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Abstract

A generalization of the linear failure rate called non-linear failure rate is introduced, analyzed, and applied
to real data sets for both censored and uncensored data. The Hamiltonian Monte Carlo and cross-entropy
methods have been exploited to empower the traditional methods of statistical estimation. We have obtained
the Bayes estimators of parameters and reliability characteristics using Hamiltonian Monte Carlo and these
estimators are considered under both symmetric and asymmetric loss functions. Additionally, the maximum
likelihood estimators of parameters are obtained by using the cross-entropy method to optimize the log-
likelihood function. The superiority of the proposed model and estimation procedures are demonstrated on
real data sets adopted from references.

Keywords: Non-linear failure rate, Bayesian estimators, loss functions, Hamiltonian Monte Carlo, model
selection criteria, cross-entropy method, maximum likelihood estimators.

1. Introduction

The exponential distribution is often used in reliability studies as the model for the time until failure of
a device. The lack of memory property of the exponential distribution implies that the device does not wear
out. That is, regardless of how long the device has been operating, the probability of a failure in the next
1000 hours is the same as the probability of a failure in the first 1000 hours of operation. The lifetime of a
device with failures caused by random shocks might be appropriately modeled as an exponential distribution.
However, the lifetime T of a device that suffers slow mechanical wear, such as bearing wear, is better modeled
by a distribution such that the probability P(T < t+ ∆t|T > t) increases with t. Distributions such as the
Weibull distribution are often used in practice to model the failure time of this type of device [1].

However, the failure rate of Weibull distribution, h(t) = btk−1, equals 0 at time t = 0. This model might
only be suitable for modeling some physical systems that suffer only from random shock or wear out. For
physical systems that suffer from both random shock and wear out failures, the Weibull model might be
inappropriate. In this regard, the linear failure rate (LFR), h(t) = a + bt, provides partly a solution. The
LFR was first introduced in [2] and had been studied in [3] as a special case of polynomial failure rate model
for type II censoring. It is a combination of exponential and Rayleigh distributions. It can also be considered
as a generalization of the exponential model (b = 0) or the Rayleigh model (a = 0). The Bayesian estimation
technique of this LFR model has been given in [4]. Because of the limitation of the Rayleigh failure rate, as
well as the LFR, which is only linearly increasing, new generalizations of LFR must be developed.

In this paper, we introduce a generalized version of the LFR called non-linear failure rate (NLFR). It is
considered as a combination of the exponential and Weibull distributions. This NLFR model not only allows
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for an initial positive failure rate but also takes into account all shapes of the Weibull failure rate. The first
research work which attempts to solve the NLFR is given in [5] but solutions were hard to obtain due to
computational difficulties. Besides, our generalization differs from [5] in other details. This model was also
introduced in [6], but with a different name, motivation, parametrized form, model explanation, and purpose.
Compare to our previous conference proceedings [7], we have provided here a different parameterization of
the NLFR model; properties of the model have been studied; symmetric and asymmetric loss functions have
been considered; recent advance Markov chain Monte Carlo (MCMC) method, called Hamiltonian Monte
Carlo (HMC) has been employed; model selection criteria have been applied; two more data sets have been
added and analyzed.

In addition to the model, we exploit the modern computational methods known as the cross-entropy
(CE) and HMC methods. Mixture models often result in too many parameters. For example, the models in
this study and [5, 6] have 3 parameters; the model introduced in [8] has 4 parameters; the models in [9, 10]
have 5 parameters; the model in [11] has 6 parameters. The maximum likelihood estimates (MLEs) of such
model parameters are based on the log-likelihood function. However, traditional methods of maximization
of a log-likelihood function of such mixture models sometimes do not provide the expected result due to
multiple optimal points. For mixture modes, we usually rely on the expectation and maximization (EM)
algorithm [12]. However, the EM is a local search procedure and therefore there is no guarantee that it
converges to the global maximum. As an alternative to EM, we use the CE algorithm which most of the
time will provide the global maximum [13].

Bayesian estimation is considered under the symmetric and asymmetric loss functions. Bayesian approach
to parameter estimation of lifetime distributions has been considered by many authors such as [14, 15, 16, 17].
Likewise, MCMC methods make Bayesian inference for such models easier and more practical. However,
the efficiency of some MCMC algorithms relies on a good choice of the proposal distribution. Here we apply
the HMC simulation method. HMC is a Markov chain Monte Carlo algorithm that avoids the random walk
behavior and sensitivity to correlated parameters that plague many MCMC methods by taking a series of
steps informed by first-order gradient information. More specifically, it is a generalization of the Metropolis
algorithm that includes ‘momentum’ variables so that each iteration can move further in parameter space,
thus allowing faster mixing and moving much more rapidly through the target distribution, especially in
high dimensions. These features allow it to converge to high-dimensional target distribution much more
quickly than simpler methods such as random walk Metropolis or Gibbs sampling [18].

The benchmark data sets, e.g. the aircraft windshield failure data [19], the lifetime data of male mice
exposed to 300 rads of radiation [20], and the U.S.S. Halfbeak Diesel engine data [21] are examples showing
that the NLFR model is more appropriate than LFR model, Weibull model and some mixture models for
modeling these data sets, especially when in data files occur failures with more than one failure mode.

The paper is organized as follows. The intended NLFR model is introduced in Section 2 along with its
reliability characteristics. The properties of the NLFR model including the moments and order statistics are
given in Section 3. Section 4 specifies the parameters that need to be estimated. Section 5 introduces the
CE method for the optimization and MLEs of the unknown parameters of the model. The HMC methods,
loss functions and model selection criteria for Bayesian inference are given Section 6. Section 7 provides the
applications of the NLFR model to some real data sets. Finally, Sections 8 brings conclusions.

2. The NLFR model and its reliability characteristics

2.1. The NLFR model

From the beginning and early age of operation, a physical system suffers only from random shocks
which means that the failure rate experience a constant failure mode. When the system wears out, due to
mechanical wear, it also experiences wear-out failure mode. So let the failure rate function of the system in
these two situations be in either of the following two states: (1) initially, it experiences a constant failure
model, and (2) when the system wears out, it also experiences wear-out failure model. That is

h(t) = a+ kb(bt)k−1, a, b, k > 0 (1)
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Figure 1: (a) Probability density functions and (b) the corresponding failure rate functions of the NLFR.

This model allows an initial positive failure rate, h(0) = a > 0, whereas h(0) = 0 for most other increasing
failure rate function. As mentioned in [3] for the LFR, this type of situation would exist if failures result
from random as well as wear out or deterioration mode. This model is also useful for modeling a series
system with two independent components. One component follows the exponential distribution and the
other component follows the Weibull distribution.

The second component in Eq. (1) is the Weibull failure rate and it has a different parameterization
compared to the model in our conference proceedings [7]. We chose this new parameterization because as
we have demonstrated in [22] the Weibull model with failure rate function form h(t) = btk−1 shows high
correlated parameters which affect Bayes estimators. Fig. 1 shows that the NLFR possesses various shapes
of the probability density function (PDF) and the corresponding failure rate function which characterizes
three of the most common types of the failure rate function that is increasing, decreasing and constant.

2.2. The reliability characteristics of NLFR model

Here we derive the reliability characteristics of the NLFR model. Using the relationship between the
reliability and failure rate functions, the reliability/survival function is given by

R(t) = exp
{
−at− (bt)k

}
Then, the PDF function is given as

f(t) =
(
a+ kb(bt)k−1

)
exp

{
−at− (bt)k

}
(2)

The cumulative failure rate (CFR) function is given by

H(t) = at+ (bt)k

And the mean time to failure (MTTF) is given by

MTTF =

∫ ∞
0

exp
{
−at− (bt)k

}
dt (3)

This integral can be obtained by using some suitable numerical methods.
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3. Properties of the NLFR model

3.1. The moments

The rth non-central moment or the rth moment about the origin of the NLFR model can be derived as
follows by using the Taylor expression of ex.

µ′r =

∫ +∞

0

xrdF (x) = −
∫ +∞

0

xrde−ax−(bx)
k

=
r

kbr

+∞∑
n=0

(−a)n

n! bn
Γ

(
n+ r

k

)
(4)

for r = 1, 2, . . ., where Γ(·) is the gamma function.

3.2. Order statistics

Let X1, X2, . . . , Xn be a random sample from the NLFR distribution and Xi:n is the ith order statistic
of the sample, then the PDF of Xi:n is given by

fi:n(x) =
1

B(i, n− i+ 1)
F (x)i−1(1− F (x))n−if(x)

where B(·, ·) is the beta function.
Since we have

(1− F (x))n−i = e−(n−i)H(x)

and

F (x)i−1 = (1− e−H(x))i−1 =

i−1∑
l=0

(
i− 1

l

)
(−1)le−lH(x)

Therefore,

fi:n(x) =
1

B(i, n− i+ 1)

i−1∑
l=0

(
i− 1

l

)
(−1)lh(x)e−(n+l+1−i)H(x)

= n

(
n− 1

i− 1

) i−1∑
l=0

(
i− 1

l

)
(−1)l

n+ l + 1− i
f(x; a′, b′, k)

where a′ = (n+ l + 1− i)a and b′ = b
k
√
n+ l + 1− i

Using (4), the rth non-central moment of the ith order statistics Xi:n is

µ′
(i:n)
r =

nr

kb′r

(
n− 1

i− 1

) +∞∑
m=0

i−1∑
l=0

(
i− 1

l

)
(−1)l(−a′m)

(n+ l + 1− i)m! b′m
Γ

(
m+ r

k

)

4. Target parameters to estimate

Let D: t1, ..., tn be a random sample from the NLFR model with parameter θ = (a, b, k). If there is no
censoring, the likelihood function takes the form

L(D|θ) =

n∏
i=1

f(ti|θ)

=

[
n∏
i=1

(
a+ kb(bti)

k−1)] exp

{
−

n∑
i=1

(
ati + (bti)

k
)}

(5)
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Then, the corresponding log-likelihood function can be derived as

logL(D|θ) =

n∑
i=1

log
(
a+ kb(bti)

k−1)− n∑
i=1

(
ati + (bti)

k
)

(6)

If some observations are right-censored, the likelihood function takes the form

L(D|θ) =

n∏
i=1

f(ti|θ)δiR(ti|θ)1−δi

=

n∏
i=1

h(ti|θ)δiR(ti|θ)

=

[
n∏
i=1

(
a+ kb(bti)

k−1)δi] exp

{
−

n∑
i=1

(
ati + (bti)

k
)}

(7)

where δi = 1 if ti is an observed failure, and δi = 0 if ti is a censored observation. And in this case, the
log-likelihood function for right-censored case is

logL(D|θ) =

n∑
i=1

δi log
(
a+ kb(bti)

k−1)− n∑
i=1

(
ati + (bti)

k
)

(8)

The target here is to find an estimate of the vector parameter θ that maximizes the log-likelihood
function, and estimates of the MTTF, reliability and failure rate functions.

5. Numerical approach 1

5.1. The cross-entropy method for continuous multi-extremal optimization

Suppose we want to maximize a function S(x), x ∈ X . We denote γ∗ as the maximum, therefore

S(x∗) = γ∗ = max
x∈X

S(x)

This deterministic problem is then randomized by setting a family of PDFs {f(·;v),v ∈ V} on X . Then the
associated stochastic problem is defined as the estimation of

`(γ) = P (S(X) ≥ γ) = EI{S(X)≥γ}

for a given γ, where X ∼ f(·;u), u ∈ V (e.g. X ∼ N (µ,σ)) and I is an indicator function. When γ is
chosen close to γ∗, {S(X) ≥ γ} is a rare event, and estimation of ` is non-trivial. The CE method solves
this by making adaptive changes to the PDF according to the Kullback-Leibler CE, thus creating a sequence
f(·;u), f(·;v1), f(·;v2), . . . of PDFs that are “steered” in the direction of the theoretically optimal density
f(·;v∗) corresponding to the degenerate density at an optimal point. In fact, the CE method generates a
sequence of tuples {(γt,vt)}, which converges quickly to a small neighborhood of the optimal tuple (γ∗,v∗)
[23]. The generic CE algorithm for optimization can be summarized as follows:

1: Choose some v̂0. Set t = 1.

2: Generate a sample X1, . . . ,Xn from the density f(·; v̂t−1) and compute the sample (1− %)-quantile γ̂t of
the performances as γ̂t = Sd(1−%)Ne, where the quantity % is choosing not very small, say % = 10−2.

3: Use the same sample X1, . . . ,Xn and solve the stochastic program

ṽt = arg max
v

1

N

N∑
i=1

I{S(Xi)≥γ̂t} ln f(Xi;v)
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4: Smooth out the vector ṽt by applying

v̂t = αṽt + (1− α)v̂t−1

where α is called the smoothing parameter, 0.7 < α ≤ 1.

5: Repeat steps 2-4 until a pre-specified stopping criterion is met.

When the multivariate normal distribution with independent components is used for updating, i.e.
X1, . . . ,Xn ∼ N (µ̂t−1, σ̂

2
t−1), then µ̂t → x∗ and σ̂t → 0. More detail for such explanation can be found in

[23]. The R code for this optimization method is given in Appendix A.

5.2. Maximum likelihood estimation

The MLE of the parameter θ = (a, b, k), say θ̂ = (â, b̂, k̂), is obtained by using the CE algorithm to
optimize the the log-likelihood function Eq. (6) for non-censored data or Eq. (8) for censored data. And
using the invariance property of MLE,

(1) The MLE for R(t), say R̂(t), will be

R̂(t) = exp
{
−ât− (b̂t)k̂

}
(2) The MLE for h(t), say ĥ(t), will be

ĥ(t) = â+ k̂b̂(b̂t)k̂−1

(3) The MLE for MTTF will be ˆMTTF = MTTF (â, b̂, k̂) which can be obtained by installing into formula
(3) and integrating.

6. Numerical approach 2

6.1. Hamiltonian Monte Carlo

We provide a brief introduction of Hamiltonian Monte Carlo based on what was introduced in [18, 24, 25].
MCMC was first introduced in [26] as a method for simulating the distribution of states for a system of
idealized molecules. Later, another approach to molecular simulation was introduced in [27], in which
the motion of the molecules was deterministic, following Newton’s law of motion, which have an elegant
formalization as Hamiltonian dynamics. In 1987, Duane and others merged the MCMC and molecular
dynamics together [28]. The method was named “hybrid Monte Carlo,” which abbreviates to “HMC,”.
However the name “Hamiltonian Monte Carlo,” retaining the abbreviation, is more specific and descriptive.
Duane and others applied HMC not to molecular simulation, but to lattice field theory simulations of
quantum chromodynamics. Statistical applications of HMC began with [29] as using it for neural network
models. Apparently, HMC seems to be under-appreciated by statisticians, and perhaps also by physicists
outside the lattice field theory community [24].

Hamiltonian dynamics

In physics, Hamiltonian dynamics is used to describe how objects move throughout a system. Hamil-
tonian dynamics describes an object’s motion in terms of its location θ = (θ1, . . . , θd) and momentum
φ = (φ1, . . . , φd) (object’s mass times its velocity) at certain time t. For each location the object takes,
there is an associated potential energy U(θ) (the height of the surface at a given position), and for each mo-
mentum there is an associated kinetic energy K(φ). The total energy of the system, known as Hamiltonian
H(θ,φ), is constant and defined as the sum of the potential and kinetic energies:

H(θ,φ) = U(θ) +K(φ)
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The partial derivatives of the Hamiltonian determine how θ and φ change over time t according to Hamil-
tonian equations:

∂θi
∂t

=
∂H

∂φi
=
∂K(φ)

∂φi
, i = 1, . . . , d (9)

∂φi
∂t

= −∂H
∂θi

= −∂U(θ)

∂θi
, i = 1, . . . , d (10)

Based on the expression of ∂U(θ)
∂θi

and
∂K(φ)
∂φi

and the initial location θ0 and initial momentum φ0 of an
object at time t0, we can predict the location and momentum of the object at any time t = t0 + T by
simulating these dynamics for a duration T .

The leapfrog method for simulating Hamiltonian dynamics

The leapfrog method for simulating Hamiltonian dynamics for a duration T is performed by updating
the location and momentum variables. A leapfrog step updating the location variable θ and the momentum
variable φ over ε units time, starting at time t, is as follows:

(1) Take a half time-step to update the momentum variable

φi(t+ ε/2) = φi(t)−
ε

2

∂U

∂θi
(θi(t))

(2) Take a full time-step to update the position variable

θi(t+ ε) = θi(t) + ε
∂K

∂φi
(φi(t+ ε/2))

(3) Take the remaining half time-step to finish updating the momentum variable

φi(t+ ε) = φi(t+ ε/2)− ε

2

∂U

∂θi
(θi(t+ ε))

We can run L leapfrog steps to simulate Hamiltonian dynamics over εL units of time.

Potential energy, kinetic energy and the target distribution

The target distribution π(θ|D) (posterior distribution) that we wish to sample can be related to a
potential energy function via the concept of a canonical distribution from statistical mechanics. Given some
energy function E(x) for the state x of some physical system, the canonical distribution over states has
probability density function

π(x) =
1

c
e−E(x)/T

where T is the temperature of the system and c is the normalizing constant needed for this function to sum
or integrate to one. For Hamiltonian Monte Carlo simulation, we choose T = 1.

The Hamiltonian H(θ,φ) is an energy function for the joint state of location θ and momentum φ.
Therefore, following the canonical distribution for energy function, a joint distribution for them is defined
as follows:

π(θ,φ) ∝ e−H(θ,φ)

= e−U(θ)e−K(φ)

∝ π(θ)π(φ)

We see that θ and φ are independent and each has canonical distribution, with energy functions U(θ) and
K(φ). The potential energy U(θ) will be defined to be minus the log pdf of the target distribution for θ
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that we wish to sample. The kinetic energy K(φ) is usually defined as minus of the log pdf of the zero-mean
multivariate normal distribution with covariance matrix M . Therefore,

U(θ) = − log π(θ|D)

K(φ) =
φTM−1φ

2

Here M is a symmetric, positive definite mass matrix, which is typically diagonal, and is often a scalar
multiple of the identity matrix. With these forms for U and K, Hamiltonian equations (9) and (10) can be
rewritten as follows, for i = 1, . . . , d:

∂θi
∂t

= [M−1φ]i

∂φi
∂t

=
∂ log π(θ|D)

∂θi

Hamiltonian Monte Carlo algorithm

HMC uses Hamiltonian dynamics rather than a probability distribution as a proposal function to propose
future states for Markov chain in order to explore the target distribution more effectively. Starting with the
current state (θ,φ), we simulate Hamiltonian dynamics for a short time using the leapfrog method. Then
the final state of the position and momentum variables of the simulation are used as the proposal states
(θ∗,φ∗) for Markov chain. The proposed state is accepted according to an update rule which is similar
to the Metropolis acceptance rule. Specifically if the probability of the proposed state after Hamiltonian
dynamics

π(θ∗,φ∗) ∝ e−U(θ∗)−K(φ∗) (11)

is greater than probability of the state prior to the Hamiltonian dynamics

π(θ,φ) ∝ e−U(θ)−K(φ) (12)

then the proposed state is accepted, otherwise, the proposed state is accepted randomly. If the proposed
state is rejected, the next state is the same as the current state. The HMC algorithm for drawing N samples
from the target distribution is described as follows:

(1) Given a starting position state θ(0)

(2) For i = 0 to N − 1

1: Draw a momentum variable φ(i) ∼ π(φ)

2: Run the leapfrog algorithm starting at (θ(i),φ(i)) for L steps with step-size ε to obtain proposed
state (θ∗,φ∗)

3: Calculate the acceptance probability

r = min
(

1, eU(θ(i))−U(θ∗)+K(φ(i))−K(φ∗)
)

4: Draw u ∼ U(0, 1)

5: Set

θ(i+1) =

{
θ∗ if u ≤ r
θ(i) otherwise

There is no need to keep track of φ(i) after the accept/reject step because we do not care about it in itself,
and it immediately get updated at the beginning of the next iteration.
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Figure 2: (a) Squared error loss function and (b) linear exponential loss function.

Restricted parameters and areas of zero density

HMC is build to work with all continuous positive target densities. If the algorithm reaches a point of
zero density at any point during an iteration, the stepping will be stopped and given up, spending another
iteration at the previous value of location θ. This resulting algorithm allows the chain stays in the positive
area and preserves detailed balance. An alternative way is to check if the density is positive after each step
and, otherwise, change the sign of the momentum to return to the direction in which it came. Another usual
way to handle bounded parameters is to use transformation, e.g. taking the logarithm of a positive parameter
or the logit for a parameter restricted to fall between 0 and 1, or more complicated joint transformation
[18].

Setting the tuning parameters and the No-U-Turn sampler

Besides the choice of the momentum distribution (usually a multivariate normal distribution with mean 0
and covariance set to a prespecified ‘mass matrix’ M), the efficiency of the HMC depends also on the choice
of the scaling factor ε of the leapfrog step and the number of leapfrog steps L per iteration. Recently, a
variance of HMC called No-U-Turn sampler [30] has been proposed to automatically update these parameters
during the burn-in (or warm-up) period and then held fixed during the later iteration. Notice that the HMC
method can only be used for continuous distributions. The R code for HMC simulation is given in Appendix
B.

6.2. Loss functions

In estimation problems, it is natural for the loss function to be a function of the distance between the true
value of the parameter θ and its estimated value, θ̂. The most widely used loss criterion in one parameter
estimation problems is squared error loss (SEL), that is,

L(θ, θ̂) = (θ̂ − θ)2

SEL is a symmetric function (see Fig. 2a) that penalizes overestimation and underestimation equally,
and takes the value zero when the estimate is right on target [31].

The Bayes estimator of θ under the SEL function is the value θ̂ which minimizes E
[
(θ̂ − θ)2|D

]
. That is

θ̂BS = E [θ|D]

9



where E(·|D) denotes the posterior expectation with respect to the posterior density of θ.
The use of symmetric loss function may be inappropriate in the estimation of reliability function as has

been recognized in [32]. Overestimate of reliability function or mean failure time is usually much more serious
than underestimate of reliability function or mean failure time. Also, an underestimate of the failure rate
results in more serious consequences than an overestimate of the failure rate. For example, in the disaster
of the space shuttle [33] the management underestimated the failure rate and therefore overestimated the
reliability of solid-fuel rocket booster [34].

Varian [35] motivated the use of asymmetric loss functions in estimation problems arising in real estate
assessment, where the overestimation of a property’s value might cause it to remain on the market unsold
for an extended period, ultimately costing the seller inordinate and unnecessary expenses. The estimation
of peak water flow in the construction of dams or levees has asymmetric consequences; overestimation might
lead to increased construction costs while underestimation might lead to the much more serious consequence
of subsequent overflows which can seriously threaten lives and property in adjacent communities [31].

There are many forms of asymmetric loss functions. One of the more widely use versions of asymmetric
loss is the linear exponential loss (LINEX loss or LEL) function which can be expressed as

L(θ, θ̂) = ec(θ̂−θ) − c(θ̂ − θ)− 1, c 6= 0

In case c > 0, this function rises exponentially when θ̂ > θ and approximately linearly when θ̂ < θ (see
Fig. 2b). The sign and magnitude of the parameter c represents the direction and degree of symmetry,
respectively. If c > 0, the overestimation is more serious than underestimation, and vice versa. For c close
to zero, the LINEX loss is approximately SEL and therefore almost symmetric [31].

The posterior expectation of the LINEX loss function is

E
[
L(θ, θ̂)|D

]
= ecθ̂E

[
e−cθ|D

]
− c

(
θ̂ − E[θ|D]

)
− 1 (13)

The Bayes estimator of θ under the LINEX loss function is the value θ̂ which minimizes Eq. (13). That is

θ̂BL = −1

c
log
{
E
[
e−cθ|D

]}
provided that the expectation E

[
e−cθ|D

]
exists and is finite.

The modified LINEX loss is the general entropy loss (GEL) function, defined as:

L(θ, θ̂) =

(
θ̂

θ

)c
− c log

(
θ̂

θ

)
− 1

The Bayes estimator of θ under the GEL function is given as

θ̂BG =
(
E
[
θ−c|D

])− 1
c

provided that the expectation E [θ−c|D] exists and is finite. It can be shown that, when c = 1, this

loss becomes the entropy loss and the Bayes estimator θ̂BG coincides with the Bayes estimator under the
weighted squared-error loss function. Similarly, when c = −1 the Bayes estimator θ̂BG coincides with the
Bayes estimator under squared error loss function [36].

6.3. Bayesian estimation

In Bayesian inference, we consider the unknown vector parameter θ = (a, b, k) as a random variable
and derive its probability distribution based on prior knowledge and available data. Using Bayes’ rule, the
posterior distribution of θ given the data D: t1, . . . , tn is derived as

π(θ|D) =
L(D|θ)π(θ)∫
L(D|θ)π(θ)dθ

(14)
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where π(θ) is the prior distribution for θ and L(D|θ) is the likelihood function given in Eq. (5) or (7).
Since the denominator in Eq. (14) is a normalizing constant and not necessary for Bayesian inference using
MCMC methods, the posterior distribution is often expressed as:

π(θ|D) ∝ L(D|θ)π(θ) (15)

As mentioned in [37], the prior distribution is given beforehand, usually based on prior information of the
parameters, such as that from historical data, previous experiences, expert suggestions, even wholly subjec-
tive suppositions, or simply from the point of mathematical conveniences. Here we assume the independence
gamma prior distributions for a, b and k, i.e.

π1(a) ∝ aα1−1 exp {−β1a} , α1, β1 > 0

π2(b) ∝ bα2−1 exp {−β2b} , α2, β2 > 0

π3(k) ∝ kα3−1 exp {−β3k} , α3, β3 > 0

Since we use proper prior distributions, the posterior distribution is also proper. As we can see, the prior
distributions also depend on their parameters, called hyperparameters. In Bayesian analysis, the hyperpa-
rameters are usually assumed to be known in advance. These hyperparameters can also be estimated from
the given data by using the empirical Bayes method. Here we choose the hyperparameters for gamma priors
such that their means approximate the MLEs of the parameters. These prior distributions are also applied
for the LFR and Weibull models in a later section.

Then, under the SEL function, the Bayes estimators of a, b, k, failure rate function h(t) and reliability
function R(t) are given by

a∗BS = E(a|D) =

∫
aπ(θ|D)dθ

b∗BS = E(b|D) =

∫
bπ(θ|D)dθ

k∗BS = E(k|D) =

∫
kπ(θ|D)dθ

h∗BS(t) = E(h(t;θ)|D) =

∫
h(t;θ)π(θ|D)dθ

R∗BS(t) = E(R(t;θ)|D) =

∫
R(t;θ)π(θ|D)dθ

Suppose that {θi, i = 1, . . . , N} is generated from the posterior distribution π(θ|D) using HMC simulation
method. Then when i is sufficiently large (say, bigger than n0), {θi, i = n0 + 1, . . . , N} is a (correlated)
sample from the true posterior. Then, the approximate Bayes estimates of a∗BS , b∗BS , k∗BS , h∗BS(t) and
R∗BS(t) are obtained by calculating the means:

a∗BS ≈
1

N − n0

N∑
i=n0+1

ai

b∗BS ≈
1

N − n0

N∑
i=n0+1

bi

k∗BS ≈
1

N − n0

N∑
i=n0+1

ki

h∗BS(t) ≈ 1

N − n0

N∑
i=n0+1

h(t;θi)
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R∗BS(t) ≈ 1

N − n0

N∑
i=n0+1

R(t;θi)

However, in practice, we usually run m parallel chains (say, m = 3, 4 or 5), instead of only 1, for assessing
sampler convergence. Then the posterior means are obtained as follows

a∗BS ≈
1

m(N − n0)

m∑
j=1

N∑
i=n0+1

ai,j

b∗BS ≈
1

m(N − n0)

m∑
j=1

N∑
i=n0+1

bi,j

k∗BS ≈
1

m(N − n0)

m∑
j=1

N∑
i=n0+1

ki,j

h∗BS(t) ≈ 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

h(t;θi,j)

R∗BS(t) ≈ 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

R(t;θi,j)

The Bayes estimators of the parameters, failure rate and reliability functions under LEL function are
given respectively by

a∗BL = −1

c
log

(∫
e−caπ(θ|D)dθ

)
b∗BL = −1

c
log

(∫
e−cbπ(θ|D)dθ

)
k∗BL = −1

c
log

(∫
e−ckπ(θ|D)dθ

)
h∗BL(t) = −1

c
log

(∫
e−ch(t;θ)π(θ|D)dθ

)
R∗BL(t) = −1

c
log

(∫
e−cR(t;θ)π(θ|D)dθ

)
The approximate Bayes estimates of a∗BL, b∗BL, k∗BL, h∗BL(t) and R∗BL(t) are given respectively by

a∗BL ≈ −
1

c
log

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

e−caij


b∗BL ≈ −

1

c
log

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

e−cbij


k∗BL ≈ −

1

c
log

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

e−ckij


h∗BL(t) ≈ −1

c
log

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

e−ch(t;θij)
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R∗BL(t) ≈ −1

c
log

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

e−cR(t;θij)


The Bayes estimators of the parameters, failure rate and reliability functions under GEL function are

given respectively by

a∗BG =

(∫
a−cπ(θ|D)dθ

)− 1
c

b∗BG =

(∫
b−cπ(θ|D)dθ

)− 1
c

k∗BG =

(∫
k−cπ(θ|D)dθ

)− 1
c

h∗BG(t) =

(∫
h(t;θ)−cπ(θ|D)dθ

)− 1
c

R∗BG(t) =

(∫
R(t;θ)−cπ(θ|D)dθ

)− 1
c

The approximate Bayes estimates of a∗BG, b∗BG, k∗BG, h∗BG(t) and R∗BG(t) are given respectively by

a∗BG ≈

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

a−cij

− 1
c

b∗BG ≈

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

b−cij

− 1
c

k∗BG ≈

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

k−cij

− 1
c

h∗BG(t) ≈

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

h(t;θij)
−c

− 1
c

R∗BG(t) ≈

 1

m(N − n0)

m∑
j=1

N∑
i=n0+1

R(t;θij)
−c

− 1
c

6.4. Model selection criteria

Akaike information criterion (AIC). The AIC is defined as

AIC = −2 logL(D|θ̃) + 2k

where θ̃ = E [θ|D] is an estimate of the parameter vector θ based on it posterior distribution, k is the
dimension of θ. A model with the minimum value of AIC is considered to be the best-approximating model
among a set of alternative models.

Bayesian information criterion (BIC). The BIC is defined by

BIC = −2 logL(D|θ̃) + log(n)k

13



where n is the number of observations. The definition of the BIC is almost the same as the AIC except that
the penalty factor for using k parameters is log(n). When comparing several models, the model with the
lowest BIC fits best.

Corrected Akaike information criterion (AICc). The AICc is the AIC with a correction for small sample
sizes. The formula for AICc is as follows

AICc = AIC +
2k2 + 2k

n− k − 1

As n→∞, the AICc converges to AIC.
Deviance information criterion (DIC). The DIC is proposed based on the principle DIC = ‘goodness of

fit’+‘complexity’ [38]. The DIC is defined as

DIC = D + pD

where D is a measure of fit
D = Eθ|D [−2 logL(D|θ)]

and pD is a measure of “effective number of parameters”

pD = Eθ|D [−2 logL(D|θ)] + 2 logL(D|θ̃)

Here θ̃ is an estimate of θ that can be usually chosen as θ̃ = E [θ|D]. DIC is easily computed via MCMC
methods. A model with the smallest value of DIC is considered to be the best-approximating model among
a set of alternative models (see also [39]).

7. Applications

In this section, we bring three examples to illustrate the proposed model and estimation procedures dis-
cussed in this paper. Here we present mainly the results of the Bayes estimators under the SEL function. In
case we have good knowledge about the consequences of overestimation and underestimation of a particular
problem which we are concerning, then we can choose the appropriate loss function for the estimation.

7.1. Aircraft windshield failure data

Table 1 contains the failure data of aircraft windshields which are given in [19, p. 574]. Among 153
observations, there are 88 failed observed windshields and 65 censored observations. The unit of measurement
of this data is 1000 hours. It has been shown in our previous study [7] that the NLFR fits this data set better
than many mixture distributions in terms of the AIC measure. In this study, we provide a Bayes estimation
of the NLFR when fitted to this data set and give a comparison with the Weibull and LFR models.

To obtain the Bayes estimates of the parameters and reliability characteristics, we implemented the HMC
algorithm to simulate samples from the posterior distribution (15). We constructed 4 parallel Markov chains
with different starting points and each of length 2000 with burn-in (warm-up) of 1000 and we obtained final
posterior sample of size 1000 for each chain.

Fig. 3 shows the trace plots after removing the burn-in period and density estimates of the parameters
obtained by HMC algorithm. The trace plots show that the 4 parallel chains for each parameter pro-
duced by HMC algorithm converge quickly to the same target distribution. The densities are distributed
approximately symmetrically around the central values which means that the simulated samples provide
good Bayes estimates under SEL function. The scatter plot matrix of HMC output shows the posterior
correlations between the parameters (Fig. 4). The graph shows that all pairs of parameters have very small
correlation.

Table 2 shows the MLE and Bayes point estimates and two-sided 90% and 95% highest posterior density
(HPD) intervals for a, b, k and MTTF. From the table, we can see that the estimate of a is positive and
far from zero and its credible intervals also support for this claim. Fig. 5 displays the Bayes estimates of

14



Table 1: Aircraft windshield failure data

Failure Times Service Times
0.040 1.866 2.385 3.443 0.046 1.436 2.592
0.301 1.876 2.481 3.467 0.140 1.492 2.600
0.309 1.899 2.610 3.478 0.150 1.580 2.670
0.557 1.911 2.625 3.578 0.248 1.719 2.717
0.943 1.912 2.632 3.595 0.280 1.794 2.819
1.070 1.914 2.646 3.699 0.313 1.915 2.820
1.124 1.981 2.661 3.779 0.389 1.920 2.878
1.248 2.010 2.688 3.924 0.487 1.963 2.950
1.281 2.038 2.823 4.035 0.622 1.978 3.003
1.281 2.085 2.890 4.121 0.900 2.053 3.102
1.303 2.089 2.902 4.167 0.952 2.065 3.304
1.432 2.097 2.934 4.240 0.996 2.117 3.483
1.480 2.135 2.962 4.255 1.003 2.137 3.500
1.505 2.154 2.964 4.278 1.010 2.141 3.622
1.506 2.190 3.000 4.305 1.085 2.163 3.665
1.568 2.194 3.103 4.376 1.092 2.183 3.695
1.615 2.223 3.114 4.449 1.152 2.240 4.015
1.619 2.224 3.117 4.485 1.183 2.341 4.628
1.652 2.229 3.166 4.570 1.244 2.435 4.806
1.652 2.300 3.344 4.602 1.249 2.464 4.881
1.757 2.324 3.376 4.663 1.262 2.543 5.140
1.795 2.349 3.385 4.694 1.360 2.560

reliability and failure rate functions when fitting NLFR, LFR and Weibull models to the windshield failure
data. It is easy to see that the NLFR fits to the data better than LFR and Weibull models. Table 3 provides
the values of the log-likelihood (Log-lik), AIC, BIC, AICc and DIC for fitting the NLFR, LFR and Weibull
models to the windshield failure data. As we can see NLFR has largest Log-lik value and smallest values for
the other criteria. Therefore, it is considered as the best model for this data set among the given models.
However, the LFR and Weibull models can also be considered as appropriate candidates for this data set.

7.2. Mice data

Data in Table 4 represent the days until death for male mice exposed to 300 rads of radiation [20,
p. 389]. The unit for measurement is day. We consider here only the group was maintained in a germ-free
environment and the causes of death is due to the effect of other causes. The new feature of male mice data
is that more than one failure mode occurs [20].

Table 2: MLEs, Bayes estimates and HPD intervals for the parameters and MTTF for fitting NLFR to windshield data.

Parameter MLE Bayes 90% HPD 95% HPD

a 0.0268 0.0268 [0.0207, 0.0331] [0.0197, 0.0344]

b 0.2785 0.2776 [0.2607, 0.2958] [0.2562, 0.2989]

k 2.9260 2.9092 [2.5193, 3.2860] [2.4964, 3.4198]

MTTF 3.0519 3.0646 [2.8850, 3.2607] [2.8441, 3.2967]

MLE: Maximum likelihood estimate; HPD: Highest posterior density;
MTTF: mean time to failure
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Figure 3: (a) Trace plots and (b) approximate posterior densities of the parameters produced by HMC sampling with 4
parallel chains when fitting NLFR to windshield data.
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Figure 4: Scatter plot matrix of HMC output with 4 parallel chains obtained by fitting NLFR to windshield data.
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Figure 5: Bayes estimates of the (a) reliability function and (b) failure rate function when fitting NLFR, LFR and Weibull
models to windshield data. Kaplan-Meier is the nonparametric estimate of the reliability function for right censored data.

Table 3: Log-likelihood, AIC, BIC, AICc and DIC when fitting NLFR, LFR and Weibull distributions to windshield data.

Model Log-lik AIC BIC AICc DIC

NLFR −170.69 347.38 356.47 347.54 344.71
LFR −176.55 357.11 363.17 357.18 354.39
Weibull −174.06 352.11 358.18 352.20 351.29

Log-lik: log-likelihood; AIC: Akaike information criterion; BIC:
Bayesian information criterion; AICc: corrected Akaike informa-
tion criterion; DIC: deviance information criterion; NLFR: non-
linear failure rate; LFR: linear failure rate
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Table 4: Male mice exposed to 300 rads of radiation (other causes in germ-free group)

136 246 255 376 421 565 616
617 652 655 658 660 662 675
681 734 736 737 757 769 777
800 807 825 855 857 864 868
870 870 873 882 895 910 934
943 1015 1019
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Figure 6: (a) Trace plots and (b) approximate posterior densities of the parameters produced by HMC sampling with 4
parallel chains when fitting NLFR to mice data.

For this data set, we used the same procedure described in Section 7.1 for HMC simulation from posterior
distribution. The trace plots and density estimates of the parameters of HMC output are given in Fig. 6.
The trace plots also show that the 4 parallel chains for each parameter converged quite fast and converged
to the same target distribution. The densities are also distributed approximately symmetrically around the
central values. The scatter plot matrix of HMC output shows very small posterior correlations between the
parameters (Fig. 7), thanks to the reparameterization.

The MLE and Bayes point estimates and two-sided 90% and 95% HPD intervals for a, b, k and MTTF
are shown in Table 5. The estimate of a is still positive but smaller than the previous case. Fig. 8 displays
the Bayes estimates of the reliability and failure rate functions when fitting NLFR, LFR and Weibull models
to the mice data. In this case, the NLFR also fits to the data better than the LFR and Weibull models.
The values of the Log-lik, AIC, BIC, AICc and DIC when fitting the NLFR, LFR and Weibull models to
the data are provided in Table 6 which shows that NLFR has largest Log-lik value and smallest values for
the other criteria. As we can see here, the LFR model is not appropriate for modeling this data set.

7.3. USS-halfback Diesel Engine data

Table 7 gives times of unscheduled maintenance actions for the U.S.S. Halfbeak number 4 main propulsion
diesel engine over 25, 518 operating hours [21, p. 395]. The unit for measurement is hour. The data are times
of recurrent events on one machine, hence not typical lifetime data. Here, we assume that the time from
one maintenance to the following one is as lifetime data to demonstrate our proposed model for uncensored
data.

Here we also used the same procedure described in Section 7.1 for HMC simulation. The trace plots and
density estimates of the parameters obtained by HMC algorithm are given in Fig. 9. The trace plots also
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Figure 7: Scatter plot matrix of HMC output with 4 parallel chains obtained by fitting NLFR to mice data.

Table 5: MLEs, Bayes estimates and HPD intervals for the parameters and MTTF for fitting NLFR to mice data

Parameter MLE Bayes 90% HPD 95% HPD

a 0.0002 0.0002 [0.0002, 0.0003] [0.0002, 0.0003]

b 0.0012 0.0012 [0.0011, 0.0012] [0.0011, 0.0012]

k 7.4383 7.3629 [6.1454, 8.6862] [5.8989, 8.9388]

MTTF 720.20 720.39 [689.07, 753.79] [682.66, 759.64]

MLE: Maximum likelihood estimate; HPD: Highest posterior density;
MTTF: mean time to failure

Table 6: Log-likelihood, AIC, BIC, AICc and DIC when fitting NLFR, LFR and Weibull distributions to mice data.

Model Log-lik AIC BIC AICc DIC

NLFR −250.09 506.18 511.10 506.89 503.06
LFR −267.26 538.51 541.79 538.85 535.35
Weibull −255.59 515.18 518.46 515.53 514.16

Log-lik: log-likelihood; AIC: Akaike information criterion; BIC:
Bayesian information criterion; AICc: corrected Akaike informa-
tion criterion; DIC: deviance information criterion; NLFR: non-
linear failure rate; LFR: linear failure rate

19



0.00

0.25

0.50

0.75

1.00

250 500 750 1000
Time

R
el

ia
bi

lit
y

LFR

NLFR

Nonparametric

Weibull

(a)

0.00

0.01

0.02

0.03

0 250 500 750 1000
Time

Fa
ilu

re
 r

at
e

LFR

NLFR

Nonparametric

Weibull

(b)

Figure 8: Bayes estimates of the (a) reliability function and (b) failure rate function when fitting NLFR, LFR and Weibull
models to mice data.

Table 7: U.S.S. Halfbeak Diesel Engine Data

1382 2990 4124 6827 7472 7567
8845 9450 9794 10848 11993 12300

15413 16497 17352 17632 18122 19067
19172 19299 19360 19686 19940 19944
20121 20132 20431 20525 21057 21061
21309 21310 21378 21391 21456 21461
21603 21658 21688 21750 21815 21820
21822 21888 21930 21943 21946 22181
22311 22634 22635 22669 22691 22846
22947 23149 23305 23491 23526 23774
23791 23822 24006 24286 25000 25010
25048 25268 25400 25500 25518

show that the 4 parallel chains for each parameter produced by HMC algorithm converge quickly to the same
target distribution. The densities are distributed approximately symmetrically around the central values.
The scatter plot matrix of HMC output in Fig. 10 also shows very small posterior correlations between the
parameters.

Table 8 shows the MLE and Bayes point estimates and two-sided 90% and 95% HPD intervals for a, b, k
and MTTF. The estimate of a is still positive but close to zero and the estimate of k shows the shape change
in the wear out phase. Fig. 11 displays the Bayes estimates of reliability and failure rate functions when
fitting NLFR, LFR and Weibull models to the mice data. In this case, the NLFR fits to the data much
better than the LFR and Weibull models. Table 9 provides the values of the Log-lik, AIC, BIC, AICc and
DIC when fitting the NLFR, LFR and Weibull models to the data. Again, NLFR has largest Log-lik value
and smallest values for the other criteria. For this data set, the NLFR clearly outperform the LFR and
Weibull models in term of the AIC, BIC, AICc and DIC measures. Once again, the LFR model is not an
appropriate model for the data set in which the failure rate has a shape change in the wear out phase.
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Figure 9: (a) Trace plots and (b) approximate posterior densities of the parameters produced by HMC sampling with 4
parallel chains when fitting NLFR to USS-halfback Diesel engine data.

Cor : −0.0924
1: −0.107

2: −0.0786
3: −0.106

4: −0.0778

Cor : 0.08
1: 0.0024

2: 0.145
3: 0.0663

4: 0.112

Cor : −0.293
1: −0.289
2: −0.29

3: −0.339
4: −0.251

a b k chain

a
b

k
chain

6.0e−068.0e−061.0e−051.2e−051.4e−051.6e−054.2e−054.3e−054.4e−054.5e−05 10 12 14 16 1 2 3 4

0e+00

1e+05

2e+05

3e+05

4.2e−05

4.3e−05

4.4e−05

4.5e−05

10

12

14

16

0255075100

0255075100

0255075100

0255075100

Figure 10: Scatter plot matrix of HMC output with 4 parallel chains obtained by fitting NLFR to USS-halfback Diesel engine
data.
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Figure 11: Bayes estimates of the (a) reliability function and (b) failure rate function when fitting NLFR, LFR and Weibull
models to USS-halfback Diesel engine data.

Table 8: MLEs, Bayes estimates and HPD intervals for the parameters and MTTF for fitting NLFR to USS-halfback Diesel
engine data

Parameter MLE Bayes 90% HPD 95% HPD

a 0.00001 0.00001 [0.000008, 0.000013] [0.000008, 0.000013]

b 0.00004 0.00004 [0.000043, 0.000044] [0.000043, 0.000045]

k 12.4316 12.2552 [10.47271, 14.00529] [9.952805, 14.21508]

MTTF 19342.6 19666.8 [19089.23, 20221.54] [19010.52, 20372.36]

MLE: Maximum likelihood estimate; HPD: Highest posterior density; MTTF: mean time
to failure

Table 9: Log-likelihood, AIC, BIC, AICc and DIC when fitting NLFR, LFR and Weibull distributions to USS-halfback Diesel
engine data.

Model Log-lik AIC BIC AICc DIC

NLFR −684.73 1375.47 1382.25 1375.82 1373.06
LFR −735.60 1475.21 1479.73 1475.38 1472.38
Weibull −716.24 1436.49 1441.01 1436.66 1435.65

Log-lik: log-likelihood; AIC: Akaike information criterion; BIC:
Bayesian information criterion; AICc: corrected Akaike information
criterion; DIC: deviance information criterion; NLFR: non-linear fail-
ure rate; LFR: linear failure rate
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8. Conclusions

In this paper, we have proposed the NLFR model with a new parameterization which differs from
all previous studies. The new paramterization shows vary small correlated parameters which is good for
Bayesian estimation using the posterior mean. The properties and reliability characteristics of the model
have been studied. The cross-entropy method for continuous multi-extremal optimization has been used
to produce MLE of the parameters. Bayes estimators are obtained under symmetric and asymmetric loss
functions. The HMC simulation method has been employed to simulate data from the posterior distribution.
Three benchmark data sets have been used to illustrate the superiority of the proposed model and the
Bayesian estimation method. Since the NLFR model fits to the data sets better than the Weibull model,
future work could be focused on proportional hazard model based on NLFR instead of the Weibull model.
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Appendix A. R code for cross-entropy optimization method

In this section we provide R code for cross-entropy optimization method using the “CEoptim” package
[40]. We provide here the R code for the mice data analyzed in Section 7.2.

#input the mice data into R: For simplicity we use the scan() function here.

survtime <- scan()

136 246 255 376 421 565 616 617 652 655

658 660 662 675 681 734 736 737 757 769

777 800 807 825 855 857 864 868 870 870

873 882 895 910 934 943 1015 1019

#define the log-likelihood function

LogLikelihood <- function(x,t) {

sum(log(x[1]+x[3]*x[2]*(x[2]*t)^(x[3]-1))-(x[1]*t+(x[2]*t)^x[3]))

}

#define initial values for the cross-entropy algorithm

mu0 <- c(0,0,10)

sigma0 <- c(0.001,0.001,10)

#restrict the parameter space

A=diag(-1,3)

B=c(0,0,0)

#invoke the CEoptim library

library(CEoptim)

#execute the CEoptim function

opt <- CEoptim(LogLikelihood, f.arg = list(t=survtime), maximize = T,

continuous = list(mean=mu0,sd=sigma0, conMat=A, conVec=B,

smoothMean=0.7, smoothSd=0.7, sdThr=0.00001), rho = 0.01, N=1000)

#optimum value

opt$optimum

#optimizer (MLE)

CE <- opt$optimizer$continuous
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Appendix B. R code for HMC simulation via Stan

In this study, we use Rstan [41] to sample from posterior distribution. Rstan is the R interface to Stan
[42] which provides full Bayesian inference using the No-U-Turn sampler (NUTS) [30], a variant of HMC.
The Stan code for our mode for the mice data is given below:

functions{

real model_log(vector x, real a, real b, real k){

vector[num_elements(x)] term;

real loglik;

for (i in 1:num_elements(x)) {

term[i] = log(a+k*b*(b*x[i])^(k-1))-(a*x[i]+(b*x[i])^k);

}

loglik = sum(term);

return loglik;

}

}

data{

int N;

vector[N] Y;

}

parameters{

real<lower=0> a;

real<lower=0> b;

real<lower=0> k;

}

model{

a ~ gamma(50,2.064566e+05);

b ~ gamma(50,4.227379e+04);

k ~ gamma(50,6.721977e+00);

Y ~ model(a,b,k);

}

To implement the model we need to create a Stan file with the above code and save the file as NLFRmice.stan.

#after installing the rstan package, we invoke it by

library("rstan")

#run the Stan model

fit = stan(file = "NLFRmice.stan",

data = list(Y=survtime,N=38),

iter = 2000,

chains = 4)

#model summary

print(fit, digits_summary = 4)

#samples vs. iteration plot

traceplot(fit, nrow=3)

traceplot(fit, nrow=3, inc_warmup=TRUE)

#posterior samples for the 3 parameters.

dat = as.matrix(fit)[,1:3]

#Bayes estimates for the parameters

est = round(apply(dat, 2, mean),digits = 4)

#invoke package that contains HPDinterval function

library(coda)
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#90% HPD intervals for the parameters

round(HPDinterval(as.mcmc(dat), prob=0.90), digits = 4)

#95% HPD intervals for the parameters

round(HPDinterval(as.mcmc(dat), prob=0.95), digits = 4)
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