S
R

N
R D

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Strong Belief

S
R

N
R D

Moderate Belief

S
R

N
R D

Weak Belief

Total sample Core sample

S
R

N
R D

Neither

(a) Arguments and relations pooled by strength

S
R

N
R D

0%
10%
20%
30%
40%
50%
60%
70%

Belief

S
R

N
R D

Neither

S
R

N
R D

Disbelief

(b) Arguments pooled by polarity and relations pooled by strength

Figure 32: The types of relations carried out by statements of a given level of agreement in Dialogue 2 according to a

given pooling. We use the following abbreviations for the relation types: Strong Relation (SR),Normal Relation (NR),

Dependency (D).
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6.4 Changes in Beliefs

In this section we discuss the statement awareness declared by the participants in both of the dialogues and the changes

– or rather, the lack of them – in participants’ opinions. In Figure 33 we can observe that the statements we have used

in the dialogues were, in general, not common knowledge.
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Figure 33: The percentage of participants in the core and total samples in both dialogues who have stated that they

were aware of a given argument prior to the experiment

Nevertheless, this lack of awareness of the presented pieces of information did not result in participants changing

their opinions easily. For example, in the first dialogue, the majority of participants – resp. 90% and 87.5% in the total

and core samples – agreed with B on all stages of the dialogue, with the remainder disagreeing with B on all stages of

the dialogue. The majority of participants – 75% and 68.75% in the total and core samples – disagreed with A on all

stages of the dialogue, with resp. 17.5% and 25% agreeing with A on all stages of the dialogue. This leaves us only

with a couple of participants “swapping sides” in the dialogue. More such people can be found in the second dialogue,

where we have 17.5% and 26.67% participants changing between agreeing, disagreeing and being undecided at least

once in the case of statement B in the total and core samples, with 10% and 20% changing their opinions in the case

of A. With all the opportunities that the participants were given to change their opinion, the number of people who

did not at least once alternate between belief and disbelief appears extremely high. Even in a more detailed analysis,

where we differentiate between all the declarable levels of agreement rather than just belief–disbelief, the significant

changes appear to primarily concern argumentB in the first dialogue (see Table 28). Hence, even though the dialogues

appear to have certain effect on the participants, it is more visible on the fine–grained level.

Despite these results, there are few notable changes that have occurred and which we would like to discuss. In

the first dialogue, we have two participants who have changed their position concerning the statement A: one who

initially disbelieved A, but believed it at the end, and one who initially believed A and disbelieved it at the end (this

particular person was also present in the core sample for in this dialogue). In both cases, the change appeared in the

second step of the dialogue. The first person initially disagreed with both A and B and apparently interpreted the

dialogue as discussing whether the hospital staff should be demanded to take the vaccine, not whether it would be best

for them to take it. Once statement C was presented, which in the opinion of this participant reinforced the fact that

the doctors don’t need the shots, he started agreeing with A and no further counterarguments fixed this situation. The

second participant initially agreed with both A and B and provided no real explanation for his opinions. However, the

appearance of C, with which the participant disagreed, led to further disagreement with A throughout the rest of the

dialogue.

In the second dialogue, we have five participants that we would like to discuss: 1) two for whom initial agreement

with B turned to disagreement without affecting A, 2) one for whom agreement (disagreement) with B (with A)
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turned to disagreement (agreement), 3) one for whom disagreement with A turned into indecisiveness, and 4) one for

whom indecisiveness with B turned into disagreement. The last three participants belong to the core sample. In the

majority of these cases, the participants, either due to some initial skepticism or lack of knowledge, became swayed

by the incorrect statements, namely C, D and G. This was often paired with the inability to verify the correctness of

H , or with interpreting it as an admission that the contained substances were so harmful that they had to be removed

for the sake of the children28.

In Figure 34 we present the average change in beliefs of the participants, which is calculated in the following

manner. For every participant, we have summed the differences in their beliefs throughout all the stages in the dialogue

on statements they were aware of and those there were not w.r.t. the value assignment explained at the beginning of

Section 6. By dividing this sum by the number of statements declared as aware or unaware by a given participant

(assuming this number is non–zero), we have obtained an average change in statements of a given type per person.

Based on this we calculate the average change in statements of a given type per sample29. As we may observe, the

changes are quite modest, and relatively close in both aware and unaware statements. This is particularly visible in

Dialogue 1, where the average change is smaller than the single smallest change possible (e.g. the difference between

Strongly Agree to Agree, which are mapped to 6/6 and 5/6 respectively, is approximately 0.167). The variability

in Dialogue 2 is somewhat larger, though one also has to bear in mind that more statements were presented to the

participants and therefore they were given more opportunities to change their mind per statement. Nevertheless, it

is possible that some of the observed changes were noise rather than actual modifications in beliefs caused by the

dialogue. This is particularly supported by the fact that various possible explanations for these differences, such as the

appearance of an attacker, could have been paired with an increase as well as decrease in the beliefs declared by the

participants.
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Figure 34: Average change in beliefs in dialogues per sample, calculated using the value assignment from page 19.

It appears that in many cases, the participants were able to evaluate the statements they were not familiar with

by using their own knowledge and other facts that they were aware of. Unfortunately, this also happened in the

cases where the knowledge of the participants was incorrect, such as the vaccines causing autism or flu shots causing

flu. However, the complete inability to verify the pieces of information contained in the statements with their own

knowledge had made some participants of Dialogue 2 choose to neither agree nor disagree with the initial statements

presented in it. This might mean that depending on the difficulty of the dialogue, too much as well as too little personal

knowledge might affect how open to change people are.

We would also like to note that we have found participants who, on at least one occasion, gave answers such as

“I agree/disagree with this statement”, “This information is (in)accurate” or “I think/believe this is true/false” in the

explanation tasks and refrained from providing a reason for their opinions. By considering only those cases in which

the participants claimed they were not aware of the presented pieces of information and the stage of the dialogue they

were at should not have given them sufficient reasons for evaluating these statements, we have found respectively 8

and 5 participants for the first and second dialogues resorting to such explanations. These participants also exhibited

insignificant, if any, changes in their opinions. Therefore, it might be the case that for various reasons, they could not

or did not want to provide us with further details.

28The thimerosal has been removed from the vaccine primarily due to social pressure and overwhelming distrust, not any scientific evidence of
its harmfulness.

29Participants who did not have any unaware (resp. aware) statements were excluded from the appropriate calculation.
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7 Related Work

In this section we would like to review the results of other works dealing with empirical evaluation of argumentation

approaches and discuss other works dealing with more fine–grained models to argument acceptability. We begin by

analyzing the work by Rahwan et al [55], which focuses on the issue of reinstatement. The authors have prepared a

total of 10 short dialogues in order to study this phenomenon. A sample dialogue for the case of simple reinstatement

is as follows:

A Louis applied the brake and the brake was not faulty. Therefore, the car slowed down.

B The brake fluid was empty. Therefore, the brake was faulty.

C The car had just undergone maintenance service. Therefore, the brake fluid was not empty.

The dialogue was split into three stages, where first A, then A and B, and finally all A, B and C were presented.

For each problem, the participants had to choose a value from a 7–point scale ranging from Certainly false to Certainly

true that best describes their confidence in the conclusion of A. The obtained results support the notions of defeat and

reinstatement, that is, that the belief in A decreases once it is defeated and increases when it is defended, though still

remaining significantly lower than prior to the defeat.

This study, similarly to ours, lends support to the use of more fine–grained approaches towards describing the

beliefs of the participants, such as the epistemic approaches. However, as we can observe, the dialogues used in this

study were much simpler and shorter than ours, and unlikely to be affected by any subjective views of the participants.

The results show that reinstatement as such does occur and thus support the idea behind semantics such as grounded

or preferred. However, at this point it cannot be claimed that they are applicable in a more complex setting and that

they are a general proof for the use of argumentation semantics in computational persuasion.

The next study we would like to consider is by Cerutti et al [19], which again studies various forms of reinstatement.

The authors have prepared two texts – a base one and an extended one – on four topics (weather forecast, political

debate, used car sale and romantic relationship). For example, the texts prepared for the political debate scenario are

as follows:

Base Case: In a TV debate, the politician AAA argues that if Region X becomes independent then Xs citizens will be

poorer than now. Subsequently, financial expert Dr. BBB presents a document, which scientifically shows that

Region X will not be worse off financially if it becomes independent.

Extended Case: In a TV debate, the politician AAA argues that if Region X becomes independent then Xs citizens

will be poorer than now. Subsequently, financial expert Dr. BBB presents a document, which scientifically

shows that Region X will not be worse off financially if it becomes independent. After that, the moderator of the

debate reminds BBB of more recent research by several important economists that disputes the claims in that

document.

The participants are given one of the eight scenarios and then asked to determine which of the following positions

they think is accurate:

• PA: I think that AAAs position is correct (e.g. “Xs citizens will be poorer than now”).

• PB: I think that BBBs position is correct (e.g. “Xs citizens will not be worse off financially”).

• PU : I cannot determine if either AAAs or BBBs position is correct (e.g. “I cannot conclude anything about

Region Xs finances”).

Next, the participants were asked certain questions concerning the text. In particular, concerning the agreement,

the participants are asked “How much do you agree with the following statements?” and respond on a 7–point scale

from Disagree to Agree for each statement.

The results show that the majority of participants in the base case scenarios agree with position PB and with posi-

tion PU in the extended scenarios. They suggest a correspondence between the formal theory used by the authors and
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its representation in natural language. However, additional analyses show that there are some significant deviations,

apparently caused by the personal knowledge of the participants. For example, while PB was the most common choice

in the base weather forecast scenario, there were participants who chose PU and explained their decision with “All

weather forecasts are notoriously inaccurate”.

Our study, similarly to this one, points to the personal knowledge of the participants affecting their decisions. How-

ever, due to a different methodology, it is difficult to compare the other findings. We have presented the participants

with an ongoing dialogue and tried to monitor the changes in their beliefs at every step of the way, similarly as in [55].

In this study, a given participant receives only one text to evaluate, i.e. the base and extended scenarios are judged by

different people. We therefore cannot claim that if a person was first shown the base case, and then the extended one,

the PU choice would still be more common than PB , which is what our results would point to.

Another interesting study worth considering is [56], which focuses on exploring the abilities of argumentation

theory, relevance heuristics, machine and transfer learning for predicting the argument choices of participants, with

a particular focus on the machine learning. Argumentation theory is verified using three experiments, in which the

dialogues are used to construct bipolar argumentation frameworks and the sets of arguments selected by the participants

are contrasted with grounded, preferred and stable extensions. In the first experiment consisting of 6 scenarios, the

authors create bipolar argumentation frameworks which are not known to the participants, present two standpoints

from two parties and ask the participants to choose which of the additional four arguments they would use next if

they were one of the deliberants in the discussion. In the second experiment, real life data is annotated and structured

into a bipolar argumentation framework that is later analyzed. In the third experiment, a chat bot is created, aimed at

discussing flu vaccination with the participants. In this case, both the chat and the participant can only use arguments

from a predefined list. Finally, in an additional experiment, an argument theory agent was implemented in order to

provide suggestions to the participants during a two–person chat.

The authors report that a substantial part of the results (or in some cases, even the majority) do not conform to the

results predicted by the semantics. It is worth mentioning that the stated adherence to the conflict–free extension–based

semantics is 78% and is similar to our results concerning the rational postulate, which corresponds to this semantics.

The created agent was also considered helpful only by a small percentage of the participants. Nevertheless, the causes

for such behaviour of the semantics are not investigated, and the participants were not allowed to explain their decisions

(the first and the third experiment) or there was no possibility to ask them for further input (the second experiment).

Moreover, unlike in our study, the participants were evaluated against the graphs constructed by the authors or anno-

tators. As shown by our results, they do not necessarily reflect how the participants view the relations between the

arguments. Finally, there is no discussion concerning whether these particular bipolar argument framework semantics

used in this experiment [1] are applicable. The stable and conflict–free semantics in this work are based on direct and

supported attacks, and only the direct ones need to be defended from and can be used for defence. Taking into account

the fact that this approach has been superseded by a number of different methods since it has been introduced, the

presented results indicate that these particular semantics are not useful in modelling of the user behaviour, rather than

there exists a deeper issue within the argumentation itself.

The aforementioned studies focused on the empirical evaluation of certain phenomenona in argumentation. How-

ever, there are also other studies, which focus more on the behavioural methods or computational linguistics perspec-

tive rather than the argumentation perspective and can be seen as complementary to ours. These works often use

arguments sourced from e.g. social media, and analyze the relation between the persuasiveness of an argument and its

traits, the persuasiveness of an argument or relations between the arguments and the personality or the emotions of the

participant, and more. Some of them, such as [40], also point to the importance of the prior knowledge in changing

one’s beliefs. These studies are an important line of work which can be harnessed in creating computational persua-

sion methods that are tailored to the participants and which can provide guidance in transforming logical arguments to

natural language arguments. Therefore, they should be considered in the next steps of our work. We refer the readers

to [61, 40] for further details.

Although in this work we have mostly focused on the analysis of epistemic probabilities, we would like to note that

this is not the only approach allowing a more fine–grained perspective on argument acceptability. There also are other

interesting methods that allow score assignments, such as certain forms of preference or weight–based argumentation

(see [9, 6] for an overview). However, many of these works share one common problem, namely that the values

associated with the arguments are quite abstract and do not have a meaning of their own. Even though using them we
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can, for example, state that a participant agrees with one argument more than with another, we cannot state whether

he agrees with it in the first place. Let us consider a framework containing a single argument and no attacks. Giving

this argument a preference 0.3 has no effect, as it will always be accepted in any extension. Giving it the epistemic

probability of 0.3, which is interpreted as disbelief, will lead it to it being always rejected. Consequently, despite

certain similarities on the structural level, the semantics of the preference and weight–based frameworks are quite

different from epistemic probabilities.

8 Conclusions

Our work, through empirically verifying certain prevailing assumptions in argumentation, is about informing the

design of formalisms that can model how participants think about arguments arising in a dialogue. We observe that

handling the uncertainty concerning both the participants’ opinions about arguments and the structure of the graph is of

critical importance, and that a Dung framework equipped only with the standard semantics is insufficient to represent

the views of the participants. Our results can be summarized in the following manner:

Observation 1 The data supports the use of the constellation approach to probabilistic argumentation for modelling

the argument graphs representing the views of dialogue participants. In particular, in Section 6.1 we have

seen that people may interpret statements and relations between them differently and without adhering to the

intended relations. Furthermore, their personal knowledge can affect their perception and evaluation of the

dialogue. Thus, the constellation approach can represent our uncertainty about the argument graphs describing

our opponents views.

Observation 2 People may explicitly declare that two given statements are connected, however, they might not be

sure of the exact nature of the relation between them. In Section 6.1 we have observed that the portion of

the graphs declared by the participants that were not clarified (i.e. contained at least one relation marked as

dependent) reached even 70%. We therefore also need to express the uncertainty that a person has about his or

her own views. Although for the purpose of the analysis we have introduced the notion of a tripolar framework

in order to be represent such situations, this issue can potentially be addressed with the constellation approach

to argumentation. By this we understand that associated with a given unclarified framework we can have a

number of graphs which interpret the dependent links as attacking or supporting, each with a given probability

that could, for example, be obtained from the graph distribution of all participants.

Observation 3 The data supports the use of the epistemic approach to probabilistic argumentation. In Section 6.2

we calculated how many values the participants were using throughout the dialogues, and we could have ob-

served that in most of the cases three values were insufficient to represent the participants’ opinions. Another of

our important observations concerns the adherence to the epistemic postulates, analyzed in the aforementioned

section. While classical semantics tend to represent a number of properties at the same time, a single postulate

tends to focus on a single aspect, as seen in Section 4.1. They therefore allow a more detailed view on the

participant behaviour and can allow us to analyze the cases in which classic semantics may fail to explain it.

The epistemic postulates can also provide more feedback to argumentation systems, such as for computational

persuasion, than normal semantics do. For example, the low performance of the argumentation semantics such

as complete does not really inform the system what aspect of the participant reasoning does not meet the se-

mantics requirements. In contrast, the high performance of the preferential postulates and low performance of

the explanatory ones, can inform the system that it has insufficient information about the participant’s personal

knowledge and that it should proceed with querying him or her for further data. This is particularly important

as our data also shows that people use their own personal knowledge in order to make judgments and might not

necessarily disclose it.

The extended epistemic approach [52] would also allow us to model situations where the way a given relation

is perceived is not necessarily tightly related to the way how much we believe or disbelieve its source, which as

seen in Section 6.3, does tend to occur. It is likely that there are more properties of an argument or statement,

such as how detailed and informative it is, which affect how the relations carried out by it are seen by people.

While our analysis concerned the impact of the source of a relation on the relation and vice versa, it is possible
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that both source and target can affect the relation and thus approaches from [16, 37] could be verified. Thus,

these issues need further investigation.

Observation 4 The data supports the use of bipolar argumentation frameworks. In Section 6.1 we have observed

that the participants explicitly view certain relations as supporting and that the notion of defence does not

account for all of the positive relations that the participants have identified between the presented statements.

In particular, we could have observed that there are new support relations arising in the context of the dialogue,

such as support coming from statements working towards the same goal.

Observation 5 The data supports the use of bipolar argumentation in combination with the prudent/careful ap-

proaches. In Section 6.1 we have observed that many additional attacks perceived by the participants can be

explained by the existing notions of indirect conflicts in these settings. They can therefore be used to model

auxiliary conflicts arising in the context of a dialogue, but not necessarily created on the logical level.

Observation 6 The data shows that people use their own personal knowledge in order to make judgments and might

not necessarily disclose it. In Section 6.2 we have shown how the differences between the declared and expanded

graphs become visible on the postulates highly sensitive to personal knowledge, such as the ones belonging to

the explanatory family. Additionally, in Section 6.4 we have noted that a number of participants were able to

evaluate the presented statements despite the lack of awareness of certain information. This, combined with

them not providing any explanations for their opinions, may mean that argumentation systems need to handle

participants not willing to share their knowledge.

Observation 7 The data shows that presenting a new and correct piece of information that a given person was not

aware of does not necessarily lead to changing that person’s beliefs. In Section 6.4 we have observed that

throughout the dialogues, not many participants have changed their opinions in a significant manner. Moreover,

quite often those who have, have done so under the influence of incorrect information and presenting them with

the correct data has not managed to rectify their opinions.

Our exploratory study shows that the most common approaches to argumentation might be too simplistic in order to

adequately grasp human reasoning. However, we do not believe that the argumentation theory as a field is insufficient

altogether. In particular, we have highlighted the correspondence of the obtained results to various, less common

formalisms, such as probabilistic and bipolar frameworks, and prudent and careful approaches. Consequently, these

methods could be merged in the future in order to develop abstract argumentation tools that can be used in dialogical

argumentation with more success. Nevertheless, further and more specialized studies concerning our observations

should be carried out. In particular, our experiment could be seen as dynamic, as it concerned two dialogues between

different parties. It would be interesting to observe whether our findings could be replicated in a more static setting,

where arguments are presented randomly and not in the context of a dialogue. For example, this shift could affect the

perception of the indirect attacks, defenses and supports between different statements. We believe further studies will

provide more insight into this matter.
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9 Statistics Appendix

9.1 Dialogue 1

9.1.1 Postulate Satisfaction

Total Sample

Intended vs

Declared

Intended vs

Expanded

Intended vs

Common

Declared vs

Expanded

Declared vs

Common

Expanded vs

Common

Z p–value Z p–value Z p–value Z p–value Z p-value Z p–value

Preferential 1.428 0.149 1.472 0.143 1.999 0.125 1.000 1.000 -0.221 0.819 -0.544 0.601

Rational 2.417 0.019 2.426 0.018 1.732 0.250 1.000 1.000 -2.017 0.061 -2.199 0.036

Strict 1.609 0.115 1.795 0.079 1.732 0.250 1.000 1.000 -1.079 0.306 -1.364 0.203

Protective 1.102 0.289 1.102 0.289 1.732 0.250 NA NA -0.608 0.577 -0.608 0.577

Restrained 0.880 0.411 0.880 0.411 1.414 0.500 NA NA -0.608 0.577 -0.608 0.577

Coherent -1.783 0.075 -0.252 0.804 NA NA 2.447 0.031 1.783 0.075 0.252 0.804

Involutary -1.344 0.183 -0.461 0.650 NA NA 2.235 0.063 1.344 0.183 0.461 0.650

Justifiable 2.917 0.004 2.917 0.004 NA NA NA NA -2.917 0.004 -2.917 0.004

Semi Optimistic 1.799 0.064 1.420 0.144 -0.296 1.000 -1.414 0.500 -1.462 0.146 -0.990 0.331

Semi Founded 4.107 0.000 1.847 0.066 -1.732 0.250 -3.304 0.001 -4.682 0.000 -2.225 0.025

Founded 3.353 0.001 0.956 0.351 -2.449 0.031 -3.153 0.002 -4.412 0.000 -1.870 0.062

Optimistic 3.213 0.001 1.150 0.260 -2.000 0.125 -2.823 0.008 -4.084 0.000 -1.735 0.083

Demanding -1.083 0.354 -2.383 0.016 1.999 0.125 -2.447 0.031 2.299 0.026 3.025 0.002

Guarded 4.220 0.000 2.109 0.034 -1.414 0.500 -3.153 0.002 -4.682 0.000 -2.356 0.017

Discharging 4.220 0.000 2.133 0.032 -1.414 0.500 -3.153 0.002 -4.682 0.000 -2.363 0.017

Trusting 4.224 0.000 2.203 0.026 -1.732 0.250 -3.153 0.002 -4.772 0.000 -2.559 0.009

Anticipating 4.224 0.000 2.203 0.026 -1.732 0.250 -3.153 0.002 -4.772 0.000 -2.559 0.009

Core Sample

Intended vs

Declared

Intended vs

Expanded

Intended vs

Common

Declared vs

Expanded

Declared vs

Common

Expanded vs

Common

Z p–value Z p–value Z p–value Z p–value Z p-value Z p–value

Preferential 1.732 0.250 1.730 0.250 1.000 1.000 1.000 1.000 -0.500 1.000 -1.414 0.500

Rational 1.730 0.250 1.730 0.250 1.000 1.000 1.000 1.000 -1.414 0.500 -1.732 0.250

Strict 1.414 0.500 1.732 0.250 1.000 1.000 1.000 1.000 -0.577 1.000 -1.414 0.500

Protective 0.318 1.000 0.318 1.000 1.000 1.000 NA NA 0.138 0.750 0.138 0.750

Restrained -0.138 0.750 -0.138 0.750 NA NA NA NA 0.138 0.750 0.138 0.750

Coherent -0.138 0.750 1.208 0.375 NA NA 1.413 0.500 0.138 0.750 -1.208 0.375

Involutary 0.615 0.750 1.033 0.500 NA NA 1.000 1.000 -0.615 0.750 -1.033 0.500

Justifiable 1.730 0.250 1.730 0.250 NA NA NA NA -1.730 0.250 -1.730 0.250

SemiOptimistic 0.615 0.750 0.034 1.000 -1.000 1.000 -1.000 1.000 -1.033 0.500 -0.034 1.000

SemiFounded 0.841 0.500 -1.587 0.124 -1.413 0.500 -2.617 0.016 -1.995 0.125 1.313 0.227

Founded 0.382 1.000 -2.169 0.031 -1.732 0.250 -2.617 0.016 -1.996 0.125 1.671 0.094

Optimistic 0.382 1.000 -1.932 0.055 -1.732 0.250 -2.431 0.031 -1.996 0.125 1.361 0.191

Demanding 1.000 1.000 -0.046 1.000 NA NA -1.000 1.000 -1.000 1.000 0.046 1.000

Guarded 0.841 0.500 -1.390 0.176 -1.413 0.500 -2.431 0.031 -1.995 0.125 1.089 0.313

Discharging 0.841 0.500 -1.389 0.176 -1.413 0.500 -2.431 0.031 -1.995 0.125 1.115 0.266

Trusting 0.841 0.500 -1.442 0.152 -1.730 0.250 -2.431 0.031 -2.226 0.063 0.855 0.426

Anticipating 0.841 0.500 -1.442 0.152 -1.730 0.250 -2.431 0.031 -2.226 0.063 0.855 0.426

Table 10: The results of the Wilcoxon signed rank test with Pratt adjustment for a given postulate evaluated on two

separate graphs on the total and core samples in Dialogue 1. The results have been obtained using R library coin. We

have highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis.

In case the adherence rate for a given postulate was identical for two graphs for all participants, the algorithm has

returned NA.



9.1.2 Statements vs. Relations: Effect of a Relation on its Source

Total Sample
- + + + ?

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

- - 153.455 7 0.000 5.076 7 0.651 89.014 7 0.000 94.698 7 0.000

- 145.156 7 0.000 15.290 7 0.032 52.819 7 0.000

+ + 82.477 7 0.000 84.490 7 0.000

+ 37.405 7 0.000

Core Sample
- + + + ?

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

- - 85.098 7 0.000 10.231 7 0.176 77.735 7 0.000 69.700 7 0.000

- 38.538 7 0.000 6.837 7 0.446 26.354 7 0.000

+ + 45.756 7 0.000 30.842 7 0.000

+ 35.980 7 0.000

Table 11: Results of G–test for independence between relations of given type on total and core samples. We use the

following abbreviations for the relation types: A good reason against (- -), A somewhat good reason against (-), A

good reason for (++), A somewhat good reason for (+), Somewhat related, but can’t say how (?). DF stands for degrees

of freedom. We have highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the

null hypothesis. These results were obtained using library Deducer (likelihood.test function) in R.

Total Sample Core Sample

- - - + + + ? - - - + + + ?

χ2 401.219 66.134 393.783 42.745 40.784 340.297 44.036 108.651 57.959 17.267

DF 7 7 7 7 7 7 7 7 7 7

p–value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016

Table 12: Results of chi–squared goodness of fit test on levels of agreement of sources of a relation of a given type in

Dialogue 1. We use the following abbreviations for the relation types: A good reason against (- -), A somewhat good

reason against (-), A good reason for (++), A somewhat good reason for (+), Somewhat related, but can’t say how (?).

DF stands for degrees of freedom. We have highlighted the fields with p–value greater than 0.05, i.e. those for which

we cannot reject the null hypothesis. These results were obtained using R.



Relations pooled according to strength

Agreement pooled

according to strength

Total Sample Core Sample

Normal Relation Dependency Normal Relation Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Strong Relation 145.715 3 0.000 89.373 3 0.000 66.202 3 0.000 61.424 3 0.000

Normal Relation 47.221 3 0.000 19.351 3 0.000

Agreement pooled

according to polarity

Total Sample Core Sample

Normal Relation Dependency Normal Relation Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Strong Relation 113.155 2 0.000 103.253 2 0.000 86.140 2 0.000 53.169 2 0.000

Normal Relation 25.713 2 0.000 31.549 2 0.000

Relations pooled according to polarity

Agreement pooled

according to polarity

Total Sample Core Sample

Support Dependency Support Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Attack 0.673 2 0.714 48.684 2 0.000 4.906 2 0.086 35.441 2 0.000

Support 54.445 2 0.000 29.528 2 0.000

Agreement pooled

according to strength

Total Sample Core Sample

Support Dependency Support Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Attack 7.553 3 0.056 48.315 3 0.000 2.302 3 0.512 39.198 3 0.000

Support 56.617 3 0.000 29.107 3 0.000

Table 13: Results of G–test for independence between relations of given type in Dialogue 1 on total and core samples

according to a given pooling. DF stands for degrees of freedom. We have highlighted the fields with p–value greater

than 0.05, i.e. those for which we cannot reject the null hypothesis. These results were obtained using library Deducer

(likelihood.test function) in R.

Relations pooled according to strength
Agreement pooled

according to strength
Total Sample Core Sample

Strong Relation Normal Relation Dependency Strong Relation Normal Relation Dependency

χ2 472.913 78.459 30.627 297.046 46.399 9.853

DF 3 3 3 3 3 3

p–value 0.000 0.000 0.000 0.000 0.000 0.020

Agreement pooled

according to polarity
Total Sample Core Sample

Strong Relation Normal Relation Dependency Strong Relation Normal Relation Dependency

χ2 519.513 136.832 11.412 185.490 97.475 0.960

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.003 0.000 0.000 0.619

Relations pooled according to polarity
Agreement pooled

according to polarity
Total Sample Core Sample

Attack Support Dependency Attack Support Dependency

χ2 272.556 251.086 11.412 120.544 64.511 0.960

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.003 0.000 0.000 0.619

Agreement pooled

according to strength
Total Sample Core Sample

Attack Support Dependency Attack Support Dependency

χ2 184.929 229.567 30.627 185.019 79.000 9.853

DF 3 3 3 3 3 3

p–value 0.000 0.000 0.000 0.000 0.000 0.020

Table 14: Results of chi–squared goodness of fit test on levels of agreement of sources of a relation of a given type

in Dialogue 1 on total and core samples according to a given pooling. DF stands for degrees of freedom. We have

highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These

results were obtained using R.



9.1.3 Statements vs. Relations: Effect of an Argument on the Relations it Carries Out

Total
sample

D SoD NAD DK SoA A SA

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

SD 34.873 0.000 35.761 0.000 44.077 0.000 17.742 0.001 33.778 0.000 11.239 0.024 23.965 0.000

D 3.452 0.485 19.668 0.001 13.085 0.011 8.647 0.071 61.659 0.000 118.932 0.000

SoD 25.352 0.000 19.199 0.001 6.513 0.164 63.386 0.000 105.564 0.000

NAD 4.571 0.334 38.749 0.000 59.589 0.000 97.628 0.000

DK 25.826 0.000 25.004 0.000 40.261 0.000

SoA 47.747 0.000 80.135 0.000

A 13.623 0.009

Core
sample

D SoD NAD DK SoA A SA

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

SD 11.457 0.022 5.418 0.247 23.947 0.000 28.026 0.000 2.570 0.632 5.042 0.283 36.282 0.000

D 2.413 0.660 19.445 0.001 29.463 0.000 0.477 0.976 25.615 0.000 89.884 0.000

SoD 13.304 0.010 20.222 0.000 0.351 0.986 13.042 0.011 51.616 0.000

NAD 6.920 0.140 4.976 0.290 22.987 0.000 50.419 0.000

DK 6.329 0.176 19.897 0.001 50.310 0.000

SoA 4.931 0.294 14.571 0.006

A 20.806 0.000

Table 15: Results of G–test for independence between different argument acceptance levels in Dialogue 1 on total and

core samples. In all cases we have obtained 4 degrees of freedom. We use the following abbreviations: Strongly Agree

(SA), Agree (A), Somewhat Agree (SoA), Neither Agree nor Disagree (NAD), Somewhat Disagree (SoD), Disagree

(D), Strongly Disagree (SD), Don’t Know (DK). DF stands for degrees of freedom. We have highlighted the fields

with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These results were obtained

using library Deducer (likelihood.test function) in R.

Total Sample Core Sample

SD D SoD NAD DK SoA A SA SD D SoD NAD DK SoA A SA

χ2 11.314 32.225 33.057 35.972 14.727 35.980 57.000 171.296 12.239 23.340 7.296 13.909 25.600 2.000 18.706 190.611

DF 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

p–value 0.023 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.016 0.000 0.121 0.008 0.000 0.736 0.001 0.000

Table 16: Results of chi–squared goodness of fit test on relations carried out by arguments of a given acceptance level

in Dialogue 1. We use the following abbreviations: Strongly Agree (SA), Agree (A), Somewhat Agree (SoA), Neither

Agree nor Disagree (NAD), Somewhat Disagree (SoD), Disagree (D), Strongly Disagree (SD), Don’t Know (DK). DF

stands for degrees of freedom. We have highlighted the fields with p–value greater than 0.05, i.e. those for which we

cannot reject the null hypothesis. These results were obtained using R.



Agreement pooled according to strength

Relations pooled

according to strength

Total Sample Core Sample

Moderate Belief Weak Belief Neither Moderate Belief Weak Belief Neither

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

Strong Belief 36.110 0.000 122.613 0.000 100.750 0.000 40.240 0.000 33.854 0.000 65.784 0.000

Moderate Belief 44.053 0.000 52.513 0.000 2.165 0.339 29.473 0.000

Weak Belief 49.153 0.000 20.024 0.000

Relations pooled

according to polarity

Total Sample Core Sample

Moderate Belief Weak Belief Neither Moderate Belief Weak Belief Neither

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

Strong Belief 7.965 0.019 5.437 0.066 56.972 0.000 4.124 0.127 2.060 0.357 41.822 0.000

Moderate Belief 4.981 0.083 37.544 0.000 0.229 0.892 25.974 0.000

Weak Belief 49.160 0.000 19.549 0.000

Agreement pooled according to polarity

Relations pooled

according to strength

Total Sample Core Sample

Believed Neither Believed Neither

G–value p–value G–value p–value G–value p–value G–value p–value

Disbelieved 98.123 0.000 40.289 0.000 74.909 0.000 37.864 0.000

Believed 100.516 0.000 62.282 0.000

Relations pooled

according to polarity

Total Sample Core Sample

Believed Neither Believed Neither

G–value p–value G–value p–value G–value p–value G–value p–value

Disbelieved 5.811 0.055 37.922 0.000 5.042 0.080 36.045 0.000

Believed 62.659 0.000 34.388 0.000

Table 17: Results of G–test for independence between different argument acceptance levels in Dialogue 1 on total and

core samples according to a given pooling. In all cases we have obtained 2 degrees of freedom. We have highlighted

the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These results were

obtained using library Deducer (likelihood.test function) in R.

Agreement pooled according to strength
Relations pooled

according to strength
Total Sample Core Sample

Strong Belief Moderate Belief Weak Belief Neither Strong Belief Moderate Belief Weak Belief Neither

χ2 280.351 75.107 102.118 13.865 192.360 33.832 17.645 8.340

DF 2 2 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.015

Relations pooled

according to polarity
Total Sample Core Sample

Strong Belief Moderate Belief Weak Belief Neither Strong Belief Moderate Belief Weak Belief Neither

χ2 121.032 74.476 63.430 7.000 116.919 43.486 15.516 6.298

DF 2 2 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.043

Agreement pooled according to polarity
Relations pooled

according to strength
Total Sample Core Sample

Disbelieved Believed Neither Disbelieved Believed Neither

χ2 84.105 333.680 13.865 65.475 197.077 8.340

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.001 0.000 0.000 0.015

Relations pooled

according to polarity
Total Sample Core Sample

Disbelieved Believed Neither Disbelieved Believed Neither

χ2 69.584 180.390 7.000 69.475 107.868 6.298

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.030 0.000 0.000 0.043

Table 18: Results of chi–squared goodness of fit test on relations carried out by arguments of a given acceptance level

in Dialogue 1 on total and core samples according to a given pooling. DF stands for degrees of freedom. We have

highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These

results were obtained using R.



9.2 Dialogue 2

9.2.1 Postulate Satisfaction

Total Sample

Intended vs

Declared

Intended vs

Expanded

Intended vs

Common

Declared vs

Expanded

Declared vs

Common

Expanded vs

Common

Z p–value Z p–value Z p–value Z p–value Z p-value Z p–value

Preferential 3.231 0.001 3.256 0.001 2.995 0.004 1.414 0.500 -1.632 0.132 -1.849 0.080

Rational 3.021 0.002 3.035 0.002 2.642 0.016 1.000 1.000 -2.029 0.050 -2.044 0.048

Strict 1.957 0.050 2.550 0.010 3.585 0.000 1.999 0.125 -0.143 0.892 -0.941 0.351

Protective 2.410 0.015 2.485 0.012 4.295 0.000 1.000 1.000 0.378 0.712 0.307 0.766

Restrained 2.019 0.043 2.026 0.042 3.718 0.000 1.000 1.000 -0.131 0.905 -0.182 0.863

Coherent 2.019 0.043 3.794 0.000 4.190 0.000 3.845 0.000 0.472 0.640 -2.421 0.015

Involutary 0.465 0.641 2.425 0.015 2.235 0.063 3.154 0.002 0.497 0.613 -1.914 0.063

Justifiable 2.236 0.063 2.000 0.125 NA NA -1.000 1.000 -2.236 0.063 -2.000 0.125

SemiOptimistic -3.196 0.001 -3.834 0.000 -4.498 0.000 -2.643 0.016 -1.062 0.308 0.416 0.757

SemiFounded 4.291 0.000 0.389 0.704 NA NA -3.963 0.000 -4.291 0.000 -0.389 0.704

Founded 2.825 0.008 -0.971 0.315 NA NA -3.156 0.002 -2.825 0.008 0.971 0.315

Optimistic 2.827 0.008 0.284 0.918 NA NA -2.644 0.016 -2.827 0.008 -0.284 0.918

Demanding 1.363 0.250 -0.508 0.684 1.999 0.125 -1.867 0.094 -0.255 1.000 1.275 0.173

Guarded 4.072 0.000 0.194 0.850 -1.732 0.250 -3.842 0.000 -4.298 0.000 -0.631 0.535

Discharging 3.365 0.000 -0.157 0.880 -2.824 0.008 -3.841 0.000 -4.500 0.000 -0.888 0.381

Trusting 4.208 0.000 0.916 0.363 -1.414 0.500 -3.588 0.000 -4.330 0.000 -1.259 0.213

Anticipating 3.636 0.000 0.346 0.735 -1.999 0.125 -3.305 0.001 -4.104 0.000 -0.986 0.331

Core Sample

Intended vs

Declared

Intended vs

Expanded

Intended vs

Common

Declared vs

Expanded

Declared vs

Common

Expanded vs

Common

Z p–value Z p–value Z p–value Z p–value Z p-value Z p–value

Preferential 2.226 0.063 2.226 0.063 1.994 0.125 NA NA -1.000 1.000 -1.000 1.000

Rational 2.224 0.063 2.224 0.063 1.729 0.250 NA NA -1.413 0.500 -1.413 0.500

Strict 2.025 0.063 2.025 0.063 1.993 0.125 NA NA -0.961 0.625 -0.961 0.625

Protective 2.124 0.035 2.124 0.035 2.924 0.004 NA NA 0.435 0.703 0.435 0.703

Restrained 1.983 0.051 1.983 0.051 2.229 0.063 NA NA -0.411 0.813 -0.411 0.813

Coherent 2.215 0.027 2.647 0.006 2.777 0.008 2.229 0.063 -0.494 1.000 -1.679 0.125

Involutary 0.961 0.625 1.594 0.219 1.414 0.500 1.414 0.500 0.049 1.000 -0.961 0.625

Justifiable NA NA NA NA NA NA NA NA NA NA NA NA

SemiOptimistic -2.647 0.008 -3.056 0.002 -3.172 0.001 -1.994 0.125 -0.960 0.500 0.535 1.000

SemiFounded 2.224 0.063 -1.061 0.359 NA NA -2.433 0.031 -2.224 0.063 1.061 0.359

Founded 1.000 1.000 -0.659 0.500 NA NA -1.413 0.500 -1.000 1.000 0.659 0.500

Optimistic NA NA -1.000 1.000 NA NA -1.000 1.000 NA NA 1.000 1.000

Demanding 1.729 0.250 0.618 0.750 1.730 0.250 -1.000 1.000 0.049 1.000 0.659 0.500

Guarded 1.993 0.125 -1.393 0.188 NA NA -2.429 0.031 -1.993 0.125 1.393 0.188

Discharging 0.745 0.594 -1.687 0.102 -1.413 0.500 -2.427 0.031 -1.994 0.125 1.359 0.191

Trusting 1.730 0.250 -0.130 0.906 NA NA -1.729 0.250 -1.730 0.250 0.130 0.906

Anticipating 0.659 0.500 -0.809 0.531 -1.000 1.000 -1.729 0.250 -1.413 0.500 0.513 0.688

Table 19: The results of the Wilcoxon signed rank test with Pratt adjustment for a given postulate evaluated on two

separate graphs on the total and core samples in Dialogue 2. The results have been obtained using R library coin. We

have highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis.

In case the adherence rate for a given postulate was identical for two graphs for all participants, the algorithm has

returned NA.



9.2.2 Statements vs. Relations: Effect of a Relation on its Source

Total Sample
- + + + ?

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

- - 146.771 7 0.000 44.558 7 0.000 112.838 7 0.000 122.577 7 0.000

- 70.229 7 0.000 49.829 7 0.000 125.574 7 0.000

+ + 82.165 7 0.000 110.601 7 0.000

+ 90.918 7 0.000

Core Sample
- + + + ?

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

- - 86.269 7 0.000 7.506 7 0.378 83.920 7 0.000 123.81499 7 0.000

- 70.549 7 0.000 18.330 7 0.011 89.734 7 0.000

+ + 74.209 7 0.000 110.2263 7 0.000

+ 42.580 7 0.000

Table 20: Results of G–test for independence between relations of given type in Dialogue 2 on total and core samples.

We use the following abbreviations for the relation types: A good reason against (- -), A somewhat good reason against

(-), A good reason for (++), A somewhat good reason for (+), Somewhat related, but can’t say how (?). DF stands

for degrees of freedom. We have highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot

reject the null hypothesis. These results were obtained using library Deducer (likelihood.test function) in R.

Total Sample Core Sample

- - - + + + ? - - - + + + ?

χ2 220.015 183.075 146.260 87.918 378.960 134.442 59.454 79.750 46.842 396.177

DF 7 7 7 7 7 7 7 7 7 7

p–value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 21: Results of chi–squared goodness of fit test on levels of agreement of sources of a relation of a given type in

Dialogue 2. We use the following abbreviations for the relation types: A good reason against (- -), A somewhat good

reason against (-), A good reason for (++), A somewhat good reason for (+), Somewhat related, but can’t say how (?).

DF stands for degrees of freedom. We have highlighted the fields with p–value greater than 0.05, i.e. those for which

we cannot reject the null hypothesis. These results were obtained using R.



Relations pooled according to strength

Agreement pooled

according to strength

Total Sample Core Sample

Normal Relation Dependency Normal Relation Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Strong Relation 99.442 3 0.000 120.905 3 0.000 98.797 3 0.000 127.352 3 0.000

Normal Relation 127.914 3 0.000 54.266 3 0.000

Agreement pooled

according to polarity

Total Sample Core Sample

Normal Relation Dependency Normal Relation Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Strong Relation 38.622 2 0.000 108.870 2 0.000 14.090 2 0.001 120.824 2 0.000

Normal Relation 127.904 2 0.000 55.808 2 0.000

Relations pooled according to polarity

Agreement pooled

according to polarity

Total Sample Core Sample

Support Dependency Support Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Attack 3.595 2 0.166 122.975 2 0.000 9.883 2 0.007 107.440 2 0.000

Support 104.779 2 0.000 78.490 2 0.000

Agreement pooled

according to strength

Total Sample Core Sample

Support Dependency Support Dependency

G–value DF p–value G–value DF p–value G–value DF p–value G–value DF p–value

Attack 9.338 3 0.025 128.599 3 0.000 0.965 3 0.810 104.209 3 0.000

Support 106.480 3 0.000 82.158 3 0.000

Table 22: Results of G–test for independence between relations of given type in Dialogue 2 on total and core samples

according to a given pooling. DF stands for degrees of freedom. We have highlighted the fields with p–value greater

than 0.05, i.e. those for which we cannot reject the null hypothesis. These results were obtained using library Deducer

(likelihood.test function) in R.

Relations pooled according to strength
Agreement pooled

according to strength
Total Sample Core Sample

Strong Relation Normal Relation Dependency Strong Relation Normal Relation Dependency

χ2 118.474 145.419 278.048 38.630 73.749 188.726

DF 3 3 3 3 3 3

p–value 0.000 0.000 0.000 0.000 0.000 0.000

Agreement pooled

according to polarity
Total Sample Core Sample

Strong Relation Normal Relation Dependency Strong Relation Normal Relation Dependency

χ2 108.641 10.771 141.128 61.437 7.732 106.235

DF 2 2 2 2 2 2

p–value 0.000 0.005 0.000 0.000 0.021 0.000

Relations pooled according to polarity
Agreement pooled

according to polarity
Total Sample Core Sample

Attack Support Dependency Attack Support Dependency

χ2 63.392 24.454 141.128 59.744 4.805 106.235

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.000 0.090 0.000

Agreement pooled

according to strength
Total Sample Core Sample

Attack Support Dependency Attack Support Dependency

χ2 112.872 83.463 278.048 22.326 20.270 188.726

DF 3 3 3 3 3 3

p–value 0.000 0.000 0.000 0.000 0.000 0.000

Table 23: Results of chi–squared goodness of fit test on levels of agreement of sources of a relation of a given type

in Dialogue 2 on total and core samples according to a given type of pooling. DF stands for degrees of freedom. We

have highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis.

These results were obtained using R.



9.2.3 Statements vs. Relations: Effect of an Argument on the Relations it Carries Out

Total
sample

D SoD NAD DK SoA A SA

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

SD 88.802 0.000 41.240 0.000 57.479 0.000 39.781 0.000 39.381 0.000 18.469 0.001 15.769 0.003

D 46.449 0.000 116.328 0.000 72.405 0.000 30.161 0.000 72.721 0.000 129.046 0.000

SoD 40.291 0.000 45.535 0.000 5.529 0.237 46.450 0.000 60.854 0.000

NAD 10.459 0.033 50.145 0.000 77.095 0.000 74.098 0.000

DK 41.020 0.000 41.392 0.000 55.609 0.000

SoA 37.557 0.000 68.731 0.000

A 21.771 0.000

Core
sample

D SoD NAD DK SoA A SA

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

SD 48.190 0.000 37.146 0.000 64.903 0.000 83.274 0.000 48.583 0.000 19.065 0.001 6.361 0.174

D 4.049 0.399 26.022 0.000 10.662 0.031 6.652 0.155 22.830 0.000 61.635 0.000

SoD 21.170 0.000 11.723 0.020 11.731 0.019 17.529 0.002 46.062 0.000

NAD 43.599 0.000 56.900 0.000 72.986 0.000 87.561 0.000

DK 18.957 0.001 53.371 0.000 94.664 0.000

SoA 17.817 0.001 55.203 0.000

A 20.983 0.000

Table 24: Results of G–test for independence between different argument acceptance levels in Dialogue 2 on total and

core samples. In all cases we have obtained 4 degrees of freedom. We use the following abbreviations: Strongly Agree

(SA), Agree (A), Somewhat Agree (SoA), Neither Agree nor Disagree (NAD), Somewhat Disagree (SoD), Disagree

(D), Strongly Disagree (SD), Don’t Know (DK). DF stands for degrees of freedom. We have highlighted the fields

with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These results were obtained

using library Deducer (likelihood.test function) in R.

Total Sample Core Sample

SD D SoD NAD DK SoA A SA SD D SoD NAD DK SoA A SA

χ2 87.128 117.032 22.202 36.956 37.706 26.618 137.961 156.983 90.706 5.596 7.067 59.016 16.133 32.727 98.417 140.519

DF 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

p–value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.231 0.132 0.000 0.003 0.000 0.000 0.000

Table 25: Results of chi–squared goodness of fit test on relations carried out by arguments of a given acceptance level

in Dialogue 2. We use the following abbreviations: Strongly Agree (SA), Agree (A), Somewhat Agree (SoA), Neither

Agree nor Disagree (NAD), Somewhat Disagree (SoD), Disagree (D), Strongly Disagree (SD), Don’t Know (DK). DF

stands for degrees of freedom. We have highlighted the fields with p–value greater than 0.05, i.e. those for which we

cannot reject the null hypothesis. These results were obtained using R.



Agreement pooled according to strength

Relations pooled

according to strength

Total Sample Core Sample

Moderate Belief Weak Belief Neither Moderate Belief Weak Belief Neither

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

Strong Belief 64.174 0.000 89.900 0.000 101.892 0.000 55.723 0.000 88.655 0.000 146.970 0.000

Moderate Belief 7.532 0.023 97.014 0.000 10.005 0.007 59.026 0.000

Weak Belief 76.925 0.000 40.821 0.000

Relations pooled

according to polarity

Total Sample Core Sample

Moderate Belief Weak Belief Neither Moderate Belief Weak Belief Neither

G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value G–value p–value

Strong Belief 1.847 0.397 9.971 0.007 78.619 0.000 6.068 0.048 5.081 0.079 72.506 0.000

Moderate Belief 7.261 0.026 88.552 0.000 0.000 1.000 55.628 0.000

Weak Belief 49.026 0.000 39.409 0.000

Agreement pooled according to polarity

Relations pooled

according to strength

Total Sample Core Sample

Believed Neither Believed Neither

G–value p–value G–value p–value G–value p–value G–value p–value

Disbelieved 34.173 0.000 100.464 0.000 8.874 0.012 43.919 0.000

Believed 104.099 0.000 114.249 0.000

Relations pooled

according to polarity

Total Sample Core Sample

Believed Neither Believed Neither

G–value p–value G–value p–value G–value p–value G–value p–value

Disbelieved 2.630 0.268 74.999 0.000 15.702 0.000 40.888 0.000

Believed 106.419 0.000 104.415 0.000

Table 26: Results of G–test for independence between different argument acceptance levels in Dialogue 2 on total

and core samples according to a given type of pooling. In all cases we have obtained 2 degrees of freedom. We have

highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These

results were obtained using library Deducer (likelihood.test function) in R.

Agreement pooled according to strength
Relations pooled

according to strength
Total Sample Core Sample

Strong Belief Moderate Belief Weak Belief Neither Strong Belief Moderate Belief Weak Belief Neither

χ2 348.713 273.129 134.568 116.882 286.052 136.630 55.665 11.626

DF 2 2 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

Relations pooled

according to polarity
Total Sample Core Sample

Strong Belief Moderate Belief Weak Belief Neither Strong Belief Moderate Belief Weak Belief Neither

χ2 168.530 271.362 134.827 50.852 94.518 107.849 65.200 8.311

DF 2 2 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016

Agreement pooled according to polarity
Relations pooled

according to strength
Total Sample Core Sample

Disbelieved Believed Neither Disbelieved Believed Neither

χ2 213.405 463.158 116.882 105.506 281.212 11.626

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.000 0.000 0.003

Relations pooled

according to polarity
Total Sample Core Sample

Disbelieved Believed Neither Disbelieved Believed Neither

χ2 213.633 351.965 50.852 68.486 212.382 8.311

DF 2 2 2 2 2 2

p–value 0.000 0.000 0.000 0.000 0.000 0.016

Table 27: Results of chi–squared goodness of fit test on relations carried out by arguments of a given acceptance level

in Dialogue 2 on total and core samples according to a given pooling. DF stands for degrees of freedom. We have

highlighted the fields with p–value greater than 0.05, i.e. those for which we cannot reject the null hypothesis. These

results were obtained using R.



9.3 Dialogues 1& 2: Changes in Beliefs

Argument A B C D E F G

Between

steps
Z pvalue Z pvalue Z pvalue Z pvalue Z pvalue Z pvalue Z pvalue

D
ia

lo
g

u
e

1 T
o

ta
l

1 and 2 -0.551 0.716 -5.997 0.000

2 and 3 1.890 0.125 5.846 0.000 1.783 0.085

3 and 4 -1.986 0.063 -5.826 0.000 0.780 0.544 -5.351 0.000

4 and 5 2.157 0.039 5.773 0.000 1.964 0.051 -1.134 0.453 2.875 0.005

C
o

re

1 and 2 0.069 1.000 -3.726 0.000

2 and 3 1.732 0.250 3.792 0.000 0.000 1.000

3 and 4 -0.577 1.000 -3.873 0.000 2.000 0.125 -0.069 1.000

4 and 5 1.000 1.000 3.873 0.000 0.046 1.000 -3.553 0.000 1.513 0.188

D
ia

lo
g

u
e

2 T
o

ta
l

1 and 2 -0.378 1.000 -4.126 0.000

2 and 3 -0.794 0.656 -1.102 0.406 5.449 0.000 0.622 0.627

3 and 4 -2.448 0.031 0.740 0.688 -4.781 0.000 -0.839 0.440 1.635 0.156 0.349 0.699

4 and 5 -0.013 1.000 0.764 0.445 1.297 0.227 1.154 0.359 -0.952 0.434 -1.393 0.227 0.421 0.591

C
o

re

1 and 2 0.000 1.000 0.577 1.000

2 and 3 1.413 0.500 -3.011 0.003 3.316 0.000 1.413 0.500

3 and 4 -1.995 0.125 3.372 0.000 -1.717 0.125 -1.466 0.234 -2.653 0.003 -2.232 0.033

4 and 5 0.494 1.000 1.000 1.000 -0.647 0.564 1.996 0.125 -0.960 0.500 -0.576 0.750 1.308 0.219

Table 28: The results of the Wilcoxon signed rank test with Pratt adjustment between the acceptance levels declared

by the participants at steps i and i + 1 for a given argument, in a given dialogue and sample. The results have been

obtained using R library coin. We have highlighted the fields with p–value greater than 0.05, i.e. those for which we

cannot reject the null hypothesis. Due to the fact that arguments F and H appear only at the last stages of Dialogues

1 and 2 respectively, they possess only a single distribution and the change analysis cannot be performed for them.
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