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bDepartment of Computer Science, Aalborg University, Denmark

cDepartment of Computer and Information Science, The Norwegian University of Science
and Technology, Norway

dHUGIN EXPERT A/S, Aalborg, Denmark

Abstract

In this paper we propose a scalable importance sampling algorithm for comput-

ing Gaussian mixture posteriors in conditional linear Gaussian Bayesian net-

works. Our contribution is based on using a stochastic gradient ascent proce-

dure taking as input a stream of importance sampling weights, so that a mixture

of Gaussians is dynamically updated with no need to store the full sample. The

algorithm has been designed following a Map/Reduce approach and is there-

fore scalable with respect to computing resources. The implementation of the

proposed algorithm is available as part of the AMIDST open-source toolbox for

scalable probabilistic machine learning (http://www.amidsttoolbox.com).

Keywords: Importance sampling, Bayesian networks, Conditional Linear

Gaussian models, Scalable inference, Gaussian mixtures

1. Introduction

Bayesian networks (BNs) (Jensen & Nielsen, 2007; Pearl, 1988) provide a

well-founded and principled approach for Bayesian reasoning in complex do-

mains endowed with uncertainty. A prominent feature of BNs as a framework
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for representing uncertain knowledge is the possibility for defining efficient algo-5

rithms for performing probabilistic inference (e.g. computation of the posterior

distribution of a target variable). These algorithms are typically designed to

take advantage of the independence properties implied by the structure of the

Bayesian network (Jensen et al., 1990; Madsen, 2010; Madsen & Jensen, 1999;

Shenoy, 1997).10

Even though most of the methodological development around Bayesian net-

works has focused on discrete variables, there are plenty of problems in which

discrete and continuous variables coexist. A BN is called hybrid if it contains dis-

crete and continuous variables simultaneously. The most established approach

for explicitly handling hybrid BNs came with the definition of the conditional15

linear Gaussian (CLG) model (Lauritzen & Wermuth, 1989). This model class

is based on the assumption of normality over the continuous variables, and the

structural restriction that prevents discrete variables from having continuous

parents. If these modeling assumptions are not congruent with the domain be-

ing modeled, one may instead opt to discretize the continuous variables (Kozlov20

& Koller, 1997; Neil et al., 2007, 2008), thus transforming the hybrid BN to a

standard discrete BN. Unfortunately, such transformations typically also result

in a loss of information.

Mixtures of truncated basis functions (Langseth et al., 2012) provide a gener-

alization of standard discretization and do not impose any structural restriction25

on the model nor do they make distributional assumptions like the normality

assumption imposed by CLG models. Furthermore, they are compatible with

exact probabilistic inference algorithms as, for instance, the Shenoy-Shafer ar-

chitecture (Shenoy & Shafer, 1990) and the variable elimination scheme (Zhang

& Poole, 1996). However, the complexity of probabilistic inference in these30

models often renders them inappropriate when dealing with a large number of

variables and a limited response time (Shenoy et al., 2015).
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2. Motivation and contribution

In this paper, we are interested in approximate probabilistic inference meth-

ods for hybrid BNs satisfying the following two requirements: (i) they should35

be able to scale with the computational resources available in order to provide

results after a short computing time; and (ii) the provided output should be an

explicit probability density, rather than just a set of quantiles or moments of the

distribution. A widely applicable scenario where both requirements are needed

comes up when processing data streams at high speed, and for each item in the40

stream, we need to know the result of processing the item through probabilistic

inference in a hybrid BN. The result of the inference process should be quickly

available (before the next data item arrives). At the same time, the availability

of the explicit form of the posterior density facilitates subsequent analysis. For

instance, as a basis for expected utility calculations or as a tool for anomaly45

detection from the input data stream.

For the former reason, we focus our analysis on CLG models, instead of less

restrictive alternatives such as mixtures of truncated basis functions, as inference

in the latter models is in general more time consuming (Rumı́ & Salmerón,

2007). Another advantage of CLG models is that it is known that the posterior50

distribution on a continuous variable in a CLG network is always a mixture of

Gaussians (Lauritzen & Jensen, 2001).

Many approaches can be used to perform approximate inference in CLG

models. Deterministic approximations include (mean field) variational meth-

ods (Winn & Bishop, 2005) and expectation propagation (Minka, 2001). The55

problem is that these methods are iterative in nature and, as a consequence,

difficult to parallelize and scale up. Scalable alternatives exist (Hoffman et al.,

2013; Masegosa et al., 2017a), but they are not designed for general BNs, but

for restricted plate models oriented to learning problems. Furthermore, the

approximations provided by these models are often expressed by a single Gaus-60

sian distribution in order to make the methods computationally efficient, but,

as we will show in the experimental section, this approximation is usually not
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sufficiently accurate.

Monte-Carlo methods define another widely used class of approximate in-

ference approaches which could be used in this setting. An important group of65

them are based on the importance sampling technique, that provides a flexible

approach for constructing anytime probabilistic reasoning algorithms (Cheng

& Druzdzel, 2000; Moral & Salmerón, 2005; Yuan & Druzdzel, 2005, 2007),

where the term anytime means that the accuracy of the results provided by

an algorithm is proportional to the time it is allowed to run (Ramos & Coz-70

man, 2005). The advantage of importance sampling methods is that they are

embarrassingly parallelizable, as shown in (Salmerón et al., 2015). However,

the plain application of importance sampling yields an empirical distribution

that approximates the posterior, rather than an explicit density (a mixture of

Gaussians, for instance).75

In this paper we extend the method in (Salmerón et al., 2015) enabling

it to compute mixture of Gaussians posterior densities. Our contribution is

based on using a stochastic gradient ascent procedure taking as input a stream

of importance sampling weights, so that a mixture of Gaussians is dynamically

updated with no need to store the full sample. The algorithm has been designed80

following a Map/Reduce approach and is therefore scalable with respect to com-

puting resources. The implementation of the algorithm is available as part of

the AMIDST open-source toolbox for scalable probabilistic machine learning

(http://www.amidsttoolbox.com) (Masegosa et al., 2017b).

3. Preliminaries85

Consider a set of N random variables X = {X1, . . . , XN}. A BN over X

is composed of a directed acyclic graph, where each node represents a vari-

able in X, and a set of conditional probability distributions such that the joint

distribution over X factorizes as

p(X) =

N∏
i=1

pi(Xi|pa(Xi)), (1)
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where pa(Xi) denotes the set of parents of Xi in the graph representation.

We will use lowercase letters to refer to values or configurations of values, so

that x denotes a value of X and boldface x is a configuration of the variables

in X. Given a set of observed variables XE ⊂ X and a set of variables of

interest XI ⊂ X \XE , probabilistic inference, also called belief update, consists90

of computing the posterior distribution p(xi|xE) for each i ∈ I; here we allow

Xi to be either discrete or continuous1.

If we denote by XC and XD the set of continuous and discrete variables not

in {Xi}∪XE , and by XCi and XDi the set of continuous and discrete variables

not in XE , the goal of probabilistic inference can generally be formulated as95

computing

p(xi|xE) =
p(xi,xE)

p(xE)
=

∑
xD∈ΩXD

∫
xC∈ΩXC

p(xi,xC ,xD,xE)dxC

∑
xDi
∈ΩXDi

∫
xCi
∈ΩXCi

p(xCi ,xDi ,xE)dxCi

, (2)

where ΩX is the support of a set of variables X and p(xi,xC ,xD,xE) = p(xCi ,xDi ,xE)

is the joint distribution in the BN instantiated according to the observed values

xE .

If Xi in Equation (2) is continuous, the result of probabilistic inference is the100

evaluation of a density function. In this case one is typically interested in the

probability of the variable taking values in a given interval (a, b). This amounts

to computing

p(Xi ∈ (a, b)|xE) =

∫ b

a

∑
xD∈ΩXD

∫
xC∈ΩXC

p(xi,xC ,xD,xE)dxCdxi

∑
xDi
∈ΩXDi

∫
xCi
∈ΩXCi

p(xCi
,xDi

,xE)dxCi

. (3)

If Xi is discrete, instead of the variable taking values in an interval, we seek

1In this paper we only consider inference wrt. the posterior marginal distribution of a

variable and not joint distributions over several variables.
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to compute the posterior probability of one of its possible values, i.e.

p(Xi = xi|xE) =

∑
xD∈ΩXD

∫
xC∈ΩXC

pR(Xi=xi)(xi,xC ,xD,xE)dxC

∑
xDi
∈ΩXDi

∫
xCi
∈ΩXCi

p(xCi
,xDi

)dxCi

, (4)

where pR(Xi=xi)(xi,xCi ,xDi ,xE) denotes the restriction of p(xi,xC ,xD,xE) to

the value xi of variableXi. We will generically refer to the probabilistic inference105

tasks described in Equations (3) and (4) as queries.

3.1. Conditional Linear Gaussian Networks

A CLG network is a hybrid BN where the joint distribution is a CLG (Lau-

ritzen & Wermuth, 1989). In the CLG model, the conditional distribution of

each discrete variable XD ∈ X given its parents is a multinomial, whilst the

conditional distribution of each continuous variable Z ∈ X with discrete par-

ents XD ⊆ X and continuous parents XC ⊆ X, is a normal density defined as

p(z|XD = xD,XC = xC) = N (z|αxD
+ βT

xD
xC , σxD

) , (5)

for all xD ∈ ΩXD
and xC ∈ ΩXC

, where α and β are the coefficients of a linear

regression model of Z given its continuous parents; this model can differ for each

configuration of the discrete variables XD. Therefore, the conditional mean of110

Z follows a linear model on its continuous parents, while its standard deviation,

σD, only depends on the discrete ones.

After instantiating the discrete variables, the joint distribution of any subset

XC ⊆ X of continuous variables can be obtained in closed form. More precisely,

it is a multivariate Gaussian whose parameters can be obtained from those of

the CLG representation. Consider a set of M continuous variables Z1, . . . , ZM

with a conditionally specified joint density

p(z1, . . . , zM ) =

M∏
k=1

p(zk|zk+1, . . . , zM ), (6)

and where the k-th factor, 1 ≤ k ≤M , is such that

p(zk|zk+1, . . . , zM ) = N (zk|µzk|zk+1,...,zM , σzk). (7)
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For this model it holds that the joint density is

p(z1, . . . , zM ) = N (z1, . . . , zM |u,Σ) , (8)

where u is the M -dimensional vector of means and Σ is the covariance matrix of

the multivariate distribution over random variables Z1, . . . , ZM and both u and

Σ are derived from the parameters in Equation (5) as described, for instance,115

in (Shachter & Kenley, 1989).

3.2. Importance Sampling

In this section we analyze an approach to approximate inference in CLG

networks based on a general technique for probabilistic inference able to pro-

vide quick answers to queries, namely importance sampling (Hammersley &120

Handscomb, 1964).

Assume we have a random variable X with density p(x). Importance sam-

pling is a versatile simulation technique designed for estimating the expected

value of a given function, f , of random variable X. It is based on the following

transformation:125

Ep[f(x)] =

∫
f(x)p(x)dx =

∫
p(x)

p∗(x)
f(x)p∗(x)dx = Ep∗

[
p(x)

p∗(x)
f(x)

]
,

where p∗ is a density function called the sampling distribution or the proposal

distribution, verifying that p∗(x) > 0 whenever p(x) > 0. Therefore, Ep[f(x)]

can be estimated by drawing a sample x(1), . . . , x(m) from p∗ and computing

Êp[f(x)] =
1

m

m∑
j=1

p(x(j))

p∗(x(j))
f(x(j)), (9)

which is specially convenient if p∗ is easier to handle than p.

Importance sampling can be applied to probabilistic inference in BNs taking

into account that we can write p(Xi ∈ (a, b)|xE) in Equation (3) as

p(Xi ∈ (a, b)|xE) = Ep(xi|xE)

[
1(a,b)(xi)

]
= Ep∗

[
p(xi|xE)

p∗(xi)
1(a,b)(xi)

]
=

1

p(xE)
Ep∗

[
p(xi,xE)

p∗(xi)
1(a,b)(xi)

]
,
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where 1(a,b) is the indicator function on interval (a, b). From now on, we will

use the notation g(xi) = p(xi,xE). Hence,130

p̂(Xi ∈ (a, b)|xE) =
1

p(xE)
Êp∗

[
g(xi)

p∗(xi)
1(a,b)(xi)

]
=

1

p(xE)

1

m

m∑
j=1

g(x
(j)
i )

p∗(x
(j)
i )

1(a,b)(x
(j)
i ).

The normalizing constant, p(xE), can be estimated using the same sample

x
(1)
i , . . . , x

(m)
i , just by summing all the weights (Fernández et al., 2012):

p̂(xE) =
1

m

m∑
j=1

g(x
(j)
i )

p∗(x
(j)
i )

.

Direct calculations using those weights may lead to numerical instability due

to underflow (for instance, on relatively large networks or when the evidence has

a low likelihood). These problems can be handled by using the so-called log-

sum-exp trick. Details are provided in Appendix B.

In general when computing the expectation of a function f of a random135

variable Xi using the posterior distribution p(xi|xE) we have

Êp(xi|xE)[f(xi)] =
1

p(xE)
Êp∗

[
g(xi)

p∗(xi)
f(xi)

]
. (10)

It can be seen that the estimator in Equation (9) is unbiased, and its variance

is determined by the proposal distribution. A simple procedure for selecting the

proposal distribution is the so-called evidence weighting (EW) algorithm (Fung

& Chang, 1990). In EW, each variable is sampled from a conditional density140

given its parents in the network. The sampling order is therefore from parents to

children. The observed variables are not sampled, but are instead instantiated

to their observed values.

Hence, adopting EW means that p involves the product of all the conditional

distributions in the BN, whereas p∗ involves the same conditional distributions145

except those associated with the observed variables. For the sake of simplicity
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and scalability, we adopt EW as the underlying sampling algorithm. However,

more sophisticated ways of obtaining the sampling distribution can also be incor-

porated to the proposed algorithms, possibly at the cost of higher computational

workload.150

4. Posterior density estimation in CLG networks

In this section we describe our proposal for computing posterior distributions

in CLG networks. Our goal is to fit a posterior density relying on the importance

sampling methodology described in Section 3.2. Our proposed methods perform

this estimation in an on-line fashion by updating the posterior distributions after155

every sample is generated by the importance sampling algorithm, thus keeping

the memory usage constant.

Let us denote by q(xi|θ) the target posterior density which we assume to be

parametrized by the vector θ. This posterior density aims to approximate the

true posterior, p(xi|xE). More precisely, the problem we seek to solve is the160

following one:

arg min
θ

KL
(
p(xi|xE)|q(xi|θ)

)
, (11)

where KL(p||q) is the Kullback-Leibler divergence (Kullbach & Leibler, 1951)

from p to q.

In other words, we look for the distribution q which is closest in terms of

KL divergence to the true posterior distribution. The above problem is similar165

to the problem solved by variational inference methods, but with the difference

that variational methods attempt to minimize the reverse KL divergence, which

has strong implications on the nature of the approximations that can be ob-

tained (Blei et al., 2016). The objective in Equation (11) was chosen because of

its favourable behaviour when approximating multi-modal and strongly peaked170

posteriors, see, for instance, Murphy (2012, Ch. 21.2.2).
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4.1. Fitting a Gaussian posterior density

In the simple case where we aim to fit a Gaussian distribution with parame-

ters µ and σ2, we just need to estimate the first and second order moments of the

posterior distribution, Ep(xi|xE)[Xi] and Ep(xi|xE)[X
2
i ], which can be estimated

as described in Section 3.2 by letting f(xi) = xi and f(xi) = x2
i , respectively.

The resulting estimators are

µ̂ = Êp(xi|xE)[Xi]

and

σ̂2 = Êp(xi|xE)[X
2
i ]− µ̂2.

The details are given in Algorithm 1, which uses Algorithm 2 for generating

samples and importance weights. Notice how the procedure does not need to

store the generated sample, as all the information it contains is captured by the175

sufficient statistics in Steps 5 and 6.

4.2. Online estimation of the posterior using a mixture of Gaussians

Since it is known that the posterior over any continuous variable in a CLG

network is a mixture of Gaussians (MoG), fitting a MoG rather than a single

Gaussian is likely to provide more accurate posteriors. Formally, aK-component

MoG density is represented as follows,

q(x|w,µ,σ) =
K∑
i=1

wiN (x|µi, σi), (12)

where w = {w1, . . . , wK} are the mixing coefficients, 0 < wi < 1,
∑K
i=1 wi = 1,

µ = {µ1, . . . , µK} are the means, and σ = {σ1, . . . , σK} and standard deviations

of the K components.180

In this case, the method described above for a single Gaussian distribution

cannot be applied. To address this problem we propose an online algorithm

inspired by stochastic extensions of the EM algorithm (Masegosa, 2014). The

proposed algorithm is able to operate over the importance weighted samples in a

streaming fashion, and has the same computational complexity as Algorithm 1185
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Function EW normal(X, P , xE , Xi, M)

Input: The set of variables in the network, X = {X1, . . . , XN} in topological

order. The distributions in the network P = {p1, . . . , pN}. Evidence

XE = xE . The target variable Xi. Sample size M .

Output: An estimation of the mean and variance of p(xi|xE).

1 begin

2 s1 ← 0 ; s2 ← 0; sumW ← 0

3 for j ← 1 to M do

4 (x
(j)
i ,W )← EW Simulate(X, P , xE , Xi) (see Algorithm 2)

5 s1 ← s1 + x
(j)
i ·W

6 s2 ← s2 +
(
x

(j)
i

)2

·W

7 sumW ← sumW +W

8 end

9 µ← s1/sumW

10 σ2 ← s2/sumW − µ2

11 return µ, σ2 (or s1, s2, sumW ).

12 end

Algorithm 1: The EW algorithm for estimating the mean and variance

of the posterior distribution.
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Function EW Simulate(X, P , xE , Xi)

Input: The set of variables in the network, X = {X1, . . . , XN} in topological

order. The distributions in the network P = {p1, . . . , pN}. Evidence

XE = xE . The target variable Xi.

Output: A simulated sample and its weight.

1 begin

2 v1 ← 1 ; v2 ← 1.

3 for j ← 1 to N do

4 if Xj /∈ XE then

5 Simulate a value xj for Xj using pj(xj |pa (xj)).

6 v2 ← v2 · pj(xj |pa (xj)).

7 end

8 else

9 Let xj be the value of Xj in XE .

10 end

11 v1 ← v1 · pj(xj |pa (xj)).

12 end

13 W ← v1/v2

14 return (xi,W ).

15 end

Algorithm 2: The EW algorithm for simulating a sample and computing

its weight.
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for approximating a single Gaussian. A pseudo-code description is given in

Algorithm 3.

Function EW MoG(X, P , xE , Xi, M)

Input: The set of variables in the network, X = {X1, . . . , XN} in topological

order. The distributions in the network P = {p1, . . . , pN}. Evidence

XE = xE . The target variable Xi. Sample size M .

Output: An estimate of the parameters of the MoG distribution p(xi|xE).

1 begin

2 θ(0) ← Random Initialization. sumW ← 0

3 for j ← 1 to M do

4 (x
(j)
i ,W )← EW Simulate(X, P , xE , Xi)

5 If necessary, add a new component to the mixture (see Equ. (19)).

6 θ(j) = θ(j−1) + ρj∇̂θ`(x(j)
i |θ

(j−i)) (see Equ. (16) and Equ. (17))

7 sumW ← sumW +W

8 end

9 return (θ(M), sumW ).

10 end

Algorithm 3: The EW algorithm approximating the posterior distri-

bution p(xi|xE) with a MoG density, whose number of components is

updated dynamically.

One might also have considered the application of the standard EM algo-

rithm (Dempster et al., 1977) to address this problem. However, in situations

with limited computing resources and where quick responses are required this190

approach is not feasible. The main problem is the iterative nature of the EM

algorithm, which requires storing the generated samples and using them to up-

date the parameters of the Gaussian mixture until convergence. Next, we show

that it is possible to use a stochastic gradient ascent based method to fit the

MoG taking as input the weights generated by importance sampling, with no195

need to iterate over the generated sample. Our approach can be seen as a form

of online EM estimation, extending some of the online EM algoritms in the

literature (see (Pinto & Engel, 2015)).

Let us start by highlighting that the minimization problem stated in Equa-
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tion (11) is equivalent to the following maximization problem:200

arg max
θ

Ep(xi|xE)

[
ln q(xi|θ)

]
, (13)

since

KL
(
p(xi|xE)|q(xi|θ)

)
=

∫
p(xi|xE) ln

p(xi|xE)

q(xi|θ)
dxi

=

∫
p(xi|xE) ln p(xi|xE)dxi −

∫
p(xi|xE) ln q(xi|θ)dxi

= Ep(xi|xE)

[
ln p(xi|xE)

]
− Ep(xi|xE)

[
ln q(xi|θ)

]
, (14)

That is, the expressions in Equation (11) and Equation (13) differ by only a

constant term (which corresponds to the true posterior entropy).

Note that the above maximization problem resembles a maximum likelihood

problem where p(xi|xE) acts as the data-generating distribution. Indeed, we205

can rewrite Equation (13) using the importance sampling formulation as:

θ∗ = arg max
θ

Ep(xi|xE)

[
ln q(xi|θ)

]
= arg max

θ
Ep∗(xi)

[
p(xi|xE)

p∗(xi)
ln q(xi|θ)

]
= arg max

θ
Ep∗(xi)

[
g(xi)

p∗(xi)
ln q(xi|θ)

]
= arg max

θ
Ep∗(xi)

[
`(xi|θ)

]
; (15)

here we replace the term p(xi|xE) by g(xi) = p(xi,xE) because multiplication

by the constant p(xE) does not affect the maximization problem. The last

equation shows that our problem reduces to a maximization problem of an

expected loss function, where `(xi|θ) = g(xi)
p∗(xi)

ln q(xi|θ).210

Stochastic gradient ascent (SGA) can be applied to solve this maximiza-

tion problem. Given a Robbins-Monro’s (Robbins & Monro, 1951) sequence of

learning rates {ρj}j∈N (i.e. ρj > 0,
∑
j ρj =∞ and

∑
j ρ

2
j <∞), the SGA can

be expressed as a recursive updating equation following noisy estimates of the
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natural gradient (Amari, 1998) of the expected loss function215

θ(j) = θ(j−1) + ρj∇̂θ`(x(j)
i |θ

(j−1)), (16)

where x
(j)
i is the j-th sample provided by the proposal distribution p∗, and ∇̂

denotes the natural gradient, which, unlike the standard gradient, considers the

Riemannian structure of the probability space and provides faster convergence

(Amari, 1998).

As shown in (Masegosa, 2014), Equation (16) can be computed in closed220

form. Firstly, θ will be defined over the so-called moment parameters of the

MoG density, which is a vector composed by 3 · K components: the weight

of each Gaussian, denoted by wk; the mean of each Gaussian, denoted by µk;

and the second order moment of each Gaussian, denoted by νk. Then, the

(natural) gradient of `(x
(j)
i |θ

(j−1)) is computed as follows (full details are given225

in Appendix A):

∇̂θ` =



g(xi)
p∗(xi)

(q(Z = 0|xi)− θ0)

· · ·
g(xi)
p∗(xi)

(q(Z = K − 1|xi)− θK−1)

g(xi)
p∗(xi)

(xi · q(Z = 0|xi)− θK)

· · ·
g(xi)
p∗(xi)

(xi · q(Z = K − 1|xi)− θ2K−1)

g(xi)
p∗(xi)

(x2
i · q(Z = 0|xi)− θ2K)

· · ·
g(xi)
p∗(xi)

(x2
i · q(Z = K − 1|xi)− θ3K−1)



, (17)

where q(Z = k|xi) denotes the posterior probability that the observation xi

belongs to the k-th Gaussian component, q(Z = k|xi) ∝ N (xi|µk, σ2
k)wk (here

Z is acting as a multinomial random variable and q(Z = k|xi) will be a function

of xi, different for each k)230

From θ, we can compute the means, variances, and weights defining the
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MoG density by using the following equality (see Appendix A):

θ =



θ0

· · ·

θK−1

θK

· · ·

θ2K−1

θ2K

· · ·

θ3K−1



=



w0

· · ·

wK−1

w0µ0

· · ·

wK−1µK−1

w0ν0

· · ·

wK−1νK−1



, (18)

where νk is the second order non-central moment of the k-th component (i.e.

E[X2] of the k-th Gaussian density).

The following result shows the convergence of Algorithm 3. We should be

aware that this algorithm is a stochastic gradient ascent method, which is guar-

anteed to convergence after a sufficiently large number of iterations. In our235

case, each iteration involves the processing of a new data sample. Some techni-

cal conditions about the smoothness of the loss function (Bottou, 1998) needs

to be invoked to prove the convergence. They are satisfied in general for (non-

degenerated) CLG models.

Theorem 1. For a valid Robbins-Monro sequence of learning rates, Algorithm 3240

is guaranteed to converge to a stationary point of Equation (11) when M →∞.

Proof. If the learning rates ρt satisfies the theorem assumptions, the stochastic

gradient ascent method of Equation (16) converges to a stationary point (i.e.

null natural gradient) θ? of the function Ep∗(xi) [`(xi|θ)]. This stationary point

will also induce a null (standard) gradient of Ep∗(xi) [`(xi|θ)] due to the spec-

ification of the natural gradient (see Appendix A). Furthermore, θ? is also a
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stationary point of Ep(xi|xE) [ln q(xi|θ)] due to the following equality,

∂

∂θ
Ep∗(xi) [`(xi|θ)] = Ep∗(xi)

[
g(xi)

p∗(xi)

∂

∂θ
ln q(xi|θ)

]
=

∫ [
p∗(xi)

g(xi)

p∗(xi)

∂

∂θ
ln q(xi|θ)

]
dxi

=
∂

∂θ
Ep(xi|xE) [ln q(xi|θ)] ,

Equation (14) shows that Ep(xi|xE) [ln q(xi|θ)] and KL(p(xi|xE)|q(xi|θ)) differ

by constant terms with respect to θ. Thus, θ? is also a stationary point of

KL(p(xi|xE)|q(xi|θ)). �

Under the standard assumption that local minima and saddle points are not245

stable convergent points of a stochastic gradient ascent algorithm (these points

can easily be escaped by this method through small perturbations), we have

that the stochastic gradient ascent method converges to a local minimum of

KL(p(xi|xE)|q(xi|θ)). Then, Algorithm 3 provides a (local) optimal solution to

the problem of approximating the true posterior p(xi|xE) with a MoG density.250

In order to define the number of components in our MoG, we use the heuristic

method described in (Pinto & Engel, 2015) to automatically decide when to

create a new component in a MoG density. The criterion proposed in this

paper relies on two parameters: the novelty rate, 0 < τnow < 1 and the initial

variance, σ2
ini. Given a Gaussian mixture of K components with means µk and

variance σ2
k, for k = 1, . . . ,K, and a new data point x, the density value of x

corresponding to component k is computed as:

p(x|k) =
1√

2πσk
exp

(
− (x− µk)2

2σ2
k

)
.

If it holds that

p(x|k) <
τnow√
2πσk

, for all k = 1, . . . ,K, (19)

a new component is added to the MoG, with mean µK+1 = x and variance

σ2
K+1 = σ2

ini.

The novelty rate parameter represents the percentage of the maximum Gaus-

sian density value from which the data point x will be considered as drawn from
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a different component. Typical values of τnow range from 0.1 to 0.0001, accord-255

ing to the amount of components intended to be obtained.

Function ParellelEW normal(X, P , xE , Xi, M , R)

Input: The set of variables in the network, X = {X1, . . . , XN} in topological

order. The distributions in the network P = {p1, . . . , pN}. Evidence

XE = xE . The target variable Xi. Sample size M . The number of

parallel computing nodes R.

Output: An estimation of the mean and variance of p(xi|xE).

1 begin

2 sumW ← 0

3 for k ← 1 to R in parallel do

4 s1,k, s2,k, sumWk = EW normal(X, P , xE , Xi,
M
R )

5 end

6 sumW ←
∑R
k=1 sumWk

7 s1, s2 ← 0

8 for k ← 1 to R do

9 s1 ← s1 + s1,k

10 s2 ← s2 + s2,k

11 end

12 µ← s1/sumW

13 σ2 ← s2/sumW − µ2

14 return µ, σ2 .

15 end

Algorithm 4: The Parallel EW algorithm for estimating in parallel the

mean and variance of the posterior distribution.

4.3. Online parallel fitting of a Gaussian density

In regards to the scalability of importance sampling as described in Algo-

rithm 1, it is worth pointing out that the iterations in the for-loop for sample

generation (starting from Line 3) can be executed in parallel. This is due to260

the fact that the items in the sample are independent of each other. As that

loop constitutes the fundamental workload of the algorithm, the opportunity
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for scalability is potentially high. A straightforward proposal for scaling up the

algorithm is shown in Algorithm 4.

This parallelization scheme follows a Map/Reduce approach as depicted in265

Figure 1, where the Map operation computes the local estimations in parallel

(parallel for-loop of Line 3), and in the reduce phase the output of the map

operations are combined (for-loop of Line 8).

Stream	
S.	Dist	 Map	 Reduce	

Stream	

C.U.	C.U.	

C.U.	C.U.	

Sample	
genera7on	

Sufficient	
sta7s7cs	

Figure 1: A Map/Reduce scheme of the design of the parallel importance sampling algorithm.

Acronym c.u. stands for computing unit and S. Dist means computation of the sampling

(proposal) distributions.

Theorem 2. Algorithm 4 provides an unbiased estimate of the mean and the

variance of the posterior distribution p(xi|xE).270

Proof. The above assertion can be proof by decomposing the standard unbiased

importance sampling estimate of the expected value of a function f in R different

groups,

Êp[f(Xi)] =
1

W

m∑
j=1

g(x(j))

p∗(x(j))
f(x(j))

=

R∑
r=1

1

W

M/R∑
j=1

g(x(j))

p∗(x(j))
f(x(j))

 , (20)
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where Wr =
∑mr

j=1
g(x(j))
p∗(x(j))

and W =
∑R
r=1Wr =

∑m
j=1

g(x(j))
p∗(x(j))

. The quantity∑M/R
j=1

g(x(j))
p∗(x(j))

f(x(j)) is the one computed by Algorithm 1 for f(x) = (x, x2). �275

4.4. Online parallel fitting of a MoG density

In this section we present a novel parallel approach for fitting a MoG density,

which again follows a Map/Reduce scheme as shown in Figure 1.

Algorithm 5 shows the pseudo-code for the proposed method. The Map

operation computes the local MoGs in parallel (parallel for-loop, Line 3). In the280

Reduce phase (starting at Line 7) the local weights are rescaled (Line 11) by the

overall weight of the local MoG component γh = sumWh

sumW . Finally, all the MoG

components are aggregated (Line 14) into a new MoG density, which contains

all the local mixture components computed in parallel. Notice that Kh, the

number of components obtained in each node can be different in general.285

Before proving the soundness of this algorithm, we need to define a hierarchy

of MoG densities (HMoG). A HMoG density is defined as a mixture of MoG

densities. We denote by qH a joint density defined as follows,

qH(xi, h|θ,γ) = qH(h|γ)qH(xi|h,θh) = γhqH(xi|θh), (21)

where qH(xi|θh) is the h-th MoG density with parameters θh, and γh is the

associated weight of the h-th MoG density. H is a multinomial random variable290

with R different states, which will index each of the MoG components of the

hierarchy.

A HMoG density can be directly transformed into a MoG density by marginal-

izing out H,

R∑
h=1

qH(xi, h|θ,γ) =

R∑
h=1

γhqH(xi|θh) =

R∑
h=1

Kh∑
i=1

γhwi,hN (xi|µi,h, σi,h). (22)

Similarly, a MoG density can be transformed to any HMoG density which sat-

isfies the above equality. Note that the final number of components in Equa-

tion (22) is at most R ×maxh=1,...,R{Kh}, where each Kh is chosen using the295

heuristic by Pinto & Engel (2015) as described in Section 4.2.
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Algorithm 5 learns in parallel a HMoG density which, once learned, is trans-

formed into a MoG density. This parallel learning happens by considering a

collection of proposal distributions, each one is executed in parallel at the avail-

able computing nodes. Notice that we use the same proposal evidence weighting300

distribution everywhere, but have a different seed at each computing node for

the pseudo-random number generators coding the proposal distribution.

The next result shows the convergence of Algorithm 5. Again, we should

consider that this algorithm is a stochastic gradient ascent method which is

guaranteed to convergence after a sufficiently large number of iterations. In305

our case, each iteration involves the processing of a new data sample. As in

Theorem 1, some technical conditions about the smoothness of the loss function

(Bottou, 1998) needs to be invoked to prove the convergence. These are satisfied

for (non-degenerated) CLG models.

Theorem 3. For a valid Robbins-Monro sequence of learning rates, Algorithm 5310

is guaranteed to converge to a stationary point of Equation (11) when M →∞.

Proof. By Equations (13-14), the minimization problem of Equation (11) can

be transformed into the following maximization problem,

(θ∗,γ∗) = arg max
θ,γ

Ep(h,xi|xE) [ln qH(h, xi|θ,γ)] ,

where qH refers to the HMoG density parametrized by θ = {θ1, . . . ,θR} and γ,

and p(xi, h|xE) is defined as p(h, xi|xE) = p(h)p(xi|xE) with p(h) = 1
R .315
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We now expand the above equation as follows,

(θ∗,γ∗) = arg max
θ,γ

Ep(h,xi|xE) [ln qH(h, xi|θ,γ)]

= arg max
θ,γ

R∑
h=1

p(h)Ep(xi|xE) [ln qH(xi, h|θ,γ)]

= arg max
θ,γ

R∑
h=1

1

R
Ep∗h(xi)

[
p(xi|xE)

p∗h(xi)
ln qH(xi, h|θ,γ)

]

= arg max
θ,γ

(
R∑
h=1

1

R
Ep∗h(xi)

[
p(xi|xE)

p∗h(xi)
ln qH(xi|h,θ)

]

+

R∑
h=1

1

R
Ep∗h(xi)

[
p(xi|xE)

p∗h(xi)
ln qH(h|γ)

])
,

where p∗h(xi) refers to the proposal distribution used at the h-th computing node

when running, in parallel, the EW MoG method of Line 4.

Taking into account that qH(xi|h,θ) = qH(xi|h,θh) and that θ is not in-

volved in the last term of the above equation, the maximization problem de-320

composes as the following R+ 1 independent maximization problems,

θ∗h = arg maxθh
Ep∗h(xi)

[
p(xi|xE)
p∗h(xi)

ln qh(xi|θh)
]
, (23)

with 1 ≤ h ≤ R, and

γ∗ = arg maxγ
∑R
h=1

1
REp∗h(xi)

[
p(xi|xE)
p∗h(xi)

ln γr

]
. (24)

Consequently, the R different maximization problems of Equation (23) can

be solved in parallel, justifying the soundness of the parallel for-loop of Line 3.325

Furthermore, by Theorem 1, EW MoG provides stationary points for each of

these maximization problems.

The maximization problem of Equation (24) can be solved in closed form.

First we multiply by the constant p(xE), which does not affect the solution, and

regroup terms obtaining330

γ∗ = arg maxγ
∑R
h=1

1
REp∗h(xi)

[
g(xi)
p∗h(xi)

]
ln γh. (25)
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The above maximization problem is equivalent to maximum likelihood es-

timation of the parameters of a multinomial variable using the pseudo-counts{
1
REp∗h(x)

[
g(x)
p∗h(x)

]}
, so the solution is given by

γ∗h =
Ep∗h(xi)

[
g(xi)
p∗h(xi)

]
∑R
s=1 Ep∗s(xi)

[
g(xi)
p∗s(xi)

] . (26)

This equation can be rewritten as γ∗h = sumWh

sumW using the notation employed in335

Line 9, which shows the soundness of this step of the algorithm. �

Again, we can assume that saddle points are not stable convergent points of

a stochastic gradient ascent algorithm, as they are easily escaped through small

perturbations. In consequence, the stochastic gradient ascent method converges

to a local minimum of KL(p(xi|xE)|q(xi|θ)). Then, Algorithm 5 provides a340

(locally) optimal solution to the problem of approximating the true posterior

p(xi|xE) with a HMoG density.

By considering Lines 9 and 11 in Algorithm 5 it is clear that γh defines

how much the h-th MoG component contributes to the final MoG density. If

γh = 1, the h-th MoG component will be the only one contributing, while the

contribution will be zero if γh = 0. The actual contribution depends of the

samples being generated since sumWh (as defined in Line 4) is equal to

sumWh =
1

(M/R)

M/R∑
j=1

g(x
(j)
i )

p∗h(x
(j)
i )

.

The following result states an upper bound for the KL distance of the MoG

density returned by Algorithm 5.345

Theorem 4. Let us denote qH(xi|θh) to the h-th MoG density returned by

Line 4 of Algorithm 5, and let qH(xi|θ,γ) denote the final combined MoG den-

sity returned by Algorithm 5. We then have the following inequality,

KL (p(xi|xE)||qH(xi|θ,γ)) ≤
R∑
h=1

γhKL(p(xi|xE)||qH(xi|θh))

23



Proof. By Jensen’s bound we have that,

− ln qH(xi|θ,γ) ≤ −
R∑
h=1

γh ln qH(xi|θh)

By taking expectation wrt p(xi|xE) and subtracting the entropy of p(xi|xE) at

both sides of the inequality, we obtain the above result. �

Theorem 4 guarantees that using a HMoG is never worse than using a single

MoG in terms of KL divergence, and that it can be beneficial.

Function ParellelEW MoG(X, P , xE , Xi, M , R)

Input: The set of variables in the network, X = {X1, . . . , XN} in topological

order. The distributions in the network P = {p1, . . . , pN}. Evidence

XE = xE . The target variable Xi. Sample size M . The number of

parallel computing nodes R.

Output: An estimate of the parameters of the MoG distribution p(xi|xE).

1 begin

2 sumW ← 0

3 for h← 1 to R in parallel do

4 (θh, sumWh) = EW MoG(X, P,xE , Xi,
M
R ) (the result is a MoG of Kh

components)

5 end

6 sumW ←
∑R
h=1 sumWh

7 for h← 1 to R do

8 (µh,σ
2
h,wh)← θh (following Equation (18))

9 γh ← sumWh

sumW

10 for k ← 1 to Kh do

11 wh[k]← wh[k] · γh
12 end

13 end

14 return (µ1, . . . ,µR,σ
2
1, . . . ,σ

2
R,w1, . . . ,wR).

15 end

Algorithm 5: The Parallel EW algorithm for approximating the poste-

rior distribution p(xi|xE) with a MoG density.

24



5. Experiments350

We have performed several experiments in order to assess the performance of

the algorithms developed in the previous section, both in terms of the accuracy

when representing the posterior density of a continuous variable and with respect

to their scalability, i.e, their ability to exploit the computational resources that

are available.355

The experiments were performed using the AMIDST toolbox (Masegosa

et al. (2017b)), which is built on top of the Apache Flink framework for dis-

tributed computation, and were carried out on a dual-processor AMD Opteron

2.8GHz server with 32 cores and 64GB of RAM, running Linux Ubuntu 14.04.1

LTS. The code is available at the AMIDST GitHub repository (https://github.360

com/amidst/toolbox/tree/MAP-Flink).

5.1. Toy example

We first start the experimental section with a toy example, using it as proof

of concept while also emphasizing the necessity of introducing Gaussian mixtures

for representing the posterior distribution in a CLG model. Consider a hidden365

Markov model (HMM), which is indeed a CLG dynamic Bayesian network, with

T time steps in total. At each time step t = 1, . . . , T , the model consists of a

discrete hidden variable Xt being the parent of an observable continuous variable

Yt. The hidden variables {X1, . . . , XT } are also connected over time, so that

Xt is a parent of Xt+1. We will be interested in the posterior density of the370

last continuous variable, YT , possibly with some known evidence on the values

of its previous temporal copies. The true posterior density of YT is a MoG,

whose number of components is the same as the number of states of the hidden

variable XT .

The posterior distribution of YT for a sample HMM where XT has 4 states375

is depicted in Fig. 2 (red line). This plot also includes the estimated posterior

densities found by the algorithms that we propose, both using a Gaussian density

(blue line) and a MoG (green line). Even though the estimated MoG does not
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Figure 2: True posterior density of a HMM (red) and estimated posterior densities fitted by a

single Gaussian (blue) and a Gaussian mixture (green), according to the proposed procedure.

match the true posterior density perfectly, it is much more accurate than the

single Gaussian estimate. The use of a single Gaussian representation for this380

distribution leads to remarkable imprecisions, as there are regions where the

true density has almost no probability mass while the single Gaussian estimate

still assigns high density values to those regions.

This is a typical situation in many models, which justifies the use of MoGs

for approximating the posterior densities, instead of using a single Gaussian as385

many approximate inference methods (Minka, 2001; Winn & Bishop, 2005).

5.2. Accuracy assessment

We have tested the algorithms with two dynamic models that were discussed

in (Ramos-López et al., 2017); both of them are dynamic CLG Bayesian net-

works. We employ dynamic models because they constitute a relevant and390

challenging case of CLG models and, also, because they are commonly used for

processing data streams. We give a brief description of these models, and refer
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Figure 3: DAG of the dynamic Bayesian network model used for detecting season changes

(yellow nodes correspond to discrete variables; cyan nodes correspond to continuous variables;

the observable nodes are ‘Temperature sensor’ and ‘Humidity sensor’).
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Figure 4: DAG of the dynamic Bayesian network model used for detecting changes in personal

finances (yellow nodes correspond to discrete variables; cyan nodes correspond to continuous

variables; the observable nodes are ‘Entity expenses’ and ‘Entity income’).

the readers to (Ramos-López et al., 2017) for further information.

The first model (“Season change”), consist of a hidden layer of two discrete

variables (‘Season’ and ‘Weather phenomenon’), and two continuous variables395

(‘Temperature’ and ‘Humidity’), and an observable layer of two continuous vari-

ables (‘Temperature sensor’ and ‘Humidity sensor’). The network structure is

shown in Fig. 3.

The second model (“Personal finances”), also includes a hidden layer, now

with three discrete nodes (‘Personal finance’, ‘Unexpected event’ and ‘Entitle-400

ment’) and two continuous variables (‘Global expenses’ and ‘Global income’).

The observable layer consists of two continuous variables (‘Entity expenses’ and
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‘Entity income’). The network structure of this model is shown in Fig. 4.

Two different experiments have been carried out with each model. Each

of the two dynamic models is unrolled to T time steps (we will say T is the405

network length), and evidence is given for the observable variables at times

t = 1, . . . , T−1, whereas the variable of interest will be a continuous node in the

last time slice (‘Temperature’ for the season change model and ‘Global income’

for the personal finance model). Then, the posterior distribution of that variable

is estimated using the two algorithms based on importance sampling: with a410

single Gaussian, and with a MoG. For comparison the distribution has also

been estimated with the variational message passing (VMP) algorithm (Winn

& Bishop, 2005). As a side-note we remark that while several recent works,

like black-box variational inference (Ranganath et al., 2014), study the use of

variational inference in broad model classes, our interest here is to analyze a415

model within the conjugate exponential family of distributions. For models in

this distributional family it is known that the VMP algorithm performs optimal

parameter updates, hence will perform at least as good as any other algorithm

using the variational objective (Winn & Bishop, 2005). As a consequence, we

do not compare our approach to other variational inference algorithms; neither420

of these alternatives will be able to outperform VMP.

We first consider a network with fixed length T = 8. The posterior density of

the variable of interest was estimated by each method with an increasing sample

size (ranging from 103.5 to 106). Finally, to measure the accuracy of each of the

algorithms, the average log-likelihood of each posterior density was computed,425

simulating an independent sample of size 106. This quantity is closely related to

the term KL(p(xi|xE)||q(xi|θ)) in the minimization problem in Equation (11)

(the KL distance is a constant term minus this log-likelihood, see Equation (14)).

The experiment has been repeated 20 times with changing evidence.

The results are plotted in Figure 5 for the season change model and Figure 6430

for the personal finances model. The top row of each figure shows the aver-

age log-likelihood across the 20 repetitions, whereas the bottom rows give the

distributions of values summarized by box-plots (excluding extreme outliers).
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The VMP log-likelihood mean value is constant, as its estimated density

does not depend on the sample size, only on the evidence. Note that the scale435

of the VMP results (right axis, top row of Figures 5 and 6) is much larger

than that of the importance sampling based algorithms2, and for this reason

this method has not been included in the box-plots below. The plots show

increasing accuracy of the posterior density estimates when using importance

sampling. They also demonstrate that the MoG estimates perform much better440

than the single Gaussian alternative. According to the results, the precision

of the single Gaussian scheme is more variable than the MoG version, as the

box-plots are much wider in general. This makes sense, as the dependence of

the posterior distribution on the observed evidence can be dramatic. Although

all the posteriors are MoGs, some of them may be strongly dominated by a445

single Gaussian, so that it could be well approximated by a single Gaussian.

On the other hand, when the true posterior is a MoG with balanced weights, a

single Gaussian may be unable to fit it properly, as was also evident in our first

experiment, cf. Figure 2.

Next we consider Bayesian networks of increasing size, while keeping the450

number of samples used in the importance sampling fixed at 106. With a network

length ranging from T = 3 to T = 18, and given the evidence, the posterior

density of the variable of interest was estimated by each method. Again, the

experiment was repeated 20 times for each network size, and the log-likelihood

of each density was computed. The results are shown in Figures 7 and 8. The455

results are consistent with those obtained in the previous experiment. VMP

obtains a log-likelihood that is much smaller than the importance sampling

algorithms (see the top row of Figures 7 and 8, and compare the values on the

left and right axes). The plots show how the accuracy of the single Gaussian

estimate drops when the network length grows, while the MoG results are more460

2The poor VMP performance is due to the underestimation of the posterior variance. This

characterizes approaches based on the variational objective, and is particularly prominent in

time-series models (Turner & Sahani, 2011).
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Figure 5: Log-likelihood of the estimated posterior densities with T = 8 and increasing sample

size for the season change model. Top: mean log-likelihood value; bottom: distribution of

log-likelihood values (excluding outliers).

stable for both models. The variability of the results seems to grow faster in the

season change model than in the personal finances model, but for both models

we observe that the behavior of the MoG density estimate is more consistent

than that of the single Gaussian.

5.3. Scalability465

Additional experiments were made to analyze the scalability of the proposed

approaches. The VMP algorithm has been excluded from these analysis, as it

basically is sequential. The experimental setup was as follows: A BN of 25000

variables was randomly generated, in which half of the variables are discrete,

and the other half continuous. The number of links was set to 37500. Then,470
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Figure 6: Log-likelihood of the estimated posterior densities with T = 8 and increasing sample

size for the personal finances model. Top: mean log-likelihood value; bottom: distribution of

log-likelihood values (excluding outliers).

evidence was introduced to 20% of the variables, and 10% of the non-observed

variables were chosen as the variables of interest. Inference was carried out over

the variables of interest, and their densities were estimated either by a single

Gaussian or by a MoG, using a sample size of 10000. The execution time for

each scheme was measured by averaging over 10 repetitions, changing the BN475

and the evidence between runs. Run-times were obtained using 1, 2, 4, 8, 16,

24, and 32 cores. Figure 9 depicts the obtained execution times (top, note the

log-scale on the axes) and their corresponding speed-up factor (bottom) for the

two alternatives. In each case, the scale-up factor for n cores is computed as

the execution time of that method using 1 core divided by the execution time480

with n cores.
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Figure 7: Mean log-likelihood of the estimated posterior densities with a fixed sample size

and increasing T for the season change model. Top: mean log-likelihood value; bottom:

distribution of log-likelihood values (excluding outliers).

Figure 9 demonstrates the scalability of the proposed algorithms, as we ob-

serve that the speed-up is consistently increasing with the number of cores made

available. We note that our implementation is built on top of Apache Flink,

which was run locally. We hypothesize that this design choice has introduced an485

extra computational burden that is particularly evident for the run-times using

1 or 2 cores, and which therefore has lead to surprisingly large speed-up fac-

tors for some configurations (speed-up larger than n when running on n cores,

4 ≤ n ≤ 16). For the largest configurations (n ≥ 24) we observe diminishing

return from additional cores, which we attribute to the relatively small sampling490

workload (since the number of samples is not very large) with respect to the

overhead produced by Flink, preventing the extra cores from being utilized at
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Figure 8: Mean log-likelihood of the estimated posterior densities with a fixed sample size

and increasing T for the personal finances model. Top: mean log-likelihood value; bottom:

distribution of log-likelihood values (excluding outliers).

their maximum capacity.

The results for different BN sizes and number of samples show a consistent

behavior, yielding plots that are very similar to those in Figure 9. This makes495

sense since the execution time is approximately proportional to the total number

of samples drawn from all the variables (the number of unobserved variables

times the sample size), for any number of cores.

6. Conclusions

We have described a scalable importance sampling algorithm for comput-500

ing MoG posteriors in CLG networks. Our contribution is based on using a
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Figure 9: Execution times and speed-up of the two importance sampling alternatives in a BN

with 25000 variables and using 10000 samples. Each point represents the average value among

10 repetitions.

stochastic gradient ascent procedure that operates over the importance sam-

pling weights in such a way that the parameters of the MoG density are updated

in an on-line fashion with no need to store the full sample. The algorithm has

been designed following a Map/Reduce approach and is therefore scalable with505

respect to computing resources. The provided theoretical background justifies

both the parallel computation of the posterior densities (Map stage) and their

eventual combination (Reduce stage), for a single Gaussian and a MoG density.
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This procedure could easily be extended to multivariate MoG densities, by

changing the sufficient statistics of the posterior distributions of interest.510

The experiments carried out show that the proposed method based on MoGs

outperforms the single-Gaussian and variational alternatives in terms of accu-

racy. Also, the empirical results show a good performance in terms of scalabil-

ity.
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Appendix A. Natural Gradients and MoG

A MoG density does not belong to the exponential family but if we consider a

extended model including a multinomial indicator variable Z, then this extended

model does belong to the exponential family,

q(x, z) = q(x|z)q(z),

where q(x|z) is a Gaussian density and q(z) is a multinomial distribution.

The above joint density can be expressed in exponential family form,

ln q(x, z|η) = ηT s(x, z)−A(η) + h(x),

where η is the vector of natural parameters, s(·) is the vector of sufficient statis-525

tics, A(·) is the log-normalizer and h(·) is the base measure. In this case, the

sufficient statistics vector for the joint MoG density is expressed as follows,
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s(x, z) =



I(z = 0)

· · ·

I(z = K − 1)

I(z = 0)x

· · ·

I(z = K − 1)x

I(z = 0)x2

· · ·

I(z = K − 1)x2



,

where I(·) denotes the indicator function.

An exponential family distribution can be alternatively parametrized by a

vector of moment parameters, denoted by θ, which is defined as follows,

θ ≡ E[s(x, z)|η] =

∫
s(x, z)q(x, z|η)dxdz = ∇ηA(η).

Therefore,

θ =



θ0

· · ·

θK−1

θK

· · ·

θ2K−1

θ2K

· · ·

θ3K−1



=



E[I(z = 0)]

· · ·

E[I(z = K − 1)]

E[I(z = 0)x]

· · ·

E[I(z = K − 1)x]

E[I(z = 0)x2]

· · ·

E[I(z = K − 1)x2]



=



w0

· · ·

wK−1

w0µ0

· · ·

wK−1µK−1

w0ν0

· · ·

wK−1νK−1



,

where νk denotes the second moment, ηk = E[x2] of the k-th Gaussian compo-

nent. From the above equation we can see how to get the mean and the variance530

of each of the components of the MoG model, e.g. w0 = θ0, µ0 = θK/θ0 and

σ2
0 = θ2K−1/θ0 − (θK/θ0)2.

The natural gradient (Amari, 1998) of a loss function ` is defined as follows,

∇̂θ` = F (θ)−1∇θ`,
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where F (·) is the Fisher information matrix and ∇ denotes the standard gradi-

ent.

As shown in (Masegosa, 2014, Theorem 2), the natural gradient of a loss

function w.r.t. the moment parameters equals the gradient with respect to the

natural parameters,

∇̂θ` = ∇η` (A.1)

Then, the (natural) gradient detailed in Equation (17) is derived as follows,535

∇̂θ`(xi|θ) = ∇η`(xi|η) =
g(xi)

p∗(xi)
∇η ln

∑
z

q(xi, z|η)

=
g(xi)

p∗(xi)

∑
z∇ηq(xi, z|η)

q(xi|η)

=
g(xi)

p∗(xi)

∑
z(s(xi, z)−∇ηA(η))q(xi, z|η)

q(xi|η)

=
g(xi)

p∗(xi)

(∑
z

(s(xi, z)q(xi|z, η))− θ

)
,

where we have used that the importance sampling weights do not depend on θ

and Equation (A.1). The gradient shown in Equation (17) is directly obtained

by inspecting each component of the sufficient statistics vector.

Appendix B. Numerical instability management

In spite of the sound theoretical background of the importance sampling540

approach, in the implementation of the simulation process there are a number

of steps in which numerical instability errors might arise (especially due to

underflow). A proper treatment of these issues is mandatory in order to obtain

accurate and robust estimations. Here we explain some of the mathematical

tricks that allows us to deal with those numerical problems.545

One of the main problems is that the importance sampling weights given

by w = v1/v2 (with v1, v2 as defined in Algorithm 2), are likely to underflow

to 0, when the number of variables is large and/or when p(xE) is close to
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zero. To avoid this, a possible solution is to do the calculations by employ-

ing their logarithms lnw1 and lnw2, instead of w1 and w2 themselves. These550

logarithms can be computed using the log-probability of each conditional dis-

tribution, ln pi(xi|pa(xi)), that are then summed up instead of multiplied (see

Lines 6 and 11 of Algorithm 1).

Now, the problem is that we need to sum these quantities, alone or multiplied

by other numbers (see Lines 5 to 7 of Algorithm 1). But expressed as logarithms,555

we cannot sum them up directly. We will use the following expression, which is

often called the log-sum-exp trick. Let us assume that a, b > 0 and a > b, then:

ln (a+ b) = ln

(
a
(

1 +
b

a

))
= ln a+ ln

(
1 +

b

a

)
=

= ln a+ ln
(
1 + eln b−ln a

)
.

Similarly:

ln (a− b) = ln a+ ln
(
1− eln b−ln a

)
.

These expressions, along with the properties of the logarithm, allow the

computation of the numerical value of the logarithm of the sum (or difference)

of two numbers from their logarithms, with no need to explicitly compute the560

numbers. In addition, many programming languages include accurate functions

to compute ln (1± x) when x is small, as it is in our case (since a > b). These

functions are often named log1p, or something similar.

These tricks can be employed in Algorithm 1 easily. The main problem

appears in the calculation of the weighted sum of the samples, in Line 5. As565

x(j) can possibly be negative and we need to compute its logarithm, we have

to split this in two different sums, one of terms lnx(j) + ln (v1/v2) for x(j) > 0

and another with terms ln(−x(j)) + ln (v1/v2) for x(j) < 0. At the end of the

procedure, these two partial sums are combined, taking into account the sign of

the one with a larger absolute value. For the weighted sum of squares (Line 6),570

there is no problem as this value is always non-negative.
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The tricks above can be adapted and extended for their use in Algorithms 3,

4 and 5 in a similar way. The logarithmic representation of the weights permits

the application of the importance sampling scheme to (almost) arbitrarily large

networks, or when the evidence is extremely unlikely a priori (as long as the575

logarithms of the sample weights are computationally representable, i.e., lnw 6=

−∞ for the computer).
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