
Title An axiomatic framework for influence diagram computation with
partially ordered preferences

Authors Wilson, Nic;Marinescu, Radu

Publication date 2020-07-08

Original Citation Wilson, N. and Marinescu, R. (2020) 'An axiomatic framework
for influence diagram computation with partially ordered
preferences', International Journal of Approximate Reasoning,
125, pp. 73-117. doi: 10.1016/j.ijar.2020.06.011

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1016/j.ijar.2020.06.011

Rights © 2020, Elsevier B.V. All rights reserved. This manuscript version
is made available under the CC BY-NC-ND 4.0 license. - https://
creativecommons.org/licenses/by-nc-nd/4.0/

Download date 2024-04-27 23:02:50

Item downloaded
from

https://hdl.handle.net/10468/10406

https://hdl.handle.net/10468/10406

An Axiomatic Framework for Influence Diagram
Computation with Partially Ordered Preferences

Nic Wilsona, Radu Marinescub

aInsight Centre for Data Analytics, University College Cork, Ireland
bIBM Research, Ireland

Abstract

This paper presents an axiomatic framework for influence diagram computation,
which allows reasoning with partially ordered values of utility. We show how an
algorithm based on sequential variable elimination can be used to compute the set
of maximal values of expected utility (up to an equivalence relation). Formalisms
subsumed by the framework include decision making under uncertainty based on
multi-objective utility, or on interval-valued utilities, as well as a more qualitative
decision theory based on order of magnitude probabilities and utilities. Conse-
quently, we also introduce the order of magnitude influence diagram to model and
solve partially specified sequential decision problems when only qualitative (or
imprecise) information is available.

Keywords: Influence diagrams, graphical models, Bayesian networks, variable
elimination, preferences, uncertainty, utility, optimization

1. Introduction

Influence diagrams have been widely used for the past three decades as a
graphical model to formulate and solve decision problems under uncertainty. The
standard formulation of an influence diagram consists of two types of informa-
tion: qualitative information that defines the structure of the problem and quan-
titative information (also known as parametric structure) that, together with the
former, defines the model. The qualitative information includes the set of (dis-
crete) chance variables, where the outcome is determined randomly based on the

Email addresses: nic.wilson@insight-centre.org (Nic Wilson),
radu.marinescu@ie.ibm.com (Radu Marinescu)

Preprint submitted to International Journal of Approximate Reasoning May 1, 2020

values assigned to other variables, describing the set of possible world configura-
tions, the set of decision variables, which the decision maker can choose the value
of, based on observations on some other variables, as well as the dependencies
between the two sets of variables. The parametric structure is composed of the
conditional probability distributions associated with each of the chance variables
(thus representing uncertainty like in Bayesian networks), as well as a collection
of utility functions, whose sum describes the overall value of an outcome, and
thus is used to represent the preferences of the decision maker. A policy defines
which actions to take for each decision variable, given the available information,
and has a corresponding expected utility. The solution to an influence diagram is
an optimal policy that maximizes the expected utility and therefore depends on
both types of qualitative and quantitative information.

In general, actions can lead to many different kinds of consequences, for ex-
ample, financial gain/loss, risk to health, effect on the environment or gain/loss
to reputation. It may not be possible to map the various potential consequences
of a set of actions to the same scale of utility in a way that avoids making es-
sentially arbitrary choices. It is thus natural to consider in this case notions of
multi-attribute/objective utility (including imprecise tradeoffs between utility ob-
jectives), where utility values are only partially ordered. Quite often, we may have
precise knowledge of the qualitative information but only very rough (or impre-
cise) estimates of the quantitative parameters. In such cases, the standard solution
techniques cannot be applied directly, unless the missing or imprecise information
is accounted for.

1.1. Contributions
In this paper, we consider decision making under uncertainty using influence

diagrams, but where we allow more general notions of uncertainty than probabil-
ity, and more general notions of utility functions, which, in particular, allow utility
values to be only partially ordered. We next highlight the major contributions of
the paper, as follows:

• We construct an axiomatic framework, listing properties of a formalism that
allow maximal (generalized) expected utility to be computed by sequential
elimination of all the variables.

• We prove formally that the set of utility values computed by a sequential
variable elimination algorithm within this framework is equivalent to the
set of maximal values of expected utility.

2

• We discuss in detail and provide numerical experiments for order of mag-
nitude influence diagrams, a formalism that can be used to model and solve
partially specified sequential decision making problems when only qualita-
tive (or imprecise) information is available.

In general terms, variable elimination algorithms can be viewed as follows.
We have a collection Θ of functions, where each function in Θ only involves
a small number of variables. In the case of influence diagram computation, Θ
contains both probability functions and utility functions. Θ is used as a compact
representation (or decomposition) of a function

⊗
Θ on all the variables, equaling

a combination of all the functions in Θ. For example, in a Bayesian network, Θ
consists of a collection of conditional probability functions and

⊗
Θ is the joint

probability distribution. Since
⊗

Θ involves all the variables, it will be a huge
object to represent explicitly.

What we want to compute is the result of marginalizing out (eliminating) all
the variables from

⊗
Θ. For a standard influence diagram we have both chance

and decision variables, and we eliminate chance variables with a sum operator, and
decision variables with a max operator. We can compute the maximum expected
utility by performing a sequence of sum and max eliminations to

⊗
Θ. Perform-

ing combinations leads to functions involving larger sets of variables, which is
expensive in terms of both computational cost and time. One therefore would
like to delay performing computations where possible. Thus, when eliminating a
variable X , with, for example, the

∑
operator, one transforms Θ to a collection

Θ′, including only functions that don’t involve X , such that
∑

X(
⊗

Θ) =
⊗

Θ′.
Crucially, the functions in Θ that don’t involve X are left unchanged, so still ap-
pear in Θ′. However, these variable elimination computations are not trivial when
generalized forms of probability and utility are considered in our proposed frame-
work.

We begin with a standard example of influence diagrams, and show in detail
how a variable elimination algorithm computes expected utility (Section 2). We
will extend this algorithm for a wide range of formalisms. More precisely, we
consider generalized forms of probability values and utility values, and associated
generalized uncertainty and utility functions, and consider what properties are
needed for the algorithm to be correct (Section 3). We describe some formalisms
that satisfy the axioms, including interval-valued utility, multi-objective utility and
order of magnitude probability and utility (Section 3.2).

We then show how both chance variables and decision variables are eliminated
(Section 4). To eliminate a variable involves replacing the current collection of

3

generalized probability and utility functions with a new set whose combination is
equivalent to the marginal of the initial set. We continue by defining generalized
influence diagram systems (Section 5) and proving that one can iteratively elimi-
nate all the variables to obtain the maximum value of expected utility for the case
where utility values are totally ordered (Section 6).

We go on to consider the case where values of utility are only partially ordered
(Section 7); then there will typically not be a unique maximal value of utility, but
a set of them. To compute this set we need to perform operations on sets of utility
values. We therefore show how to compute, by sequential variable elimination,
a set of utility values that is equivalent, in a natural sense, to the set of maximal
values of expected utility (Section 8). This therefore allows influence diagram
computation for any formalisms satisfying the axioms.

Finally, we take a closer look at the case when only rough (or imprecise) esti-
mates of the decision model’s parameters are available. We describe in detail the
order of magnitude influence diagram which can be viewed as a qualitative the-
ory for influence diagrams in which such partially specified sequential decision
problems can be modeled and solved (Section 9). More specifically, the model
involves an order of magnitude representation of the probabilities and utilities,
and thus allows the decision maker to specify partially ordered preferences via
finite sets of utility values. To compute the set of maximal expected utility val-
ues we show how to use a variable elimination algorithm that performs efficient
operations on sets of utility values involving at most two elements.

1.2. Outline of the Article
Following preliminaries and notations (Section 2), Section 3 introduces the no-

tions of generalized uncertainty and utility values while Section 4 shows how to
eliminate chance and decision variables from these structures. In Section 5 we de-
fine generalized influence diagram systems and show in Section 6 how to compute
the maximum value of expected utility. Section 7 and Section 8 present the tech-
nical results for the case of partially ordered utility values. Section 9 is dedicated
to the order of magnitude influence diagram formalism, Section 10 overviews re-
lated work, while Section 11 provides concluding remarks and directions of future
work.

The Appendix contains the proofs and auxiliary material required for the main
results. The paper extends earlier work of the authors which was published in
[1, 2].

4

2. Preliminaries

We first define some notation that we will use throughout the paper, and then
go through a standard influence diagram example to illustrate the computational
of expected utility using iterative variable elimination. In later sections we extend
this solution method for more general forms of influence diagram.

2.1. Some Notation
We denote variables by upper case letters (e.g., X, Y, . . .) and values of vari-

ables by lower case letters (e.g., x, y, . . .). Sets of variables are denoted by bold
upper case letters (e.g., X = {X1, . . . , Xn}). We denote the set of possible val-
ues (also called the domain) of variable Xi by Ω(Xi) or ΩXi

. The expression
Xi = xi (or simply xi when the variable is clear) denotes an assignment of a
value xi ∈ Ω(Xi) to Xi while X = x (or simply x) denotes an assignment of
values to all variables in X, namely x = (X1 = x1, X2 = x2, . . . , Xn = xn).
Ω(X) (or ΩX) denotes the Cartesian product of the domains of all variables in X,
namely Ω(X) = Ω(X1)× Ω(X2)× . . .× Ω(Xn).

The notation
∑

x∈Ω(X) denotes the sum over all possible configurations of
variables in X, namely

∑
x∈Ω(X) =

∑
x1∈Ω(X1)

∑
x2∈Ω(X2) · · ·

∑
xn∈Ω(Xn). For

brevity, we will abuse notation and write
∑

xi∈Ω(Xi)
(resp. maxxi∈Ω(Xi)) as

∑
Xi

(resp. maxXi
) and

∑
x∈Ω(X) (resp. maxx∈Ω(X)) as

∑
X (resp. maxX).

Given a real valued function f defined over a set of variables S, namely f :
Ω(S) → R, and a variable X ∈ S, the function (

∑
X f) is defined over U = S \

{X} as follows. For every u ∈ Ω(U), (
∑

X f)(u) =
∑

x∈Ω(X) f(u, x). Function
(maxX f) is defined in a similar manner: for every u ∈ Ω(U), (maxX f)(u) =
maxx∈Ω(X) f(u, x).

2.2. The Oil Wildcatter Decision Problem
We begin by introducing a simple decision problem which will be used through-

out the paper. Consider an oil wildcatter that must decide either to drill or not to
drill for oil at a specific site (we adapted this example from [3]). Before drilling,
they could perform a seismic test that will help determine the geological structure
of the site and therefore give an indication of the oil contents underground. The
test results can show a closed reflection pattern (indication of significant oil), an
open pattern (indication of some oil), or a diffuse pattern (almost no hope of oil).
The special value notest indicates that the test results will not be available if the
seismic test is not done. Figure 1 shows the influence diagram of this decision
problem (we defer the formal introduction of influence diagrams until Section 5).

5

Figure 1: The oil wildcatter influence diagram.

An influence diagram [4, 5] is typically represented by a directed acyclic graph
containing nodes for chance variables (depicted as oval-shaped nodes) and deci-
sion variables (depicted as rectangle-shaped nodes) as well as the utility functions
(depicted as diamond-shaped nodes). For each chance and decision node there is
an arc directed from each of its parent variables to it, and there is an arc directed
from each variable in the scope of a utility function toward its utility node.

There are therefore two decision variables, T (Test) and D (Drill), and two
chance variables S (Seismic results) and O (Oil contents). The probabilistic
knowledge consists of the conditional probability distributions P (O) and P (S|O, T),
while the utility function is the sum of U1(T) and U2(D,O). Therefore, the task
is to determine the optimal policies for T and D, denoted by πT and πD (details
are deferred to Section 5), that maximize the expected utility. Namely,

E = max
πT ,πD

∑
S,O

P (O) · P (S|O, T) · (U1(T) + U2(O,D)). (1)

The choice of D can depend on its parents S and T , i.e., the decision to drill
(D) is made after the decision to test (T), and can depend the the result S of the
test. In contrast, the decision to test T has to be made first, without knowledge
of the values of any of the other variables. The unobservable chance variable (O)
must be placed last in the order. Based on these considerations (see also Section 5

6

for details), we obtain:

E = max
T

∑
S

max
D

∑
O

P (O) · P (S|O, T) · (U1(T) + U2(O,D)). (2)

We eliminate variables from right to left, starting with summing out O:

Summing over O:

E = max
T

∑
S

max
D

φO(S, T) · (U1(T) + ψO(S, T,D)) (3)

where

φO(S, T) =
∑
O

P (O) · P (S|O, T) (4)

and

ψO(S, T,D) =
1

φO(S, T)

∑
O

P (O) · P (S|O, T) · U2(O,D). (5)

Therefore, eliminating the chance variable O (by summation) creates a new
probabilistic component (φO(S, T)) and a new utility component (ψO(S, T,D)),
respectively. For illustration, Figure 2 shows the detailed tables of φO(S, T) (left)
and ψO(S, T,D) (right) based on the input functions from Figure 1. For example,
ψO(S = closed, T = yes, D = yes) is equal to (1/0.204)× (0.5× 0.01×−70 +
0.3× 0.03× 50 + 0.2× 0.95× 200) = 186.8.

Maximizing over D:
Pushing expressions not involving D, and eliminating D from Eq. 3 we get:

E = max
T

∑
S

φO(S, T) · (U1(T) + max
D

ψO(S, T,D))

= max
T

∑
S

φO(S, T) · (U1(T) + ψD(S, T))
(6)

where

7

Figure 2: Intermediate probabilistic component φO(S, T) and utility component ψO(S, T,D),
respectively.

ψD(S, T) = max
D

ψO(S, T,D). (7)

Here, we only generated a utility component (ψD(S, T)) by maximizing over
the relevant sum of utility functions. Notice that U1(T) does not involve D and
therefore it need not be included in the maximization.

Summing over S:
Next, we eliminate S by summation from Eq. 6 and obtain a probabilistic

component and a utility component, as follows:

E = max
T

(∑
S

φO(S, T)

)
·
(
U1(T) +

∑
S φO(S, T) · ψD(S, T)∑

S φO(S, T)

)
= max

T
φS(T) · (U1(T) + ψS(T))

(8)

where

φS(T) =
∑
S

φO(S, T) (9)

and

ψS(T) =
1

φS(T)

∑
S

φO(S, T) · ψD(S, T). (10)

Figure 3 shows the tables of the intermediate functions generated when elimi-
nating variables D and S, namely ψD(S, T), φS(T) and ψS(T), respectively.

8

Figure 3: Intermediate probabilistic component φS(T) and utility components ψD(S, T) and
ψS(T).

Maximizing over T :
Finally, we find T that maximizes:

E = max
T

φS(T) · (U1(T) + ψS(T)). (11)

Plugging in the probability and utility values given in Figure 1 and performing
the intermediate numerical calculations (e.g., as shown in Figures 2 and 3), we get:
φS(T = yes) = 1, φS(T = no) = 1, ψS(T = yes) = 52.75, ψS(T = no) = 20,
U1(T = yes) = −10 and U1(T = no) = 0, respectively. Therefore, solving
Eq. 11 yields 42.75 which is the value of the maximum expected utility. The
sequence of solution policies is given by the argmax function in Eq. 11 (for T) and
Eq. 6 (for D), while respecting the temporal order of the decisions. Specifically,
once decision T is made, the value of S will be observed, and then decision D
can be made based on T and the observed S. In this case, the optimal policy is to
perform the seismic test and to drill only if the test results show an open or closed
pattern.

3. Generalized Uncertainty and Utility Values

In standard influence diagrams probability potentials take non-negative real
values, and utility functions take real values. In this section, we introduce the
notions of generalized probability and utility values along with combination and
marginalization operators. Most of the properties of positive reals are still as-
sumed for generalized probability values, the most important exception being that
we do not assume a cancellation property for addition (i.e., we do not assume that
a + b = a + c only if b = c; for instance, the order of magnitude systems in
Sections 3.2.3 and 3.2.4 do not satisfy this property). The properties assumed for
generalized utility values are much weaker than those satisfied by the real num-
bers; in particular, we allow partially ordered utility values, which will be useful
for expressing imprecise information about utilities, or multi-objective utilities.

9

We also outline the properties of generalized probability and utility values which
will allow correct variable elimination algorithms.

In Section 3.1, we define Uncertainty-Utility Values Structures, the algebraic
structures used for generalized probability and utility values, giving the assump-
tions that are used to ensure the correctness of the variable elimination algorithm
for computing generalized expected utility for an influence diagram. (Because we
are focusing on computational issues, the properties we assume are much stronger
than those assumed in Chu and Halpern’s GEU (Generalized Expected Utility)
system [6].) Section 3.2 gives a number of example formalisms: a form of up-
per and lower utility (Section 3.2.1), multi-objective utility (Section 3.2.2), and
an order of magnitude calculus based on a more qualitative version of probability
(Section 3.2.3), which leads naturally to only partially ordered utility values (as
do upper and lower utility and multi-objective utility). We also consider (Sec-
tion 3.2.4), a pair of simpler order of magnitude systems that have totally ordered
generalized utility values. In Section 3.3, we define generalized probability and
utility functions, and the combination and marginalization operators.

3.1. Uncertainty-Utility Values Structures
An uncertainty values structure (Definition 1) is used to define the values taken

by the generalized probability function, along with the corresponding operations
on those values; similarly, a utility values structure (Definition 2) defines val-
ues and operations for a generalized utility function; these are combined into an
uncertainty-utility values structure (Definitions 3 and 4) that also include an oper-
ation for combining an uncertainty value and a utility value. In addition, we need
a generalized max operator (Definition 5).

Definition 1 (uncertainty values structure). A uncertainty values structure is de-
fined to be a tuple 〈Q,+,×, 0, 1〉 that is a positive commutative semi-ring with
multiplicative inverses, i.e.,

• + and× are both commutative and associative binary operations on set Q;

• ∀q ∈ Q, q + 0 = q (additive identity element 0);

• ∀q ∈ Q, q × 1 = q (multiplicative identity element 1);

• ∀q ∈ Q, q × 0 = 0, and ∀p, q ∈ Q, p + q = 0 if and only if p = q = 0
(positive);

• × distributes over +, namely ∀p, q, r ∈ Q, (p+ q)× r = (p× r) + (q× r);

10

• multiplicative inverses exist for all non-zero elements of Q, so that for all
q ∈ Q \ {0} there exists some (unique) element q−1 ∈ Q with q × q−1 = 1.

The multiplication operation× is used for the factored representations of gen-
eralized probability functions; the addition operation + is used in the marginaliza-
tion (summation) operator. The multiplicative inverses are used to allow division
as in Equation 5; the positivity condition allows correct treatment of zero denomi-
nators in the elimination of a chance variable (Section 4.2). For the standard case,
we would use the tuple 〈R+,+,×, 0, 1〉, where R+ is the set of non-negative real
numbers.

Definition 2 (utility values structure). A utility values structure is defined to be a
tuple 〈U,+, 0〉 such that + is a commutative and associative binary operation on
set U with identity element 0.

The addition operation + is used for the factored representations of general-
ized utility functions. In the standard case, we would use the tuple 〈R,+, 0〉.

An uncertainty-utility values structure combines an uncertainty values struc-
ture, representing the generalized probability values, with a utility values struc-
ture, representing the generalized utility values. We also need to add another
operation ×QU that combines a value of probability with one of utility, in the
computation of expected utility. (∗1), (∗2), (∗3) and (∗4) are properties used in
the variable elimination algorithm. For partially ordered utility cases, it turns out
to be useful to consider systems without the last property, leading to what we call
a weak uncertainty-utility values structure.

Definition 3 (weak u.u.v. structure). A weak uncertainty-utility values structure
(or weak u.u.v. structure) is defined to be a tuple U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU〉,
where 〈Q,+Q,×Q, 0Q, 1〉 is an uncertainty values structure, 〈U,+U , 0U〉 is a util-
ity values structure, and ×QU is a function from Q× U → U satisfying the prop-
erties (∗1), (∗2) and (∗3) below, for arbitrary u, u1, u2 ∈ U and q, q1, q2 ∈ Q
(dropping the (·)Q and (·)U subscripts since there is no ambiguity):

(∗1) 1× u = u and 0× u = 0U ;

(∗2) q1 × (q2 × u) = (q1 × q2)× u;

(∗3) q × (u1 + u2) = (q × u1) + (q × u2).

Definition 4 (u.u.v. structure). An uncertainty-utility values structure (u.u.v. struc-
ture) is a weak uncertainty-utility values structure U that also satisfies:

11

(∗4) (q1 + q2)× u = (q1 × u) + (q2 × u).

Q will contain the probability-like values, and U will contain the utility-like
values. We will usually abbreviate 1Q to 1, abbreviate×Q and×QU both to×, and
+Q and +U both to + (the context will make it clear which operation is meant).
For the standard case of probability and utility functions, we use uncertainty-
utility values structure 〈R+,+,×, 0, 1,R,+, 0,×〉.

When we are eliminating decision variables in an influence diagram compu-
tation, we use a max operator. We generalize this to a disjunctive operation, as
defined below. For the totally ordered case (see Section 6), we use max as the
disjunctive operator; for the partially ordered case in Section 7, we use max over
subsets of utility values.

Definition 5 (disjunctive operation). Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU〉
be a weak u.u.v. structure. Let ∨ be a binary operation on U . We say that ∨ is
a disjunctive operation for U if ∨ is a commutative and associative operation on
U such that both +U and ×QU distribute over ∨, so that for any q ∈ Q and all
u1, u2, u3 ∈ U , u1 + (u2 ∨ u3) = (u1 + u2) ∨ (u1 + u3), and q × (u1 ∨ u2) =
(q × u1) ∨ (q × u2).

In all the formalisms we consider, generalized utility values are ordered; our
algorithmic approach requires that the operations respect the ordering, in the fol-
lowing sense.

Definition 6 (operation respecting ordering). Let T be some set and let� be some
function from T × U to U . We say that � respects the binary relation � on U if
for all t ∈ T and all elements u1, u2 of U , u1 � u2 ⇒ t � u1 � t � u2

1. We say
that weak u.u.v. structure U respects � if both +U and ×QU respect �.

If U respects the total order � and if we define ∨ to be maximum with respect
to �, then it is easy to show that ∨ is a disjunctive operation.

Lemma 1. Let U be a weak uncertainty-utility values structure that respects total
order �. If we define ∨ to be maximum with respect to �, then ∨ is a disjunctive
operation.

Proof: Write U as 〈Q,+Q,×Q, 0Q, 1Q, U,+U , 0U ,×QU〉. Operation ∨ is clearly a
commutative and associative operation. Consider any q ∈ Q and any u1, u2, u3 ∈

1This can be also be viewed as � being monotonic with respect to �.

12

U . We need to show that u3+(u1∨u2) = (u3+u1)∨(u3+u2), and q×(u1∨u2) =
(q × u1) ∨ (q × u2).

Since� is a total order, either u1 � u2 or u2 � u1. Let us assume that u1 � u2.
(The case when u2 � u1 follows similarly.) We have u1 ∨ u2 = u1. Since + and
× respect �, we have u3 + u1 � u3 + u2, and q × u1 � q × u2. We thus have
(u3 + u1) ∨ (u3 + u2) = u3 + u1 = u3 + (u1 ∨ u2), and (q × u1) ∨ (q × u2) =
q × u1 = q × (u1 ∨ u2). 2

3.2. Example Formalisms
We give next some examples of formalisms that satisfy the axioms defined in

Section 3.1 (in particular, Definitions 3 and 4). The results given later in this paper
(see Sections 6 and 8) imply that, for any of these formalisms, the maximal values
of expected utility can be computed (up to equivalence) by a variable elimination
algorithm.

3.2.1. Upper and Lower Utility
It can sometimes be hard to determine precisely a utility value. To allow a rep-

resentation of imprecise utility, we can let utility functions assign pairs of utility
values instead of single values, representing a lower and an upper value of utility.
For an influence diagram computation (see Section 5), each policy π, dynamically
assigning the decision variables, has an associated lower expected utility LEU(π)
and an upper expected utility UEU(π).

A natural ordering2 on these (expected) utility pairs is the point-wise one given
by 〈u, v〉 � 〈u′, v′〉 if and only if u ≥ u′ and v ≥ v′. That is, π is at least as good
as π′ if LEU(π) ≥ LEU(π′) and UEU(π) ≥ UEU(π′). We then define U to
consist of the set of all pairs 〈u, v〉 of real numbers with u ≤ v. The sum of two
pairs 〈u1, v1〉 and 〈u2, v2〉 is performed point-wise, i.e., to be 〈u1 + u2, v1 + v2〉.
The additive identity utility element is the pair 〈0, 0〉. For probability value p and
utility pair 〈u, v〉, p ×QU 〈u, v〉 is defined to be 〈p × u, p × v〉. This gives rise
to an u.u.v. structure 〈R+,+,×, 0, 1,R × R,+U , 〈0, 0〉,×QU〉 that respects the
partial order �. Since utility values are only partially ordered, we may well have
more than one maximal value of expected utility; we are interested in being able

2A more cautious ordering�′ is given by 〈u, v〉 �′ 〈u′, v′〉 if and only if u ≥ v′. However, the
addition operation on utility pairs does not respect�′, which means that our algorithmic approach
cannot then be applied. For example, we have 〈3, 5〉 �′ 〈1, 2〉, because 3 ≥ 2, but 〈3, 5〉+〈0, 2〉 =
〈3, 7〉 6�′ 〈1, 4〉 = 〈1, 2〉+ 〈0, 2〉.

13

to compute the set of maximal (i.e., undominated) values of
〈
LEU(π),UEU(π)

〉
over all policies π.

3.2.2. Multi-Objective Utility
A related system (which is mathematically a generalization) is based on multi-

objective utility. One may have more than one independent scale of utility, for
example, one based on monetary gain, and one based on risk to health. Again,
scalar multiplication and addition are performed point-wise, giving, for m objec-
tives the following u.u.v. structure: 〈R+,+,×, 0, 1,Rm,+U , 〈0 × · × 0〉,×QU〉,
where +U is the usual, point-wise, addition on Rp, and ×QU is scalar (point-wise)
multiplication. We can use the (point-wise) product (Pareto) ordering on U = Rp,
given by ~u ≥ ~v if and only if for i = 1, . . . ,m, ~u(i) ≥ ~v(i). Alternatively, since
this ordering is a rather weak one, instead one may want to consider imprecise
trade-offs between the scales of utility. For example, in a two-objective situation,
the decision maker tell us that are happy to gain 3 units of the first objective at
the cost of losing one unit of the second, and hence prefer (3, -1) to (0, 0). Such
tradeoffs may be elicited using some structured method, or in a more ad hoc way.
Therefore, the ordering can be strengthened to take such trade-offs into account,
whilst still maintaining the monotonicity properties. The tradeoffs generate a con-
vex cone C, and we define ordering � by ~u � ~v if and only if ~u − ~v is in C (see
also [7, 8] for additional details).

A further related system is multi-agent probability and utilities. Each of a
number m of agents makes a judgment of the probability and utility values, which
are each represented as vectors of m real values.

3.2.3. Order of Magnitude Calculus
We consider the order of magnitude probability and utility system from [9],

which can be viewed as a decision theory for kappa (ranking) functions [10].
Let O = {〈σ, n〉 : n ∈ Z, σ ∈ {+,−,±}} ∪ {〈±,∞〉}, where Z is the set of

integers. The element 〈±,∞〉 will sometimes be written as 0, element 〈+, 0〉 as 1,
and element 〈−, 0〉 as−1, respectively. We also defineO± = {〈±, n〉 : n ∈ Z ∪ {∞}},
and O+ = {〈+, n〉 : n ∈ Z}.

Elements of O are interpreted in terms of polynomials (or rational functions)
in a parameter ε. ε can be considered as an infinitesimal, or, alternatively, a very
small unknown number. 〈+, n〉 represents a function which is positive and of
order εn, and 〈−, n〉 is negative and of order εn. When we add a positive and a
negative value, both of order εn, the answer can be positive or negative, and of
order εm for any m ≥ n. We write this imprecise value as 〈±, n〉.

14

Standard arithmetic operations such as multiplication (×) and addition (+)
follow from the semantics of the order of magnitude values [9] and are defined
next.

Definition 7 (multiplication). Let a, b ∈ O be such that a = 〈σ,m〉 and b =
〈τ, n〉. We define a × b = 〈σ ⊗ τ,m + n〉, where ∞ + n = n +∞ = ∞ for
n ∈ Z ∪ {∞} and ⊗ is the natural multiplication of signs: it is the commutative
operation on {+,−,±} such that + ⊗ − = −, + ⊗ + = − ⊗ − = +, and
∀σ ∈ {+,−,±}, σ ⊗± = ±.

This multiplication is associative and commutative, and ∀a ∈ O, a×0 = 0 and
a × 1 = a. Furthermore, for b ∈ O \ O±, we define b−1 to be the multiplicative
inverse of b, namely 〈σ,m〉−1 = 〈σ,−m〉 for σ ∈ {+,−}. Given a ∈ O, we
define a/b = a× b−1.

Definition 8 (addition). Let a, b ∈ O be such that a = 〈σ,m〉 and b = 〈τ, n〉. We
define a + b to be: (1) 〈σ,m〉 if m < n; (2) 〈τ, n〉 if m > n; (3) 〈σ ⊕ τ,m〉 if
m = n, where +⊕+ = +, −⊕− = −, and otherwise, σ ⊕ τ = ±.

Addition is associative and commutative, and a+0 = a, ∀a ∈ O. For a, b ∈ O,
let −b = −1 × b and a − b = a + (−b). We write −〈σ,m〉 = 〈−σ,m〉, where
−(+) = −, −(−) = + and −(±) = ±. We also have distributivity: ∀a, b, c ∈ O,
(a+ b)× c = a× c+ b× c.

We use a slightly stronger ordering than that defined in [9] (so that the ordering
is respected by the operations).

Definition 9 (ordering). Let a, b ∈ O be such that a = 〈σ,m〉 and b = 〈τ, n〉. We
define the binary relation � on O by a � b if and only if either:

• σ = + and τ = + and m < n; or

• σ = + and τ = ± and m ≤ n; or

• σ = + and τ = −; or

• σ = ± and τ = − and m ≥ n;

• σ = − and τ = − and m > n.

We define relation � by, a � b ⇐⇒ a � b or a = b.

15

In particular, all positive elements are better than all negative elements. We
write a � b if and only if b � a, and a ≺ b if and only if b � a.

We define U = 〈Q,+Q,×Q, 0Q, 1Q, U,+U , 0U ,×QU〉 as an u.u.v. structure for
the order of magnitude case, where U isO and Q isO+∪{0}, respectively. It can
be shown that the previously stated properties including (∗1), (∗2), (∗3), and (∗4)
all hold, and the operations respect the ordering �.

Proposition 1. Define UO to be the tuple 〈O+∪{0},+,×, 0, 1,O,+, 0,×〉. Then
UO is an uncertainty-utility values structure that respects partial order �, i.e., �
is respected by + and the operation × : O+ ∪ {0} × O → O.

3.2.4. Simplified Order Of Magnitude Calculus
We consider two simplified versions of the Order of Magnitude system, which

involve totally ordered utility values: the Simplified Lower OOM (SLOOM) and
Simplified Upper OOM (SUOOM). SLOOM and SUOOM are concerned with
the subset O′ = (O −O±) ∪ {0} consisting of zero and the positive and negative
elements of O.
O′ is totally ordered by � and closed under multiplication ×. However, it is

not closed under the OOM addition; we define new versions of addition onO′, for
SLOOM and SUOOM, as follows.

Definition 10 (SLOOM addition +∗ on O′). We define, for non-zero elements of
O′,

(σ,m) +∗ (σ′, n) =


(σ,m) if m < n;

(σ′, n) if m > n;

(σ �∗ σ′,m) if m = n

where + �∗ + = +, and otherwise, σ �∗ σ′ = −. We also define a +∗ 0 =
0 +∗ a = a for all a ∈ O′.

Definition 11 (SUOOM addition +∗ on O′). We define, for non-zero elements of
O′,

(σ,m) +∗ (σ′, n) =


(σ,m) if m < n;

(σ′, n) if m > n;

(σ �∗ σ′,m) if m = n

where − �∗ − = −, and otherwise, σ �∗ σ′ = +. We also define a +∗ 0 =
0 +∗ a = a for all a ∈ O′.

16

Operations +∗ and +∗ are commutative and associative, and distribute over
multiplication ×. We let UO′L be the tuple 〈O+ ∪ {0},+,×, 0, 1,O′,+∗, 0,×〉,
and let UO′U be the tuple 〈O+ ∪ {0},+,×, 0, 1,O′,+∗, 0,×〉. It can be shown
(see Proposition 15 in the appendix) that UO′L and UO

′
U are both uncertainty-utility

values structures that respect total order �.

3.3. Combining and Marginalizing Uncertainty and Utility Functions
So far, in Sections 3.1 and 3.2, we have only considered the values that gen-

eralized probability and utility functions will take. In this section we define the
generalized probability and utility functions, and show how the operations on val-
ues generate combination and marginalization operations on functions.

We consider a set of (discrete) variables that is partitioned into subsets X and
D, where the elements of X are known as chance variables, and the elements of
D are known as decision variables. Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU〉
be a weak u.u.v. structure. Then:

Definition 12 (U-uncertainty function). A U-uncertainty function over variables
X∪D is a function P from Ω(S) to Q, for some S ⊆ X∪D, known as the scope
of P, and denoted by sc(P).

Definition 13 (U-utility function). A U-utility function over variables X ∪D is a
function U from Ω(S) to U , for some S ⊆ X ∪D, where S is the scope sc(U) of
U.

Thus, a U-uncertainty function over X∪D is a generalized probability function
over X ∪D, and a U-utility function is a generalized utility function.

We say that P involves Y if sc(P) 3 Y . If T ⊇ S = sc(P) and x ∈ Ω(S) then
we also write P(x) as an abbreviation for P(x↓S), where x↓S is the projection of
x to variables S. Similarly, for U-utility function U.

The operation×Q gives rise to a combination operation over generalized prob-
ability functions, as in a product of probability functions in a Bayesian network
decomposition:

Definition 14 (combination by ×Q). Let Φ be a collection (i.e., a multi-set) of U-
uncertainty functions over X ∪D. We define their combination

∏
Φ =

∏
P∈Φ P

to be the U-uncertainty function with scope S =
⋃

P∈Φ sc(P), given by, for x ∈
Ω(S), (

∏
Φ)(x) =

∏
P∈Φ(P(x)), where the last use of

∏
refers to repeated

application of the (associative and commutative) operation ×Q.

17

The operation +U generates a combination operation over generalized utility
functions, as in an additive decomposition of standard utility functions:

Definition 15 (combination by +U). Let Ψ be a collection (i.e., multi-set) of U-
utility functions over X ∪ D. We define their combination

∑
Ψ =

∑
U∈Ψ U to

be the U-utility function with scope S =
⋃

U∈Ψ sc(U), given by, for x ∈ Ω(S),
(
∑

Ψ)(x) =
∑

U∈Ψ U(x), where the last
∑

refers to iterative use of +U .

The operation ×QU gives rise to an operation for combining a generalized
probability function with a generalized utility function, as used in a computation
of expected utility:

Definition 16 (combination by ×QU). Let P be a U-uncertainty function and let
U be a U-utility function. We define their combination P × U to be a U-utility
function with scope S = sc(P)∪ sc(U) given by (P×U)(x) = P(x)×QU U(x),
for any x ∈ Ω(S).

Thus U-utility functions can represent expected utility as well as input utility
functions. We define next a marginalization operator from an operation on utility
values. In the following, we assume that � is some commutative and associative
operation on U (for example, � = + or a disjunctive operator ∨).

Definition 17 (marginalisation). Let U be a U-utility function and let Y ∈ X∪D
be a variable in the scope of U. We define

⊙
Y U to be the U-utility function with

scope S = sc(U)− {Y } given by (
⊙

Y U)(x) =
⊙

y∈Ω(Y) U(xy), for x ∈ Ω(S),
where xy is assignment x extended with Y = y. This defines operation

∑
Y ,

based on operation � = +, and
∨
Y , based on disjunctive operation ∨, so that

(
∑

Y U)(x) =
∑

y∈Ω(Y) U(xy), and (
∨
Y U)(x) =

∨
y∈Ω(Y) U(xy).

4. Elimination of Variables

In this section we will consider an u.u.v. structure U, and a pair (Φ,Ψ), where
Φ (respectively, Ψ) is a collection of U-uncertainty (respectively, U-utility) func-
tions over X ∪ D. We assume that each variable in X ∪ D is involved in some
element of Φ ∪Ψ (if not, then we can delete any non-involved variables).

A pair (Φ,Ψ) will be considered as a compact representation of the (overall)
utility function

∏
P∈Φ P×

∑
U∈Ψ U. We write

⊗
(Φ,Ψ) =

∏
P∈Φ P×

∑
U∈Ψ U.

We want to compute a generalized expected utility corresponding to the result
of iteratively eliminating (in an appropriate order) all variables from

⊗
(Φ,Ψ)

(as in the expression in Equation 2 in Section 2.2). We need to do this without

18

explicitly computing
⊗

(Φ,Ψ), since the latter is a function on an exponentially
large product set.

In Sections 4.1 and 4.2 we will show how to eliminate chance variables and
decision variables, respectively. In eliminating a chance variableX (i.e., summing
over the values of X) we generate a new pair (Φ′,Ψ′) that doesn’t involve X such
that

∑
X

⊗
(Φ,Ψ) =

⊗
(Φ′,Ψ′). This involves combining (some) functions that

involve X; importantly, functions that don’t involve X are left as they are; thus
combinations are delayed as long as possible, avoiding producing unnecessarily
large functions. Similar remarks apply for the elimination of a decision variable.

As for variable elimination algorithms for Bayesian networks or similar com-
putations, this means that under appropriate conditions on the scopes of the func-
tions, the scopes of the produced functions are never too large.

4.1. Elimination of a Chance Variable
Let Φ63X be the multi-set containing the elements of Φ not involving variable

X , i.e., with sc(P) 63 X , and let Φ3X be the other elements in Φ. Let P+ =∏
P∈Φ3X

P be the combination of elements of Φ involving variable X , and let PX
Φ

be
∑

X P+. Let Φ′ = Φ63X ∪ {PX
Φ }.

Similarly, let Ψ63X be the multi-set containing the elements of Ψ not involving
X , and let Ψ3X be the other elements in Ψ. For U ∈ Ψ3X , define U−X to be

1
PX

Φ
×
∑

X(P+ × U) (where, in this equation, we define 1
0

to be 0; this isn’t

important, but it could sometimes help the efficiency). Hence if PX
Φ (y) = 0 then

U−X(y) = 0. Note that, because of the positivity assumption on the uncertainty
values (p + q = 0 ⇐⇒ p = q = 0), PX

Φ (y) = 0 holds if and only if for all
x ∈ Ω(X), P+(xy) = 0. Let Ψ′ = Ψ63X ∪ {U−X : U ∈ Ψ3X}.

We define
∑

X(Φ,Ψ) to be (Φ′,Ψ′). Note that no element of Φ′ or of Ψ′

involves X . In contrast with e.g., the classic method in Jensen et al [11], we don’t
combine together the utility functions involving X when eliminating a chance
variable X , since it’s not necessary (and combining them can sometimes generate
very large functions, making the algorithm much less efficient).

Theorem 1 (eliminating a chance variable). Let U be an uncertainty-utility values
structure, with associated summation operation

∑
, let Φ be a collection of U-

uncertainty functions over X∪D, let Ψ be a collection of U-utility functions over
X ∪D. Then for any X ∈ X which is involved in some element of Φ,∑

X

⊗
(Φ,Ψ) =

⊗(∑
X

(Φ,Ψ)
)
.

19

In other words, using the definitions of Φ′ and Ψ′ given above,∑
X

(∏
P∈Φ

P×
∑
U∈Ψ

U
)

=
∏
P∈Φ′

P×
∑
U∈Ψ′

U.

Note that the theorem expresses a combination followed by marginalization as
a kind of marginalization followed by combination, with the latter typically being
more efficient to directly compute.

To illustrate this result, consider the example in Section 2.2, and let Φ =
{P (O), P (S|O, T)}, and Ψ = {U1(T), U2(O,D)}. Then,

⊗
(Φ,Ψ) = P (O) ·

P (S|O, T) · (U1(T) + U2(O,D)). We have Φ 63O = ∅ and P+ = P (O) ×
P (S|O, T); also, PO

Φ =
∑

OP+ = φO(S, T) (see Equation 4), and Φ′ = {φO(S, T)}.
We have Ψ63O = {U1(T)} and Ψ3O = {U2(O,D)}. Letting U = U2(O,D), we
obtain U−O = 1

φO(S,T)
×
∑

O(P (O) × P (S|O, T) × U2(O,D)), which equals
ψO(S, T,D) (see Equation 5). Thus, Ψ′ = {U1(T), ψO(S, T,D)}. The theo-
rem shows that

∑
O

⊗
(Φ,Ψ) =

⊗
(Φ′,Ψ′), which equals φO(S, T) · (U1(T) +

ψO(S, T,D)) (cf. Equation 3).
We give now several lemmas that will help us prove Theorem 1. We write

u.u.v. structure U as 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×QU〉.

Lemma 2. Let q, q1, . . . , qk ∈ Q and u, u1, . . . , uk ∈ U .

(i)
∑k

i=1(q × ui) = q ×
∑k

i=1 ui.

(ii)
∑k

i=1(qi × u) = (
∑k

i=1 qi)× u.

Proof: Part (i) follows by iterative application of Property (∗3), and (ii) follows by
iterative application of Property (∗4). 2

Lemma 3. Let P, P1 and P2 be U-uncertainty functions over X ∪D and let U,
U1 and U2 be U-utility functions over X ∪ D. Let Φ be a finite (multi-)set of
U-uncertainty functions, and let Ψ be a finite (multi-)set of U-utility functions. Let
X be a variable. The following all hold:

(i) (P1 ×P2)×U = P1 × (P2 ×U);

(ii) P×(U1+U2) = (P×U1)+(P×U2); and, more generally, P×
∑

U∈Ψ U =∑
U∈Ψ(P×U);

(iii)
∑

X(U1 + U2) =
∑

X U1 +
∑

X U2; more generally,
∑

X

∑
U∈Ψ U =∑

U∈Ψ

∑
X U;

20

(iv)
∑

X(P × U) =
(∑

X P) × U if sc(U) 63 X , i.e., if U doesn’t involve
variable X;

(v)
∑

X(P×U) = P×
∑

X U if sc(P) 63 X .

Proof: Part (i) follows using Property (∗2). Let S = sc(P1) ∪ sc(P2) ∪ sc(U).
sc((P1 × P2) ×U) = sc(P1 × (P2 ×U)) = S. For y ∈ Ω(S), ((P1 × P2) ×
U)(y) = (P1(y) × P2(y)) × U(y), which equals, by Property (∗2), P1(y) ×
(P2(y)×U(y)) = (P1 × (P2 ×U))(y), proving the result.

Part (ii) follows similarly, using Lemma 2(i).
Part (iii) follows from associativity and commutativity of addition in U .

(iv): Let y be an assignment to the scope of
∑

X(P × U). Then
(∑

X(P ×
U)
)
(y) =

∑
x∈Ω(X)

(
P(yx) ×U(y)

)
, (using U(yx) = U(y), since U does not

involveX). By Lemma 2(ii), this equals
(∑

x∈Ω(x) P(yx)
)
×U(y), which equals((∑

X P)×U
)
(y), as required.

(v): This follows in a similar fashion to (iv), but using Lemma 2(i). 2

Lemma 4. Let U− =
∑

U∈Ψ 63X
U, and let U+ =

∑
U∈Ψ3X

U. We further define

U′ =
1

PX
Φ

×
∑
X

(P+ ×U+).

With the notation defined above, we have:

(i) U′ =
∑

U∈Ψ3X
1

PX
Φ
×
∑

X(P+ ×U);

(ii) U− + U′ =
∑

U∈Ψ′U.

(iii)
∑

X(P+ ×U−) = PX
Φ ×U−.

(iv)
∑

X(P+ ×U+) = PX
Φ ×U′.

Proof: (i): By definition of U+, U′ equals 1
PX

Φ
×
∑

X(P+ ×
∑

U∈Ψ3X
U). Using

Lemma 3(ii) and then (iii), this equals 1
PX

Φ
×
∑

U∈Ψ3X

∑
X(P+ ×U). Applying

Lemma 3(ii) again gives the result.
(ii): By part (i), U′ equals

∑
U∈Ψ3X

U−X . Hence,
∑

U∈Ψ′U =
∑

U∈Ψ63X
U +∑

U∈Ψ3X
U−X = U− + U′.

(iii) follows from Lemma 3(iv).

21

(iv): If PX
Φ (y) = 0 then, because of the positivity assumption in Definition 1, for

all x ∈ ΩX , P+(yx) = 0, which implies that the functions on both sides of the
equation are equal to 0, for such a y. If PX

Φ (y) 6= 0 then the equality follows
immediately from the definition of U′. 2

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1:
Using Lemmas 3 and 4 we have:

∑
X

(∏
P∈Φ

P×
∑
U∈Ψ

U

)
=a
∑
X

(
P− ×

(
P+ × (U− + U+)

))
=b P− ×

∑
X

(
P+ × (U− + U+)

)
.

∑
X

(
P+ × (U− + U+)

)
=c
∑
X

(
P+ ×U−

)
+
∑
X

(
P+ ×U+

)
=d PX

Φ × (U− + U′).

Putting things together:

∑
X

(∏
P∈Φ

P×
∑
U∈Ψ

U

)
= P− ×PX

Φ × (U− + U′)

=e
∏
P∈Φ′

P×
∑
U∈Ψ′

U.

Equality (a) uses Lemma 3 (i); (b) uses Lemma 3 (v); (c) uses Lemma 3 (ii) and
(iii); Equality (d) uses Lemma 4(iii) and (iv), and Lemma 3 (ii); and (e) uses
Lemma 4(ii).

4.2. Elimination of a Decision Variable
Here we consider how to eliminate a decision variable D, using a disjunctive

operation ∨. More specifically, we will define an operation
∨
D applied to a pair

(Φ,Ψ) (representing a collection generalized uncertainty and utility functions),
such that the combination

⊗
(
∨
D(Φ,Ψ)) is equal to the marginalization of the

combination of (Φ,Ψ).
We say that P does not depend on variable Y ∈ sc(P) if for all y, y′ ∈ Ω(Y)

and x ∈ Ω(S) where S = sc(P)−{Y }, P(xy) = P(xy′). If so, we define P−Y to

22

have scope S and be given by P−Y (x) = P(xy) (for any y ∈ Ω(Y)). Recall that
Ψ3D is the collection of elements of Ψ involving D, with the other ones forming
Ψ63D.

Theorem 2 (elimination of a decision variable). Let ∨ be a disjunctive operation
for weak uncertainty-utility values structure U. Let D be a decision variable in
D, let Φ be a collection of U-uncertainty functions over X ∪ D, none of which
depend on variable D, and let Ψ be a collection of U-utility functions over X∪D.
Define

∨
D(Φ,Ψ) = (Φ−D,Ψ′′), where Φ−D = {P−D : P ∈ Φ}, and Ψ′′ =

Ψ63D ∪ {
∨
D

∑
U∈Ψ3D

U}. Then,∨
D

⊗
(Φ,Ψ) =

⊗
(
∨
D

(Φ,Ψ)),

i.e., ∨
D

(∏
P∈Φ

P×
∑
U∈Ψ

U
)

=
∏

P∈Φ−D

P×
∑
U∈Ψ′′

U,

Considering again the Oil Wildcatter example in Section 2.2, let Φ = {φO(S, T)},
and Ψ = {U1(T), ψO(S, T,D)} (see Equation 3), so Ψ63D = {U1(T)}, and
Ψ3D = {ψO(S, T,D)}. We have

⊗
(Φ,Ψ) = φO(S, T) · (U1(T) + ψO(S, T,D)).

The function φO(S, T) does not depend on D since it does not involve D, and
Φ−D = Φ. Then, Ψ′′ = {U1(T),maxD ψO(S, T,D)}. The theorem implies that∨
D

⊗
(Φ,Ψ) equals φO(S, T) · (U1(T) + maxD ψO(S, T,D)) (cf. Equation 6).

To prove Theorem 2, we will use the following lemma:

Lemma 5. LetD be a decision variable in D, let Φ be a collection of U-uncertainty
functions over X ∪D, and let P be an U-uncertainty function over X ∪D. Let
U1 and U2 be U-utility functions over X ∪D.

(i) If for all P ∈ Φ, P does not depend on D then (
∏

Φ) does not depend on
D and (

∏
Φ)−D =

∏
P∈Φ−D P.

(ii) If P does not depend on D then
∨
D(P×U) = P−D ×

∨
DU.

(iii) If U1 does not involve D then
∨
D(U1 + U2) = U1 +

∨
DU2.

Proof: Part (i) follows easily. The proofs of parts (ii) and (iii) are very similar to
the proofs of (v) and (iv), respectively, of Lemma 3, using the two distributivity
properties of disjunctive operation ∨. 2

23

Proof of Theorem 2: Applying Lemma 5 (i) and (ii) gives:∨
D

(∏
P∈Φ

P×
∑
U∈Ψ

U
)

=
∏

P∈Φ−D

P×
∨
D

∑
Ψ.

Applying Lemma 5 (iii) to U1 =
∑

Ψ63D and U2 =
∑

Ψ3D gives
∨
D

∑
Ψ =∑

Ψ63D +
∨
D

∑
Ψ3D, which equals

∑
Ψ′′, completing the proof.

5. Influence Diagram Systems

Theorems 1 and 2 show how to eliminate chance and decision variables, re-
spectively, using marginalization operators

∑
X and

∨
D on a pair (Φ,Ψ). We

would like to iteratively apply these to eliminate all variables, leading to the max-
imum expected utility. However, Theorem 2 requires that, before eliminating de-
cision variable D, the current set of uncertainty functions does not depend on D.
To ensure that this condition holds for the iterative computation, we require re-
strictions on the elimination ordering, as well as additional structure on the input
collection of uncertainty functions Φ.

Let P be an U-uncertainty function with scope S ⊆ X ∪ D. We say that P
is a constant function if it does not depend on any variable, i.e., there exists some
value q ∈ Q such that for all x ∈ Ω(sc(P)), P(x) = q. We say that P is a
conditional U-uncertainty function on X if X ∈ sc(P) and

∑
X P is a constant

function. Following previous work [4, 5], we have that:

Definition 18 (ID-system). An Influence Diagram system (ID-system) over U is a
pair 〈G, (Φ,Ψ)〉, such that:

• G is a directed acyclic graph on X ∪D.

• Φ = {PX : X ∈ X}, where PX is a conditional U-uncertainty function on
X with scope {X} ∪ paG(X); (paG(X) means the set of parents of X , i.e.,
{Y : (Y,X) ∈ G});

• each element of Ψ is a U-utility function (whose scope is a subset of X∪D).

• G restricted to D is a total order, which we write as D1, . . . , Dm.

• If (X,Di) ∈ G then (X,Dj) ∈ G for any j > i (this is the no forgetting
condition).

24

Collection Φ is a Bayesian network-style decomposition of a global uncer-
tainty distribution, namely

∏
Φ. Also,

∑
Ψ represents the overall utility function.

Hence the function
⊗

(Φ,Ψ) represents the (generalized) probability times utility
function.

The pair (Y,Di) ∈ G means that the value of Y is known when choosing the
value of decision variable Di. Let Si be paG(Di) for i = 1, . . . ,m. The choice of
value of Di can therefore depend on the values of variables in Si but no others.

Definition 19 (policy). A policy for an ID-system 〈G, (Φ,Ψ)〉 over U is a se-
quence (π1, . . . , πm) where πi is a function from Ω(Si) to Ω(Di); this represents
what value of Di is chosen given the available information: the already observed
chance variables, and previous choices of decision variables.

A policy π determines a value for each decision variableDi (which depends on
the parents set Si). Given a utility function U involving all the chance variables X,
a policy π determines a utility function [U]π that involves no decision variables,
by assigning their values using π. The expected utility given policy π is given by
EUπ =

∑
X[
⊗

(Φ,Ψ)]π. If the utility values set U is totally ordered by relation
� then maximum expected utility is maxπ EUπ, where max is taken with respect
to �.

For k = 0, . . . ,m−1, let Ik be the set of chance node parents of Dk+1 that are
not parents of any Di, for i ≤ k. Hence Ik is the set of chance nodes that Dk+1

depends on, but no earlier Di depends on. We also let Im be the other chance
nodes, that are not parents of any decision node.

Definition 20 (legal elimination sequence). A legal elimination sequence for an
ID-system is a permutation Y1, . . . , Yn of the variables in X ∪D that extends the
relation < given by: I0 < D1 < I1 < · · · < Dm < Im, so that, for i = 0, . . . ,m,
each element X of Ii comes after Di (if i ≥ 1) and before Di+1 (if i < m).

For example, if Yj ∈ pa(D1) and Yk ∈ I1 then we must have j < k. Note that
the sequence is not necessarily compatible with G, so we could have i < j and
(Yj, Yi) ∈ G, when Yi and Yj are both chance variables.

Let τ be a sequence Y1, . . . , Yn of different elements in X ∪D, and let ∨ be a
disjunctive operation for U. We define M+,∨

τ (U) to mean the result of iterative ap-
plication of the marginalization corresponding to sequence τ , i.e., MY1(MY2(· · · (MYnU) · · ·)
where MY is

∑
Y if Y is a chance variable, and MY is

∨
Y if Y is a decision vari-

able. Note that the marginalization operations are applied from right to left, so
that the Yn-marginalization is performed first.

25

Suppose that U respects total order � on U . As mentioned in Section 3.1, if
we define ∨ to be maximum with respect to �, then ∨ is a disjunctive operation.
Then, for legal elimination sequence τ , M+,∨

τ

(⊗
(Φ,Ψ)

)
can be shown (e.g., us-

ing Proposition 11 below) to be the maximum value of expected utility over all
possible policies, i.e., maxπ EUπ.

Example 1. Recall the influence diagram of the oil wildcatter problem from Fig-
ure 1. In this case we have that Φ = {P (O), P (S|O, T)} and Ψ = {U1(T), U2(D,O)},
respectively. There is a unique legal elimination sequence: τ = T, S,D,O (so
thatO is eliminated first). The maximum expected utility, which equals M+,∨

τ

(⊗
(Φ,Ψ)

)
,

is thus equal to (where
∨

here means max):∨
T

∑
S

∨
D

∑
O

(⊗
(Φ,Ψ)

)
.

6. Elimination of All Variables

In Section 4 we showed how to eliminate both chance variables and decision
variables. In Section 6.1 we show how this can be iterated in order to eliminate
all variables for an influence diagram system, enabling computation of maximum
expected utility. In Section 6.2 we demonstrate how this algorithmic approach
can be implemented within a bucket elimination structure, and illustrate this in
Section 6.3 with our running example. Section 6.4 considers the complexity of
the algorithm.

6.1. Sequential Elimination Result
We show (Theorem 3 below, using notation defined towards the end of the

last section) how all variables can be iteratively eliminated for an ID-system. The
proof uses iterative application of Theorems 1 and 2, where the main difficulty is
in showing that, when eliminating a decision variable D, none of the uncertainty
functions P depend on D (see the conditions of Theorem 2). The conditions
assumed on Φ in an ID-system imply this.

Theorem 3. Let U be an uncertainty-utility values structure with operation + on
utility values, and let ∨ be a disjunctive operation for U. Let I = 〈G, (Φ,Ψ)〉 be
an ID-system over U, and let τ be a legal elimination sequence for I. Then

M+,∨
τ

(⊗
(Φ,Ψ)

)
=
⊗(

M+,∨
τ

(
Φ,Ψ

))
.

26

The right-hand-side
⊗(

M+,∨
τ

(
Φ,Ψ

))
involves iterative local computations,

based on sequential elimination of variables. When eliminating (marginalizing
out) a variable Y we only deal with functions involving Y : the ones not involv-
ing Y are just left as they are. (The operator

⊗
on the right-hand-side will be

easy and often be redundant, since we’ll typically just have a single utility value,
representing expected utility, when we’ve eliminated all the variables.)

Let I = 〈G, (Φ,Ψ)〉 be an ID-system over U, and let τ be a legal elimination
sequence for I (see Definition 20). Define, for k = 1, . . . ,m, τk to be the part of
τ starting just after Dk, i.e., if τ is Y1, . . . , Yn and Yj = Dk then τk is the sequence
Yk+1, . . . , Yn. We also define τ0 = τ .

A key result in proving Theorem 3 is the following, which shows that, when
we need to eliminate a decision variable using Theorem 2, the appropriate condi-
tions apply.

Proposition 2. Let I = 〈G, (Φ,Ψ)〉 be an ID-system over U, and let τ be a legal
elimination sequence for I. Let τk be the part of τ starting just after Dk, i.e., if τ
is Y1, . . . , Yn and Yj = Dk then τk is the sequence Yk+1, . . . , Yn. Let (Φk,Ψk) be
M+,∨

τk

(
Φ,Ψ

)
(where if τk is empty, Φk = Φ and Ψk = Ψ). Then, M+,∨

τ

(
Φ,Ψ

)
is

well defined, that is, for each k = m, . . . , 1 and each P ∈ Φk, P does not depend
on Dk.

Unfortunately, Proposition 2 seems to be not at all trivial to prove, requiring
several ancillary results. We relegate the proof of this to the appendix.

Proof of Theorem 3: We iteratively move the
⊗

operator outwards (leftwards),
exchanging it with an operator of the form

∑
X or of the form

∨
D. The chance

variable elimination result (Theorem 1) ensures that we can correctly make this
exchange (i.e., without changing the result) for the

∑
X case. For the

∨
D case,

Proposition 2 and the decision variable elimination result (Theorem 2) implies
that the exchange between the

⊗
operator and the

∨
D operator also preserves

equality.
Write M+,∨

τ (·) as MY1(MY2(· · · (MYn(·)) · · ·). The left-hand-side of the theo-
rem involves a sequence of n+ 1 operators, with

⊗
being the rightmost (i.e., the

one applied first). The right-hand-side involves the same operators, but with
⊗

being applied at the end, i.e., leftmost. The idea of the proof is to use Theorems 1
and 2 to move the

⊗
incrementally from right to left.

For i, j with 1 ≤ i ≤ j ≤ n let M+,∨
τ [i:j] be an abbreviation for the operator:

MYi(MYi+1
(· · · (MYj(·)) · · ·))

27

We also define M+,∨
τ [1:0] to be the identity operator (i.e., that makes no change to its

operand).
For i = 0, . . . , n − 1, let (Φi,Ψi) be M+,∨

τ [i+1:n](Φ,Ψ), and so (Φ0,Ψ0) equals
M+,∨

τ [1:n](Φ,Ψ), which is equal to M+,∨
τ (Φ,Ψ). We also define (Φn,Ψn) = (Φ,Ψ).

We’ll show, for any i = 1, . . . , n, MYi(
⊗

(Φi,Ψi)) =
⊗

(MYi(Φ
i,Ψi)). If Yi

is a chance variable, so that MYi is
∑

Yi
, then this follows by Theorem 1. Other-

wise, Yi is a decision variable, and MYi is
∨
Yi

. By Proposition 2, (Φi,Ψi) doesn’t
depend on variable Yi, so we can apply Theorem 2 to give MYi(

⊗
(Φi,Ψi)) =⊗

(MYi(Φ
i,Ψi)) in this case also.

Applying operator M+,∨
τ [1:i−1] to both sides of this equation, and using the fact

that MYi(Φ
i,Ψi) = (Φi−1,Ψi−1), we have, for all i = 1, . . . , n,

M+,∨
τ [1:i](

⊗
(Φi,Ψi)) = M+,∨

τ [1:i−1](
⊗

(Φi−1,Ψi−1)).

Hence M+,∨
τ [1:n](

⊗
(Φn,Ψn)) =

⊗
(Φ0,Ψ0)), i.e., M+,∨

τ (
⊗

(Φ,Ψ)) =
⊗

(M+,∨
τ (Φ,Ψ)),

proving the result.

6.2. Bucket Elimination for Totally Ordered Utility Values
Suppose that � is a total order on U such that +U and ×QU both respect

�, and again define ∨ to be maximum with respect to �, which is a disjunctive
operation (see Lemma 1). As observed above in Section 5, the left-hand-side
M+,∨

τ

(⊗
(Φ,Ψ)

)
in Theorem 3 is equal to maximum value of expected utility over

all possible policies, i.e., maxπ EUπ. Hence Theorem 3 implies the correctness of
an iterative variable elimination algorithm to compute maximum expected utility.
This applies to standard probability and utility functions, and also to the simplified
order of magnitude systems (Section 3.2.4).

Algorithm 1 describes an iterative variable elimination procedure correspond-
ing with Theorem 3, called BE, which is based on Dechter’s bucket elimination
framework [12]. It takes as input an ID-system 〈G, (Φ,Ψ)〉 as well as a legal
elimination order τ of the variables X ∪ D and outputs the maximum expected
utility value. BE uses a bucket structure constructed along τ which associates a
single variable with each bucket. The bucket of variable Y , denoted by BY , has
two sets ΦY and ΨY which contains all the input probability functions and the
utility functions whose highest variable is Y , respectively (see lines 1–4).

The algorithm processes each bucket, top-down from the last to the first, by
a variable elimination procedure that computes new probability components (de-
noted by φ) and utility components (denoted by ψ) which are then placed in cor-
responding lower buckets (lines 5–15). Let Y be the current variable. If BY is a

28

Algorithm 1: Bucket Elimination (BE) for Totally Ordered Utility
Data: An ID-system 〈G, (Φ,Ψ)〉, legal elimination ordering τ of the variables X ∪D
Result: Maximum expected utility value
// Partition the sets Φ and Ψ into buckets

1 foreach variable Y in the reversed order τ do
2 Create bucket BY and its associated sets ΦY and ΨY ;
3 Let ΦY = {P ∈ Φ : Y ∈ sc(P)} and ΨY = {U ∈ Ψ : Y ∈ sc(U)};
4 Let Φ = Φ \ ΦY and Ψ = Ψ \ΨY ;

// Process the buckets
5 foreach variable Y in the reversed order τ do
6 if Y is a chance variable then
7 Let φY =

∑
Y

∏
φ∈ΦY

φ;
8 foreach ψ ∈ ΨY do
9 Let ψY = 1

φY

∑
Y (
∏
φ∈ΦY

φ)× ψ;

10 else if Y is a decision variable then
11 foreach φ ∈ ΦY do
12 Let S = sc(φ) \ {Y } ;
13 Compute φY as follows: ∀x ∈ Ω(S) : φY (x) = φ(xy) for any value

y ∈ Ω(Y);

14 Let ψY = maxY
∑
ψ∈ΨY

ψ;

15 Add each of the φY (resp. ψY) to the set Φ (resp. Ψ) of the highest bucket
corresponding to a variable in sc(ψY) (resp. sc(ψY)); If Y is the last variable then
add φY to Φ0 and ψY to Ψ0;

16 return (
∏
φ∈Φ0

φ)× (
∑
ψ∈Ψ0

ψ)

chance bucket, then BE generates the corresponding φY component by multiply-
ing all probability components in that bucket and eliminating by summation the
bucket variable (line 7) (cf. the definition of PY

Φ in Section 4.1). The ψY compo-
nents of the bucket are computed as the average utility, normalized by the bucket’s
compiled φY (this corresponds with the definition of U−Y in Section 4.1). Notice
that the utility components need not be combined in a chance bucket as it was
previously done in [11] or [12] (however, this requirement was relaxed in [13]).
Alternatively, if BY is a decision variable, BE computes a new utility component
ψY component by summing all utility components in that bucket and eliminating
the bucket variable using the

∨
operator (compare with Theorem 2). In this case,

the probability components in bucket BY are constants when viewed as functions
of the bucket’s decision variable. Therefore, for each probability component φ in
bucket BY , BE generates a new probability component φY by substituting a value

29

(a) Initial partitioning into buckets (b) Buckets during execution

(c) Intermediate functions generated

Figure 4: Execution of the Bucket Elimination algorithm.

of variable Y . Finally, the maximum expected utility value is obtained after elimi-
nating the last variable in the ordering, by combining the constant probability and
utility components in the sets Φ0 and Ψ0, respectively.

6.3. Example Continued
Consider again the influence diagram from Figure 1, where the sets Φ and Ψ

are as follows: Φ = {P (O), P (S|O, T)} and Ψ = {U1(T), U2(D,O)}. Here,∨
means max. The legal elimination ordering is τ = T, S,D,O so that O is

eliminated first (as it is unobservable). We want to compute the expected utility,
equalling

∨
T

∑
S

∨
D

∑
O

(⊗
(Φ,Ψ)

)
, which is equal to

⊗(∨
T

∑
S

∨
D

∑
O(Φ,Ψ)

)
,

by Theorem 3 (using the notation in Section 4). The initial partitioning into buck-
ets as well as the schematic execution of algorithm BE on this problem is given in
Figure 4 and explained below.

Initially, bucketBO contains ΦO = {P (O), P (S|O, T)} and ΨO = {U2(O,D)}.
Since it is a chance bucket, we generate φO(S, T) =

∑
O P (O) · P (S|O, T) and

ψO(S, T,D) = 1
φO(S,T)

∑
O P (O) · P (S|O, T) · U2(O,D) which are then placed

in the lower buckets BS and BD, respectively (see also Figure 4(b)). So far, what
has been computed corresponds with

∑
O(Φ,Ψ), whose first component is the col-

lection of current probability functions, and second component is the collection of
current utility functions, i.e.,

∑
O(Φ,Ψ) equals

(
{φO(S, T)}, {U1(T), ψO(S, T,D)}

)
.

30

The bucket of D is processed next as a decision bucket and we compute
ψD(S, T) = maxD ψO(S, T,D) which is placed in bucket BS . Now, we have a
representation of

∨
D

∑
O(Φ,Ψ), which equals

(
{φO(S, T)}, {U1(T), ψD(S, T)}

)
.

Next, we eliminate the chance variable S and generate φS(T) =
∑

S φO(S, T),
and ψS(T) = 1

φS(T)

∑
S φO(S, T) · ψD(S, T), which are both placed in BT . We

have then computed
∑

S

∨
D

∑
O(Φ,Ψ) =

(
{φS(T)}, {U1(T), ψS(T)}

)
. The

last bucket to be processed is BT . Since it is a decision bucket, we generate
ψT () = maxT U1(T) + ψS(T) and φT () = φS(T = yes), respectively. The
pair

(
{φT ()}, {ψT ()}

)
is then equal to

∨
T

∑
S

∨
D

∑
O(Φ,Ψ).

Finally, the maximum expected utility value is φT () × ψT (), which is equal
to
⊗(∨

T

∑
S

∨
D

∑
O(Φ,Ψ)

)
. The intermediate probability and utility functions

generated during the execution are shown in Figure 4(c) and correspond to the
initial derivations from Section 2.2.

The optimal policy is computed by applying the argmax function to the com-
bination of probability and utility components of the decision buckets BT and BD.
Namely, the optimal decision T is given by arg maxT φS(T)× (U1(T) +ψS(T)),
namely T = yes. Once decision T is made, the value s of S can be observed, and
then the optimal decision D is given by arg maxD ψO(S = s,D, T = yes).

6.4. Complexity
As is usually the case with bucket elimination algorithms [14], the time and

space complexity of algorithm BE is exponential in the largest scope of a function
generated by the algorithm, which is no more than the induced width [14] of G′

(ordered according to the elimination sequence), where G′ is G with an additional
clique S for each input utility function with scope S. In the context of standard
influence diagrams one way to reduce the size of the decision policies (and im-
plicitly the computational complexity) is to remove non-requisite arcs from the
diagram [15, 13]. Although we believe that these methods are directly applicable
to our proposed formalism we defer this in-depth analysis to future work.

7. Sets of Utility Values for Partially Ordered Case

Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×〉 be an uncertainty-utility values
structure and let I = 〈G, (Φ,Ψ)〉 be an ID-system over U. Suppose that the
set of utility values U is only partially ordered, by relation �. For finite set A of
utility values we can consider the set of maximal ones max�(A), consisting of all
u ∈ A such that there does not exist a different element v ∈ A with v � u. We
are interested in policies that generate a maximal value of expected utility, i.e.,

31

values of utility in max� {EUπ : policies π}. Since there now can be more than
one maximal value of expected utility, we need to consider maximization acting
on sets of utility values. A neat way of dealing with this is to consider an extended
form of utility function, whose range includes sets of utility values (in an analo-
gous way to the approach taken in Section 4.3 of [16] for the much simpler case
where there are just utility functions). The operations on utility values then need
to be extended to sets of utility values (see Section 7.1). A difficulty is that we ob-
tain then only a weak uncertainty-utility values structure, because Property (∗4) (a
distributivity property—see Section 3.1) does not necessarily hold. However, the
property does hold if we consider convex sets of utility values (see Section 7.2).
This leads to a natural definition of equivalence for sets of utility values, such that
Property (∗4) holds up to equivalence—see Section 7.3. This is the basis for vari-
able elimination for the extended utility functions case (i.e., whose range includes
sets of utility values), considered in Section 8.

7.1. Operations on Sets of Utility Values
For u.u.v. structure U with set of utility valuesU , we extend addition and scalar

multiplication of utilities to 2U , the set of subsets of U , in the obvious way.

Definition 21 (addition, multiplication on 2U). Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×〉
be an uncertainty-utility values structure. For any A,B ⊆ U and q ∈ Q, define:

• A+B = {a+U b : a ∈ A, b ∈ B};

• q × A = {q × u : u ∈ A}.

We also define U∗ to be the tuple U∗ = 〈Q,+Q,×Q, 0Q, 1, 2U ,+, {0U},×〉
(using the operations on sets as just defined). The following result holds:

Proposition 3. For any u.u.v. structure U, the associated tuple U∗ is a weak
uncertainty-utility values structure.

Addition and scalar multiplication of sets distribute over union:

Lemma 6. Let U = 〈Q,+Q,×Q, 0Q, 1, U,+, 0,×〉, be an uncertainty-utility val-
ues structure. For any subsets A,B,C of U , (A∪B) +C = (A+C)∪ (B +C),
and for any q ∈ Q, q × (A ∪B) = (q × A) ∪ (q ×B).

Lemma 6 implies that union is a disjunctive operation for U∗ (see Definition 5).

Proposition 4. For any uncertainty-utility values structure U, the union operation
∪ is a disjunctive operation for U∗.

32

Proof: Let U = 〈Q,+Q,×Q, 0Q, 1Q, U,+U , 0U ,×QU〉 and U∗ = 〈Q,+Q,×Q, 0Q, 1Q, 2U ,+, {0U},×〉.
Union is a commutative and associative operation on 2U . The two distributive
properties of union are given by Lemma 6. 2

Unfortunately, Property (∗4) (see Section 3.1) does not hold in general for
sets, so U∗ is not necessarily an uncertainty-utility values structure. (q1 + q2)×A
is equal, using the property (∗4) for U, to {(q1 × a) + (q2 × a) : a ∈ A}. On the
other hand, (q1×A)+(q2×A) equals {(q1 × a1) + (q2 × a2) : a1, a2 ∈ A}. This
implies that (q1 + q2)×A is a subset of (q1 ×A) + (q2 ×A). However, they will
very often not be equal. To give a simple example with bi-objective utility, let q1 =
q2 = 0.5, and let A = {(1, 0), (0, 1)}, using the point-wise operations on pairs of
real numbers. (q1 +q2)×A = 1×{(1, 0), (0, 1)} = {(1, 0), (0, 1)}, whereas (q1×
A)+(q2×A) = {(0.5, 0), (0, 0.5)}+{(0.5, 0), (0, 0.5)} = {(1, 0), (0.5, 0.5), (0, 1)}.

However, in Section 7.3.3 we will define an equivalence relation, based on
convex closure, that ensures that property (∗4) holds up to equivalence.

7.2. Convex Sets and Convex Closure
We develop the notion of convex closure for uncertainty-utility values struc-

tures, showing that particular properties of convex closure for the standard case of
vector spaces over R hold also for a more general situation based on an uncertainty-
value structure. Convex closure is used in the definition of equivalence in Section
7.3.3. Throughout this section we consider an uncertainty-value structure U writ-
ten as 〈Q,+Q,×Q, 0Q, 1, U,+U , 0,×〉, and, as usual, we sometimes drop the in-
dices when the context makes it clear which operation is being applied.

Definition 22 (convex set). Let A be a subset of U . A is said to be convex if for
any q1, q2 ∈ Q with q1 +q2 = 1, and for any a, b ∈ A, then (q1×a)+(q2×b) ∈ A.

Definition 23 (convex closure). The convex closure C(A) of a (finite or infinite)
subset A of U is defined to consist of every element of the form

∑k
i=1(qi × ai),

where k is an arbitrary natural number, each ai is in A, each qi is in Q, and where∑k
i=1 qi = 1.

If any qi = 0 in Definition 23 then it can be dropped without changing the
result (by Axiom (∗1)), so we can assume, without loss of generality, that in such
a representation each qi is non-zero.

The following result gives some basic properties of convex sets, used, in par-
ticular, for proving Proposition 5 below.

Lemma 7. For any A ⊆ U ,

33

(i) C(A) is a convex set containing A.

(ii) C(A) is equal to the intersection of all convex sets containing A, and is
therefore the unique smallest convex set containing A.

(iii) A is convex if and only if C(A) = A.

(iv) C(C(A)) = C(A).

(v) If B ⊆ A then C(B) ⊆ C(A).

We give some further properties of convex sets that we will use later. For
A,B ⊆ U we define A ⊕ B to consist of all elements that are the convex combi-
nation of an element of A and an element of B, i.e., c ∈ A⊕B if and only if there
exists a ∈ A, b ∈ B, and p, q ∈ Q with p+ q = 1 such that c = (p× a) + (q× b).

Proposition 5. Let A and B be subsets of U , and let q be an element of Q.

(i) If A and B are convex then A+B is convex.

(ii) C(A+B) = C(A) + C(B).

(iii) C(C(A) +B) = C(A+B).

(iv) C(C(A) ∪B) = C(A ∪B).

(v) C(q × A) = q × C(A).

(vi) C(A ∪B) = C(A) ∪ C(B) ∪ (C(A)⊕ C(B)).

The following lemma shows that the distributivity property (∗4) holds for con-
vex sets A:

Lemma 8. IfA is convex then for all q1, q2 ∈ Q, (q1+q2)×A = (q1×A)+(q2×A).

Proof: Consider any u ∈ (q1 + q2)×A. Then u = (q1 + q2)× a for some a ∈ A.
Using (∗4) (for U), u = (q1 × a) + (q2 × a) and hence u ∈ (q1 × A) + (q2 × A).

Conversely, consider any u ∈ (q1×A)+(q2×A). Then u = (q1×a1)+(q2×a2)
for some a1, a2 ∈ A. Let q = q1 + q2. We first consider the case when q 6= 0Q.
Let a = (q1

q
×a1) + (q2

q
×a2). Since A is convex and q1

q
+ q2

q
= 1, we have a ∈ A.

Also, q × a = u so u ∈ (q1 + q2)× A, as required.
We now consider the case when q = 0Q. The positivity condition of an uncer-

tainty values structure implies that q1 = q2 = 0Q, which implies that u = 0. So,
in particular, u = 0Q × a1, and thus u ∈ (q1 + q2)× A. 2

34

7.3. An Equivalence Relation on Sets of Utility Values
In this section we define an equivalence relation on sets of utility values, based

on convex closure. First, in Section 7.3.1, we consider some technical issues
concerning maximal elements; we go on, in Section 7.3.2, to define a natural
ordering on sets of utility values, which we use, in Section 7.3.3, to define the
equivalence relation on sets of utility values.

7.3.1. Regarding Maximal Elements
We assume a partial ordering � that is respected by U, i.e., � is a partial order

onU and operations +U and×QU respect�. If a � b then we say that a dominates
b. We write � for the strict part of �, so that a � b if and only if a � b and a 6= b.

For A ⊆ U , define max�(A), the maximal elements of A, to consist of all
a ∈ A such that there does not exist b ∈ A with b � a. Hence, max�(A) is the set
of undominated elements of A.

In many cases, every element of a set A is dominated by some maximal ele-
ment; in particular this holds if A is finite. This can allow a set of utility values
to be summarized by its maximal elements. However, this is not universally true,
since we may have infinite chains a1 ≺ a2 ≺ a3 ≺ · · · which have no upper
bound in A (consider, for example, the open interval (0, 1) of the real numbers,
which has no maximal elements).

Definition 24. Let A be a subset of U . We say that A satisfies property MAX
(with respect to �) if for all a ∈ A there exists some b ∈ max�(A) with b � a.

Property MAX is strictly weaker than the well-known ascending chain con-
dition (ACC). If A is finite then A satisfies MAX. For A ⊆ U we define subset
R�(A) of A to consist of all elements of A which are not strictly dominated by
some maximal element of A, that is:

R�(A) = {a ∈ A : @b ∈ max�(A) such that b � a}.

Clearly, we always have max�(A) ⊆ R�(A). If A is such that every element of
A is dominated by some maximal element of A (in particular, this is the case if A
is finite), thenR�(A) = max�(A).

Lemma 9. Let A be a subset of U .

(i) max�(A) ⊆ R�(A)

(ii) If A satisfies MAX then max�(A) = R�(A).

35

We also have the following result.

Lemma 10. LetA andB be subsets of U . Then max�(R�(A)∪B) = max�(A∪
B).

7.3.2. Ordering on Sets of Utilities
For A,B ⊆ U we say that A < B if every element of B is dominated by some

element of A (so that A contains as least as large elements as B), i.e., if for all
b ∈ B there exists a ∈ A with a � b. Relation < on 2U is reflexive and transitive
relation.

Definition 25 (relation ≈). We define equivalence relation ≈ by A ≈ B if and
only if A < B and B < A.

IfA is such that every element ofA is dominated by some maximal element of
A (for example, if A is finite), then A ≈ B if and only if max�(A) = max�(B).

Lemma 11. Let A and B be subsets of U . Then, A ≈ B implies max�(A) =
max�(B). Furthermore, if A satisfies MAX then the converse also holds, so we
have A ≈ B if and only if max�(A) = max�(B).

The following lemma states that scalar multiplication and addition respect the
relation ≈.

Lemma 12. Let A, B and C be subsets of U , and let q be an element of Q.
Suppose that A ≈ B. Then

(i) q × A ≈ q ×B;

(ii) A+ C ≈ B + C;

7.3.3. The Equivalence Relation ≡ Between Utility Sets
We will argue that certain different sets of (expected) utility values can reason-

ably be considered as equivalent. First of all, if A contains elements u and v with
u � v, then we can consider that A and A− {v} are equivalent. The second con-
sideration is based on convex closure. For clarity, let’s consider the case where
the uncertainty values are probability values (but that the utility values may be
partially ordered, such as for multi-objective utility or interval-valued utilities). If
an agent can generate an expected utility value uwith policy π, and utility value u′

with policy π′ then they may choose an independent auxiliary event E (e.g. based
on a random number generator such as rolling a die) with chance p, and choose π

36

if E holds and π′ otherwise. (From the outside it may not even be possible to tell
that they are doing this, since we only see the choices they make.) The expected
utility is then pu+ (1− p)u′. More generally, if one can achieve any of a set A of
expected utility values, one can generate any element of C(A) by using the same
kind of procedure.

Definition 26 (relation ≡). We define equivalence relation ≡ on subsets of U by:
A ≡ B if and only if C(A) ≈ C(B).

The definition immediately implies that ≡ is an equivalence relation, i.e., it is
reflexive, symmetric and transitive, since≈ is an equivalence relation. Two sets of
utility values are therefore considered equivalent if, for every convex combination
of elements of one, there is a convex combination of elements of the other which
is at least as good (with respect to the partial order � on U).

The following result is used in proving Proposition 9 below, which states that
Property (∗4) holds up to equivalence for the weak u.u.v. structure U∗ based on
extended utility functions.

Proposition 6. For any subset A of U , A ≡ R�(A) and A ≡ C(A). If A satisfies
MAX (in particular, if A is finite) then A ≡ max�(A).

The following result follows immediately from Lemma 11.

Proposition 7. LetA andB be subsets ofU . Then,A ≡ B implies max�(C(A)) =
max�(C(B)). Furthermore, if C(A) and C(B) satisfy property MAX then the
converse also holds, so we haveA ≡ B if and only if max�(C(A)) = max�(C(B)).

The equivalence relation ≡ is respected by scalar multiplication, addition and
union of subsets of utility values:

Proposition 8. Let A, B and C be subsets of U , and let q be an element of Q.
Suppose that A ≡ B. Then

(i) q × A ≡ q ×B;

(ii) A+ C ≡ B + C;

(iii) A ∪ C ≡ B ∪ C.

As observed above, Property (∗4) does not necessarily hold for sets of utility
values. However, it does hold for convex sets (see Lemma 8) and a corresponding
property based on ≡ holds generally:

37

Proposition 9. Consider u.u.v. structure U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×〉,
respecting partial order �. Then the associated weak u.u.v. structure U∗ satisfies
the following variant of Property (∗4): for all q1, q2 ∈ Q and for all A ∈ 2U ,
(q1 + q2)× A ≡ (q1 × A) + (q2 × A).

Proof: We need to show that for any q1, q2 ∈ Q and any A ∈ 2U , (q1 + q2)×A ≡
(q1×A) + (q2×A). Let B = C(A). Then B is convex, so we have, by Lemma 8,
that (I) (q1 + q2)× B = (q1 × B) + (q2 × B). By Proposition 6, A ≡ B, and by
Proposition 8, (II) (q1 +q2)×A ≡ (q1 +q2)×B. We can also apply Proposition 8
to give (III) (q1 × B) + (q2 × B) ≡ (q1 × A) + (q2 × A). Applying (II) then (I)
then (III) gives the result, by transitivity of ≡. 2

8. Variable Elimination Based on Sets of Utilities

In this section we show how to use variable elimination to compute, up to
equivalence, the set of maximal values of expected utility over all policies, for the
partially ordered case. Given a u.u.v. structure U, we make use of extended util-
ity functions (that assign a set of utility values rather than a single utility value),
i.e., using the induced weak u.u.v. structure U∗, which satisfies the properties of a
u.u.v. structure up to equivalence (see Section 7, especially, Proposition 9). Theo-
rem 3 in Section 6 can then be used to show correctness of the variable elimination
algorithm.

Defining operations +′ and ∨:. Let U = 〈Q,+Q,×Q, 0Q, 1, U,+U , 0U ,×〉 be an
u.u.v. structure that respects partial order � on U , and let U∗ be the associated
induced weak u.u.v. structure 〈Q,+Q,×Q, 0Q, 1, 2U ,+, {0U},×〉. As well as the
operation + on sets of utility, we also define operation +′ on sets of utility values
by

A+′ B = R�(A+B).

(Recall, from Section 7.3.1, that R�(A) consists of all elements of A that are not
strictly dominated by some maximal element of A.) Similarly, define operation ∨
on subsets of U by

A ∨B = R�(A ∪B).

If A and B are finite then Lemma 9 implies that A +′ B = max�(A + B) and
A ∨ B = max�(A ∪ B). The following lemma is an immediate consequence of
the fact that for any A ⊆ U ,R�(A) ≡ A (see Proposition 6).

Lemma 13. For any subsets A,B of U , A+′ B ≡ A+B, and A ∨B ≡ A ∪B.

38

8.1. Factoring U∗ by Equivalence ≡
Define 2U≡ to be the set of all ≡-equivalence classes of 2U . For A ∈ 2U , we

write [A] to mean the equivalence class containing A. The operations + and ∪
on 2U , and the scalar multiplication × all respect the equivalence relation ≡, by
Proposition 8. Hence they give rise to well-defined operations on 2U≡ (which we
use the same symbols for), and we have, for A,B ⊆ U , and q ∈ Q,

[A] + [B] = [A+B];

[A] ∪ [B] = [A ∪B]; and

q × [A] = [q × A].

The key result below follows using Propositions 3, 4 (Section 7.1) and 9 (Sec-
tion 7.3.3).

Proposition 10. Let U∗/≡ equal 〈Q,+Q,×Q, 0Q, 1Q, 2U≡,+U , [{0U}],×〉. Then
U∗/≡ is an uncertainty-utility values structure, and ∪ is a disjunctive operation
for U∗/≡.

The result below follows immediately from Lemma 13.

Lemma 14. For any subsets A,B of U , [A] +′ [B] = [A] + [B], and [A] ∨ [B] =
[A] ∪ [B]. Hence +′ and + are the same operation on 2U≡, and ∨ and ∪ are the
same operation on 2U≡.

A U-utility function U can be mapped in the obvious way to a U∗-utility func-
tion U∗ with the same scope, defined by U∗(x) = {U(x)}. For collection Ψ of
U-utility functions, define collection Ψ∗ = {U∗ : U ∈ Ψ} of U∗-utility functions.

The following result shows that u ∈ M+,∪
τ

(⊗(
Φ,Ψ∗

))
if and only if there

exists some policy whose expected utility is u. (The no forgetting condition, that
the choice of value of a decision variable can depend on all the earlier chance
variables, is crucial here.)

Proposition 11. Let I = 〈G, (Φ,Ψ)〉 be an U-ID-system, and let τ be a legal elim-
ination sequence for I. Then M+,∪

τ

(⊗(
Φ,Ψ∗

))
is equal to {

∑
X[
⊗

(Φ,Ψ)]π : policies π}
which is the set of all possible values of expected utility over all policies for I, i.e.,
{EUπ : policies π}.

The result implies that the value of M+,∪
τ

(⊗(
Φ,Ψ∗

))
does not depend on the

choice of legal elimination sequence τ for I, i.e., it is the same for all legal choices
of τ .

39

We now give the central result of the paper which shows how to use an iterative
variable elimination algorithm to compute a set of utility values that is equivalent
(using Proposition 11) to the set of maximal values of expected utility. The idea of
the proof is that, because of Propositions 3 and 9, U∗ is an u.u.v. structure modulo
the equivalence relation. Scalar multiplication, addition and union respect equiva-
lence (Proposition 8). Theorem 3 then can be applied for U∗ modulo equivalence;
also union is ≡-equivalent to ∨, and addition is ≡-equivalent to +′.

Theorem 4. Let U be be an uncertainty-utility values structure (with operation
+ on utility values) that respects partial order �. Let +′ and ∨ be the induced
operations on set of utility values as defined above. Let I = 〈G, (Φ,Ψ)〉 be an
U-ID-system, and let τ be a legal elimination sequence for I. Then,

Maxg<
(
M+,∪

τ

(⊗(
Φ,Ψ∗

)))
≡
⊗(

M+′,∨
τ

(
Φ,Ψ∗

))
.

Proof: Probability-utility functions collection (Φ,Ψ∗) over U∗ maps to a probabil-
ity utility functions collection over U∗/≡, which we write as ([Φ], [Ψ∗]).

Proposition 10 and Theorem 3 imply that

M+,∪
τ

(⊗(
[Φ], [Ψ∗]

))
=
⊗(

M+,∪
τ

(
[Φ], [Ψ∗]

))
.

Now, by Lemma 14, +′ over U∗/≡ is exactly the same operation as + over
U∗/≡, and, similarly, ∪ and ∨ are the same operation over U∗/≡. So we have:

M+,∪
τ

(⊗(
[Φ], [Ψ∗]

))
=
⊗(

M+′,∨
τ

(
[Φ], [Ψ∗]

))
.

This implies that

M+,∪
τ

(⊗(
Φ,Ψ∗

))
≡
⊗(

M+′,∨
τ

(
Φ,Ψ∗

))
.

The left-hand-side L of this is a finite subset of U , and so Max�(L) ≡ L, by
Proposition 6, completing the proof. (Note that the use of ∨ in the right-hand-side
is always on finite sets so, for these, A ∨B = max�(A ∪B).) 2

Combining Theorem 4 with Proposition 11 we obtain the following result stat-
ing that the set

⊗(
M+′,∨

τ

(
Φ,Ψ∗

))
is equivalent to the set of all possible values of

expected utility over all policies.

Corollary 1. With the notation of Theorem 4, {EUπ : policies π}≡
⊗(

M+′,∨
τ

(
Φ,Ψ∗

))
.

40

8.2. Bucket Elimination for Partially Ordered Utility Values
Corollary 1 implies that an iterative variable elimination algorithm generates

a set equivalent to the set of optimal (i.e., undominated) values of expected utility.
This therefore applies for influence diagrams based on the systems described in
Section 3.2, involving multi-objective utility theory, interval-valued utilities, or
the order of magnitude system.

For completeness, the bucket elimination procedure for computing the set of
optimal (undominated) values of expected utility of an ID-systems with partially
ordered utility values is described by Algorithm 2. Here, we make use of the +′

and
∨

operators defined at the beginning of Section 8. Moreover,
∑′ and

∏
stand

for the repeated application of the +′ and × operators, respectively. The time and
space complexity of the algorithm is bounded exponentially by the induced width
of the graph ordered according to the input legal elimination order, modulo the
constant that bounds the size of the undominated sets of expected utility. The
latter can however be hard to predict.

9. Order of Magnitude Influence Diagrams

In this section, we describe in detail the Order of Magnitude Influence Dia-
gram (OOM-ID), a more qualitative model that can be used for modeling and solv-
ing partially specified sequential decision problems, especially when the quantita-
tive parameters are specified rather poorly and only rough (or imprecise) estimates
are available. The model uses an order of magnitude representation of probabili-
ties and utilities, and therefore allows the decision maker to specify partially or-
dered preferences via sets of utility values. In this case, there will typically not
be a unique maximal value of the expected utility, but rather a set of them. To
compute this set and also the corresponding decision policy we use the bucket
elimination algorithm that performs efficient operations on sets of utility values.
Numerical experiments on selected classes of influence diagrams show that as the
quantitative information becomes more precise, the qualitative decision process
becomes closer to the standard one.

9.1. Generating Small Equivalent Sets of Order of Magnitude Values
Recall from Section 3.2.3 that we can define an uncertainty-utility values

structure for the order of magnitude case, namely UO = 〈O+∪{0},+,×, 0, 1,O,+, 0,×〉.
Properties (∗1), (∗2), (∗3), and (∗4) all hold, and addition and scalar multiplication
respect partial order � (from Definition 9).

41

Algorithm 2: Bucket Elimination (BE) for Partially Ordered Utility
Data: An ID-system 〈G, (Φ,Ψ)〉, legal elimination order τ of the variables X ∪D,

partial order �
Result: Set of optimal (undominated) values of expected utility
// Partition the sets Φ and Ψ into buckets

1 foreach variable Y in the reversed order τ do
2 Create bucket BY and its associated sets ΦY and ΨY ;
3 Let ΦY = {P ∈ Φ : Y ∈ sc(P)} and ΨY = {U ∈ Ψ : Y ∈ sc(U)};
4 Let Φ = Φ \ ΦY and Ψ = Ψ \ΨY ;

// Process the buckets
5 foreach variable Y in the reversed order τ do
6 if Y is a chance variable then
7 Let φY =

∑′
Y

∏
φ∈ΦY

φ;
8 foreach ψ ∈ ΨY do
9 Let ψY = 1

φY

∑′
Y (
∏
φ∈ΦY

φ)× ψ;

10 else if Y is a decision variable then
11 foreach φ ∈ ΦY do
12 Let S = sc(φ) \ {Y } ;
13 Compute φY as follows: ∀x ∈ Ω(S) : φY (x) = φ(xy) for any value

y ∈ Ω(Y);

14 Let ψY =
∨
Y

∑′
ψ∈ΨY

ψ;

15 Add each of the φY (resp. ψY) to the set Φ (resp. Ψ) of the highest bucket
corresponding to a variable in sc(ψY) (resp. sc(ψY)); If Y is the last variable then
add φY to Φ0 and ψY to Ψ0;

16 return (
∏
φ∈Φ0

φ)× (
∑′
ψ∈Ψ0

ψ)

The key result in this section is Proposition 12, that implies that in the (par-
tially ordered) Order of Magnitude computation (OOM), one needs only to work
with sets of values which have either one or two elements. The result refers to the
equivalence relation ≡ defined in Section 7.3.3, given by A ≡ B if and only if
C(A) ≈ C(B).

Consider two elements 〈σ,m〉 and 〈τ, n〉 in O, where we can assume, without
loss of generality, that m ≤ n. It can be shown that any convex combination (see
before Proposition 5) of these two elements is of the form 〈θ, l〉 where l ∈ [m,n]
and

if l < n then θ = σ;

if l = n then θ = σ ⊕ τ or θ = τ .

42

This means that convex sets are of a relatively simple form.
We use the following notation: if a ∈ O is the element 〈σ,m〉 then we write

σ(a) = σ and â = m, so that a equals 〈σ(a), â〉. To prove Proposition 12 below
we use Lemma 15.

Lemma 15. Let A be any finite subset of O with max�(A) = A. Then either
|A| = 1 or there exists some σ ∈ {+,−,±} such that C(A) = C({〈±,m〉, 〈σ, n〉}),
where m = min {â : a ∈ A}, and n = max {â : a ∈ A}, and m < n.

Proposition 12. Let A be any finite subset of O. Then either

(i) A ≡ {a} for some a ∈ O, and a is the unique element of max�(A); or

(ii) there exists σ ∈ {+,−,±} and integersm,n such thatA ≡ {〈±,m〉, 〈σ, n〉},
and {〈±,m〉, 〈σ, n〉} ⊆ max�(A), andm = min {â : a ∈ max�(A)}, and
n = max {â : a ∈ max�(A)}, and m < n.

This implies that, when computing with pairs (q, A), in order to perform vari-
able elimination for OOM-based influence diagrams, we can always replace set A
by a set A′ which has either one or two elements, such that A′ ≡ A. This affects
the complexity of the procedure, which is related to the size of setsA that are used
in the computation.

Proof: [of Proposition 12]. Let A be any finite subset of O. Let B = max�(A).
By finiteness of A and Proposition 6, A ≡ B. We have max�(B) = B, so,
by Lemma 15, either |B| = 1, and hence A ≡ {a} for some a ∈ O, or there
exists some and σ ∈ {+,−,±} such that C(B) = C({〈±,m〉, 〈σ, n〉}), where
m = min {â : a ∈ A}, and n = max {â : a ∈ A}, and m < n. If |B| 6= 1 then
B ≡ {〈±,m〉, 〈σ, n〉}, by definition of ≡, and hence A ≡ {〈±,m〉, 〈σ, n〉}. 2

9.2. Operations on (Equivalent) Sets of Order of Magnitude Values
We show how to efficiently perform the required operations on sets of order of

magnitude values. Because of the arguments in Section 9.1, we can assume that
the subsets A of O are either singleton sets, or are of the form {〈±,m〉, 〈σ, n〉},
where m < n. As well as the inputs of the operations, the output must be of this
form. The operations of interest are summation, maximum, and multiplication by
an element of Q = O+.

43

Scalar Multiplication. Given A of the appropriate form, and q ∈ O+ we need to
generate a set ≡-equivalent to q ×A. In fact, q ×A itself does the job. Write q as
〈+, l〉. If A = {〈σ,m〉} then q ×A is just equal to the singleton set {〈σ, l +m〉}.
Otherwise, A is of the form {〈±,m〉, 〈σ, n〉} where m < n. Then q × A equals
{〈±, l +m〉, 〈σ, l + n〉}, which is of the required form, since l +m < l + n.

Summation. Given the sets A1 and A2 of required form as before, we want to
compute a set A′ that is ≡-equivalent to A1 + A2. We can write Ai as {ai, bi}
where if ai 6= bi then σ(ai) = ± and âi < b̂i. Then, A1 + A2 ≡ {a, b} where
a = a1 + a2 and b = b1 + b2.

We can write b more explicitly as 〈σ(b), b̂〉 where b̂ = min(b̂1, b̂2), and σ(b) =
+ if and only if all bi with minimum b̂i have σ(bi) = +; else σ(b) = − if all bi
with minimum b̂i have σ(bi) = −; else σ(b) = ±. Similarly for a. If σ(a) 6= ±
then {a, b} reduces to a singleton because a = b.

Maximization. Given the setsA1, A2 ⊆ O, both of them having the required form,
we want to compute a setA′ that is≡-equivalent toA1∪A2, and so is≡-equivalent
to max�(A1 ∪ A2).

As before, we can write Ai as {ai, bi} where if ai 6= bi then σ(ai) = ± and
âi < b̂i. We define A′ to be {a1 ∨◦ a2, b1 ∨◦ b2}, where a1 ∨◦ a2 = max>◦(a1, a2)
and define A◦ = max>◦(b1, b2), where total orders >◦ and >◦ are defined below.

Definition 27. We define relations >◦ and >◦ as follows, for arbitrary 〈σ,m〉 and
〈τ, n〉 in O.
〈σ,m〉 >◦ 〈τ, n〉 if and only if either 〈σ,m〉 � 〈τ, n〉 or σ = ± and m < n.
〈σ,m〉 >◦ 〈τ, n〉 if and only if either 〈σ,m〉 � 〈τ, n〉, or τ = ± and m > n.
For a, b ∈ O we also define ≥◦ and ≥◦ by a ≥◦ b ⇐⇒ a >◦ b or a = b; and

a ≥◦ b ⇐⇒ a >◦ b or a = b.

9.3. Formal Justification of Operations on Pairs of OOM Values
In this section we formally justify the results in Section 9.2.
Relation >◦ is the total order extending � that places the ± elements as high

in order as possible. In contrast, >◦ places the± elements as far down in the order
as possible. The order >◦ looks like this:
· · · >◦ 〈+,−1〉 >◦ 〈±,−1〉 >◦ 〈+, 0〉 >◦ 〈±, 0〉 >◦ 〈+, 1〉 >◦ · · · >◦
〈±,∞〉 >◦ · · · >◦ 〈−, 1〉 >◦ 〈−, 0〉 >◦ 〈−,−1〉 >◦ · · · .
Total order >◦ looks like this:
· · · >◦ 〈+,−1〉 >◦ 〈+, 0〉 >◦ 〈+, 1〉 >◦ · · · >◦ 〈±,∞〉 >◦ · · · >◦ 〈±, 1〉 >◦
〈−, 1〉 >◦ 〈±, 0〉 >◦ 〈−, 0〉 >◦ 〈±,−1〉 >◦ 〈−,−1〉 >◦ · · · .

44

Thus,>◦ and>◦ order the± elements in opposite ways: >◦ orders the± elements
similarly to the positive elements, and >◦ orders them similarly to the negative
elements.

Lemma 16. >◦ and >◦ are both (strict) total orders on O that extend order �.

It is useful to consider maximal elements of a set with respect to both >◦ and
>◦.

Definition 28. For finite A ⊆ O, define A◦ = max>◦(A) and define A◦ =
max>◦(A). Define ρ(A) = {A◦, A◦}.

We have the following characterization of A◦ and A◦.

Lemma 17. Consider any finite A ⊆ O. Then A◦ is the unique element a of
max�(A) with smallest value of â, and A◦ is the unique element b of max�(A)

with largest value of b̂.

We have that ρ(A) is equivalent to A (for finite A):

Proposition 13. For finite A ⊆ O, A ≡ ρ(A).

Below are some basic properties of the operator ρ(·).

Lemma 18. Let A be any finite subset of O. Then,

(i) (ρ(A))◦ = A◦ and (ρ(A))◦ = A◦; and

(ii) ρ(ρ(A)) = ρ(A).

The next lemma gives some basic monotonicity properties of ≥◦ and ≥◦.

Lemma 19. For any a1, a2 ∈ O, and q ∈ O+,

(i) if a1 ≥◦ a2 then q × a1 ≥◦ q × a2;

(ii) if a1 ≥◦ a2 then q × a1 ≥◦ q × a2.

The definition and two lemmas below lead to the key Proposition 14, which
implies that a variable elimination computation can be replaced by an≡-equivalent
one just using two-element sets.

45

Definition 29. Define operations ∨◦ and ∨◦ onO by a∨◦ b = max>◦({a, b}) and
a ∨◦ b = max>◦({a, b}). Thus a ∨◦ b = ({a, b})◦ and a ∨◦ b = ({a, b})◦.

For finite subsetsA andB ofO, define operation� byA�B = {A◦ +B◦, A◦ +B◦}.
Define operation Y by A YB = {A◦ ∨◦ B◦, A◦ ∨◦ B◦}.

Lemma 20. Let A and B be finite subsets of O.

(i) ρ(A ∪B) = A YB = ρ(A) Y ρ(B).

(ii) ρ(q × A) = q × ρ(A).

Lemma 21. ρ(A)� ρ(B) = A�B ≡ ρ(A) + ρ(B).

Proposition 14. For any finite subsets Let A and B be finite subsets of O and let
q be an element of O+. Define q ×′ A to be q × ρ(A). Then the following hold.

(i) A+B ≡ A�B.

(ii) A ∪B ≡ A YB.

(iii) q × A ≡ q ×′ A.

Proof: (i) Lemma 21 gives that ρ(A) + ρ(B) ≡ A � B. By Proposition 13, we
also have A ≡ ρ(A) and B ≡ ρ(B). Proposition 8(ii) then leads to A + B ≡
ρ(A) + ρ(B), and thus A+B ≡ A�B.

(ii) Lemma 20 gives that ρ(A ∪ B) = A Y B. Proposition 13 implies that
A ∪B ≡ ρ(A ∪B) and thus A ∪B ≡ A YB.

(iii) Lemma 20 implies that ρ(q × A) = q × ρ(A) = q ×′ A. Proposition 13
implies that q × A ≡ ρ(q × A) and thus q × A ≡ q ×′ A. 2

Consider an expression built from finite subsets of O and operations ∪, + and
q× · for various q ∈ O+. If one replaces each ∪ by Y, and + by � and each × by
×′ then it can be shown, using Proposition 14 that one gets an expression which
is ≡-equivalent. This can be proved by induction on the number of operations. If
there are no operations, i.e., just a set A, then it trivially holds. Otherwise, let us
assume that it is true if the expression involves k − 1 or less operations. Consider
an expression with k operators, and consider each case of the top operator. E.g.,
consider if it’s ∪, so we have A ∪ B. If we replace the operators in A we get an
expression evaluating to some set A′, and similarly for B′. The inductive hypoth-
esis implies that A ≡ A′ and B ≡ B′. We have A′ ∪B′ ≡ A′ Y B′. Proposition 8
then implies that A∪B ≡ A′ ∪B′, and hence A∪B ≡ A′ YB′, i.e., the modified

46

expression is equivalent to the original one. The other cases are similar, so the
induction goes through.

What this means is that if one performs a computation with each ∪ replaced
by Y, and + by � and each × by ×′ then we will get an equivalent result. The
advantage of using the new operations is that the resulting subset of O produced
at each stage of the calculation has at most two elements.

Example 2. Consider the sets A = {〈±, 2〉, 〈+, 5〉} and B = {〈±, 1〉, 〈−, 5〉}.
We have A◦ = 〈±, 2〉, and A◦ = 〈+, 5〉, and thus ρ(A) = A. Similarly, ρ(B) =
{B◦, B◦} = {〈±, 1〉, 〈−, 5〉} = B. We also have ρ(A ∪ B) = {〈±, 1〉, 〈+, 5〉}.
It can be seen that ρ(A ∪ B) ≡ A ∪ B, since 〈+, 5〉 � 〈−, 5〉, and 〈±, 2〉 is a
convex combination of 〈±, 1〉 and 〈+, 5〉, illustrating Proposition 13. The set A+
B equals {〈±, 1〉, 〈±, 2〉, 〈±, 5〉}. Also, ρ(A + B) = {(A+B)◦, (A+B)◦} =
{〈±, 1〉, 〈±, 5〉}. We further have that A � B = {A◦ +B◦, A◦ +B◦}, which
equals {〈±, 1〉, 〈±, 5〉} = ρ(A + B); and A Y B = {A◦ ∨◦ B◦, A◦ ∨◦ B◦} =
{〈±, 1〉, 〈+, 5〉}, which equals ρ(A ∪B).

9.4. The Qualitative Decision Model
An Order of Magnitude Influence Diagram (OOM-ID) is an ID-system defined

by a pair 〈G, (Φ,Ψ)〉, such that (i) G is a directed acyclic graph over X ∪ D;
(ii) Φ = {PX : X ∈ X}, where PX is a conditional order of magnitude
probability distribution on X with scope S = {X} ∪ paG(X) (where paG(X)
are the parents of X in G) which maps every configuration of S to a positive
order of magnitude probability value, i.e., PX : Ω(S) → O+; (iii) each element
ψ of Ψ is an order of magnitude utility function whose scope S is a subset of
X ∪ D, and represents partially ordered preferences of the decision maker, i.e.,
ψ : Ω(S) → 2O. Collection Φ is a Bayesian network-style factorization of a
global order of magnitude probability distribution (

∏
Φ), and

∑
Ψ represents the

overall order of magnitude utility function.
Solving an OOM-ID means finding the set of policies that generate maxi-

mal values of order of magnitude expected utility, i.e., values of utility in the set
max<{EUπ : policies π}. We say that a policy π is optimal if the correspond-
ing order of magnitude expected utility EUπ is undominated. The set of all such
policies is called optimal policies set.

The bucket elimination algorithm for OOM-IDs is obtained from Algorithm 2
by using the summation (+), multiplication (×) and maximization (max) opera-
tions over partially ordered sets of order of magnitude values introduced in Sec-
tion 9.2. To obtain an optimal policy, the algorithm processes the decision buckets

47

Figure 5: The oil wildcatter order of magnitude influence diagram.

in reverse order, from the first decision variable to the last. Each decision rule is
generated by taking the argument of the maximization operator applied over the
combination of the probability and utility components in the respective bucket,
for each configuration of the variables in the bucket’s scope (i.e., the union of the
scopes of all functions in that bucket minus the bucket variable Yp). When pro-
cessing the current decision variable Dk, all of the previous decision variables in
the ordering D1, . . . , Dk−1 are set to their already determined optimal values.

9.5. The Oil Wildcatter Decision Problem Revisited
Figure 5 displays the order of magnitude influence diagram corresponding

to the oil wildcatter decision problem from Example 1. For our purpose, we
used an extension of Spohn’s mapping from the original probability distributions
and utility functions to their corresponding order of magnitude approximation
[17, 18]. Specifically, given a small positive ε < 1, the order of magnitude
approximation of a probability value p ∈ (0, 1] is 〈+, k〉 such that k ∈ Z and
εk+1 < p ≤ εk, while the order of magnitude approximation of a positive util-
ity value u > 0 is 〈+,−k〉 such that ε−k ≤ u < ε−(k+1) (the case of negative
utilities is symmetric). For example, if we consider ε = 0.1 then the probability
P (S = closed|O = dry, T = yes) = 0.01 is mapped to 〈+, 2〉, while the utilities
U2(O = dry,D = yes) = −70 and U2(O = soaking,D = yes) = 200 are

48

Table 1: Optimal policies sets for the order of magnitude influence diagram from Figure 5.

decision rule OOM-ID
ε = 0.1 ε = 0.01 ε = 0.001

Test? {yes,no} {yes, no} {yes, no}
Drill? S=closed, T=yes yes yes {yes, no}

S=open, T=yes yes yes {yes, no}
S=diffuse, T=yes no {yes, no} {yes, no}
S=closed, T=no yes yes {yes, no}
S=open, T=no yes yes {yes, no}
S=diffuse, T=no yes yes {yes, no}

max<{EUπ : policies π} {〈+,−1〉} {〈+, 0〉} {〈±, 0〉, 〈+,∞〉}

mapped to 〈−,−1〉 and 〈+,−2〉, respectively.
Table 1 shows the optimal policies sets (including the maximum order of mag-

nitude expected utility) obtained for the order of magnitude influence diagrams
corresponding to ε ∈ {0.1, 0.01, 0.001}. When ε = 0.1, we can see that there
are two optimal policies having the same maximum order of magnitude expected
utility, namely π′ (for T = yes) and π′′ (for T = no). Therefore, if the seismic
test is performed (T = yes) then drilling is to be done only if the test results show
an open or closed pattern. Otherwise (T = no), the wildcatter will drill regardless
of the test results. Ties like these at the decision variables are expected given that
the order of magnitude probabilities and utilities represent abstractions of the real
values. The expected utilities of π′ and π′′ in the original influence diagram are
42.75 and 20.00, respectively.

When ε = 0.01, we also see that both drilling options are equally possible if
the seismic test is performed and the test results show a diffuse pattern. In this
case, there are four optimal policies having the same maximum order of magni-
tude expected utility. Finally, when ε = 0.001, we can see that all decision options
are possible and the corresponding optimal policies set contains 128 policies. The
explanation is that the order of magnitude influence diagram contains in this case
only trivial order of magnitude values such as 〈+, 0〉, 〈−, 0〉 and 〈+,∞〉, respec-
tively.

49

9.6. Numerical Experiments
We evaluate empirically the quality of the decision policies obtained for or-

der of magnitude influence diagrams. These experiments were carried out on a
2.4GHz quad-core processor with 8GB of RAM.

Methodology. We experimented with random influence diagrams described by the
parameters 〈nc, nd, k, p, r, a〉, where nc is the number of chance variables, nd is
the number of decision variables, k is the maximum domain size, p is the number
of parents in the graph for each variable, r is the number of root nodes and a is the
arity of the utility functions. The structure of the influence diagram is created by
randomly picking nc + nd − r variables out of nc + nd and, for each, selecting p
parents from their preceding variables, relative to some ordering, whilst ensuring
that the decision variables are connected by a directed path. A single utility node
with a parents picked randomly from the chance and decision nodes is then added
to the graph.

We generated two classes of random problems with parameters 〈n, 5, 2, 2, 5, 5〉
and having either positive utilities only or mixed (positive and negative) utilities.
They are denoted by P : 〈n, 5, 2, 2, 5, 5〉 and M : 〈n, 5, 2, 2, 5, 5〉, respectively.
In each case, 75% of the chance nodes were assigned extreme conditional proba-
bility distributions (CPDs) which were populated with numbers drawn uniformly
at random between 10−5 and 10−4, whilst ensuring that the table is normalized
(these CPDs are almost deterministic with values very close to 0 or 1). The re-
maining CPDs were randomly filled using a uniform distribution between 0 and 1.
For class P , the utilities are of the form 10u, where u is an integer uniformly dis-
tributed between 0 and 5. For class M , the utilities are of the form +10u or −10u,
where u is between 0 and 5, as before, and we have an equal number of positive
and negative utility values. Each influence diagram instance was then converted
into a corresponding order of magnitude influence diagram using the mapping of
the probabilities and utilities described in Section 9.5, for some ε < 1. Intuitively,
the smaller ε is, the coarser the order of magnitude approximation of the exact
probability and utility values (i.e., more information is lost).

Measures of Performance. To measure how close the decision policies derived
from the optimal policy set of an order of magnitude influence diagram are to
the optimal policy of the corresponding standard influence diagram, we use two
relative errors, defined as follows. Let I be an influence diagram and let Iε be the
corresponding order of magnitude approximation, for some ε value. We sample
s different policies, uniformly at random, from the optimal policies set of Iε,

50

and for each sampled policy we compute its expected utility in I. Let ∆med be a
policy corresponding to the median expected utility vmed amongst the samples. We
define the relative error ηmed = |(v− vmed)/v|, where v is the maximum expected
utility of the optimal policy in I. Similarly, we define ηmax = |(v − vmax)/v|,
where ∆max is the best policy having the highest expected utility vmax amongst
the samples.

Implementation Details. Given an OOM-ID instance Iε with m decision vari-
ables D1, . . . , Dm, the bucket elimination algorithm returns an optimal policy
π = (π1, . . . , πm) having maximum order of magnitude expected utility. In gen-
eral, there can be more than one such optimal policies. In our implementation, we
actually compute a compact representation of the optimal policies set, as follows.
In the second phase of the algorithm we process the decision buckets in reverse
order, from first to last (i.e., following the temporal order of the decisions), to gen-
erate the decision rules. Let Dp be the current decision bucket. The decision rule
πp is generated by taking the argument of the maximization operator applied over
the combination of the probability and utility components in the respective bucket,
for each configuration of the variables in the bucket’s scope, but we instrument the
code to also record the ties (if any). The scope of the bucket is the union of the
scopes of all functions in that bucket, minus the bucket variables, and represents
all variables beforeDp that can influence the decision, namely pa(Dp). Therefore,
each entry in the decision rule’s table will record all possible options for that par-
ticular decision, given the current assignment of the variables in pa(Dp). We call
πp an augmented decision rule. Sampling a policy π′ = (π′1, . . . , π

′
m) from the

optimal policies set is rather straightforward. The augmented decision rules are
processed in the corresponding temporal order (from π1 to πm). Let πi be the cur-
rent augmented decision rule. We create a decision rule π′i from πi by uniformly
randomly selecting a decision option for each configuration of the variables in
the scope of the decision rule, whilst ensuring that the selected decision option is
consistent with all previous decision rules.

Results. Figure 6 displays the distribution of the relative errors ηmed (top) and
ηmax (bottom) obtained on order of magnitude influence diagrams derived from
class P (i.e., positive utilities), as a function of the problem size (given by the
number of variables), for ε ∈ {0.5, 0.05, 0.005}. Each data point and correspond-
ing error bar represents the 25th, median and 75th percentiles obtained over 30
random problem instances generated for the respective problem size. We can see
that ηmed is the smallest (less than 10%) for ε = 0.5. However, as ε decreases,

51

re
la

ti
v

e
 e

rr
o

r
o

f
O

O
M

 m
e

d
ia

n
 p

o
li

c
y

 (
%

)

0

20

40

60

80

100

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

re
la

ti
v

e
 e

rr
o

r
o

f
O

O
M

 b
e

s
t

p
o

li
c

y
 (

%
)

0

20

40

60

80

100

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

Figure 6: Results for class P influence diagrams. We show the distribution of the relative errors
ηmed (top) and ηmax (bottom) for ε ∈ {0.5, 0.05, 0.005}. # of samples s = 100.

re
la

ti
v

e
 e

rr
o

r
o

f
 O

O
M

 m
e

d
ia

n
 p

o
li

c
y

 (
%

)

10-4

10-3

10-2

10-1

100

101

102

103

104

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

re
la

ti
v

e
 e

rr
o

r
o

f
O

O
M

 b
e

s
t

p
o

li
c

y
 (

%
)

10-4

10-3

10-2

10-1

100

101

102

103

104

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

Figure 7: Results for class M influence diagrams. We show the distribution of the relative errors
ηmed (top) and ηmax (bottom) for ε ∈ {0.5, 0.05, 0.005}. # of samples s = 100.

the loss of information due to the order of magnitude abstraction increases and
the corresponding relative errors ηmed increase significantly. Notice that the best
policy ∆max derived from the order of magnitude influence diagram was almost
identical to that of the corresponding standard influence diagram, for all ε (i.e., the
error ηmax is virtually zero).

Figure 7 shows the distribution of ηmed (top) and ηmax (bottom) obtained on
order of magnitude influence diagrams from class M (i.e., mixed utilities). The
pattern of the results is similar to that from the previous case. However, in this
case, the errors span over two or three orders of magnitude, especially for ε = 0.05
and 0.005. This is because the sampled policy space includes policies that are
quite different from each other and, although they have the same maximum order
of magnitude expected utility, their expected utility in the corresponding standard

52

e
x

p
e

c
te

d
 u

ti
li

ty

-10k

-8k

-6k

-4k

-2k

0

2k

ε

0.5 0.05 0.005

Figure 8: Distribution of the expected utility values for 100 policies sampled uniformly at random
for a class M : 〈40, 5, 2, 2, 5, 5〉 order of magnitude influence diagram instance.

influence diagram is significantly different. For this reason, we looked in more
detail at the distribution of the expected utility values of policies sampled from
the optimal policies set for different values of ε.

Figure 8 plots the distribution of the expected utility values of 100 policies
sampled uniformly at random from the optimal policies set of a classM : 〈40, 5, 2, 2, 5, 5〉
order of magnitude influence diagram, for ε ∈ {0.5, 0.05, 0.005}. The maximum
expected utility of the optimal policy in the corresponding class M standard in-
fluence diagram is 568.98. As expected, we see that the smallest sample variance
is obtained for ε = 0.5. In this case, the mean of the samples (i.e., policies) is
−1, 021.39 and the standard deviation is 1367.29. For ε = 0.05 and ε = 0.005, the
policies are spread out even more from the mean, and the variance of the expected
utility is significantly larger. For example, the mean and standard deviation corre-
sponding to ε = 0.05 are−4, 894.94 and 1, 827.33, respectively, and for ε = 0.005
they are −5, 338.88 and 1, 513.58, respectively. This explains the large variations
of the relative errors ηmed and ηmax (corresponding to severe degradation in the
quality of the decision policies), especially for smaller ε values.

Finally, we note that in terms of running time solving the order of magnitude
influence diagram instances took almost the same amount of time as the corre-
sponding standard influence diagram instances, thus we omit this comparison.

10. Related Work

The variable elimination approach we use in this paper is based on that for
standard influence diagrams, in particular, in Jensen et al. [11] and Dechter [12],

53

which builds on previous work such as Shachter and Peot [19], and Shenoy [20].
The work that is closest in spirit to the current work is that by by Pralet, Schiex
and Verfaillie [21], who also consider an axiomatic framework for generalized
influence diagrams (and other sequential decision making problems), involving a
form of generalized expected utility [6]. In contrast with our framework, Pralet’s
work does not assume division (multiplicative inverses) for the uncertainty values,
which allows some more qualitative uncertainty formalisms to be reasoned with.
(The existence of multiplicative inverses is used to generate properties we need
for convex sets of utility values.) However, Pralet et al. focus on the case of
totally ordered utility values, with the major contribution of our paper being for
the partially ordered case.

Another general computation framework is Valuation Algebras/Networks [22],
building on work by Shenoy and Shafer [23]. Since it involves only one marginal-
ization operator it doesn’t apply directly for solving influence diagrams, which
require a marginalization for eliminating chance nodes, and a different one for
eliminating decision nodes. Prakash Shenoy [20, 24] has developed this kind of
computational structure for solving influence diagrams based on standard prob-
ability and utility. A general axiomatic framework for solving Markov Decision
Processes (which have a different and somewhat simpler structure than influence
diagrams) is described in [25]; this framework also allows utilities to be only par-
tially ordered. Kikuti and Cozman [26], as well as Kikuti, Cozman and Filho [27]
allow interval probabilities (which are not covered by our framework), and focus
on precise utility; similarly [28].

Credal networks [29] are a related formalism based on imprecise probability.
They generalize classical Bayesian networks by replacing the conditional prob-
ability distributions with closed convex sets of probabilities (credal sets) which
allow for a richer representation of uncertainty.

Haenni [30] introduced a partially ordered valuation algebra to facilitate ap-
proximate inference. The valuation algebra was extended later to compute optimal
policies for limited memory influence diagrams [31] and to perform more efficient
inference in credal networks [32].

Diehl and Haimes [33] consider influence diagrams with multiple objectives
(with just a single multi-objective value node), with the solution methods involv-
ing propagation of sets of utility vectors, as in the current paper. López-Dı́az et al.
[34] consider generalized influence diagrams based on fuzzy random variables.

The work that is closest to our order of magnitude influence diagrams model is
that by Bonet and Pearl [35] who consider qualitative MDPs and POMDPs based
also on an order of magnitude approximation of probabilities and totally ordered

54

utilities.
Garcia and Sabbadin [36] introduced possibilistic influence diagrams to model

and solve decision making problems under qualitative uncertainty in the frame-
work of possibilistic theory.

Multi-objective influence diagrams were developed further in [7] together with
an exact variable elimination algorithm as well as an approximation scheme that
computes ε-coverings of the sets of maximum values of expected utility.

More recently, Cabañas et al [37] proposed an interval-valued quantification
of the probability and utility values in influence diagrams. Consequently, they
generalized the variable elimination and arc reversal algorithms to cope with these
kinds of values. While our formalism and algorithms allow interval utilities it is
not yet known if they support interval probabilities as well.

11. Conclusion

In this paper we consider decision making under uncertainty using influence
diagrams, but where we allow more general notions of uncertainty than probabil-
ity and more general notions of utility functions, which, in particular, allow utility
values to be only partially ordered. We present an axiomatic framework and list
the properties of a formalism that allows maximal (generalized) expected utility to
be computed by a sequential variable elimination algorithm. Example formalisms
that satisfy the proposed axioms include: decision making under uncertainty based
on multi-objective utility, a system of interval-valued utilities, and of multi-agent
expected utility, as well as the order of magnitude system. We consider first gen-
eralized influence diagram systems where utility values are totally ordered, show
how both chance and decision variables can be eliminated effectively, and prove
that one can iteratively eliminate all the variables (chance variables by summation,
decision variables by maximization) to compute the maximum value of expected
utility.

We then consider the case where values of utility are only partially ordered.
In this case there will typically not be a unique maximal value of utility, but a
set of them, and in order to compute this set we need to perform operations on
sets of utility values. We give the central result of the paper (Theorem 4), which
shows how to compute by sequential variable elimination a set of utility values
that are equivalent to the set of maximal values of expected utility. This ensures
soundness (correctness of results) for influence diagram computations for any for-
malism satisfying the axioms given in Section 3, namely that the formalism forms
an uncertainty-utility values (u.-u.v.) structure which respects the partial order on

55

utility values. Thus to show that the variable elimination method applies for a
formalism, one just has to verify these axioms (which are simple to check for a
given formalism).

We also describe in detail the order of magnitude influence diagram system
which involves an order of magnitude representation of the probability and util-
ity values. This is a more qualitative decision model that allows reasoning with
imprecise probability and partially ordered imprecise utility values. In order to
compute the set of maximal expected utility values (and also the corresponding
decision policies) we show how to use a variable elimination algorithm that per-
forms efficient operations on sets of order of magnitude values. More precisely,
we prove in Proposition 12 that in the order of magnitude computation one needs
only to work with sets of values which have either one or two elements. There-
fore, the specialized variable elimination algorithm proposed for solving order
of magnitude influence diagrams manipulates sets of order of magnitude values
involving at most two elements, which in turn can translate into important time
and space savings. Indeed, our empirical evaluation on selected classes of influ-
ence diagrams shows that the approach is practical for problems of substantial
size. It also demonstrates that as the quantitative information (represented by or-
der of magnitude values) becomes more precise, the qualitative decision process
becomes closer to the standard one that involves precise probability and utility
values.

Throughout the paper we considered a straight-forward variable elimination
algorithm. One might improve this to efficiently make use of constraints (e.g., zero
values of the uncertainty and utility functions), building, for instance, on the work
of Pralet et al. [21]. An alternative approach is to extend search-based methods,
either depth-first or best-first, such as those exploring AND/OR search spaces
[38, 39] to solving influence diagrams systems with partially ordered utilities. The
main advantage of search methods over variable elimination is that the former can
use admissible heuristic evaluation functions to prune unpromising regions of the
search space.

[1] R. Marinescu, N. Wilson, Order-of-magnitude influence diagrams, in: Un-
certainty in Artificial Intelligence (UAI), 2011, pp. 489–496.

[2] N. Wilson, R. Marinescu, An axiomatic framework for influence diagram
computation with partially ordered utilities, in: International Conference
on Principles of Knowledge Representation and Reasoning (KR), 2012, pp.
210–220.

56

[3] H. Raiffa, Decision analysis, Addison-Wesley, 1968.

[4] R. Howard, J. Matheson, Influence diagrams, in: Readings on the Principles
and Applications of Decision Analyis, 1984, pp. 721–762.

[5] T. Nielsen, F. Jensen, Byesian Networks and Decision Graphs, Springer-
Verlag New York, 2007.

[6] F. Chu, J. Halpern, Great expectations. Part I: On the customizability of
Generalized Expected Utility, in: International Joint Conference on Artificial
Intelligence (IJCAI), 2003, pp. 291–296.

[7] R. Marinescu, A. Razak, N. Wilson, Multi-objective influence diagrams, in:
Proceesings of the 28th Conference on Uncertainty in Artificial Intelligence
(UAI), 2012, pp. 574–583.

[8] R. Marinescu, A. Razak, N. Wilson, Multi-objective constraint optimization
with tradeoffs, in: International Conference on Principles and Practice of
Constraint Programming (CP), 2013, pp. 497–512.

[9] N. Wilson, An order of magnitude calculus, in: Uncertainty in Artificial
Intelligence (UAI), 1995, pp. 548–555.

[10] M. Goldszmidt, J. Pearl, Qualitative probabilities for default reasoning, be-
lief revision, and causal modeling, Artificial Intelligence 84 (1-2) (1996)
57–112.

[11] F. Jensen, V. Jensen, S. Dittmer, From influence diagrams to junction trees,
in: Uncertainty in Artificial Intelligence (UAI), 1994, pp. 367–363.

[12] R. Dechter, A new perspective on algorithms for optimizing policies under
uncertainty, in: Artificial Intelligence Planning Systems (AIPS), 2000, pp.
72–81.

[13] S. Lauritzen, D. Nilsson, Representing and solving decision problems with
limited information, Management Science 47 (9) (2001) 1235–1251.

[14] R. Dechter, Constraint Processing, Morgan Kaufmann Publishers, 2003.

[15] E. Fagiuoli, M. Zaffalon, A note about redundancy in influence diagrams,
International Journal of Approximate Reasoning 19 (3-4) (1998) 231–246.

57

[16] H. Fargier, E. Rollon, N. Wilson, Enabling local computation for partially
ordered preferences, Constraints 15 (4) (2010) 516–539.

[17] W. Spohn, Ordinal conditional functions: a dynamic theory of epistemic
states, Causation in decision, belief change and statistics 2 (1987) 105–134.

[18] A. Darwiche, M. Goldszmidt, On the relation between kappa calculus and
probabilistic reasoning, in: Uncertainty in Artificial Intelligence (UAI),
1994, pp. 145–153.

[19] M. A. Peot, R. D. Shachter, Fusion and proagation with multiple observa-
tions in belief networks, Artificial Intelligence 48 (1992) 299–318.

[20] P. Shenoy, Valuation-based systems for Bayesian decision analysis, Opera-
tions Research 40 (1) (1992) 463–484.

[21] C. Pralet, T. Schiex, G. Verfaillie, Sequential Decision-Making Problems—
Representation and Solution, Wiley, 2009.

[22] J. Kohlas, Information Algebras—Generic Structures for Inference,
Springer-Verlag, 2003.

[23] G. R. Shafer, P. Shenoy, Probability propagation, Annals of Mathematics
and Artificial Intelligence 2 (1990) 327–352.

[24] P. Shenoy, Valuation network representation and solution of asymmetric de-
cision problems, European Journal of Operational Research 121 (3) (2000)
579–608.

[25] P. Perny, O. Spanjaard, P. Weng, Algebraic Markov Decision Processes, in:
International Joint Conference on Artificial Intelligence (IJCAI), 2005, pp.
1372–1377.

[26] D. Kikuti, F. Cozman, Influence diagrams with partially ordered preferences,
in: Proceedings of 3rd Multidisciplinary Workshop on Advances in Prefer-
ence Handling, 2007, pp. 1–7.

[27] D. Kikuti, F. Cozman, R. Filho, Sequential decision making with partially
ordered preferences, Artificial Intelligence 175 (7-8) (2011) 1346–1365.

58

[28] C. de Campos, Q. Ji, Strategy selection in influence diagrams using impre-
cise probabilities, in: Uncertainty in Artificial Intelligence (UAI), 2008, pp.
121–128.

[29] F. Cozman, Credal networks, Artificiall Intelligence 120 (2) (2000) 199–233.

[30] R. Haenni, Ordered valuation algebras: A generic framework for approx-
imate inference, International Journal of Approximate Reasoning (IJAR)
37 (1) (2004) 1–41.

[31] D. Maua, C. de Campos, M. Zaffalon, Solving limited memory influence
diagrams, Journal of Artificial Intelligence Research (JAIR) 44 (1) (2012)
97–140.

[32] D. Maua, C. de Campos, M. Zaffalon, Updating credal networks is approx-
imable in polynomial time, International Journal of Approximate Reasoning
(IJAR) 53 (8) (2012) 1183–1199.

[33] M. Diehl, Y. Haimes, Influence diagrams with multiple objectives and trade-
off analysis, IEEE Transactions On Systems, Man, and Cybernetics Part A
34 (3) (2004) 293–304.

[34] M. López-Dı́az, L. Rodrı́guez-Muñiz, Influence diagrams with super value
nodes involving imprecise information, European Journal of Operational Re-
search 179 (1) (2007) 203–219.

[35] B. Bonet, J. Pearl, Qualitative MDPs and POMDPs: an order-of-magnitude
approximation, in: Uncertainty in Artificial Intelligence (UAI), 2002, pp.
61–68.

[36] L. Garcia, R. Sabbadin, Complexity results and algorithms for possibilistic
influence diagrams, Artificial Intelligence 172 (1) (2008) 1018–1044.

[37] R. Cabanas, A. Antonucci, A. Cano, M. Gomez-Olmedo, Evaluating
interval-valued influence diagrams, International Journal of Approximate
Reasoning 80 (1) (2017) 393–411.

[38] R. Marinescu, R. Dechter, AND/OR branch-and-bound search for combina-
torial optimization in graphical models, Artificial Intelligence 173 (16-17)
(2009) 1457–1491.

59

[39] R. Marinescu, R. Dechter, Memory intensive AND/OR search for combina-
torial optimization in graphical models, Artificial Intelligence 173 (16-17)
(2009) 1492–1524.

60

Appendix

Part A: Proofs of Results in Section 3
Recall that any a ∈ O can be written as 〈σ(a), â〉. The following lemma is

useful in proving associativity and distributivity results later.

Lemma 22. Operations ⊗ and ⊕ on the set of signs {+,−,±} (as defined in
Definitions 7 and 8) are commutative and associative, and ⊗ distributes over ⊕,
i.e., for all σ, τ, θ ∈ {+,−,±}, (σ ⊕ τ)⊗ θ = (σ ⊗ θ)⊕ (τ ⊗ θ).

Proof: Recall that ⊗ is commutative and +⊗− = −, +⊗+ = −⊗− = +, and
∀σ ∈ {+,−,±}, σ ⊗ ± = ±. Also, + ⊕ + = +, − ⊕ − = −, and otherwise,
σ ⊕ τ = ±.

Associativity of ⊗: if any of σ, τ and θ are ± then (σ ⊗ τ) ⊗ θ = σ ⊗
(τ ⊗ θ) = ±. Otherwise, σ, τ and θ are all + or −. Then, if an even number
of σ, τ and θ are −, we have (σ ⊗ τ) ⊗ θ = σ ⊗ (τ ⊗ θ) = +. Otherwise,
(σ ⊗ τ)⊗ θ = σ ⊗ (τ ⊗ θ) = −.

Operation ⊕ is clearly commutative. Associativity of ⊕: If σ = τ = θ = +
then (σ ⊕ τ) ⊕ θ = σ ⊕ (τ ⊕ θ) = +; if σ = τ = θ = − then (σ ⊕ τ) ⊕ θ =
σ ⊕ (τ ⊕ θ) = −; otherwise, (σ ⊕ τ)⊕ θ = σ ⊕ (τ ⊕ θ) = ±.

Distributivity: if any of σ, τ and θ are± then (σ⊕τ)⊗θ = (σ⊗θ)⊕(τ⊗θ) =
±. Otherwise, σ, τ and θ are all in {+,−}. If σ = τ then (σ ⊕ τ)⊗ θ = σ ⊗ θ =
(σ ⊗ θ)⊕ (τ ⊗ θ). Else, σ 6= τ , and (σ ⊕ τ)⊗ θ = (σ ⊗ θ)⊕ (τ ⊗ θ) = ±. In all
cases, we thus have (σ ⊕ τ)⊗ θ = (σ ⊗ θ)⊕ (τ ⊗ θ). 2

Below we give some useful properties of addition on O, which follow imme-
diately from the definition.

Lemma 23. Addition on O is idempotent: for all a ∈ O, a+ a = a. If â < b̂ then
a+ b = a; if â > b̂ then a+ b = b. If â = b̂ and a 6= b then a+ b = 〈±, â〉.

The result below sums up some of the basic algebraic properties of the opera-
tions.

Lemma 24. (i) Multiplication× onO is associative and commutative, and for
all a ∈ O, a× 0 = 0 and a× 1 = a.

(ii) Addition + on O is associative and commutative, and a + 0 = a, for all
a ∈ O.

(iii) For all a, b, c ∈ O, (a+ b)× c = a× c+ b× c.

61

Proof: (i) Commutativity of× follows immediately. Regarding associativity, con-
sider any a, b, c ∈ O. (a × b) × c = 〈(σ(a) ⊗ σ(b)) ⊗ σ(c), â + b̂ + ĉ〉. By
associativity of multiplication ⊗ on signs (Lemma 22), (σ(a) ⊗ σ(b)) ⊗ σ(c) =
σ(a)⊗(σ(b)⊗σ(c)). Thus, (a×b)×c⊗〈σ(a)⊗(σ(b)×σ(c)), â+b̂+ĉ〉 = a×(b×c),
proving associativity of ×.

We have that a × 0, i.e., a × 〈±,∞〉 equals 〈±,∞〉 = 0. Also, a × 1, i.e.,
〈σ(a), â〉 × 〈+, 0〉, equals 〈σ(a), â〉 = a.
(ii): Operation ⊕ on signs is commutative, which implies that addition on O is
commutative.

Associativity: Consider any elements a1, a2 and a3 of O, and write ai =
〈σi,mi〉, for i = 1, 2, 3. Let m = min {m1,m2,m3}. Case (I): there exists a
unique i such thatmi = m. Then (a1 +a2)+a3 = a1 +(a2 +a3) = 〈σi,mi〉. Case
(II): there exist two values j and k of i such that mi = m. Then (a1 + a2) + a3 =
a1 + (a2 +a3) = 〈σj,mj〉+ 〈σk,mk〉. Otherwise, we have Case (III), when m1 =
m2 = m3 = m. Then, (a1+a2)+a3 = 〈(σ1⊕σ2)⊕σ3,m〉, which, since operation
⊕ is associative (Lemma 22), is equal to 〈σ1 ⊕ (σ2 ⊕ σ3),m〉 = a1 + (a2 + a3).
Therefore, in all cases, (a1 + a2) + a3 = a1 + (a2 + a3), proving associativity.

Consider any a = 〈σ,m〉 ∈ O. If m = ∞ then σ = ±, and a = 0, so
a + 0 = 〈±,∞〉 + 〈±,∞〉 = 〈±,∞〉 = 0 = a. Otherwise, m < ∞ and
〈σ,m〉+ 〈0,∞〉 = 〈σ,m〉 = a. Thus, in either case, a+ 0 = a.
(iii) We will show that for all a, b, c ∈ O, (a + b) × c = a × c + b × c. Case (I):
when â < b̂. Then â× c = â + ĉ < b̂ + ĉ = b̂× c, so (a + b) × c = a × c =
a × c + b × c, using Lemma 23. Case (II): when â > b̂. Similarly, we obtain
(a+ b)× c = b× c = a× c+ b× c. Case (III): when â = b̂, equals m, say. Write
(a+b)×c as d, and write a×c+b×c as e. Then d̂ = m+ ĉ = â× c = b̂× c = ê.
Also, σ(d) = σ((a + b) × c) = (σ(a) ⊕ σ(b)) ⊗ σ(c), which, by Lemma 22, is
equal to (σ(a) ⊗ σ(c)) ⊕ (σ(b) ⊗ σ(c)), which equals σ(e), so σ(d) = σ(e) and
d̂ = ê, and thus, d = e. Hence, (a+ b)× c = a× c+ b× c in this case also.

Lemma 25. (i) For all p, q ∈ O+ ∪ {0}, p+ q = 0 if and only if p = q = 0;

(ii) for all q ∈ O+, q−1 is the unique element of O+ with q × q−1 = 1.

Proof: (i): Using the fact that 0 is the additive identity element (Lemma 24), we
have the following. If p = q = 0 then clearly, p + q = 0. If p 6= 0 and q = 0
then p + q = p 6= 0. If p = 0 and q 6= 0 then p + q = q 6= 0. To complete
the equivalence we just need to show that if p and q are both not equal to 0 then
p+ q 6= 0. But if p, q 6= 0 then p̂, q̂ 6=∞, so p̂+ q 6=∞, and thus, p+ q 6= 0.

62

(ii): Since q ∈ O+, q = 〈+,m〉 for some m ∈ Z. Consider any p = 〈+, n〉 ∈ O+.
Then q × p = 〈+,m + n〉, so q × p = 1 = 〈+, 0〉 if and only if n = −m, i.e., if
and only if p = q−1. 2

The next result follows immediately from Lemmas 24 and 25.

Lemma 26. Tuple 〈O+ ∪ {0},+,×, 0, 1〉 is an uncertainty values structure and
〈O,+, 0〉 is a utility values structure.

The following lemma, which is an immediate consequence of Definition 9,
gives a different way of understanding the relation �.

Lemma 27. (i) Assume â < b̂. Then a � b ⇐⇒ σ(a) = +.

(ii) Assume â > b̂. Then a � b ⇐⇒ σ(b) = −.

(iii) Assume â = b̂. Then a � b if and only if either [σ(a) = + and σ(b) 6= +]
or σ(a) = ± and σ(b) = −].

Lemma 28. Relation � on O is a partial order, which is a total order when
restricted to (O −O±) ∪ {0}.

Proof: We first show that � is a partial order, i.e., it is reflexive, anti-symmetric
and transitive. By definition, � is reflexive. By considering each case in turn, it
can be seen that if a � b then it is not the case that b � a. Thus if a � b and b � a
then a = b, proving anti-symmetry of �.

We next prove that � is transitive. Suppose that a � b and b � c, for a, b, c ∈
O. It trivially follows that a � c if a = b or b = c, so we can assume that a � b
and b � c. There are a number of cases.

Case (I): First consider if σ(a) = +. If σ(c) = − then a � c. If σ(c) = ±
then b � c implies that σ(b) = + and b̂ ≤ ĉ. Then a � b implies that σ(a) = +
and â < b̂, so â < ĉ, implying that a � c. If σ(c) = + then we have σ(b) = +
and â < b̂ < ĉ, and so, a � c.

Case (II): Now consider if σ(a) = ±. Then σ(b) = − and â ≥ b̂. Also, b � c
implies that σ(c) = − and b̂ > ĉ, so â > ĉ implying a � c.

Case (III): The final case is when σ(a) = −. Then a � b implies that σ(b) = −
and â > b̂. Similarly, b � c implies that σ(c) = − and b̂ > ĉ. Therefore â > ĉ
and so a � c also in this case.

To prove the last part, we need to show that � restricted to (O−O±)∪ {0} is
complete, i.e., for any a, b ∈ (O−O±)∪ {0}, either a � b or b � a. If σ(a) = +

63

then a � b unless σ(b) = + and â > b̂, in which case b � a. If σ(a) = − then
b � a unless σ(b) = − and â > b̂, in which case, a � b. Thus, in any case, either
a � b or b � a. 2

The following lemma gives two monotonicity properties.

Lemma 29. Let a, b, c be arbitrary elements of O such that a � b. It follows that
a+ c � b+ c, and, if c ∈ O+ ∪ {0} then a× c � b× c.

Proof: Assume a � b. We first prove that a × c � b × c holds if c ∈ O+ ∪ {0}.
If a = b then a × c � b × c, so we can assume that a � b. If c = 0 then
a× c = b× c = 0, so a× c � b× c holds. We can thus assume that c 6= 0. Then
σ(c) = + so σ(a × c) = σ(a) and σ(b × c) = σ(b). Also, â× c = â + ĉ and
b̂× c = b̂+ ĉ. Lemma 27 then implies that a � b if and only if a× c � b× c, so
we have a× c � b× c, as required.

We now prove that a + c � b + c for any c ∈ O. If a = b then it trivially
follows that a + c � b + c, by reflexivity of �, so we can assume that a � b. If
ĉ < â, b̂ then a + c = b + c = c, so a + c � b + c holds. If, on the other hand,
ĉ > â, b̂ then, using Lemma 23, a + c = a and b + c = b so again, a + c � b + c
holds. We can therefore assume that it is not the case that ĉ < â, b̂, and it is not
the case that ĉ > â, b̂.

We consider three cases. (I): Assume â < b̂. Lemma 27(i) then implies that
σ(a) = +. We have â ≤ ĉ (else, we’d have ĉ > â, b̂). If â < ĉ then a+ c = a, and
â+ c = â < b̂+ c = min(b̂, ĉ), so a + c � b + c, by Lemma 27(i). Otherwise,
we have â = ĉ. Then, ĉ < b̂, so b + c = c. Also, â+ c = â = ĉ = b̂+ c. If
σ(c) = + or σ(c) = ± then a + c = c so a + c � b + c; else, σ(c) = −, and
a+ c = 〈±, ĉ〉 � 〈−, ĉ〉 = b+ c, so a+ c � b+ c again.

Case (II): â > b̂. Then, by Lemma 27(ii), σ(b) = −. We have that b̂ ≤ ĉ (else
ĉ > â, b̂). If b̂ < ĉ then b + c = b and b̂+ c = b̂ < â+ c, so a + c � b + c using
Lemma 27(ii). Otherwise, b̂ = ĉ. Then ĉ < â so a+c = c, and â+ c = ĉ = b̂+ c.
If σ(c) = ± or σ(c) = − then b+ c = c, so a+ c = b+ c, so a+ c � b+ c; else
we have σ(c) = +, and b+ c = 〈±, ĉ〉 ≺ 〈+, ĉ〉 = a+ c, so a+ c � b+ c again.

Case (III): â = b̂, equals m, say. Then ĉ = m (else ĉ < â, b̂ or ĉ > â, b̂), and
therefore, â+ c = b̂+ c = m. Suppose, to prove a contradiction, that a + c 6�
b + c. Using Lemma 27(iii), either (A) σ(a + c) = ± and σ(b + c) = + or
(B) σ(a + c) = − and σ(b + c) 6= −. If (A) holds then σ(b) = σ(c) = +,
and σ(a) 6= +, which contradicts a � b. If (B) holds then σ(a + c) = − so

64

σ(a) = σ(c) = − and σ(b) 6= −, which again contradicts a � b. Thus in every
case, we have a+ c � b+ c, as required. 2

We define an u.u.v. structure U for the order of magnitude case to be the tuple
〈Q,+Q,×Q, 0Q, 1Q, U,+U , 0U ,×QU〉, where U isO and Q isO+∪{0}. It can be
shown that the previously stated properties including (∗1), (∗2), (∗3), and (∗4) all
hold, and the operations respect the ordering �.

Proposition 1. Define UO to be the tuple 〈O+∪{0},+,×, 0, 1,O,+, 0,×〉. Then
UO is an uncertainty-utility values structure that respects partial order �, i.e., �
is respected by + and the operation × : O+ ∪ {0} × O → O.

Proof: Lemma 26 shows that 〈O+∪{0},+,×, 0, 1〉 is an uncertainty values struc-
ture and 〈O,+, 0〉 is a utility values structure. Lemma 24(i) and (iii) imply that
×, when considered as a function from O+ ∪ {0} × O to O, satisfies proper-
ties (∗1), (∗2), (∗3), and (∗4), and so UO is an uncertainty-utility values structure.
Lemma 28 shows that � is a partial order, and Lemma 29 shows that the two
operations respect �. 2

Lemma 30. Operations �∗ and �∗ on the set of signs {+,−} (as defined in
Definitions 10 and 11) are commutative and associative.

Proof: Commutativity of the two operations follows immediately from the defini-
tions. For σ, τ, θ ∈ {+,−}, (σ �∗ τ) �∗ θ is equal to + if and only if σ = τ =
θ = +, and the same holds for σ�∗ (τ �∗ θ). Thus (σ�∗ τ)�∗ θ = σ�∗ (τ �∗ θ).
Similarly, (σ �∗ τ) �∗ θ and σ �∗ (τ �∗ θ) are both equal to − if and only if
σ = τ = θ = −, and so (σ �∗ τ)�∗ θ = σ �∗ (τ �∗ θ). 2

Lemma 31. (i) Operations +∗ and +∗ on O′ are idempotent, associative and
commutative, and a+∗ 0 = a+∗ 0 = a, for all a ∈ O′.

(ii) For a ∈ O′ and p, q ∈ O+ ∪ {0}, (p + q) × a = (p × a) +∗ (q × a) =
(p× a) +∗ (q × a);

(iii) For a, b ∈ O′ and p ∈ O+ ∪ {0}. p × (a +∗ b) = (p × a) +∗ (p × b);
p× (a+∗ b) = (p× a) +∗ (p× b);

Proof: (i): The definitions immediately imply that the idempotency of +∗ and +∗,
and that a +∗ 0 = a +∗ 0 = a, for all a ∈ O′. Operations �∗ and �∗ on signs are
commutative, which implies that +∗ and +∗ are commutative.

65

Associativity: Consider any elements a1, a2 and a3 of O′, and write ai =
〈σi,mi〉, for i = 1, 2, 3. Let m = min {m1,m2,m3}. Case (I): there exists a
unique i such that mi = m. Then (a1 +∗ a2) +∗ a3 = a1 +∗ (a2 +∗ a3) = 〈σi,mi〉,
and (a1 +∗ a2) +∗ a3 = a1 +∗ (a2 +∗ a3) = 〈σi,mi〉. Case (II): there exist two
values j and k of i such that mi = m. Then (a1 +∗ a2)+∗ a3 = a1 +∗ (a2 +∗ a3) =
〈σj,mj〉 +∗ 〈σk,mk〉, and (a1 +∗ a2) +∗ a3 = a1 +∗ (a2 +∗ a3) = 〈σj,mj〉 +∗

〈σk,mk〉. Otherwise, we have Case (III), when m1 = m2 = m3 = m. Then,
(a1 +∗ a2)+∗ a3 = 〈(σ1�∗ σ2)�∗ σ3,m〉, which, since operation�∗ is associative
(Lemma 30), is equal to 〈σ1 �∗ (σ2 �∗ σ3),m〉 = a1 +∗ (a2 +∗ a3). Similarly, the
associativity of�∗ implies that (a1 +∗ a2) +∗ a3 = a1 +∗ (a2 +∗ a3). Therefore, in
all cases, (a1+∗a2)+∗a3 = a1+∗(a2+∗a3), and (a1+∗a2)+∗a3 = a1+∗(a2+∗a3)
proving the two associativity properties.
(ii): Consider any a ∈ O′ and p, q ∈ O+ ∪ {0}. If p = q then idempotency of +,
+∗ and +∗ implies (p+ q)× a = (p× a) +∗ (q × a) = (p× a) +∗ (q × a). Now
suppose p 6= q, so p̂ 6= q̂. Without loss of generality (because of commutativity),
we can assume p̂ < q̂. Then p+ q = p. Also, p̂× a = p̂+ â < q̂ + â = q̂ × a, so
(p× a) +∗ (q × a) = (p× a) +∗ (q × a) = p× a = (p+ q)× a.
(iii): Consider any a, b ∈ O′ and p ∈ O+ ∪ {0}. The equalities clearly hold if
p = 0, by nilpotence of 0, so we can assume that p 6= 0. Commutativity means that
without loss of generality we can assume that â ≤ b̂. We first consider the case
when â < b̂. Then also p̂× a < p̂× b, so (p×a)+∗ (p×b) = p×a = p×(a+∗ b),
and (p × a) +∗ (p × b) = p × a = p × (a +∗ b). Now consider the case when
â = b̂ (equals m, say), so also p̂× a = p̂× b = p̂+m. Let d = p× (a+∗ b), and
let e = (p × a) +∗ (p × b). Then d̂ = p̂ + m = ê. Also, σ(p × a) = σ(a), and
σ(p× b) = σ(b), so σ(e) = σ(a)�∗ σ(b) = σ(d). Since d̂ = ê and σ(d) = σ(e),
d = e, i.e., p× (a+∗ b) = (p× a) +∗ (p× b). The same argument can be used to
prove that p× (a+∗ b) = (p× a) +∗ (p× b). 2

Lemma 32. Let a, b, c be arbitrary elements ofO′ such that a � b. Then, a+∗ c �
b+∗ c, and a+∗ c � b+∗ c.

Proof: Assume that a � b. We will prove that a+∗ c � b+∗ c, and a+∗ c � b+∗ c
for any c ∈ O′. If a = b then it trivially follows that a +∗ c � b +∗ c, and
a+∗ c � b+∗ c so we can assume that a � b. If ĉ < â, b̂ then a+∗ c = b+∗ c = c,
so a+∗ c � b+∗ c holds, and similarly, a+∗ c = b+∗ c = c, and a+∗ c � b+∗ c
holds. Another easy case is if ĉ > â, b̂, for then a +∗ c = a +∗ c = a and
b +∗ c = b +∗ c = b so again, a +∗ c � b +∗ c and a +∗ c � b +∗ c hold. We

66

can therefore assume that it is not the case that ĉ < â, b̂, and it is not the case that
ĉ > â, b̂.

We consider three cases, similarly to the proof of Lemma 29. (I): Assume
â < b̂. Lemma 27(i) then implies that σ(a) = +. We have â ≤ ĉ (else, we’d
have ĉ > â, b̂). If â < ĉ then a +∗ c = a, and â+∗ c = â < b̂+∗ c = min(b̂, ĉ),
so a +∗ c � b +∗ c, by Lemma 27(i), with the same argument also showing that
a+∗ c � b+∗ c. Otherwise, we have â = ĉ. Then, ĉ < b̂, so b+∗ c = b+∗ c = c.
Also, â+∗ c = â = ĉ = b̂+∗ c, and similarly, â+∗ c = b̂+∗ c. If σ(c) = +
then a +∗ c = a +∗ c = c so a +∗ c � b +∗ c and a +∗ c � b +∗ c; else,
σ(c) = −; then we have a +∗ c = b +∗ c = c so a +∗ c � b +∗ c again; also,
a+∗ c = 〈+, ĉ〉 � 〈−, ĉ〉 = b+∗ c, so a+∗ c � b+∗ c.

Case (II): â > b̂. Then, by Lemma 27(ii), σ(b) = −. We have that b̂ ≤ ĉ

(else ĉ > â, b̂). If b̂ < ĉ then b +∗ c = b +∗ c = b and b̂+∗ c = b̂ < â+∗ c,
and b̂+∗ c = b̂ < â+∗ c, so a +∗ c � b +∗ c and a +∗ c � b +∗ c, using
Lemma 27(ii). Otherwise, b̂ = ĉ. Then ĉ < â so a +∗ c = a +∗ c = c, and
â+∗ c = â+∗ c = ĉ = b̂+∗ c = b̂+∗ c. If σ(c) = − then b+∗ c = b+∗ c = c, so
a+∗ c = b+∗ c and a+∗ c = b+∗ c, so a+∗ c � b+∗ c and a+∗ c � b+∗ c. Else
we have σ(c) = +. Then, b+∗ c = 〈−, ĉ〉 ≺ 〈+, ĉ〉 = a+∗ c, so a+∗ c � b+∗ c.
Also, b+∗ c = c = a+∗ c so a+∗ c � b+∗ c again.

Case (III): â = b̂, equals m, say. Then ĉ = m (else ĉ < â, b̂ or ĉ > â, b̂),
and so â+∗ c = b̂+∗ c = m, and â+∗ c = b̂+∗ c = m. Suppose, to prove a
contradiction, that a+∗ c 6� b+∗ c. Then σ(a+∗ c) = − and σ(b+∗ c) = +. This
implies σ(b) = σ(c) = +, which contradicts a � b. The case for +∗ is similar:
suppose, to prove a contradiction, that a +∗ c 6� b +∗ c. Then σ(a +∗ c) = − and
σ(b +∗ c) = +. Then σ(a) = σ(c) = − which contradicts a � b. Thus, in all
cases we have a+∗ c � b+∗ c, and a+∗ c � b+∗ c. 2

Proposition 15. Define UO
′

L to be the tuple 〈O+ ∪ {0},+,×, 0, 1,O′,+∗, 0,×〉,
and define UO

′
U to be the tuple 〈O+ ∪ {0},+,×, 0, 1,O′,+∗, 0,×〉. Then UO

′
L and

UO
′

U are both uncertainty-utility values structures that respect total order �.

Proof: Lemma 26 shows that 〈O+∪{0},+,×, 0, 1〉 is an uncertainty values struc-
ture, and Lemma 31(i) implies that 〈O′,+∗, 0〉 and 〈O′,+∗, 0〉 are utility values
structures. Lemma 24(i) and Lemma 31(ii) and (iii) imply that ×, when consid-
ered as a function from O+ ∪ {0} × O′ to O′, satisfies properties (∗1), (∗2), (∗3),
and (∗4) with respect to both +∗ and +∗, and so UO

′
L and UO

′
U are both uncertainty-

utility values structures. Lemma 28 shows that � restricted to O′ is a total order,

67

and Lemma 32 and Lemma 29 imply that the two operations in both uncertainty-
utility values structures respect �. 2

Part B: Proving Proposition 2
In this section we develop results which enable the proof of Proposition 2.

Proposition 2. Let I = 〈G, (Φ,Ψ)〉 be an ID-system over U, and let τ be a legal
elimination sequence for I. Let τk be the part of τ starting just after Dk, i.e., if τ
is Y1, . . . , Yn and Yj = Dk then τk is the sequence Yk+1, . . . , Yn. Let (Φk,Ψk) be
M+,∨

τk

(
Φ,Ψ

)
(where if τk is empty, Φk = Φ and Ψk = Ψ). Then, M+,∨

τ

(
Φ,Ψ

)
is

well defined, that is, for each k = m, . . . , 1 and each P ∈ Φk, P does not depend
on Dk.

The following result gives the distributivity properties for uncertainty values.
This is used to prove Lemma 34.

Lemma 33. Let 〈Q,+,×, 0, 1〉 be an uncertainty values structure, let p ∈ Q, and
for each i ∈ I and j ∈ J , let pi and qj be elements of Q. Then the following hold.

(i) p× (
∑

j∈J qj) =
∑

j∈J p× qj .

(ii) (
∑

i∈I pi)× (
∑

j∈J qj) =
∑

i∈I,j∈J pi × qj .

(iii) For each j = 1, . . . , h and i ∈ Ij , let pj,i be an element of Q. Then

h∏
j=1

(
∑
ij∈Ij

pj,ij) =
∑

i1∈I1,...,ih∈Ih

h∏
j=1

pj,ij .

Proof: (i) follows by iterative use of distributivity. For, (ii), (
∑

i∈I pi)×(
∑

j∈J qj) =∑
j∈J((

∑
i∈I pi) × qj), using (i), which equals

∑
j∈J
∑

i∈I(pi × qj), using com-
mutativity of × and (i) again. This equals

∑
i∈I,j∈J pi × qj .

(iii): We prove this by induction on h. It clearly holds for h = 1. Now suppose it
holds for h− 1 (where h > 1). We will show that it holds for h.

h∏
j=1

(
∑
ij∈Ij

pj,ij) =

h−1∏
j=1

(
∑
ij∈Ij

pj,ij)

× (
∑
ih∈Ih

ph,ih).

68

By the inductive hypothesis, this equals ∑
i1∈I1,...,ih−1∈Ih−1

h−1∏
j=1

pj,ij

× (
∑
ih∈Ih

ph,ih) =
∑

i1∈I1,...,ih−1∈Ih−1

∑
ih∈Ih

h∏
j=1

pj,ij ,

using part (ii). This equals
∑

i1∈I1,...,ih∈Ih

∏h
j=1 pj,ij , completing the inductive

proof. 2

Lemma 34. Let U be some weak u.u.v. structure extending uncertainty values
structure 〈Q,+,×, 0, 1〉. For j = 1, . . . , h, let Pj be an U-uncertainty functions
over X ∪ D, and let Sj ⊆ X be such that for each j, k ∈ {1, . . . , h}, (i) Sj ⊆
sc(Pj); and (ii) Sj∩sc(Pk) = ∅ if j 6= k, so, in particular, the sets Sj are pairwise
disjoint. Then

h∏
j=1

(
∑
Sj

Pj) =
∑

S1∪···∪Sh

(P1 × · · · ×Ph).

Proof: Let P =
∏h

j=1(
∑

Sj
Pj), and let P′ =

∑
S1∪···∪Sh

(P1 × · · · × Ph). We
need to show that P = P′.

First we show that P and P′ have the same scope. For j = 1, . . . , h, let
Tj = sc(Pj), the scope of Pj . Now, sc(P) =

⋃h
j=1(Tj − Sj), and sc(P′) =⋃h

j=1 Tj −
⋃h
j=1 Sj . First suppose that X ∈ sc(P). Then there exists some

k ∈ {1, . . . , h} such that X ∈ Tk − Sk. Therefore X ∈
⋃h
j=1 Tj . To prove a

contradiction, assume that X /∈ sc(P′), so there exists some j such that X ∈ Sj .
By the hypothesis, for all i 6= j, Ti ∩ Sj = ∅, so X /∈ Ti unless i = j. This
implies that j = k, which is a contradiction, since X /∈ Sk. Conversely, suppose
that X ∈ sc(P′). This implies that for some j ∈ {1, . . . , h}, X ∈ Tj . Also,
X /∈ Sj , so that X ∈ Tj − Sj . Hence, X ∈ sc(P).

Let R = sc(P) = sc(P′), and consider any y ∈ ΩR. We need to show that
P(y) = P′(y). We have that P(y) =

∏h
j=1(

∑
Sj
Pj)(y) =

∏h
j=1(

∑
sj∈ΩSj

Pj(ysj)).
Also, P′(y) =

∑
s1∈ΩS1

,...,sh∈ΩSh
(P1 × · · · × Ph)(ys1 · · · sh). Now, for each

j = 1, . . . , h, Pj(ys1 · · · sh) = Pj(ysj), since for k 6= j, Sk ∩ sc(Pj) = ∅.
Therefore, P′(y) =

∑
s1∈ΩS1

,...,sh∈ΩSh
(P1(ys1) × · · · × Ph(ysh)). Lemma 33

then implies that P(y) = P′(y). 2

This result, which is related to Lemma 3(v), gives situations in which a summation-
elimination can be moved inside a combination.

69

Lemma 35. Let P1 and P2 be U-uncertainty functions over X∪D and let S ⊆ X
be such that S ⊆ sc(P2).

(i) If S ∩ sc(P1) = ∅ then
∑

S(P1 ×P2) = P1 ×
∑

SP2.

(ii) If P1 is a constant function then there exists a constant function P′1 with∑
S(P1 ×P2) = P′1 ×

∑
SP2.

Proof: (i): Let P =
∑

S(P1×P2) and let P′ = P1×
∑

SP2. We need to show that
P = P′. First we show that sc(P) = sc(P′). sc(P) = (sc(P1) ∪ sc(P2)) − S =
(sc(P1) − S) ∪ (sc(P2) − S) = sc(P1) ∪ (sc(P2) − S) (since S ∩ sc(P1) = ∅),
which equals sc(P′).

Now consider any assignment x to sc(P) (= sc(P′)). Then, P(x) =
∑

s∈ΩS
(P1×

P2)(xs) =
∑

s∈ΩS
(P1(x) × P2(xs)) = P1(x) ×

∑
s∈ΩS

P2(xs) (by distributiv-
ity), which equals P′(x), as required.
(ii): Let T = sc(P1). Since P1 is a constant function, there exists q ∈ Q such
that for all y ∈ ΩT, P1(y) = q. Define P′1 to be the constant function with
scope T − S, taking the value q. sc(

∑
S(P1 × P2)) = (T ∪ sc(P2)) − S =

(T− S) ∪ (sc(P2)− S). This equals sc(P′1 ×
∑

SP2).
We have (

∑
S(P1 × P2))(x) =

∑
s∈ΩS

(P1(xs) × P2(xs)) =
∑

s∈ΩS
(q ×

P2(xs)), which equals q ×
∑

s∈ΩS
P2(xs)) by distributivity. This equals q ×

(
∑

SP2)(x). Also, (P′1×
∑

SP2)(x) = P′1(x)× (
∑

SP2)(x), which also equals
q × (

∑
SP2)(x). Thus,

∑
S(P1 ×P2) = P′1 ×

∑
SP2. 2

The following lemma gives some basic properties of the sets Ij . In particular,
part (ii) shows that if a chance variable is a descendant of a decision variable, then
the chance variable appears later in the elimination sequence than the decision
variable (so the chance variable is eliminated first).

Lemma 36. Let 〈G, (Φ,Ψ)〉 be an ID-system over U, with associated decision
variables D1, . . . , Dm, and ordered partition of chance variables I0, . . . , Im. Let
X ∈ X be a chance variable. Then the following hold.

(i) For all k = 0, . . . ,m, X ∈ Ik ∪ · · · ∪ Im if and only if for all j = 1, . . . , k,
(X,Dj) /∈ G.

(ii) If Dk is a G-ancestor of X then X ∈ Ik ∪ · · · ∪ Im.

Proof: (i) By the definition, for j = 0, . . . ,m−1,X ∈ Ij if and only if (X,Dj+1) ∈
G and for all i ≤ j, (X,Di) /∈ G. Also, X ∈ Im if and only if for all i such that

70

1 ≤ i ≤ m, (X,Di) /∈ G. Thus if X ∈ Ik ∪ · · · ∪ Im then for all j = 1, . . . , k,
(X,Dj) /∈ G. Conversely, suppose that for all for all j = 1, . . . , k, (X,Dj) /∈ G.
Then for all j = 1, . . . , k,X /∈ Ij−1, soX /∈ I0∪· · ·∪Ik−1. ThusX ∈ Ik∪· · ·∪Im,
since X ∈ X = I0 ∪ · · · ∪ Im.
(ii): Suppose, to prove a contradiction, that Dk is a G-ancestor of X , and X /∈
Ik ∪ · · · ∪ Im. By part (i), (X,Dj) ∈ G for some j ∈ {1, . . . , k}. Then j = k
or Dj is an ancestor (in fact, parent) of Dk, so, in either case, X is an ancestor of
Dk. This contradicts acyclicity of G. 2

Lemma 37 below is a key milestone in proving Proposition 2. It is used to
show that if each element of Φi can be written in a particular way and the next
variable to be deleted is a decision variable D, then Φi does not depend on D. It
is used in proving Property (5) in Proposition 16.

Lemma 37. Let 〈G, (Φ,Ψ)〉 be an ID-system over U, and letD ∈ D be a decision
variable. Consider P of form C×

∑
S

∏
X∈T PX , where C is a constant function,

S ⊆ T ⊆ X and S contains all G-descendants of D in T. Then P can be written
as C′ ×

∑
S−S′

∏
X∈T−S′ PX , where C′ is a constant function, S′ is the set of

elements of T that are G-descendants of D (and thus S′ ⊆ S and T−S′ contains
no G-descendants of D), and for all X ∈ T− S′, PX does not involve D, and so
P does not depend on D.

Proof: Let S′ be the set of elements of T that areG-descendants ofD. Thus, T−S′
contains no G-descendants of D. By the assumption on S, we have S′ ⊆ S. We
can write P as C ×

∑
S−S′

∑
S′((
∏

X∈T−S′ PX) × (
∏

X∈S′ PX)). Now, suppose
that PX involves X ′ for some X ′ ∈ S′ and X ∈ T. Then (X ′, X) ∈ G and X ′ is
a descendant of D, so X is a descendant of D, which implies that X ∈ S′. This
shows that for all X ∈ T−S′, sc(PX)∩S′ = ∅. Thus sc(

∏
X∈T−S′ PX)∩S′ = ∅

and S′ ⊆ sc(
∏

X∈S′ PX), so we can apply Lemma 35(i) to give that

P = C×
∑
S−S′

(
∏

X∈T−S′
PX)

∑
S′

(
∏
X∈S′

PX).

Let us order S′ as X1, . . . , Xk in a way that is compatible with G, so that if
(Xi, Xj) ∈ G then i < j. (This is always possible, because G is acyclic.) Thus,
if Xi ∈ sc(PXj

) then either i = j or (Xi, Xj) ∈ G, so in either case, i ≤ j. This
implies that for i > j, Xi /∈ sc(PXj

). Therefore, Xk /∈ sc(PX1 × · · · × PXk−1
).

Lemma 35(i) leads to∑
X1

· · ·
∑
Xk

(PX1 × · · · ×PXk
) =

∑
X1

· · ·
∑
Xk−1

PX1 × · · · ×PXk−1

∑
Xk

PXk
.

71

Iterating this leads to∑
S′

(
∏
X∈S′

PX) =
∑
X1

· · ·
∑
Xk

(PX1 × · · · ×PXk
) =

∑
X1

PX1

∑
X2

PX2 · · ·
∑
Xk

PXk
.

Now, each PXj
is a conditional U-uncertainty function. Thus, in particu-

lar,
∑

Xk
PXk

equals a constant function, say Ck. Also,
∑

Xk−1
(PXk−1

× Ck)

equals C′k ×
∑

Xk−1
PXk−1

for some constant function C′k, by Lemma 35(ii).∑
Xk−1

PXk−1
equals a constant function, say Ck−1, and so

∑
Xk−1

(PXk−1
×Ck) is

a constant function. Iterating this implies that
∑

S′(
∏

X∈S′ PX) equals a constant
function, C′′.

Therefore, P = C ×
∑

S−S′((
∏

X∈T−S′ PX) × C′′), which equals P = C′ ×∑
S−S′(

∏
X∈T−S′ PX) for some constant function C′, by Lemma 35(ii).

By definition, PX involves D if and only if (D,X) ∈ G, i.e., X is a parent
of D. Thus if, for some X ∈ T, PX involves D then X ∈ S′. Therefore, if
X ∈ T−S′ then PX does not involve D. Let R = sc(P)−{D}, and let x be any
element of ΩR, and let d and d′ be two assignments to D. Then, P(xd) = P(xd′)
since

∑
S−S′(

∏
X∈T−S′ PX) does not involve D, and C′(xd) = C′(xd′), since C′

is a constant function. Thus P does not depend on D. 2

Proposition 2 follows immediately from part (5)(ii) of the following propo-
sition. The proof relies on a long inductive argument, to show that if the five
properties hold for Φi+1 then they hold for Φi.

Proposition 16. Let U be an uncertainty-utility values structure with operation +
on utility values, and let ∨ be a disjunctive operation for U. Let I = 〈G, (Φ,Ψ)〉
be an ID-system over U, and let τ be a legal elimination sequence for I. For
i = 0, . . . , n, let (Φi,Ψi) be M+,∨

τ [i+1:n](Φ,Ψ), where τ [n + 1 : n] is defined to be
empty sequence, and so (Φn,Ψn) = (Φ,Ψ).

Consider any i = 0, . . . , n. Let k be the unique value such that τ [i + 1 : n]
does not contain decision variable Dk, but contains decision variable Dl for all
l > k. Write Φi as {Pj : j = 1, . . . , h}.

(1) For each j = 1, . . . , h, Pj does not involve decision variable Dl (i.e., Dl /∈
sc(Pj)) for any l ≥ k + 1;

(2) Pj can be written as Cj×
∑

Sj

∏
X∈Tj

PX , where Cj is a constant function,
Tj ⊆ X and Sj = {Yi+1, . . . , Yn} ∩Tj .

(3) For j, g ∈ {1, . . . , h} with j 6= g, we have Tj∩Tg = ∅ and Sj∩sc(Pg) = ∅.

72

(4) For all chance variables X ′ ∈ {Y1, . . . , Yi}, there exists some Pj ∈ Φi,
such that Tj contains X ′.

(5) Suppose that Dk is the next variable to be eliminated, i.e., Yi = Dk. Then

(i) Sj contains all G-descendants of Dk which are in Tj;

(ii) Pj can be written in such a way that no PX , for X ∈ Tj , involves Dk.
Thus Pj does not depend on Dk.

Proof: We need to show that for each i = 0, . . . , n, Properties (1)–(5) hold for Φi.
We will prove this by descending induction on i beginning with i = n.

Base Case, i = n:. We must show that the result holds for n. For this case,
τ [i + 1 : n] is the empty sequence of variables, and so does not contain decision
variable Dm, so k = m in the conditions. We can label X as X1, . . . , Xh, and, for
j = 1, . . . , h, let Pj = PXj

. Then Φn = Φ = {Pj : j = 1, . . . , h}. Now, Pj

Consider an arbitrary P ∈ Φi. Then P is equal to PX for some X .

(1) holds vacuously since there are no decision variables Dl with l ≥ m+ 1.

(2): For j = 1, . . . , h, Pj can be written as C ×
∑

Sj

∏
X∈Tj

PXj
, where, C is

the constant function with scope {Xj} which assigns the value 1 to every
value of Xj; Sj is the empty set, and Tj is the singleton set {Xj}.

(3) follows immediately.

(4) also follows immediately, since for all X ′ ∈ X there exists some j with
Xj = X ′, so Tj = {Xj} 3 X ′.

(5) Suppose that Dk (i.e., Dm) is the next variable to be eliminated. Im = ∅,
so Lemma 36(ii) implies that Dk has no descendants. This implies (5)(i),
and also that no PX involves Dk (since this would imply that Dk would be
a parent of X . Thus, (5)(ii) also holds for the base case.

Inductive Case.
Suppose that Properties (1)–(5) hold for Φi+1. We will show that Properties (1)–
(5) hold for Φi.

The approach we take is as follows.

73

(A) We will show that the elements of Φi can be written in the form specified in
Property (2), and that Properties (1), (3) and (4) hold for this form. There are
different arguments according to whether the previously eliminated variable
Yi+1 is a chance or a decision variable. This then proves the result for the
case when Dk 6= Yi, i.e., when the next variable to be eliminated is a chance
variable.

(B) We then focus on the case when Yi = Dk, i.e., the next variable to be
eliminated is Dk. We use Lemma 37 to show that the representation in
condition (2) can be modified so that each PX , forX ∈ Tj , does not involve
D so Property (5) holds. We also then need to show that Properties (1)–(4)
still hold for this modified form.

Let k be the unique value such that τ [i + 1 : n] does not contain decision
variable Dk, but contains decision variable Dj for all j > k. There are two
cases, (a) Yi+1 is a chance variable; or (b) Yi+1 is a decision variable, so that
Yi+1 = Dk+1.

Part (A) (a): chance variable case. Yi+1 is a chance variable, which we call X ′.
Let Φi+1

3X′ be the multi-set of elements P of Φi+1 with sc(P) 3 X ′, and let Φi+1
63X′

be the other elements of Φi+1. The collection Φi is then equal to Φi+1
63X′ ∪ {P′},

where P′ =
∑

X′ P
+, and P+ =

∏
P∈Φi+1

3X′
P (see Section 4.1). Write Φi+1 as

{Pl : 1, . . . , f}, in such a way that {Pl : 1, . . . , g} (g ≤ f) are the elements of
Φi+1 that involve X ′ (i.e., the elements of Φi+1

3X′), and so {Pl : g + 1, . . . , f} =
Φi+1
63X′ .

By the inductive hypothesis (Property (1) for Φi+1), for all l = 1 . . . , f ,
sc(Pl) ∩ {Dk+1, . . . Dm} = ∅. This implies sc(P′) ∩ {Dk+1, . . . Dm} = ∅, and
thus for all P ∈ Φi, sc(P)∩{Dk+1, . . . Dm} = ∅. This proves Property (1) for Φi

for Part (A), Case (a).
By the inductive hypothesis, each Pl can be written in the form Cl×

∑
Sl

∏
X∈Tl

PX ,
where Sl = {Yi+2, . . . , Yn} ∩Tl (Property (2) for Φi+1). For each l, we have that
X ′ /∈ Sl, since X ′ /∈ {Yi+2, . . . , Yn}. Property (4) for Φi+1 implies that for some
l′, Tl′ 3 X ′. Since X ′ /∈ Sl′ , Pl′ involves X ′, and so l′ ≤ g. Then, for l > g,
X ′ /∈ Tl, since the sets Tl are disjoint (by Property (3) for Φi+1). This implies
that Sl = {Yi+1, . . . , Yn} ∩Tl for l > g (since Yi+1 = X ′ /∈ Tl). This establishes
Property (2) for Φi − {P′}.

74

Using Lemma 35(ii), we can write

P′ = C×
∑
X′

g∏
l=1

∑
Sl

∏
X∈Tl

PX ,

where C is a constant function.
Let us write Pl

∗ =
∏

X∈Tl
PX . For l′ 6= l, by property (3) for Φi+1, we have

Sl ∩ Sl′ = ∅ (because Tl ∩ Tl′ = ∅, and Sl ⊆ Tl and Sl′ ⊆ Tl′). We also have
Sl ∩ sc(Pl′) = ∅, and therefore Sl ∩ sc(Pl′

∗) = ∅, since sc(Pl′
∗) ⊆ sc(Pl′) ∪ Sl′ .

We can then apply Lemma 34 to give

g∏
l=1

∑
Sl

Pl
∗ =

∑
S

g∏
l=1

Pl
∗ =

∑
S

∏
X∈T

PX ,

where

S =

g⋃
l=1

Sl and T =

g⋃
l=1

Tl.

Each variable in each Sl is in {Yi+2, . . . , Yn}, so X ′ is not in S. Thus P′ is equal
to C×

∑
X′
∑

S

∏
X∈T PX , and so

P′ = C×
∑
{X′}∪S

∏
X∈T

PX .

We will next show that {X ′} ∪ S = {Yi+1, . . . , Yn} ∩T. As observed earlier,
there exists some l ∈ {1, . . . , g} such that X ′ ∈ Tl, so X ′ ∈ T. X ′ = Yi+1 so
X ′ ∈ {Yi+1, . . . , Yn} ∩T. For all l ∈ {1, . . . , g}, Sl = {Yi+2, . . . , Yn} ∩Tl, thus
Sl ⊆ {Yi+2, . . . , Yn}∩T, and so S ⊆ {Yi+2, . . . , Yn}∩T. Therefore, {X ′}∪S ⊆
{Yi+1, . . . , Yn}∩T. Conversely, consider any elementX ∈ {Yi+1, . . . , Yn}∩T. If
X = Yi+1 then X = X ′, so X ∈ {X ′} ∪ S. Otherwise, for some l ∈ {1, . . . , g},
X ∈ {Yi+2, . . . , Yn} ∩ Tl, so X ∈ Sl, so X ∈ {X ′} ∪ S. Thus {X ′} ∪ S ⊇
{Yi+1, . . . , Yn} ∩T and hence {X ′} ∪ S = {Yi+1, . . . , Yn} ∩T.

We have thus shown that every Pj ∈ Φi can be written as Cj×
∑

Sj

∏
X∈Tj

PX ,
where, Cj is a constant function, and Sj = {Yi+1, . . . , Yn} ∩ T. This establishes
Property (2) for Part (A) Case (a).

Establishing Property (3): Recall that Φi = {P′}∪{Pf+1, . . . ,Pg}, and that
P′ = C×

∑
{X′}∪S

∏
X∈T PX . To show that Property (3) holds for Φi we need to

show that following, for each l, l′ ∈ {g + 1, . . . , f} with l 6= l. (I) Tl ∩ Tl′ = ∅;

75

(II) Tl ∩ T = ∅; (III) Sl ∩ sc(Pl′) = ∅; (IV) Sl ∩ sc(P′) = ∅; (V) ({X ′} ∪ S) ∩
sc(Pl) = ∅. Since {Pg+1, . . . ,Pf} ⊆ Φi+1, Property (3) for Φi+1 immediately
implies (I) and (III). Property (3) for Φi+1 also implies for all l′′ ∈ {1, . . . , g},
Tl′′ ∩ Tl = ∅, and thus (II), since T =

⋃g
l′′=1 Tl′′ . For each l′′ ∈ {1, . . . , g}, (i)

Sl ∩ sc(Pl′′) = ∅, and (ii) sc(Pl)∩Sl′′ = ∅, again by Property (3) for Φi+1. Then,
sc(P′) ⊆

⋃g
l′′=1 sc(Pl′′), so by (i), (IV) holds. (ii) implies S ∩ sc(Pl) = ∅, since

S =
⋃g
l=1 Sl. By definition of Φi+1

63X′ , sc(Pl) 63 X ′. This establishes (V), and hence
Property (3) for Φi.

Establishing Property (4): Consider any chance variable X ∈ {Y1, . . . , Yi}.
To establish (4) for Φi we need to show that either T 3 X or, for some l ∈
{g + 1, . . . , f}, Tl 3 X . Property (4) for Φi+1 implies that for some l′ ∈ {1, . . . , f},
Tl′ 3 X , so

⋃f
l′=1 Tl′ 3 X . Since T =

⋃g
l=1 Tl, either T 3 X or for some

l ∈ {g + 1, . . . , f}, Tl 3 X , and so Property (4) holds for Φi.

Part (A) (b): decision variable case. Yi+1 = Dk+1.
Property (5) for Φi+1 implies that no element of Φi+1 depends on Dk+1, so, by
definition, Φi = {P−Dk+1 : P ∈ Φi+1}. Consider any P−Dk+1 ∈ Φi. Properties
(2) and (5) for Φi+1 imply that P can be written as C ×

∑
S

∏
X∈TPX , where

c is a constant function, T ⊆ X and S = {Yi+1, . . . , Yn} ∩ T, and for X ∈ T,
P does not involve Dk+1. Then, P−Dk+1 = C′ ×

∑
S

∏
X∈T PX , where C′ is a

constant function with scope sc(C) − {Dk+1}. Now, S = {Yi+2, . . . , Yn} ∩ T
since Yi+1 /∈ T as it is not a chance variable. This establishes Property (2) for Φi

for Part (A) Case (b). Properties (3) and (4) also follow, since the sets S and T
have not changed from the representations for Φi+1 to the representations for Φi.

Property (1) for Φi+1 implies that P does not involve Dl for any l ≥ k + 2;
thus P−Dk+1 does not involveDl for any l ≥ k+2. Also, P−Dk+1 does not involve
Dk+1, so P−Dk+1 does not involve Dl for any l ≥ k+ 1. This establishes Property
(1) for Φi.

Part (B) The case when Yi = Dk:
We consider here the case where Dk is the next variable to be eliminated, i.e.,
Yi = Dk.

We established in Part (A) that any P ∈ Φi can be written as C×
∑

S

∏
X∈T PX ,

where C is a constant function, and T ⊆ X and S = {Yi+1, . . . , Yn} ∩T.
We first show that S contains all G-descendants of Dk which are in T. Let Y

be aG-descendant ofDk which is in T. Y is a chance variable (since it is in T), so
Lemma 36(ii) implies that Y ∈ Ik∪· · ·∪Im. Now, Ik∪· · ·∪Im ⊆ {Yi+1, . . . , Yn},
and Y ∈ T, so Y ∈ {Yi+1, . . . , Yn} ∩ T = S. This shows that S contains all G-

76

descendants of Dk which are in T, which establishes Property (5)(i) for Φi.
Then Lemma 37 implies that P can be written as C′ ×

∑
S−S′

∏
X∈T−S′ PX ,

where S′ is the set of elements of T that are G-descendants of T, and for all
X ∈ T−S′, PX does not involve D, and so P does not depend on D. This shows
Property (5)(ii) for Φi, and Lemma 37 also implies Property 5(i) still holds.

Since we are changing the representation of P, we need to show that Prop-
erties (2), (3) and (4) are still satisfied by the new representation. (Property (1)
obviously still holds, since it is property of P rather than of the representation
C′ ×

∑
S−S′

∏
X∈T−S′ PX .)

Regarding Property (2), we just need to show that S− S′ = {Yi+1, . . . , Yn} ∩
(T − S′). We have that S = {Yi+1, . . . , Yn} ∩ T. Thus S ∩ (X − S′) =
{Yi+1, . . . , Yn} ∩T ∩ (X− S′), and thus S− S′ = {Yi+1, . . . , Yn} ∩ (T− S′).

Property (3) follows immediately since T′ ⊆ T and S′ ⊆ S; in the new
representation, the sets are being reduced (or staying as they are), so Property (3)
is maintained.

To prove that Property (4) still holds (for the new representation) it is sufficient
to show that if X ′ is a chance variable in {Y1, . . . , Yi} such that T 3 X ′ then
T − S′ 3 X ′. In other words, if X ′ ∈ T ∩ {Y1, . . . , Yi}, then X ′ /∈ S′. But this
follows from the fact that S′ ⊆ S ⊆ {Yi+1, . . . , Yn}.

We have thus shown in all cases that Properties (1)–(5) hold for Φi. This
completes the inductive step, so Properties (1)–(5) hold for Φi for all i = 0, . . . , n,
completing the proof of Proposition 16. 2

Part C: Proofs of Results in Sections 7 and 8

Proposition 3. For any u.u.v. structure U, the associated tuple U∗ is a weak
uncertainty-utility values structure.

Proof: Firstly, 〈Q,+Q,×Q, 0Q, 1〉 is an uncertainty values structure. LetA,B,C,A1, A2

be subsets of U , and let q, q1, q2 be elements of Q. Operation + on subsets of U is
clearly commutative. A+{0U} = {a+ 0U : a ∈ A} = A, so {0U} is the additive
identity. Using associativity of + on U :

(A+B) + C = {a+ b : a ∈ A, b ∈ B}+ C

= {a+ b+ c : a ∈ A, b ∈ B, c ∈ C}

Similarly, A+ (B + C) = {a+ b+ c : a ∈ A, b ∈ B, c ∈ C}, proving asso-
ciativity of +. Thus, 〈2U ,+, {0U}〉 is a utility values structure. To complete the
proof, we verify properties (∗1), (∗2) and (∗3) for U∗.

77

(∗1):

1× A = {1× a : a ∈ A} = A

(∗2):

q1 × (q2 × A) = q1 × {q2 × a : a ∈ A}
= {q1 × (q2 × a) : a ∈ A}
= {(q1 × q2)× a : a ∈ A}
= (q1 × q2)× A

(∗3):

q × (A1 + A2) = q × {a1 + a2 : a1 ∈ A1, a2 ∈ A2}
= {q × (a1 + a2) : a1 ∈ A1, a2 ∈ A2}
= {(q × a1) + (q × a2) : a1 ∈ A1, a2 ∈ A2}

We also have

(q × A1) + (q × A2) = {q × a1 : a1 ∈ A1}+ {q × a2 : a2 ∈ A2}
= {(q × a1) + (q × a2) : a1 ∈ A1, a2 ∈ A2},

showing Property (*3) for U∗. 2

Lemma 6. Let U = 〈Q,+Q,×Q, 0Q, 1, U,+, 0,×〉, be an uncertainty-utility
values structure. For any subsetsA,B,C of U , (A∪B)+C = (A+C)∪(B+C),
and for any q ∈ Q, q × (A ∪B) = (q × A) ∪ (q ×B).

Proof: The definitions immediately imply that (A + C) ⊆ (A ∪ B) + C and
(B + C) ⊆ (A ∪ B) + C, so (A ∪ B) + C ⊇ (A+ C) ∪ (B + C). We will next
show that (A∪B)+C ⊆ (A+C)∪(B+C). Let u be an element of (A∪B)+C,
which can therefore be written as d + c where d ∈ A ∪ B and c ∈ C. Either (I)
d ∈ A, and so d+ c ∈ A+C, or (II) d ∈ B, and so d+ c ∈ B+C. In either case,
u ∈ (A+ C) ∪ (B + C).

For the last part: q × (A ∪ B) = {q × c : c ∈ A ∪B} = {q × a : a ∈ A} ∪
{q × b : b ∈ B} = (q × A) ∪ (q ×B). 2

Lemma 7. For any A ⊆ U ,

(i) C(A) is a convex set containing A.

78

(ii) C(A) is equal to the intersection of all convex sets containing A, and is
therefore the unique smallest convex set containing A.

(iii) A is convex if and only if C(A) = A.

(iv) C(C(A)) = C(A).

(v) If B ⊆ A then C(B) ⊆ C(A).

Proof: (i): Setting k = 1 and a1 to be an arbitrary element of A, we have 1× a1 ∈
C(A), and hence a1 ∈ C(A). This shows that C(A) contains A.

We next show that C(A) is convex. Consider elements f, g ∈ C(A), and con-
sider any r, s ∈ Q with r+s = 1. We need to show that (r×f)+(s×g) ∈ C(A).

Since f, g ∈ C(A), we can write f as
∑k

i=1(pi × ai) where each ai ∈ A, each
pi ∈ Q, and

∑k
i=1 pi = 1, and we can write g as

∑l
j=1(qj × bj), where each

bj ∈ A, each qi ∈ Q and
∑l

j=1 qj = 1.
Then r×f equals to

∑k
i=1 r×(pi×ai), using iterative use of (∗3) which equals∑k

i=1((r × pi) × ai), using (∗2). Similarly, s × g equals
∑l

j=1((s × qj) × bj).
Hence, (r×f)+(s×g) equals

∑k
i=1((r×pi)×ai)+

∑l
j=1((s× qj)× bj), which

is in C(A) given that we also have
∑k

i=1(r × pi) +
∑l

j=1(s× qj) = 1.
The distributive property of uncertainty values implies that

∑k
i=1(r × pi) =

r ×
∑k

i=1 pi = r × 1 = r. Also,
∑l

j=1(s × qj) = s ×
∑l

j=1 qj = s × 1 = s.
Hence,

∑k
i=1(r × pi) +

∑l
j=1(s× qj) = r + s = 1.

(ii): LetB be any convex set containingA. We will show by induction that for any
k ≥ 1,

∑k
i=1(qi×ai) ∈ B, when each ai is in A, each qi is in Q, and

∑k
i=1 qi = 1.

This proves that B ⊇ C(A).
Base case: if k = 1, then 1× a1 = a1 ∈ A and so 1× a1 ∈ B since B ⊇ A.
Suppose that the inductive hypothesis is true for k = l. We will show that it

is true for k = l + 1. Consider any expression of the form
∑l+1

i=1(qi × ai) (where∑l+1
i=1 qi = 1) which can be written in the form (q × b) + (ql+1 × al+1), where

q =
∑l

i=1 qi and b = q−1×
∑l

i=1(qi×ai). We need to show that q×b+ql+1×al+1 ∈
B. Now, q + ql+1 =

∑l+1
i=1 qi = 1. Since B is convex it is sufficient to show that

b, al+1 ∈ B. al+1 ∈ B since al+1 ∈ A andB containsA. b is equal to
∑l

i=1((q−1×
qi) × ai), using (∗2) and (∗3). We have

∑l
i=1(q−1 × qi) = q−1 ×

∑l
i=1 qi which

equals q−1 × q = 1. By the inductive hypothesis, b ∈ B, completing the proof
by induction that B ⊇ C(A). This implies that the intersection of all convex

79

sets containing A contains C(A), which since, C(A) is a convex set containing A,
implies that C(A) is equal to the intersection of all convex sets containing A.
(iii): First suppose that A is convex. By (ii), C(A) is the unique smallest convex
set containing A, which equals A since A is convex.

Conversely, if C(A) = A then A is convex by (i).
(iv): By (i), C(A) is convex, and hence by (iii), C(C(A)) = C(A).
(v): This follows immediately from the definition of convex closure. 2

Proposition 5. Let A and B be subsets of U , and let q be an element of Q.

(i) If A and B are convex then A+B is convex.

(ii) C(A+B) = C(A) + C(B).

(iii) C(C(A) +B) = C(A+B).

(iv) C(C(A) ∪B) = C(A ∪B).

(v) C(q × A) = q × C(A).

(vi) C(A ∪B) = C(A) ∪ C(B) ∪ (C(A)⊕ C(B)).

Proof: (i): Consider any pair of elements a1 + b1 and a2 + b2 in A + B, and any
q1, q2 ∈ Q such that q1 + q2 = 1. It is sufficient to show that q1× (a1 + b1) + q2×
(a2 + b2) ∈ A+B.

Write a3 = (q1× a1) + (q2× a2), and b3 = (q1× b1) + (q2× b2). Since A and
B are convex, a3 ∈ A and b3 ∈ B.

q1× (a1 + b1)+q2× (a2 + b2) = (q1×a1)+(q2×a2)+(q1× b1)+(q2× b2) =
a3 + b3 ∈ A+B.
(ii): A+B ⊆ C(A)+C(B), and so, by Lemma 7(v), C(A+B) ⊆ C(C(A)+C(B)),
which equals C(A) + C(B) by part (i) (and Lemma 7(iii)).

We need just to show that C(A) + C(B) ⊆ C(A+B). Consider any f ∈ C(A)
and g ∈ C(B). Write f as

∑k
i=1(pi × ai) where each ai ∈ A, each pi ∈ Q, and∑k

i=1 pi = 1, and write g as
∑l

j=1(qj × bj), where each bj ∈ B, each qi ∈ Q and∑l
j=1 qj = 1.
Now,

∑
i,j(pi × qj) = (

∑
i pi)× (

∑
j qj) = 1× 1 = 1. Thus, h =

∑
i,j((pi ×

qj)×(ai+bj)) ∈ C(A+B). We can write h as
∑

i,j((pi×qj)×ai)+
∑

i,j((pi×qj)×
bj).

∑
i,j((pi× qj)× ai) =

∑
i(pi× (

∑
j qj)× ai) =

∑
i(pi× ai) = f . Similarly,

80

∑
i,j((pi × qj) × bj) = g, showing that h = f + g, and so f + g ∈ C(A + B),

completing the proof of (ii).
(iii): By part (ii), C(C(A) + B) = C(C(A)) + C(B), which equals C(A) + C(B)
by Lemma 7(iv). Using part (ii) again gives the result.
(iv): C(A ∪ B) ⊇ C(A) by Lemma 7(v), and C(A ∪ B) ⊇ B by Lemma 7(i), so
C(A) ∪ B ⊆ C(A ∪ B). Applying Lemma 7(v) and (iv) gives C(C(A) ∪ B) ⊆
C(C(A ∪B)) = C(A ∪B).

Conversely, Lemma 7(v) and (i) imply C(C(A) ∪B) ⊇ C(A ∪B).
(v): Consider any element f of C(q ×A). f can be written as

∑k
i=1 pi × (q × ai),

for some elements ai of A and pi ∈ Q such that
∑k

i=1 pi = 1. pi × (q × ai) =

(pi × q)× ai = q × (pi × ai), and so f = q × (
∑k

i=1 pi × ai), which implies that
f ∈ q × C(A).

Conversely, consider any element f of q × C(A). Then f is equal to q × g for
some element g of C(A). g can be written as

∑k
i=1 pi × ai for some elements ai

of A and pi ∈ Q such that
∑k

i=1 pi = 1. Then, by the same argument as above, f
is equal to

∑k
i=1 pi × (q × ai), where q × ai ∈ q × A, and hence f ∈ C(q × A).

(vi): Suppose first that f ∈ C(A∪B). We will show that f is either (I) an element
of C(A), or (II) an element of C(B), or (III) an element of C(A)⊕ C(B).

We can write f as
∑k

i=1(pi × ai) +
∑l

j=1(qj × bj), where each ai ∈ A, each
bj ∈ B and

∑k
i=1 pi +

∑l
j=1 qj = 1. If k = 0 or l = 0 then f is either an element

of C(A), or an element of C(B), so let us assume that k, l 6= 0.
Let p =

∑k
i=1 pi and define, for each i, p′i = p−1 × pi, and define a =∑k

i=1(p′i × ai). We have:
∑k

i=1 p
′
i = p−1 ×

∑k
i=1 pi = 1, and so a ∈ C(A).

Similarly, let q =
∑l

j=1 qj and define, for each j, q′j = q−1 × qj , and define
b =

∑l
j=1(q′j × bj). We have

∑l
j=1 q

′
j = 1, and so b ∈ C(B). It can be easily seen

that f = (p× a) + (q × b) and p+ q = 1, so f ∈ C(A)⊕ C(B).
Conversely, clearly, by monotonicity (Lemma 7(v)), C(A) ⊆ C(A ∪ B) and

C(B) ⊆ C(A∪B). It remains to show that C(A)⊕C(B) ⊆ C(A∪B). Consider any
h ∈ C(A)⊕C(B), which can be written as (p×f)+(q×g) for some f ∈ C(A), g ∈
C(B) and p, q ∈ Q with p+ q = 1. Write f as

∑k
i=1(pi × ai) where each ai ∈ A,

each pi ∈ Q, and
∑k

i=1 pi = 1, and write g as
∑l

j=1(qj × bj), where each bj ∈ B,
each qi ∈ Q and

∑l
j=1 qj = 1. Then h =

∑k
i=1((p×pi)×ai)+

∑l
j=1((q×qj)×bj).

Now,
∑k

i=1(p × pi) +
∑l

j=1(q × qj) = (p ×
∑k

i=1 pi) + (q ×
∑l

j=1 qj), which
equals p+ q = 1, and so h ∈ C(A ∪B), as required. 2

Lemma 9. Let A be a subset of U .

81

(i) max�(A) ⊆ R�(A)

(ii) If A satisfies MAX then max�(A) = R�(A).

Proof: (i) Suppose a ∈ max�(A). Then there does not exist b ∈ max�(A) with
b � a and so a ∈ R�(A).
(ii) Suppose that A satisfies MAX. By (i), it is sufficient to prove that R�(A) ⊆
max�(A). Suppose a /∈ max�(A). Then, by MAX, there exists b ∈ max�(A)
with b � a, which implies that b /∈ R�(A). 2

Lemma 10. LetA andB be subsets of U . Then max�(R�(A)∪B) = max�(A∪
B).

Proof: Suppose c ∈ max�(R�(A) ∪B)−max�(A ∪B). Then c ∈ R�(A) ∪B
so c ∈ A ∪ B. Since c /∈ max�(A ∪ B) there exists d ∈ A ∪ B with d � c.
Since c ∈ max�(R�(A)∪B), d /∈ R�(A)∪B, so d /∈ R�(A). Then there exists
e ∈ max�(A) with e � d, and so e � c. Also, e ∈ R�(A) and so e ∈ R�(A)∪B,
which contradicts c ∈ max�(R�(A) ∪B).

Conversely, suppose c ∈ max�(A∪B). Then c is not dominated by any other
element of A ∪ B, and so c ∈ R�(A) ∪ B, and hence c ∈ max�(R�(A) ∪ B)
(sinceR�(A) ⊆ A). 2

Lemma 11. Let A and B be subsets of U . Then, A ≈ B implies max�(A) =
max�(B). Furthermore, if A satisfies MAX then the converse also holds, so we
have A ≈ B if and only if max�(A) = max�(B).

Proof: Assume thatA ≈ B. We will prove that max�(A) ⊆ max�(B). Reversing
the roles of A and B then gives max�(B) ⊆ max�(A), and hence max�(A) =
max�(B).

Suppose a ∈ max�(A). Since A 4 B there exists b ∈ B with a � b. Either
(I) b ∈ max�(B) and we define b′′ = b, or (II) there exists b′ ∈ B with b′ � b
and we define b′′ = b′. Since A < B there exists a′ ∈ A with a′ � b′′, and so
a′ � b′′ � b � a and so a′ � a. Since a ∈ max�(A) this implies that a′ = a
and so b′′ = b = a (since � is a partial order). If (II) then b � b′′ which is a
contradiction. Hence b ∈ max�(B), proving max�(A) ⊆ max�(B).

Suppose now that A satisfies MAX and max�(A) = max�(B). Consider any
a ∈ A. Since A satisfies MAX there exists c ∈ max�(A) with a � b. But then
b ∈ max�(B), so, in particular, b ∈ B. Hence for all a ∈ A there exists b ∈ B

82

with b � a, so A 4 B. By the same argument with A and B reversed, we have
B 4 A, and hence, A ≈ B, as required. 2

Lemma 12. Let A, B and C be subsets of U , and let q be an element of Q.
Suppose that A ≈ B. Then

(i) q × A ≈ q ×B;

(ii) A+ C ≈ B + C;

Proof: (i) We need to show that q×A ≈ q×B. We will show that q×A 4 q×B;
the same argument, reversing the roles of A and B, will then imply that q × A <
q ×B, proving q × A ≈ q ×B.

Any element of q × A can be written as q × a for some a ∈ A. Since A ≈ B
(and hence A 4 B), there exists some element b ∈ B with a � b. Since �
respects ×, q × a � q × b, showing that q × A 4 q ×B.
(ii) Again it is sufficient to show that A + C 4 B + C, since A + C < B + C
follows by the symmetric argument. Consider any a+ c ∈ A+ C. Since A 4 B,
there exists b ∈ B with a � b, and hence, because � respects +, a + c � b + c,
showing that A+ C 4 B + C. 2

Proposition 6. For any subset A of U , A ≡ R�(A) and A ≡ C(A). If A satisfies
MAX (in particular, if A is finite) then A ≡ max�(A).

Proof:A ≡ C(A) follows immediately, since, using Lemma 7(iv), C(A) = C(C(A))
and so C(A) ≈ C(C(A)), implying A ≡ C(A).

We will next show that A ≡ R�(A), i.e., that C(A) < C(R�(A)) and C(A) 4
C(R�(A)). C(A) < C(R�(A)) follows immediately since A ⊇ R�(A) and so
C(A) ⊇ C(R�(A)), using Lemma 7(v).

We will show C(A) 4 C(R�(A)). Consider an arbitrary element of C(A),
which we can write as

∑k
i=1(pi × ai), where each ai ∈ A, each pi ∈ Q, and∑k

i=1 pi = 1. For each ai there exists a′i ∈ R�(A) with a′i � ai. Define f ′ =∑k
i=1(pi × a′i), which is an element of C(R�(A)). Since � respects + and ×, we

have f ′ � f . This shows that C(A) 4 C(R�(A)), as required.
The last part follows immediately from the first part using Lemma 9(ii). 2

Proposition 8. Let A, B and C be subsets of U , and let q be an element of Q.
Suppose that A ≡ B. Then

83

(i) q × A ≡ q ×B;

(ii) A+ C ≡ B + C;

(iii) A ∪ C ≡ B ∪ C.

Proof: (i) By Proposition 5(v), C(q×A) = q×C(A). SinceA ≡ B, C(A) ≈ C(B),
and so, by Lemma 12(i), q × C(A) ≈ q × C(B), which equals C(q × B). Putting
this together, C(q × A) ≈ C(q ×B), i.e., q × A ≡ q ×B.
(ii) By, Proposition 5(ii), C(A + C) = C(A) + C(C). We are assuming A ≡ B,
i.e., C(A) ≈ C(B), and so, by Lemma 12(ii), C(A) + C(C) ≈ C(B) + C(C),
which equals C(B + C), completing the proof that C(A + C) ≈ C(B + C), i.e.,
A+ C ≡ B + C.
(iii) We need to prove that C(A∪C) ≈ C(B∪C). As for (i) and (ii), it is sufficient
to prove that C(A ∪ C) 4 C(B ∪ C).

Consider any element f of C(A ∪ C). We need to show that there exists some
g ∈ C(B ∪ C) such that f � g. By Proposition 5(vi), f is either (I) an element of
C(A), or (II) an element of C(C), or (III) is the convex combination of an element
of C(A) and an element of C(C), i.e., f = (p× a) + (q × c) for some a ∈ C(A),
c ∈ C(C) and some p, q ∈ Q such that p+ q = 1.

If f ∈ C(A) then, since A ≡ B, and so C(A) ≈ C(B), there exists some
b ∈ C(B) with f � b. Also b ∈ C(B ∪ C), so we can set g = b. If f ∈ C(C) then
f ∈ C(B ∪ C) so we can set g = f .

Consider now case (III) where f = (p × a) + (q × c) for some a ∈ C(A),
c ∈ C(C) and some p, q ∈ Q such that p+ q = 1. Since A ≡ B, there exists some
b ∈ C(B) with a � b.

Since� respects× and +, we have p×a � p×b and f = (p×a)+(q×c) � g
where g = (p× b) + (q × c). Clearly, g ∈ C(B ∪ C), completing the proof. 2

Proposition 11. Let I = 〈G, (Φ,Ψ)〉 be an U-ID-system, and let τ be a legal
elimination sequence for I. Then M+,∪

τ

(⊗(
Φ,Ψ∗

))
is equal to {

∑
X[
⊗

(Φ,Ψ)]π : policies π}
which is the set of all possible values of expected utility over all policies for I, i.e.,
{EUπ : policies π}.

Proof: We write M+,∪
τ (·) as MY1(MY2(· · · (MYn(·)) · · ·). Let Θn =

⊗(
Φ,Ψ∗

)
.

Θn is a U∗-utility function with scope X ∪D = {Y1, . . . , Yn}. For j = 1, . . . , n,
let Θj−1 = MYj(MYj+1

(· · · (MYn(Θn)) · · ·). Thus, for j = 1, . . . , n, Θj−1 =

84

MYj(Θj), and Θj−1 is a U∗-utility function with scope Vj−1 = {Y1, . . . , Yj−1}. In
particular, Θ0 = M+,∪

τ

(⊗(
Φ,Ψ∗

))
.

Consider any policy (π1, . . . , πm) where πi is a function from Ω(Si) to Ω(Di).
We will define an amended marginalization operator Mπ

Yj
(·) for each j = 1, . . . , n.

If Yj is a chance variable, i.e., Yj ∈ X, then we define Mπ
Yj

(·) to be the same as
MYj(·), i.e., summation over the values of the domain of Yj .

Otherwise, Yj is a decision variable: Yj ∈ D. In this case, MYj involves
a union operation. For Mπ

Yj
we replace the union operation, instead choosing a

single set in the union, using the policy π. We describe this in more detail below.
Since Yj ∈ D, for some i = 1, . . . ,m, Yj = Di. Let Θ be a U∗-utility function
with scope Vj = {Y1, . . . , Yj}. Define Mπ

Yj
(Θ)(y) = Θ(yd′), where d′ ∈ ΩDi

is defined as follows: d′ = πi(y
′), and y′ is tuple y restricted to Si (= Vj ∩X).

Recall that MYj(Θ)(y) =
⋃
d∈ΩYj

Θ(yd). In contrast, Mπ
Yj

(Θ)(y) is Θ(yd) for a
particular d, rather than being the union over all the d in ΩDi

.
For j = 1, . . . , n, let Θπ

j−1 = Mπ
Yj

(Mπ
Yj+1

(· · · (Mπ
Yn

(Θn)) · · ·), and so Θπ
j−1 =

Mπ
Yj

(Θπ
j). The values of the function Θn are singleton sets. It is clear, by an

obvious downward induction on j, that the values of Θπ
j are all singleton sets (the

non-singleton sets in Θj were generated by application of the union operation,
which is not used in Θπ

j). Θπ
0 is a constant (a function of no variables) so is a

singleton set.
In Lemma 38 below, we give the following properties of Θπ

0 : (1) it is equal to
{
∑

X[
⊗

(Φ,Ψ)]π}; (2) for any policy π, Θπ
0 ⊆ Θ0; (3) if a ∈ Θ0 then there

exists some policy π with Θπ
0 = {a}. Properties (2) and (3) together imply

Θ0 =
⋃
{Θπ

0 : policies π}, with (2) implying that the right-hand-side is a subset
of the left-hand-side, and with (3) implying the converse. Together with (1) we
then have Θ0 = {

∑
X[
⊗

(Φ,Ψ)]π : policies π}, i.e., M+,∪
τ

(⊗(
Φ,Ψ∗

))
is equal

to the set {
∑

X[
⊗

(Φ,Ψ)]π : policies π}, which equals {EUπ : policies π} (see
Section 5), thus proving the result. 2

Lemma 38. With the notation as defined above, we have the following properties.

(1) Θπ
0 = {

∑
X[
⊗

(Φ,Ψ)]π}.

(2) For any policy π, Θπ
0 ⊆ Θ0.

(3) If a ∈ Θ0 then there exists some policy π with Θπ
0 = {a}.

Proof: We first prove (1). We have Θπ
0 = Mπ

Y1
(· · · (Mπ

Yn
(Θn) · · ·). It can be seen

that for decision variable Yj , moving Mπ
Yj

later in the sequence (and so earlier in

85

the application order), will make no difference to the result. Iterating this will
lead to all the decision variables being eliminated first (so, being at the end of
the sequence), and all the chance variables being eliminated last (and thus be-
ing at the beginning of the sequence). Relabel the chance variables in the se-
quence as Z1, . . . , Zk, and relabel the decision variables as W1, . . . ,Wl. This
implies that Θπ

0 can be written as Mπ
Z1

(· · · (Mπ
Zk

(Mπ
W1

(· · · (Mπ
Wl

(Θn) · · ·). Now,
Mπ

W1
(· · · (Mπ

Wl
(Θn) · · ·) involves just instantiating the decision variables with

policy π, and so Mπ
W1

(· · · (Mπ
Wl

(Θn) · · ·) is just {[
⊗

(Φ,Ψ)]π}. Also, Mπ
Z1
· · ·Mπ

Zk

is just
∑

X, i.e., summing out all the chance variables. Therefore, Θπ
0 = {

∑
X[
⊗

(Φ,Ψ)]π}.
We next prove (2). There is an obvious monotonicity for addition of sets: if

for all k ∈ K, Ak ⊆ Bk, then
∑

k∈K Ak ⊆
∑

k∈K Bk. It follows from this using
induction that for all j = 0, . . . , n, Θπ

j ⊆ Θj . In particular, Θπ
0 ⊆ Θ0.

We next prove (3), i.e., that if a ∈ Θ0 then there exists some policy π with
Θπ

0 = {a}. Recall, that for j = 1, . . . , n, Θj−1 = MYj(Θj). Thus for any
y ∈ ΩVj−1

, if Yj is a chance variable, then Θj−1(y) =
∑

x∈ΩYj
Θj(yx); and if Yj

is a decision variable, then Θj−1(y) =
⋃
d∈ΩYj

Θj(yd).
We will define a collection Q of partial tuples, with each y ∈ Q, having an

associated utility value ay. Set Q will be the disjoint union of sets Q0, . . . , Qn,
where, for j = 0, . . . , n, Qj is a subset of ΩVj , where Vj = {Y1, . . . , Yj}. Specif-
ically, Q0 just consists just of the assignment ♦ to the empty set of variables:
Q0 = {♦}. We also define a♦ = a. Note that Θ0(♦) just means the same as Θ0,
so we then have a♦ ∈ Θ0(♦).

We now proceed inductively to define Q1, . . . , Qn. Suppose that, for some
j = 1, . . . , n, we have definedQj−1, and for each y ∈ Qj−1 we have an associated
utility value ay ∈ Θj−1(y). We will define Qj , which is a subset of ΩVj , along
with their associated utility values. There are two cases, according to whether the
current variable Yj is a chance or decision variable.

Case (I). Yj is a chance variable. Define Qj to be {yx : y ∈ Qj−1, x ∈ ΩYj}.
(Thus, in particular, Q1 = ΩY1 .) Consider any y ∈ Qj−1. Then, since Yj is
a chance variable, Θj−1(y) =

∑
x∈ΩYj

Θj(yx). Since ay ∈ Θj−1(y), for each
x ∈ ΩYj there exists some ayx ∈ Θj(yx) such that ay =

∑
x∈ΩYj

ayx. This
defines (for Case (I)) az for each z ∈ Qj .

Case (II). Yj is a decision variableDi. Consider any y ∈ Qj−1. Then, Θj−1(y) =⋃
d∈ΩDi

Θj(yd), so ay ∈ Θj−1(y) implies that there exists some dy ∈ ΩDi
such

86

that ay ∈ Θj(ydy). Define Qj to be {ydy : y ∈ Qj−1} (so, in particular, Q1 =
{d♦}), and define aydy = ay, which is an element of Θj(ydy).

In both Cases (I) and (II), for z ∈ Qj , we have az ∈ Θj(z). This iterative
process defines the whole of Q, where Q =

⋃n
j=0Qj , and, for each j = 0, . . . , n,

also defines ay ∈ Θj(y) for each y ∈ Qj .
We will define a policy π (see Section 5). Recall that π is a sequence of

functions (π1, . . . , πm), where πi is a function from Ω(Si) to Ω(Di). We will
define each function πi in turn. Let x be any assignment to variables Si, where Si
equals Vj−1 ∩X. There exists a unique y ∈ ΩYj−1

which is in Qj−1 and extends
x. This is because the definition in Case (II) determines a unique value of each
decision variable given the values of the earlier variables, and the definition in
Case (I) involves extending tuples with all values of chance variables. We then
define πi(x) = dy, where dy is defined in Case (II) above. This defines the policy
π.

We will prove by downward induction that for all j = 0, . . . , n and for all
y ∈ Qj−1, we have Θπ

j−1(y) = {ay}. The base case is when j = n. Consider any
y ∈ Qn. We have ay ∈ Θn(y). Since Θn(y) is a singleton set, it’s equal to {ay}.
Θπ
n = Θn, so Θπ

n(y) = {ay}.
Now, we proceed with the inductive part of the proof. Suppose that for some

j ∈ {1, . . . , n} we have Θπ
j (y) = {ay} for all y ∈ Qj . We will prove that

Θπ
j−1(y) = {ay} holds for all y ∈ Qj−1. Recall that Θπ

j−1 = Mπ
Yj

(Θπ
j). Again

there are the two cases.

Case (I). Yj is a chance variable. By definition of Θπ
j−1, we have that Θπ

j−1(y)
equals

∑
x∈ΩYj

Θπ
j (yx). Since y ∈ Qj−1 we have for each x ∈ ΩYj , yx ∈ Qj

(see Case (I) of the inductive definition of Qj above). Thus, by the inductive hy-
pothesis, Θπ

j (yx) = {ayx}. The inductive definition of ay (see Case (I) above)
means that ay =

∑
x∈ΩYj

ayx, and thus {ay} =
∑

x∈ΩYj
{ayx}. Therefore,

Θπ
j−1(y) =

∑
x∈ΩYj

Θπ
j (yx) =

∑
x∈ΩYj

{ayx} = {ay}.

Case (II). Yj is a decision variableDi. By definition of Θπ
j−1, we have Θπ

j−1(y) =
Θπ
j (yd′), where d′ ∈ ΩDi

is defined as follows: d′ = πi(y
′), and y′ is tuple y

restricted to Si (= Vj ∩ X). Now, y ∈ ΩYj−1
extends y′, so by our definition

of πi, we have πi(y′) = dy, and thus d′ = dy. By the inductive hypothesis,
Θπ
j (ydy) = {aydy}. By definition, aydy = ay, so Θπ

j (ydy) = {ay}. This shows
that Θπ

j−1(y) = Θπ
j (yd′) = {ay}.

We have proved by induction that for all j = 0, . . . , n and for all y ∈ Qj−1,
Θπ
j−1(y) = {ay}. In particular, we have that Θπ

0 (♦) = {a♦}, i.e., Θπ
0 = {a},

87

completing the proof of (3). 2

Part D: Proofs of Results in Section 9
To prove Lemma 15 we use two additional lemmas.

Lemma 39. Let A be any subset of O with max�(A) = A. Then there is at most
one element a ∈ A with σ(a) 6= ±, i.e., with σ(a) = + or −. Furthermore, if
a ∈ A is such that σ(a) 6= ± then for all other elements b of A, b̂ < â. If a and b
are different elements of A then â 6= b̂.

Proof: The first part follows immediately from the fact that the set of elements a
with σ(a) 6= ± forms a totally ordered subset of O.

Suppose, to prove a contradiction, that a ∈ A is such that σ(a) 6= ± and there
exists some different element b ∈ A with b̂ ≥ â. If σ(a) = + then a � b, and
if σ(a) = − then a ≺ b, both of which contradict max�(A) = A. The last part
follows since for any m, 〈+,m〉 � 〈±,m〉 � 〈−,m〉. 2

We also make use of the following result.

Lemma 40. Let 〈±,m〉 and 〈σ, n〉 be elements of O with m < n. Then the set
C({〈±,m〉, 〈σ, n〉}) contains 〈±, p〉 for any p such that m ≤ p ≤ n.

Proof: The result clearly holds if p = m; so, let us now assume that p > m.
Then, we have 〈±, p〉 = (〈+, p − m〉 × 〈±,m〉) + (〈+, 0〉 × 〈σ, n〉), showing
that 〈±, p〉 ∈ C({〈±,m〉, 〈σ, n〉}), by definition of the C(·) operator, and since
〈+, p−m〉 and 〈+, 0〉 are in O+, and 〈+, p−m〉+ 〈+, 0〉 = 〈+, 0〉 = 1. 2

Lemma 15. Let A be any finite subset of O with max�(A) = A. Then either
|A| = 1 or there exists some σ ∈ {+,−,±} such that C(A) = C({〈±,m〉, 〈σ, n〉}),
where m = min {â : a ∈ A}, and n = max {â : a ∈ A}, and m < n.

Proof: Let A be any finite subset ofO with max�(A) = A. Suppose that |A| > 1.
Let a be an element of A with minimum value of â, and let b be an element of
B with maximum value of b̂. Lemma 39 implies that b̂ > â, and a = 〈±,m〉,
where m = â. Let’s also write b = 〈σ, n〉, so that m < n. We will show that
C(A) = C({a, b}), proving the result.

Since a, b ∈ A, clearly C(A) ⊇ C({a, b}), by Lemma 7(v), so we just have to
prove that C(A) ⊆ C({a, b}). We will first prove that A ⊆ C({a, b}). Consider
any c ∈ A. If c = b, then clearly c ∈ C({a, b}), so let us now assume that c 6= b.

88

Then, by Lemma 39, σ(c) = ±. Also, by definition of a and b, m ≤ ĉ ≤ n.
Lemma 40 implies that c ∈ C({a, b}).

Finally, A ⊆ C({a, b}) implies C(A) ⊆ C({a, b}), using Lemma 7(iv) and (v),
completing the proof. 2

Lemma 17. Consider any finite A ⊆ O. Then A◦ is the unique element a of
max�(A) with smallest value of â, and A◦ is the unique element b of max�(A)

with largest value of b̂.

Proof: The fact that >◦ and >◦ extend � implies that A◦ and A◦ are in max�(A).
First, note that if there’s a unique maximal element, then the result holds trivially.
So, now assume that there’s more than one maximal element. Lemma 39 implies
that the element a of max�(A) with smallest value of â has sign±. The definition
of >◦ implies that a >◦ c for all c ∈ max�(A) with ĉ > â, and thus a = A◦. Now,
consider the element b of max�(A) with largest value of b̂. Lemma 39 implies
that for all c ∈ max�(A) apart from b have sign ±, and we also have that ĉ < b̂.
Then the definition of >◦ implies that b >◦ c, and thus b = A◦. 2

Proposition 13. For finite A ⊆ O, A ≡ ρ(A).

Proof: By Proposition 12, either (i) A ≡ {a} for some a ∈ O, and a is the
unique element of max�(A); or (ii) there exists some σ ∈ {+,−,±} and integers
m,n such that A ≡ {〈±,m〉, 〈σ, n〉}, and {〈±,m〉, 〈σ, n〉} ⊆ max�(A), where
m is equal to min {â : a ∈ max�(A)}, and n = max {â : a ∈ max�(A)}, and
m < n. First consider case (i). Lemma 17 implies that A◦ = A◦ = a, and so
ρ(A) = {a}. Thus, A ≡ ρ(A).

Now, consider case (ii) of Proposition 12. Along with Lemma 17, this implies
that A◦ = 〈±,m〉, and A◦ = 〈σ, n〉, and so A ≡ {A◦, A◦} = ρ(A). 2

Lemma 18. Let A be any finite subset of O. Then,

(i) (ρ(A))◦ = A◦ and (ρ(A))◦ = A◦; and

(ii) ρ(ρ(A)) = ρ(A).

Proof: (i) By definition, A◦ >◦ A◦ and A◦ >◦ A
◦. This implies (ρ(A))◦ =

({A◦, A◦})◦, which equals A◦, and (ρ(A))◦ = ({A◦, A◦})◦ = A◦.
(ii) ρ(ρ(A)) = {(ρ(A))◦, (ρ(A))◦}, which equals ρ(A) by part (i). 2

Lemma 19. For any a1, a2 ∈ O, and q ∈ O+,

89

(i) if a1 ≥◦ a2 then q × a1 ≥◦ q × a2;

(ii) if a1 ≥◦ a2 then q × a1 ≥◦ q × a2.

Proof: Write a1, a2 and q as 〈σ,m〉, 〈τ, n〉, and 〈+, h〉,respectively,
(i) Assume that a1 ≥◦ a2. Then either (a) a1 � a2 or (b) σ = ± and m < n. If

(a) then the monotonicity properties of � imply that q × a1 � q × a2, and hence
that q×a1 ≥◦ q×a2. Otherwise, (b) σ = ± andm < n. Now, q×a1 = 〈σ,m+h〉
and q×a2 = 〈τ, n+h〉, and so q×a1 ≥◦ q×a2, since σ = ± and m+h < n+h.

(ii) Assume that a1 ≥◦ a2. Then either (a) a1 � a2 or (b) τ = ± and m > n.
If (a) then the monotonicity properties of� imply that q×a1 � q×a2, and hence
that q×a1 ≥◦ q×a2. Otherwise, (b) τ = ± andm > n. Now, q×a1 = 〈σ,m+h〉
and q×a2 = 〈τ, n+h〉, and so q×a1 ≥◦ q×a2, since τ = ± and m+h > n+h.
2

We use the following lemma to prove Lemma 20.

Lemma 41. Let A and B be any finite subsets of O.

(i) (A ∪B)◦ = A◦ ∨◦ B◦;

(ii) (A ∪B)◦ = A◦ ∨◦ B◦;

(iii) (q × A)◦ = q × A◦;

(iv) (q × A)◦ = q × A◦.

Proof: (i): (A ∪ B)◦ = max>◦(A ∪ B). Since A◦ ∨◦ B◦ ∈ A ∪ B, we have
(A ∪ B)◦ ≥◦ A◦ ∨◦ B◦. Either (A ∪ B)◦ ∈ A or (A ∪ B)◦ ∈ B. Without loss of
generality assume (A ∪ B)◦ ∈ A. Then A◦ ∨◦ B◦ ≥◦ A◦ ≥◦ (A ∪ B)◦, and so
(A ∪B)◦ = A◦ ∨◦ B◦. Part (ii) follows similarly.
(iii): (q × A)◦ = max>◦(q × A). Now, q × A◦ ∈ q × A, so (q × A)◦ ≥◦ q × A◦.
Write (q × A)◦ as q × a for some a ∈ A. Since A◦ ≥◦ a, Lemma 19(i) implies
that q × A◦ ≥◦ q × a. This proves (v). Part (iv) follows using exactly the same
form of argument, using Lemma 19(ii). 2

Lemma 20. Let A and B be finite subsets of O.

(i) ρ(A ∪B) = A YB = ρ(A) Y ρ(B).

(ii) ρ(q × A) = q × ρ(A).

90

Proof: (i) ρ(A ∪ B) = {(A ∪B)◦, (A ∪B)◦}, which, using Lemma 41, is equal
to {A◦ ∨◦ B◦, A◦ ∨◦ B◦}, which equals A Y B. Lemma 18 implies that A Y B =
ρ(A) Y ρ(B).
(ii) ρ(q×A) = {(q × A)◦, (q × A)◦}, which, by Lemma 41, equals {q × A◦, q × A◦} =
q × ρ(A). 2

We use the following result in the proof of Lemma 21.

Lemma 42. Let A◦ = 〈σ,m〉 and let A◦ = 〈τ, n〉. Then either A◦ = A◦ or
[σ = ± and m < n].

Proof: Suppose that A◦ 6= A◦. Since A◦ = max>◦(A), and >◦ is a total order,
〈σ,m〉 >◦ 〈τ, n〉, and so, by definition, either 〈σ,m〉 � 〈τ, n〉 or σ = ± and
m < n. If it were the case that 〈σ,m〉 � 〈τ, n〉 then we would also have 〈σ,m〉 >◦
〈τ, n〉, i.e., A◦ >◦ A◦, which contradicts the definition of A◦ as max>◦(A). Thus
σ = ± and m < n, as required. 2

Lemma 21. ρ(A)� ρ(B) = A�B ≡ ρ(A) + ρ(B).

Proof: By Lemma 18, (ρ(A))◦ = A◦ and (ρ(A))◦ = A◦, we have ρ(A)� ρ(B) =
{A◦ +B◦, A◦ +B◦} = A�B.

First consider case when A◦ = A◦, so that ρ(A) is a singleton set {A◦}. Then
A�B = {A◦ +B◦, A◦ +B◦} = {A◦ +B◦, A◦ +B◦} = ρ(A)+ρ(B). The case
when B◦ = B◦ follows similarly.

Now consider the case when A◦ 6= A◦ and B◦ 6= B◦. By Lemma 42, we we
can write ρ(A) in the form {〈±,m〉, 〈σ, n〉}, where m < n, and we can write
ρ(B) in the form {〈±, g〉, 〈τ, h〉}, where g < h. Without loss of generality, we
can assume that m ≤ g. Now, A� B = {〈±,m〉, 〈σ, n〉+ 〈τ, h〉}. Also, ρ(A) +
ρ(B) = {〈±,m〉, 〈σ, n〉+ 〈τ, h〉, 〈σ, n〉+ 〈±, g〉}. If n < g then also n < h and
〈σ, n〉+ 〈τ, h〉 = 〈σ, n〉+ 〈±, g〉 = 〈σ, n〉, in which case A�B = ρ(A) + ρ(B).
If, on the other hand, n ≥ g then 〈σ, n〉+ 〈±, g〉 = 〈±, g〉, which is in C(A� B)
(since 〈±, g〉 = (〈+, g − m〉 × 〈±,m〉) + (〈+, 0〉 × (〈σ, n〉 + 〈τ, h〉))). Thus,
A � B ⊆ ρ(A) + ρ(B) ⊆ C(A � B). This implies, using Lemma 7(v) and (iv),
that C(A�B) = C(ρ(A) + ρ(B)), which implies that A�B ≡ ρ(A) + ρ(B).

91

