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Independence relations in general include exponentially many statements of independence, 
that is, exponential in the number of variables involved. These relations are typically 
characterised however, by a small set of such statements and an associated set of derivation 
rules. While various computational problems on independence relations can be solved by 
manipulating these smaller sets without the need to explicitly generate the full relation, 
existing algorithms for constructing these sets are associated with often prohibitively 
high running times. In this paper, we introduce a lattice structure for organising sets of 
independence statements and show that current algorithms are rendered computationally 
less demanding by exploiting new insights in the structural properties of independence 
gained from this lattice organisation. By means of a range of experimental results, we 
subsequently demonstrate that through the lattice organisation indeed a substantial gain in 
efficiency is achieved for fast-closure computation of semi-graphoid independence relations 
in practice.

© 2020 Published by Elsevier Inc.

1. Introduction

Probabilistic independence is key to the scalability of probabilistic models, as is demonstrated by the practicability of 
probabilistic graphical models encoding such independences (see for example [4,6]). Probabilistic independence therefore is 
a subject of intensive studies from both a mathematics and a computing-science perspective (see [5,8,12]). Pearl and his 
co-workers were among the first to formalise properties of probabilistic independence in a system of axioms [8]. These 
axioms are now commonly taken as derivation rules for generating new independences from a given set of independence 
statements. Any set of such statements that is closed under finite application of these rules is called an independence relation.

Independence relations in general are exponentially large in the number of variables involved. Representing them by 
enumeration of their individual independence statements therefore is not feasible for practical purposes. These relations are 
typically fully characterised however, by a much smaller set of statements, called a basis, and an associated set of derivation 
rules. Studený was the first to propose a type of basis that allows various computational problems on independence rela-
tions to be solved efficiently without the need to generate the full relation [10,11]. He designed an elegant algorithm for 
computing such a basis from a given starting set of independence statements, which was later improved upon [2,7] to yield 
the current state-of-the-art algorithm for fast-closure computation.
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While Studený’s basis allows efficiently solving a range of problems on independence relations, existing algorithms for 
constructing such a basis are still highly demanding from a computational perspective. In this paper, we introduce a lattice 
structure for organising sets of independence statements which aims at reducing the running time of the state-of-the-art 
algorithm for fast-closure computation by means of a partitioning approach. Although the proposed lattice representation 
accommodates any type of independence relation, we will focus the discussion of its properties on the class of semi-
graphoid independence relations. We will show that the organisational lattice structure supports efficient maintenance of a 
non-redundant set of independence statements, which is one of the most demanding steps of fast-closure computation, by 
restricting redundancy checks to parts of the lattice; the organisational structure further allows efficient selection of inde-
pendence statements for application of the main operator involved in closure computation. Our experimental results from 
fast-closure computation with up to 80 variables demonstrate that the computational advantages obtained are substantial.

The paper is organised as follows. In Section 2, we review some basic notions from semi-graphoid independence relations 
and fast-closure computation, and thereby introduce our notations. In Section 3, our lattice structure for organising sets of 
independence statements is introduced and some of its properties are stated. Section 4 then discusses the computational 
advantages, for fast-closure computation, of the new representation. Section 5 describes our experiments and details the 
results obtained. The paper ends in Section 6 with our concluding observations and plans for further research.

2. Preliminaries

We consider a finite, non-empty set V of discrete random variables, with |V | = n, n ≥ 2. We will use capital letters to 
indicate subsets of this set V . Small letters are used to denote individual variables; when indicating individual variables in 
a set, we slightly abuse notational conventions and write pqr instead of {p, q, r}. An ordered triplet over V is a statement of 
the form θ = 〈A, B |C〉, where A, B, C are pairwise disjoint subsets of V with A, B �= ∅. A triplet 〈A, B |C〉 is taken to state 
that the sets of variables A and B are (conditionally) independent given the set C . Relative to a discrete joint probability 
distribution Pr over V, the triplet thus states that the schema Pr(A, B | C) = Pr(A | C) · Pr(B | C) holds for all joint value 
combinations of A ∪ B ∪ C . In the sequel, we will use X = A ∪ B ∪ C to denote the set of all variables involved in the triplet 
θ ; the set C of the triplet will be referred to as the triplet’s separating set. Any triplet with X = V is called a saturated triplet. 
The symmetric transpose of a triplet θ = 〈A, B |C〉, denoted as θ T, is the triplet 〈B, A |C〉; we note that, as triplets are taken to 
be ordered, a triplet θ and its transpose are considered different statements of independence. The set of all possible triplets 
over V is denoted as V (3) .

A set of triplets constitutes a semi-graphoid independence relation if it satisfies the four properties stated in the following 
definition.

Definition 1. A semi-graphoid independence relation is a set of triplets J ⊆ V (3) that satisfies the following properties:

G1: if 〈A, B | C〉 ∈ J , then 〈B, A | C〉 ∈ J (Symmetry)
G2: if 〈A, B | C〉 ∈ J , then 〈A, B ′ | C〉 ∈ J for any non-empty subset B ′ ⊆ B (Decomposition)
G3: if 〈A, B1 ∪ B2 | C〉 ∈ J with B1 non-empty and B1 ∩ B2 = ∅, then 〈A, B1 | C ∪ B2〉 ∈ J (Weak Union)
G4: if 〈A, B | C ∪ D〉 ∈ J and 〈A, C | D〉 ∈ J , then 〈A, B ∪ C | D〉 ∈ J (Contraction)

The four properties stated above constitute an axiomatic system for the qualitative notion of (conditional) independence 
[8]. This system of axioms is sound for the concept of probabilistic independence in the class of discrete probability dis-
tributions [5], yet not complete; it has been shown, in fact, that the probabilistic notion of independence does not allow a 
finite axiomatisation [9].

The semi-graphoid properties of independence G1–G4 are typically taken as derivation rules for generating (possibly) 
new triplets from a given triplet set. Given a starting set of triplets J ⊆ V (3) and a designated triplet θ ∈ V (3), we write 
J �∗ θ if the triplet θ can be derived from J by finite application of the four semi-graphoid rules. The full closure of a 
starting triplet set J ⊆ V (3) , denoted as J , is the semi-graphoid independence relation consisting of J and all triplets θ that 
can be derived from it. This full closure typically is exponentially large in the number of variables in the set V . For concisely 
representing a semi-graphoid independence relation, it now suffices to find an appropriate subset of triplets, called a basis, 
that captures, jointly with the four derivation rules, the same information as the full relation itself.

Definition 2. Let J ⊆ V (3) be a semi-graphoid independence relation. Then, any triplet set J ′ ⊆ V (3) with J ′ = J is called a 
basis for J .

Many computational problems on independence relations can be solved from a starting set of triplets J directly, without 
the need to first generate its full closure. Studený was the first to design an algorithm for constructing, from an arbitrary 
starting set of triplets, a tailored type of basis for semi-graphoid independence relations [11], which later became known 
as the fast-closure basis [2]. From a fast-closure basis, for example, the implication problem for semi-graphoid relations can 
be solved efficiently. This problem asks for a given starting set J and triplet θ whether J �∗ θ , and is solvable in a time 
linear in the size of the fast-closure basis of the starting set J at hand. In this paper, we focus on the computation of such 
fast-closure bases.
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We briefly review the various notions underlying Studený’s fast-closure basis. To this end, we begin with observing that 
the semi-graphoid rules G2–G3 define a derivational partial order among triplets which was formalised by Studený in the 
notion of dominance [11]. This notion was later enhanced by including the symmetry rule G1, to the notion of g-inclusion
by Baioletti et al. [2]; from now on, we build on the latter notion.

Definition 3. Let J ⊆ V (3) be an arbitrary set of triplets and let θi = 〈Ai, Bi |Ci〉 ∈ J , with Xi = Ai ∪ Bi ∪ Ci , i =1, 2. Then, θ1
is g-included in θ2, denoted as θ1 
 θ2, if the following conditions hold:

• C2 ⊆ C1 ⊆ X2; and,
• [A1 ⊆ A2 and B1 ⊆ B2], or [B1 ⊆ A2 and A1 ⊆ B2].

A triplet θ ∈ J is g-maximal in J if it is not g-included in any triplet τ ∈ J with τ �= θ, θ T.

If a triplet θ1 is g-included in another triplet θ2, then we have that any triplet that can be derived from θ1 by means of 
the derivation rules G1–G3 can also be derived from θ2 through these rules. For describing a semi-graphoid independence 
relation by a subset of its triplets therefore, only g-maximal triplets need be represented explicitly. We note that, if a triplet 
θ and its symmetric transpose θ T are both included in a triplet set J , then g-maximality of θ in J implies g-maximality of 
θ T in J , and vice versa. Since θ can be derived from θ T and vice versa, just one of this pair of symmetric triplets suffices 
for capturing all information from the full relation. A set of g-maximal triplets which includes at most one of each pair of 
symmetric triplets is termed a non-redundant triplet set.

Definition 4. Let J ⊆ V (3) be an arbitrary set of triplets. Then, J is non-redundant if the following conditions hold:

• θ ∈ J implies θ T /∈ J ; and,
• each θ ∈ J is g-maximal in J .

Thus far, we addressed derivability among triplets in view of just the derivation rules G1–G3, each of which derives a 
potentially new triplet from a single triplet in a triplet set J . The contraction rule G4 differs from G1–G3 in that it combines 
information from two triplets for constructing a potentially new one. For application of this rule, Studený formulated a 
generalised contraction operator, called the gc-operator [11], which is defined as follows.

Definition 5. Let V be as before. For all triplets θi = 〈Ai, Bi |Ci〉 ∈ V (3) with Xi = Ai ∪ Bi ∪ Ci, i = 1, 2, such that

• A1 ∩ A2 �= ∅;
• C1 ⊆ X2 and C2 ⊆ X1; and
• (B2 \ C1) ∪ (B1 ∩ X2) �= ∅;

the gc-operator is defined through:

gc(θ1, θ2) = 〈A1 ∩ A2, (B2 \ C1) ∪ (B1 ∩ X2) | C1 ∪ (A1 ∩ C2)〉
For any triplet pair θ1, θ2 for which the above conditions do not all hold, gc(θ1, θ2) is undefined.

The gc-operator in essence constructs from two triplets θ1, θ2, two g-included triplets θ ′
1, θ

′
2 with θ ′

1 
 θ1 and θ ′
2 
 θ2, 

to which the derivation rule G4 can be applied to yield a possibly new g-maximal triplet. We note that by considering not 
just the triplets θ1, θ2 but also all their g-included triplets, it suffices to maintain a non-redundant triplet set for iteratively 
applying the operator. Studený further showed that if gc(θ1, θ2) yields a valid triplet θ , then this triplet g-includes any other 
triplet that can be obtained from applying the derivation rule G4 to triplets derived from θ1, θ2 through G1–G3 [11]; the 
gc-operator is thus guaranteed to yield the highest-ordered triplet of the set of all triplets derivable from the ordered pair 
θ1, θ2.

We illustrate the basic idea of the gc-operator by means of a small example.

Example 1. We consider the two triplets

θ1 = 〈p,q |r〉, θ2 = 〈p, rs|q〉
over the variable set V = {p, q, r, s}, and address application of the derivation rule G4. When applied to the pair θ1, θ2
directly, the rule does not yield a new triplet since the separating sets of the two triplets are not empty yet have an empty 
intersection. We now observe that from the triplet θ2 the triplet θ ′

2 = 〈p, s |qr〉 can be derived by using the derivation 
rule G3. G4 can then be applied to the pair θ1, θ ′

2 to give the new triplet θ = 〈p, qs |r〉. Application of the gc-operator to 
the original triplet pair θ1, θ2 yields gc(θ1, θ2) = θ directly, and hence forestalls the necessity of explicitly maintaining or 
deriving θ ′ .
2
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Fast Closure Construction:

Input: J ⊆ V (3); Output: F with F = J

1: function Basis-Construction( J )

2: J0 ← J ;

3: i ← 0;

4: repeat
5: i ← i + 1;

6: Ni ← ⋃
θ1,θ2∈ J i−1

(GC(θ1, θ2) ∪ GC(θ2, θ1));

7: J i ← non-redundant( J i−1 ∪ Ni)

8: until J i = J i−1;

9: return F ← J i

10: end function

Algorithm 1. A sketch of the state-of-the-art algorithm for fast-closure computation (adapted from [7]).

In view of a given triplet set, when an ordered pair of triplets θ1, θ2 is selected for application of the gc-operator, typically 
not just gc(θ1, θ2) but also gc(θ T

1 , θ2), gc(θ1, θ T
2 ) and gc(θ T

1 , θ T
2 ) are established, before selecting the next triplet pair. In the 

sequel, we will use GC(θ1, θ2) to denote the set of all valid triplets resulting from such a fourfold application of the operator. 
We note that for any triplet pair θ1, θ2, the set GC(θ1, θ2) ∪ GC(θ2, θ1) may include up to eight valid triplets.

Building upon the concepts reviewed above, Studený designed an algorithm for constructing, from a starting set of 
triplets, a fast-closure basis composed of maximal triplets. This algorithm was enhanced, first by Baioletti et al. [2] and 
later by Lopatatzidis and Van der Gaag [7], to the current state-of-the-art algorithm for fast-closure computation; Algorithm 1
provides a high-level sketch of this algorithm. The core of the algorithm is an iterative loop (lines 4–8) in which new 
triplets are derived and redundant triplets are removed. More specifically, in each iteration, starting with a triplet set J i−1, 
the algorithm computes the set Ni of triplets that result from application of the GC-operator to all possible (ordered) pairs 
of triplets from J i−1 (line 6); from the joined set J i−1 ∪ Ni then all redundant triplets are removed (line 7). With the 
resulting non-redundant triplet set J i , the loop is repeated until the set J i no longer changes, in the sense that no new 
g-maximal triplets are added. The returned triplet set F then is a fast-closure basis for the independence relation J defined 
by the original starting set.

The algorithm is generally thought to have a worst-case runtime complexity that is exponential in the size of the starting 
triplet set J0. In each iteration of the algorithm’s main loop, line 6 takes a runtime that is polynomial in the size of this set. 
With | J0| = d, the first iteration of line 6 takes at most O (d2) time. In the worst case, this iteration may result in a set N1

with O (d2) new triplets. In general, the ith iteration of line 6 may take O (d2i
) time and result in a triplet set of a size up 

to O (d2i
). While each iteration thus takes polynomial time in d, the power of the polynomial involved is exponential in the 

iteration number. Similar observations hold for the worst-case runtime per iteration over line 7. The overall runtime of the 
algorithm is dependent not just of the running times taken by lines 6 and 7 per iteration however, but also of the number 
of iterations. The number of iterations required before meeting the stopping criterion in line 8 for the algorithm’s main loop, 
may in fact be exponential in the size of the starting triplet set, as the algorithm may need to reconstruct a sizeable part of 
the full closure of this set. To the best of our knowledge, the exact relation between the number of iterations required and 
the sizes of the intermediate triplet sets constructed in these iterations is still an open question.

3. An organisational lattice structure for triplet sets

We introduce our lattice structure for organising arbitrary sets of triplets by their separating sets, and study the structural 
properties of triplet sets as induced by these separating sets.

3.1. Partitioning a triplet set

We consider the power set of the set V of variables, with | V | = n, n ≥ 2, and its representation by means of a lattice 
L. As usual, each element of the lattice corresponds to a subset of V and the partial ordering among the lattice’s elements 
corresponds to the inclusion relation among these subsets. The element ∅ constitutes the least element of the lattice, and its 
greatest element is the full set V. In the sequel, we will also refer to (closed) intervals of the lattice L, and write L([W ; Z ])
with W ⊆ Z ⊆ V to denote the interval of L with W for its least element and Z for its greatest element; we use L(C) to 
indicate the single element corresponding to the subset C of V . For lattice concepts and terminology, we refer the reader 
to [3].

We now take the lattice L as an organisational data structure for storing a set J of triplets over V, by looking upon 
L’s elements as representing separating sets: at the element L(C) will be stored the subset of all triplets of J that have 
C for their separating set. For a given triplet set J , we will write L J (C) = {θ | θ = 〈A, B | C〉 ∈ J } to denote the set of 
triplets stored at the lattice element L(C) after organising J over L. We note that, since the separating set of a triplet 
cannot include more than n − 2 variables, the semantics assigned to the lattice structure does not allow any triplet to be 
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Fig. 1. The lattice L for the variable set V = {p, q, r, s, t}, with a set of three triplets organised over it; the bold lines indicate the two intervals L([∅; st])
and L([pq; pqrs]) (the necessarily empty element of the latter interval is not shown).

stored at the two upper levels of the lattice. For any triplet set J , we thus have that L J (W ) = ∅ for all subsets W ⊆ V
with | W | ≥ n − 1. For ease of presentation, we will retain, throughout the paper, the perspective of a full lattice for our 
organisational data structure; for practical implementations however, a meet lattice, without the two upper levels, would 
be employed.

Using the organisational lattice structure described above, a triplet set J is partitioned into mutually disjoint subsets 
stored at different elements of the lattice. We illustrate the basic idea with a small example.

Example 2. We consider the set of variables V = {p, q, r, s, t}. The four levels of the lattice L over V at which triplets can be 
stored, are shown in Fig. 1; the upper two levels of the full lattice over V have been replaced by dots to indicate that these 
levels cannot be used for storing triplets over V . In the figure, the intervals L([∅; st]) and L([pq; pqrs]) are highlighted by 
bold lines; of the latter interval, the element at which no triplets can be stored by the semantics of the lattice, is not shown. 
We now consider the set J composed of the three triplets

θ1 = 〈p,q | t〉, θ2 = 〈q, rs | t〉, and θ3 = 〈r, st | pq〉
and organise this set over the lattice structure L. We find that L J (t) = {θ1, θ2} and L J (pq) = {θ3}; all other lattice elements 
remain empty.

To gain insight in how triplet sets are partitioned over the organisational lattice structure, we investigate the cardinalities 
of the subsets of triplets that can maximally be stored at the different elements of the lattice. The following lemma states 
the maximum number of triplets per lattice element.

Lemma 1. Let V be a set of variables, with | V | = n, n ≥ 2. Then, for each C ⊆ V with | C | = n − m, n ≥ m ≥ 2, there exist at most 
3m − 2m+1 + 1 different triplets with C for their separating set.

Proof. We consider triplets of the form 〈A j, B j |C〉 with a fixed separating set C of cardinality |C |= n −m. With |V \C |= m, 
the remaining m variables may be included in the set A j ∪ B j of such a triplet. For any fixed selection of i ≥ 2 variables 
from among these m variables, there exist S(i, 2) = 2i−1 − 1 partitions into two non-empty subsets A j , B j , where S(i, 2)

is the associated Stirling partition number. Each of these partitions defines an unordered pair of variable sets, and therefore 
has associated two symmetric triplets in which the two sets are ordered. As there are 

(m
i

)
ways to choose exactly i variables 

from the set of m, there are at most 2 · (m
i

) · (2i−1 − 1) triplets of the form 〈A j, B j | C〉 with |A j ∪ B j | = i. By summing over 
all values i = 2, . . . , m, the number of different triplets with C for their separating set is found to be at most

2 ·
m∑

i=2

(
m

i

)
· (2i−1 − 1) =

m∑
i=0

(
m

i

)
· (2i − 2) + 1 = 3m − 2m+1 + 1

as stated in the lemma. �
The number stated in Lemma 1 is the maximum number of triplets that can be stored at a single element of the 

organisational lattice structure, that is, the number indicates the maximum cardinality of the set L J (C), taken over all 
possible triplet sets J ⊆ V (3) . From this number of different triplets per separating set, we readily derive the maximum 
number of triplets that a semi-graphoid independence relation can include.

Corollary 2. Any triplet set J ⊆ V (3) includes at most 4n − 2 · 3n + 2n different triplets.
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Proof. We consider again triplets of the form 〈A j, B j | C〉, yet now for all possible separating sets C with cardinalities 
|C |= 0, . . . , n − 2. The number m of variables that may be included in the set A j ∪ B j of a triplet, then equals m = 2, . . . , n, 
respectively. Using the property stated in Lemma 1, the maximum number of different triplets is found to be

n∑
m=2

(
n

m

)
· (3m − 2m+1 + 1) = 4n − 2 · 3n + 2n

as stated. �
The number stated in the corollary above is the maximum number of triplets that can be constructed over V , and thus 

equals the cardinality of V (3) . The triplet set that includes this maximum number of triplets, constitutes a full semi-graphoid 
independence relation in which every pair of sets of variables is independent given every possible separating set.

The maximum numbers of different triplets stated in Lemma 1 and Corollary 2, are found only with a full semi-graphoid 
independence relation and, hence, for a triplet set that includes all associated symmetric transposes and g-included triplets. 
The number of different triplets in the largest possible non-redundant triplet set for a fixed separating set, is considerably 
smaller than the number stated in Lemma 1. By observing that a non-redundant triplet set does not include any symmetric 
transposes, we know that the size of this largest possible set is smaller than half the number from the lemma, that is, 
smaller than 3m+1

2 − 2m . In view of this upper bound on the cardinality of the largest possible non-redundant triplet set for 
a fixed separating set, we now derive a lower bound on this cardinality. To this end, we focus on triplet sets without any 
transposes, that is, we consider the first two arguments of a triplet as being unordered. For such sets of unordered triplets, 
we introduce the concept of stratification.

Definition 6. Let J C ⊆ V (3) , | V | = n, n ≥ 2, be a set of unordered triplets of the form 〈A, B |C〉 where C is a fixed separating 
set with | C | = n − m, n ≥ m ≥ 2, and A, B ⊆ V \ C , A ∩ B = ∅. The stratification of J C is the partition 

[
J 2

C , . . . , Jm
C

]
of J C

in which J i
C = {θ | θ = 〈A, B |C〉 ∈ J C , | A ∪ B | = i}, i = 2, . . . , m. Each block J i

C of the partition is called a stratum of the 
stratification of J C .

We note that a stratum J i
C of the stratification of a set J C of unordered triplets, includes all triplets from J C with exactly 

i variables in their first two arguments jointly. The maximum cardinality of the stratum J i
C is derived by a similar argument 

as used for Lemma 1, and equals 
(m

i

) · (2i−1 − 1). We illustrate the basic idea of the stratification of a triplet set with a fixed 
separating set, by means of an example.

Example 3. We consider the set of variables V = {p, q, r, s, t}, and the separating set C = ∅; we thus have that n = m = 5. 
Any set J∅ of unordered triplets stored at the lattice element L(∅) has a stratification 

[
J 2
∅

, J 3
∅

, J 4
∅

, J 5
∅

]
consisting of four 

strata. The stratum J 2
∅

, for example, can include at most ten triplets, with the following pairs of singleton sets for their first 
two arguments:

(p,q), (p, s), (q, r), (q, t), (r, t),
(p, r), (p, t), (q, s), (r, s), (s, t).

The four strata of the stratification of J∅ have the following maximum cardinalities, respectively:

| J 2
∅

| =
(

5

2

)
· (21 − 1) = 10 | J 4

∅
| =

(
5

4

)
· (23 − 1) = 35

| J 3
∅

| =
(

5

3

)
· (22 − 1) = 30 | J 5

∅
| =

(
5

5

)
· (24 − 1) = 15

Among these four strata, the stratum J 4
∅

can include the largest number of triplets.

To establish a lower bound on the size of the largest possible non-redundant triplet set that can be stored at the lattice 
element L(C), we now first show that, for any number i, the stratum J i

C of the stratification of a set J C of unordered 
triplets constitutes a non-redundant triplet set. We will shortly build upon this property to show that the maximum size 
of the stratum that can include the largest number of triplets, is a lower bound on the cardinality of the largest possible 
non-redundant triplet set that can be stored at L(C).

Proposition 3. Let J C ⊆ V (3) , | V | = n, n ≥ 2, be a set of unordered triplets with a fixed separating set C with | C | = n −m, n ≥ m ≥ 2. 
Then, for all i = 2, . . . , m, the stratum J i

C of the stratification of J C constitutes a non-redundant triplet set.

Proof. We have to show that θ1 �
 θ2 for any ordered pair of different triplets θ1, θ2 from the stratum J i
C for some i. Since 

by the construction of J i we have that |A1 ∪ B1| = |A2 ∪ B2|, we find for all θ1, θ2 with |A1| �= |A2| that the conditions 
C
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A1 ⊆ A2 and B1 ⊆ B2 cannot hold simultaneously. For all θ1, θ2 with |A1| = |A2| and, hence, |B1| = |B2|, moreover, we must 
have that if A1 = A2 then B1 �= B2 and vice versa, from which we equally have that the conditions A1 ⊆ A2 and B1 ⊆ B2
cannot both hold. As similar observations hold with respect to θ T

1 , we have that θ1 �
 θ2 for all ordered pairs θ1, θ2 ∈ J i
C . We 

conclude that J i
C is a non-redundant triplet set. �

From Proposition 3 we have that each stratum J i
C , i = 2, . . . , m, of any set of unordered triplets J C constitutes a non-

redundant triplet set. We now consider the largest possible triplet set KC consisting of all unordered triplets with the 
separating set C , and argue that the cardinality of the largest stratum of this set KC constitutes a lower bound on the size 
of the largest possible non-redundant triplet set within KC . The following proposition characterises this stratum of maximum 
cardinality among the strata of the triplet set KC .

Proposition 4. Let KC ⊆ V (3) , | V | = n, n ≥ 2, be the largest possible set of unordered triplets with a fixed separating set C with 
| C | = n − m, n ≥ m ≥ 2. Then, for k =

⌊
2
3 m + 2

3

⌋
, we have that |K k

C | ≥ |K i
C | for all i = 2, . . . , m.

Proof. Since the property stated in the lemma is readily verified to hold for m = 2, m = 3, we assume for the remainder of 
the proof that m ≥ 4.

We consider two consecutive strata K i
C , K i+1

C , i = 2, . . . , m − 1, of the stratification of the set KC . For these strata, we 
have that |K i

C | = (m
i

) · (2i−1 − 1) and |K i+1
C | = ( m

i+1

) · (2i − 1), and hence that |K i+1
C | = fm(i) · |K i

C | with

fm(i) =
(

m − i

i + 1

)
·
(

2 + 1

2i−1 − 1

)

for i = 2, . . . , m − 1. For any number of variables m ≥ 4, the function fm(i) decreases strictly monotonically in i:

fm(i) =
(

m − i

i + 1

)
·
(

2 + 1

2i−1 − 1

)
>

(
m − i

i + 1

)
·
(

2 + 1

2i − 1

)
>

(
m − i − 1

i + 2

)
·
(

2 + 1

2i − 1

)
= fm(i + 1)

Since at the extremes of the range of values of i we find that

fm(2) = m − 2 > 1 and fm(m − 1) = 1

m
·
(

2 + 1

2m−2 − 1

)
< 1

we are guaranteed that there is a value of i such that fm(i − 1) ≥ 1 and fm(i) < 1. We now show that there exists a value 
k at which fm(k − 1) > 1 and fm(k) < 1, and that this value equals k =

⌊
2
3 m + 2

3

⌋
for all m ≥ 4. For this purpose, we will 

distinguish between the three possible forms of m:

• m with (m mod 3) = 0 has associated k = � 2
3 m + 2

3 � = 2
3 m and, hence, m = 3

2 k; since we assumed that m ≥ 4, the value 
m = 6 is the smallest possible value of m of this form, for which we thus have k = 4;

• m with (m mod 3) = 1 has associated k = 2
3 m + 1

3 and, hence, m = 3
2 k − 1

2 ; the smallest possible value of m of this form 
is m = 4, for which we have k = 3;

• m with (m mod 3) = 2 has k = 2
3 m + 2

3 and, hence, m = 3
2 k − 1; the smallest possible value of m of this form is m = 5, 

for which we have k = 4.

We write f j
m(i) to indicate the three forms of the function fm(i), associated with the remainder j = 0, 1, 2 after taking 

modulus 3 of m. To prove that f j
m(k − 1) > 1 for j = 0, 1, 2, we detail the function values f j

m(k − 1) for the different forms 
of m, respectively:

• for m with (m mod 3) = 0, we have that f 0
m(k − 1) = ( 1

2 + 1
k

) ·
(

2 + 1
2k−2−1

)
;

• for m with (m mod 3) = 1, we have that f 1
m(k − 1) = ( 1

2 + 1
2k

) ·
(

2 + 1
2k−2−1

)
;

• for m with (m mod 3) = 2, we have that f 2
m(k − 1) = 1

2 ·
(

2 + 1
2k−2−1

)
.

The property f j
m(k − 1) > 1 for j = 0, 1, 2, is now readily seen to hold for all values k ≥ 3, as for each of the three function 

values the indicated product expands to 1 plus a positive additional term.
To prove that f j

m(k) < 1 for j = 0, 1, 2, we detail the function values f j
m(k) for the three forms of m distinguished above, 

respectively:
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• for m with (m mod 3) = 0, we have that f 0
m(k) =

(
1 − 1

k+1

)
·
(

1 + 1
2k−2

)
;

• for m with (m mod 3) = 1, we have that f 1
m(k) =

(
1 − 2

k+1

)
·
(

1 + 1
2k−2

)
;

• for m with (m mod 3) = 2, we have that f 2
m(k) =

(
1 − 3

k+1

)
·
(

1 + 1
2k−2

)
.

All three function values f j
m(k), j = 0, 1, 2, expand to 1 + 1

2k−2
minus a positive term, where the latter term is the smallest 

for the function value associated with j = 0. For this function value f 0
m(k), the positive term equals 

(
2k−1
k+1

)
· 1

2k−2
. Since for 

all k ≥ 3 we have that 2k−1
k+1 > 1, we find that f 0

m(k) < 1. As the positive terms in the function values f 1
m(k), f 2

m(k) are larger 

than the term 
(

2k−1
k+1

)
· 1

2k−2
in f 0

m(k), the properties f 1
m(k) < 1, f 2

m(k) < 1 readily follow.

From the arguments above, we find that, for all m ≥ 2, the stratum K k
C with k = � 2

3 m + 2
3 � has largest cardinality among 

all strata K i
C , i = 2, . . . , m, of the stratification of KC . �

Propositions 3 and 4 jointly show that the largest non-redundant triplet set that can be stored at the lattice element 
L(C), has at least |K k

C | triplets with k =
⌊

2
3 m + 2

3

⌋
. Now suppose that there exists in KC a non-redundant subset of triplets 

of strictly larger cardinality than |K k
C |. It is easily seen that this subset cannot be found by adding triplets to K k

C , since

• any triplet from the set K k+1
C ∪ . . . ∪ K m

C g-includes at least one triplet from K k
C ;

• any triplet from the set K 2
C ∪ . . . ∪ K k−1

C is g-included in at least one triplet from K k
C .

Although this observation does not guarantee that there does not exist in KC a non-redundant subset of triplets of larger 
cardinality than | K k

C |, we cautiously conjecture that it is not possible to construct such a non-redundant triplet set of larger 
cardinality.

Conjecture 5. Let J C ⊆ V (3) , | V | = n, n ≥ 2, be an arbitrary set of unordered triplets with a fixed separating set C with |C |= n − m, 
n ≥ m ≥ 2. Then, any non-redundant subset of J C includes at most | J k

C | triplets, with k = � 2
3 m + 2

3 �.

If the conjecture would be true, then 
(m

k

) · (2k−1 − 1) is a tight upper bound on the size of any non-redundant triplet set 
represented at the lattice element L(C). If, on the other hand, a counterexample would be found, proving the conjecture to 
be wrong, the maximum size of any non-redundant triplet set represented at L(C) must lie between 

(m
k

) · (2k−1 − 1) and ∑m
i=2

(m
i

) · (2i−1 − 1), where the latter expression follows from Lemma 1 and the observation that a non-redundant triplet 
set does not include any transposes.

3.2. Dynamically maintaining the triplet-set organisation

Upon fast-closure computation of a given triplet set, new triplets are derived through application of the gc-operator. 
When the triplet set is partitioned over an organisational lattice structure as described in the previous section, the newly 
derived triplets have to be inserted at the appropriate elements of this structure. Now, if application of the gc-operator 
to an ordered triplet pair yields a valid triplet, the lattice element at which this possibly new triplet has to be inserted, is 
determined to a large extent by the separating sets of the two original triplets from it was derived. The following proposition 
supports this observation.

Proposition 6. Let V be as before and let θi = 〈Ai, Bi |Ci〉 ∈ V (3) , i =1, 2, be such that θ = gc(θ1, θ2) is a valid triplet with a separating 
set C. Then, the following properties hold:

• if C1 ⊆ C2 , then C1 ⊆ C ⊆ C2;
• if C2 ⊆ C1 , then C = C1;
• otherwise, C1 ⊆ C ⊆ C1 ∪ C2 .

Proof. We prove the first property stated in the proposition. To this end, we observe that the triplet θ = gc(θ1, θ2) con-
structed from θ1, θ2, has C = C1 ∪ (A1 ∩ C2) for its separating set. From the condition C1 ⊆ C2, we readily find that C has 
C1 ⊆ C ⊆ C2, as stated. The second property is proven analogously. To prove the third property stated in the proposition, we 
observe that the separating set C of the triplet θ includes C1 and a (possibly empty) subset of C2 \ C1. We thus find that 
C1 ⊆ C ⊆ C1 ∪ C2, as stated. �

We briefly address the implications of Proposition 6 for maintaining a set of triplets in the organisational lattice struc-
ture upon fast-closure computation. We consider to this end two triplets θ1, θ2 taken from lattice elements L(C1), L(C2), 
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Fig. 2. The dynamics of inserting a valid triplet gc(θ1, θ2) into the organisational lattice structure, when C1 ⊆ C2 (a), when C2 ⊆ C1 (b), and when there is 
no subset relation between C1 and C2 (c).

respectively. If C1 ⊆ C2, the triplet gc(θ1, θ2), if valid, will be inserted in an element in the interval L([C1; C2]), as illustrated 
in Fig. 2(a). If, on the other hand, C2 ⊆ C1, the result gc(θ1, θ2), if valid, will be inserted in L(C1), as illustrated in Fig. 2(b). 
We note that in both cases the resulting triplet cannot be inserted lower in the lattice than at the level of the element 
L(C1); it also cannot be inserted higher in the lattice than at the level of the largest of the two separating sets. From the 
proposition we further have that a valid triplet that results from applying the gc-operator to two triplets taken from lattice 
elements L(C1), L(C2) with C1 and C2 not in a subset relation, may be inserted higher in the lattice than at the highest 
level of L(C1) and L(C2); the dynamics in this case are illustrated in Fig. 2(c). At which level exactly the new triplet will 
be inserted, depends on the number of variables that the first argument A1 of the one triplet has in common with the 
separating set C2 of the other triplet. The dynamics of triplet-set maintenance as occasioned by the gc-operator thus show 
that newly derived triplets cannot be inserted arbitrarily high or arbitrarily low in the organisational lattice structure. In 
fact, newly derived triplets can never be inserted lower in the lattice structure than at the level of the smallest conditioning 
set. The highest level at which a new triplet can be inserted is moreover indirectly constrained by the highest level at which 
non-empty lattice elements reside.

4. Computational advantages for fast-closure computation

The lattice structure for organising triplet sets as described in the previous section, brings computational advantages for 
various problems on independence relations. In this section, we focus on the advantages for fast-closure computation for 
semi-graphoid independence relations.

4.1. Selecting triplets for application of the GC-operator

At the core of the state-of-the-art algorithm for fast-closure computation for semi-graphoid independence relations, 
lies application of the GC-operator to all suitable pairs of triplets in the triplet set at hand. Given a triplet θ1, selecting 
appropriately paired triplets θ2 for this purpose involves checking essentially all other triplets in this set. When the set 
would be maintained as a simple list therefore, selecting all suitable pairs would take quadratic time in the number of 
triplets involved. Experimental results show unfortunately that, especially in intermediate iterations of the algorithm, this 
latter number can be several orders of magnitude larger than the size of the resultant fast-closure basis (see for example 
[1]). When the triplet set is organised in our lattice structure, the selection of all suitable pairs will take less running time 
in practice. To support this observation, the following proposition states a property by which the search for appropriately 
paired triplets for a given triplet of interest, can be focused on just a designated part of the lattice structure.

Proposition 7. Let V be a set of variables as before and let θ1 = 〈A1, B1 | C1〉 ∈ V (3) with X1 = A1 ∪ B1 ∪ C1 . Then, GC(θ1, θ2) = ∅

for all triplets θ2 = 〈A2, B2 | C2〉 ∈ V (3) for which at least one of the following properties holds:

(i) C2 \ X1 �= ∅;
(ii) A1 ∪ B1 ⊆ C2 .

Proof. To prove that GC(θ1, θ2) = ∅ if property (i) holds, we observe that the condition C2 ⊆ X1, and hence C2 \ X1 = ∅, 
must be satisfied for gc(θ1, θ2) to be a valid triplet. This same condition has to be met also for the other three applications 
of the gc-operator involved in GC to yield a valid result. If C2 \ X1 �= ∅ therefore, the set GC(θ1, θ2) is empty, as stated in 
the proposition.

We now prove that GC(θ1, θ2) = ∅ if property (ii) holds. From A1 ⊆ C2 and the fact that A2 ∩ C2 = ∅ by definition, 
we find that A1 ∩ A2 = ∅. The condition A1 ∩ A2 �= ∅ for gc(θ1, θ2) to be a valid triplet thereby is not met, and gc(θ1, θ2)

is undefined. As similar observations hold for the other applications of the gc-operator involved in GC, we conclude that 
GC(θ1, θ2) =∅, as stated in the proposition. �

From property (i) of Proposition 7 we now have that, given a triplet θ1, the search for appropriately paired triplets for 
application of the GC-operator can be restricted to the triplets stored in the interval L([∅; X1]) of the organisational lattice 



L.C. van der Gaag et al. / International Journal of Approximate Reasoning 126 (2020) 272–289 281
Fig. 3. A lattice structure over five variables, illustrating the computational implications of Proposition 7 and Corollary 8 for the selection of triplets for 
pairing with the triplet θ1 for application of the GC-operator.

structure, as triplets stored at lattice elements outside this interval all have that C2 \ X1 �= ∅. From the 2|V | − (|V | +1) lattice 
elements of the (meet) lattice structure in total therefore, just 2|X1| elements remain for searching for appropriately paired 
triplets. The number of lattice elements to be searched is thereby reduced by a factor roughly equal to 2−|V \X1| . We note 
that, dependent of the size of the set X1, this reduction can be quite substantial. By property (ii) of Proposition 7, we further 
have that the search for appropriately paired triplets for θ1 can forego all triplets stored in the interval L([A1 ∪ B1; V ]) of 
the lattice structure. We note that, as A1 ∪ B1 ⊆ X1, this second property may further restrict the interval L([∅; X1]) of 
interest identified by the first property of the proposition.

Based on the proof of Proposition 7 we formulate the following corollary, which states that at specific elements of the 
interval of interest in the lattice, the search for appropriately paired triplets can be restricted to just a subset of the stored 
triplets.

Corollary 8. Let V be as before and let θ1 = 〈A1, B1 | C1〉 ∈ V (3) . Then, for all triplets θ2 = 〈A2, B2 | C2〉 ∈ V (3) , the following 
properties hold:

• if A1 ⊆ C2 , then gc(θ1, θ2) and gc(θ1, θ T
2 ) are undefined;

• if B1 ⊆ C2 , then gc(θ T
1 , θ2) and gc(θ T

1 , θ T
2 ) are undefined.

We illustrate the computational implications of Proposition 7 and its ensuing corollary on the search for appropriately 
paired triplets by means of a small example.

Example 4. We consider the variable set V = {p, q, r, s, t} and the triplet θ1 = 〈r, s |t〉; the lattice structure associated with 
V is shown in Fig. 3. When searching for triplets θ2 that can be appropriately paired with θ1 for application of the GC-
operator, we have from property (i) of Proposition 7 that the search can be restricted to the interval L([∅; rst]); the part 
of the lattice structure where such triplets θ2 cannot reside by this property, is greyed out in the figure. From property (ii)
of the proposition, we have that the lattice elements L(C2) with {r, s} ⊆ C2 also cannot contain any suitable triplets; these 
elements are individually indicated in dark grey in the figure. We note that the search for appropriately paired triplets θ2
for θ1 is thus restricted to just six lattice elements, out of the 26 elements of the lattice structure at large; the number of 
lattice elements to be inspected is thus reduced by a factor roughly equal to 2−|V \X | = 1

4 . From Corollary 8, we further have 
that, for the remaining lattice elements L(C2) with either r ∈ C2 or s ∈ C2, two of the four applications of the gc-operator 
involved in GC cannot yield a valid triplet; the lattice elements for which this property holds, are dotted in the figure. We 
conclude that, all in all, the search for appropriately paired triplets θ2 for θ1 is effectively restricted to two lattice elements 
in full and to half of the applications of the gc-operator for four lattice elements. �

While Proposition 7 addresses the pairing of triplets θ2 with a given triplet θ1, the following lemma identifies triplets θ1
for which no θ2 can yield a new, not yet g-included triplet. Upon fast-closure computation therefore, no search for paired 
triplets is required for these triplets θ1.

Lemma 9. Let V be as before and let θ1 = 〈A1, B1 |C1〉 ∈ V (3) be a saturated triplet in which A1, B1 are singleton sets. Then, for all 
triplets θ2 ∈ V (3) , each valid θ ∈ GC(θ1, θ2) has either θ = θ1 or θ = θ T

1 .

Proof. We prove the property stated in the lemma for gc(θ1, θ2); the proofs for the other applications of the gc-operator 
involved in GC are analogous.

Let θ2 ∈ V (3) be such that θ = gc(θ1, θ2) is a valid triplet. By definition of the gc-operator, this triplet equals θ = 〈A, B |
C〉 = 〈A1 ∩ A2, (B2 \ C1) ∪ (B1 ∩ X2) | C1 ∪ (A1 ∩ C2)〉. Since A1 is a singleton set and A = A1 ∩ A2 is not empty, we find 
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that A = A1. By an analogous argument, we find that A1 ⊆ A2, which implies A1 ∩ B2 = ∅ and A1 ∩ C2 = ∅. We now 
observe that B2 \ C1 ⊆ B1 since C1 = V \ (A1 ∪ B1) and A1 ∩ B2 = ∅, and that B1 ∩ X2 ⊆ B1. Since B is not empty, we 
thus find B = B1. For the separating set C of θ , we find that C = C1 ∪ (A1 ∩ C2) = C1 since A1 ∩ C2 = ∅. We conclude that 
θ = 〈A1, B1 | C1〉 = θ1. �

Lemma 9 pertains to saturated triplets θ1 that reside at the highest level of the lattice structure at which triplets can be 
stored. It states that for these triplets there do not exist any triplets θ2 that can give a valid, not yet g-included triplet upon 
application of the GC-operator. By this property therefore, all triplets stored at the n · (n − 1) lattice elements at the highest 
level of the organisational structure, can be excluded as first arguments for the GC-operator upon fast-closure computation.

4.2. Checking for g-inclusion

The state-of-the-art algorithm for fast-closure computation for semi-graphoid independence relations in essence is an 
iterative procedure in which each iteration involves applying the GC-operator to all triplet pairs and subsequently removing 
all g-included triplets. Checking for g-inclusion is a computationally demanding step of the algorithm. When a triplet set 
would be maintained as a simple list to which newly generated triplets are appended, the overall check for g-inclusion 
would take quadratic time in the number of triplets stored, per iteration. When the triplet set is organised in our lattice 
structure, this check would in practice take less running time. For supporting this observation, we begin with formulating a 
property of transitivity of the g-inclusion relation among triplets.

Lemma 10. Let V be as before and let θi = 〈Ai, Bi | Ci〉 ∈ V (3) with Xi = Ai ∪ Bi ∪ Ci , i = 1, . . . , 3. If θ1 
 θ2 and θ2 
 θ3 , then 
θ1 
 θ3 .

Proof. Without loss of generality, we assume throughout our proof that θi 
 θ j implies Ai ⊆ A j and Bi ⊆ B j . From the 
preconditions θ1 
 θ2 and θ2 
 θ3, we now find that

• C2 ⊆ C1 ⊆ X2 and C3 ⊆ C2 ⊆ X3; and
• A1 ⊆ A2, B1 ⊆ B2, A2 ⊆ A3 and B2 ⊆ B3.

From these properties, it readily follows that A1 ⊆ A3, B1 ⊆ B3 and C3 ⊆ C1. To show that θ1 
 θ3, we now only have 
to show that C1 ⊆ X3. From A1 ⊆ A2, B1 ⊆ B2 and C1 ⊆ X2, we find that X1 ⊆ X2; by a similar argument, we find that 
X2 ⊆ X3. It follows that C1 ⊆ X1 ⊆ X3. By Definition 3, we conclude that the transitivity property as stated in the lemma, 
holds. �

The property of transitivity of the g-inclusion relation among triplets implies that if a newly generated triplet is g-
included in a triplet of a non-redundant triplet set J , it cannot g-include any other triplets from this set. Reversely, if the 
new triplet g-includes a triplet from J , we know that it cannot be g-included itself by any other triplet from J . For a newly 
generated valid triplet θ1, the following lemma now serves to characterise the separating sets of triplets that can possibly 
g-include θ1 and the separating sets of triplets that can possibly be g-included by θ1.

Proposition 11. Let V be as before and let θi = 〈Ai, Bi | Ci〉 ∈ V (3) , i = 1, 2. Then the following property holds for all j, k = 1, 2: if 
θ j 
 θk, then Ck ⊆ C j ⊆ Xk, Ak \ C j �= ∅ and Bk \ C j �= ∅.

Proof. We assume that θ j 
 θk , for some j, k = 1, 2. By Definition 3, we then have that Ck ⊆ C j ⊆ Xk . From the definition it 
also follows that either A j ⊆ Ak , B j ⊆ Bk or B j ⊆ Ak , A j ⊆ Bk . From Xk = Ak ∪ Bk ∪ Ck and the observation that the sets A j , 
B j cannot be empty, we conclude that Ak \ C j �= ∅ and Bk \ C j �= ∅. �

When a triplet set is organised in our lattice structure as described in Section 3, we have from Proposition 11 that, for 
checking g-inclusion of a new triplet θ1 with the separating set C1, it needs to be compared only to triplets θ2 stored in 
the interval L([∅; C1]). Reversely, for checking which triplets are g-included by θ1, the latter needs to be compared only 
to triplets θ2 residing in the interval L([C1; X1]); from this interval moreover, the lattice elements L(C2) with A1 ⊆ C2 or 
B1 ⊆ C2, can be excluded from investigation.

Example 5. We consider again the variable set {p, q, r, s, t} from Example 4, and its associated lattice structure in Fig. 4. We 
further consider a newly derived triplet θ1 = 〈rs, t | p〉 that is to be included in the intermediate non-redundant triplet set 
stored in the lattice structure. When searching for triplets θ2 that g-include θ1, we have by Proposition 11 that it suffices to 
consider the triplets in just the interval L([∅; p]). When searching for triplets θ2 that are g-included by θ1, we can focus 
on the interval L([p; prst]). The part of the lattice that does not need to be searched for triplets with a g-inclusion relation 
with the new triplet θ1 is greyed out in Fig. 4. We note that we also do not have to consider triplets in the elements L(C)

of L([p; prst]) for which we have that {r, s} ⊆ L(C) or {t} ⊆ L(C); these elements are individually indicated in grey in the 
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Fig. 4. A lattice structure over five variables, illustrating the computational implications of Proposition 11 for the selection of triplets for checking their 
g-inclusion relation with a new triplet θ1.

figure. All in all, we find that the search in the lattice for triplets that have a g-inclusion relation with the new triplet θ1
can be restricted to just four lattice elements, out of the 26 elements in total. �

5. Experiments and results

The state-of-the-art algorithm for fast-closure computation for semi-graphoid independence relations has a high runtime 
complexity in general, as discussed in Section 2. The two basic steps of the algorithm’s main loop each take polynomial 
time in the number of triplets in the intermediate set per iteration, but as these intermediate sets can grow to a sizeable 
part of the full closure of the starting set, the overall running time may in fact be exponential in the starting number of 
triplets. In the previous sections, we introduced a lattice structure for organising triplet sets and argued that the properties 
of this organisational structure serve to reduce the running time of fast-closure computation in practice. The insights gained 
from the new triplet-set organisation however, do not affect the algorithm’s worst-case running time. To investigate the 
computational advantages of using our lattice structure on the running times in practical settings, we conducted a range of 
experiments.

5.1. Experimental set-up

We briefly describe the set-up of our experiments before presenting our results.

The implementations In our experiments, we compared the performances of essentially two implementations1 of the state-
of-the-art fast-closure algorithm for semi-graphoid independence relations in general, as outlined in Algorithm 1. The 
FC implementation, or FC for short, is a previously existing implementation of the fast-closure algorithm, that employs a 
straightforward representation of triplet sets; this implementation is described in further detail in [2]. The LFC implementa-
tion, or LFC for short, is a new implementation which exploits our lattice structure for organising triplet sets, as described 
in the previous sections. While both implementations follow the outline of the basic algorithm of Algorithm 1, LFC explicitly 
incorporates the results from the Sections 3.2 and 4. More specifically, it exploits Proposition 7, Corollary 8 and Lemma 9 to 
reduce the computations involved in line 6 of the basic algorithm; we recall that these properties serve to avoid, as much 
as possible, applications of the gc-operator that cannot yield any new, valid triplets. The LFC implementation further builds 
upon Proposition 6 with respect to the lattice element at which a newly generated triplet is to be entered, and exploits, in 
line 7 of the basic algorithm, Proposition 11 for focusing identification of triplets that are in a g-inclusion relation with the 
newly entered triplet.

The FC implementation is a heavily optimised implementation used in various experimental settings, and the new LFC 
implementation developed for the current paper may not incorporate the same advanced level of optimisation. This differ-
ence may influence the running times of the two implementations in a way that is unrelated to the exploitation of our 
organisational lattice structure. To allow for a proper comparison of implementations with and without exploiting the prop-
erties of the lattice structure, we constructed also a stripped version of LFC, called the LFC − implementation, that uses the 
lattice structure for storing triplets, yet does not exploit any of its associated properties. Upon verifying whether a newly 
generated triplet is g-included in an already available triplet for example, LFC− will examine all available triplets, without 
using Proposition 11 to restrict the number of triplets for investigation.

1 The two implementations can be downloaded from https://github .com /mbaioletti /fast _closure and https://github .com /mbaioletti /lattice _fast _closure, re-
spectively.

https://github.com/mbaioletti/fast_closure
https://github.com/mbaioletti/lattice_fast_closure
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The instance generator We implemented an instance generator for generating starting sets of triplets, called instances, on 
which the FC, LFC and LFC− implementations of the fast-closure algorithm will be run. The instance generator takes four 
parameters, which are the number of variables n involved, the number of triplets t in the starting set, and two probabilities 
p and q with 2p + q < 1. The role of the two probability parameters is to govern the composition of the triplets in the 
generated starting sets. More specifically, in a generated triplet θ = 〈A, B | C〉, each variable V i occurs in the set A with 
probability p, in B with probability p, and in the triplet’s separating set C with probability q; with probability 1 − 2p −
q, therefore, the variable V i does not occur in the triplet θ . We used the two probability parameters to compare the 
performances of our implementations on both simpler and harder instances.

The experiments were conducted with n = 10, 20, 30, 40, 50, 60, 70, 80 variables and starting sets of t = �1.5n�, 2n, 3n,

5n, 10n triplets; for each value of n and associated t value, we generated 100 instances. We further chose two different 
value combinations for the parameters p and q. As the first combination, we set p = 0.2 and q = 0.3; this parameter 
setting results in triplets in which the separating set C on average is larger in size than the sets A and B . For the second 
combination, we set p = q = 0.25, resulting in triplets in which the size of the separating set C is comparable to that of the 
sets A and B . In order to complete the experiments in a reasonable amount of time, we set a time limit of 1200 seconds 
per instance: if, for a generated instance, no fast-closure basis was returned within this time limit, the computation was 
halted and the instance discounted.

The experiments Our experiments were organised as two sets of runs. The first set of runs were aimed at gaining insight 
in the extent to which our organisational lattice structure and its associated properties help reduce the overall burden of 
fast-closure computation. In this set of runs, we compared the running times of the FC implementation to those of LFC. 
The results from these runs are summarised in Tables 1 and 2, for the two settings of the probability parameters p, q, 
respectively. The tables report, for each implementation, the number of instances Si for which it was able to establish a 
fast-closure basis within the imposed time limit; also, the average running time T̄ i is reported, computed for each imple-
mentation over the instances it solved within the allotted time. The column rT , to conclude, reports the percentage ratio of 
the running time of the LFC implementation against the running time of FC, computed over the instances that were solved 
within the time limit by both implementations.

In the second set of runs, we compared the LFC implementation to its stripped LFC− version, with respect to the number 
of g-inclusion checks performed and the number of applications of the gc-operator. The results from this second set of runs 
are summarised in Tables 3 and 4, for the two settings of the probability parameters p, q, respectively. The tables report, for 
each implementation, the number of instances Si for which it was able to establish a fast-closure basis within the allotted
limit. The tables further give, for each implementation, the average running time Ti , the average number of g-inclusion 
checks Ii performed, and the average number of applications of the gc-operator O i , with these statistics computed over the 
instances that were solved in time. The column rT has the same meaning as that in the Tables 1 and 2. The column rI further 
reports the percentage ratio of the average number of g-inclusion checks performed by the LFC implementation against that 
performed by LFC− , computed over just the instances that were solved within the time limit by both implementations, and 
the column rO reports a similar percentage ratio for the number of applications of the gc-operator.

5.2. Results

We present and discuss the results obtained from the two sets of runs separately.

First set of runs We recall that the first set of experimental runs were performed to gain insight in the extent to which our 
organisational structure for triplet sets helps reduce the overall burden of fast-closure computation. The results in Table 1, 
obtained from instances with p = 0.2, q = 0.3, show that the LFC implementation was faster than FC and was able to solve 
a larger number of instances, for each parameter combination n, t .

With respect to running times, we observe that, in general, for each value of n, the averaged running time of fast-closure 
computation increases with the number of starting triplets t . This finding conforms to expectation since, roughly spoken, 
more starting triplets tend to give more triplet combinations to which the gc-operator can be applied, which in turn may 
yield more new triplets for the algorithm’s next iteration. The only evident exception was found for instances with the 
parameter combination n = 10, t = 100, on which both implementations were considerably faster than on instances with 
n = 10, t = 50. A possible explanation for this finding is that, for a fixed n, increasing the number of starting triplets beyond 
a specific t value can make instances become simpler as the number of new triplets per iteration may tend to decrease and 
as a consequence the number of iterations may decrease as well; the inability of both FC and LFC to solve all generated 
instances within the time limit however, shows that still some very hard cases can result from our generating scheme. 
Further experimental studies, with increasing numbers of starting triplets per n value, are required however, to support the 
existence of a (possibly steep) phase transition in hardness of instances.

The number of instances solved within the time limit by the LFC implementation was 3 638, while FC solved 3 594
instances from among the total of 4 000 instances offered as input to the two implementations. For the n, t value combina-
tions with n = 20, 100 ≤ t ≤ 200, neither of the implementations were able to complete the fast-closure computation within 
the alloted time for any of the generated instances. Further experiments, not detailed here, revealed that establishing the 
fast-closure bases for these instances required more than 3 600 seconds each, thereby showing that these instances were 
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Table 1
Experimental results for the average running times and the numbers of successfully com-
pleted instances, obtained with the LFC and FC implementations respectively, on instances 
with p = 0.2, q = 0.3.

Instance LFC FC Summary (in %)

n t S1 T̄1 S2 T̄2 rT

10 15 100 0.29224 100 1.70410 17.15
10 20 100 1.93784 100 16.21171 11.95
10 30 100 28.34389 94 148.78038 13.18
10 50 100 123.42190 88 203.44953 40.30
10 100 99 42.11258 95 89.16604 44.80

20 30 99 0.14763 99 1.04615 14.11
20 40 95 42.17774 89 16.03187 10.84
20 60 48 52.26565 43 110.10540 9.49

30 45 100 0.05494 100 0.35082 15.66
30 60 100 0.09120 100 0.57073 15.98
30 90 100 3.98559 99 0.91641 14.00
30 150 88 42.66994 82 51.81888 10.79
30 300 10 111.01060 6 663.46950 5.39

40 60 100 0.00066 100 0.00401 16.46
40 80 100 0.00182 100 0.01328 13.70
40 120 100 0.01012 100 0.05809 17.42
40 200 100 0.02813 100 0.24539 11.46
40 400 99 3.29188 99 26.89525 12.24

50 75 100 0.00018 100 0.00268 6.72
50 100 100 0.00038 100 0.00629 6.04
50 150 100 0.00148 100 0.01655 8.94
50 250 100 0.00872 100 0.07938 10.99
50 500 100 0.05348 100 0.43107 12.41

60 90 100 0.00009 100 0.00316 2.85
60 120 100 0.00004 100 0.00550 0.73
60 180 100 0.00060 100 0.01519 3.95
60 300 100 0.00297 100 0.04626 6.42
60 600 100 0.02202 100 0.21501 10.24

70 105 100 0.00000 100 0.00409 0.00
70 140 100 0.00003 100 0.00780 0.38
70 210 100 0.00059 100 0.01860 3.17
70 350 100 0.00295 100 0.05599 5.27
70 700 100 0.01329 100 0.22023 6.03

80 120 100 0.00003 100 0.00550 0.55
80 160 100 0.00000 100 0.00979 0.00
80 240 100 0.00092 100 0.02542 3.62
80 400 100 0.00367 100 0.07441 4.93
80 800 100 0.01290 100 0.26756 4.82

particularly hard to solve. Also the instances with n = 30, t = 300 proved difficult to solve: the LFC implementation solved 
just ten of these instances within the time limit, while FC successfully completed only six of them. With increasing n values 
and the linearly related numbers of starting triplets t used in the experiments, the instances become easier and easier to 
solve, with the average times decreasing to less than one second. The most plausible explanation of this latter finding is 
that, for larger values of n, with the associated t values used, the likelihood of the gc-operator being applicable to two 
triplets gets smaller and smaller. This explanation is corroborated by our finding that the established fast-closure basis for 
such larger instances is often equal to the starting set of triplets or includes just a quite small percentage of new triplets. 
Further experimental investigation of the t values in relation to the value of n, is required to establish at which values of t
as a function of n, non-trivial fast-closure bases begin to result.

For the percentage ratio rT of the running time of the LFC implementation against that of FC, we note that a higher 
reported value indicates that the gain in efficiency of LFC over FC is smaller; a ratio larger than 100% would in fact indicate 
that FC would be more efficient than LFC over the solved instances. The highest value of rT was found to be 44.8% however, 
for the instances with n = 10, t = 100. The small and even decreasing values for the ratio rT with increasing values of 
n, demonstrate that the LFC implementation is much faster than FC, at least so for the easier instances. As the ratios rT

reported in Tables 1 and 2 include efficiency effects on the differences in running times that are unrelated to the exploitation 
of our organisational lattice structure, we will return to this observation in our discussion of the results of the second set 
of experimental runs.
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Table 2
Experimental results for the average running times and the numbers of successfully completed 
instances, obtained with the LFC and FC implementations respectively, on instances with p =
0.25, q = 0.25.

Instance LFC FC Summary (in %)

n t S1 T̄1 S2 T̄2 rT

10 15 100 3.39615 100 17.10122 19.86
10 20 100 15.42097 98 63.78513 21.24
10 30 100 61.40180 97 186.28246 29.91
10 50 100 53.78122 95 110.73517 30.38
10 100 100 16.52861 100 24.01262 68.83

20 30 16 95.22219 10 31.05820 6.46

30 45 64 83.56870 50 154.03338 5.92
30 60 23 102.37674 14 154.41871 7.05

40 60 96 12.53974 94 21.15840 7.38
40 80 84 50.26715 79 65.36171 7.80
40 120 47 154.03609 32 284.50275 6.13

50 75 100 0.06766 100 0.76475 8.85
50 100 100 1.44286 100 15.96336 9.04
50 150 98 12.10201 94 46.52380 6.87
50 250 68 65.37225 56 185.39348 5.65

60 90 100 0.01002 100 0.07698 13.02
60 120 100 0.01664 100 0.14922 11.15
60 180 99 0.15801 99 1.49345 10.58
60 300 98 2.36136 98 25.20788 9.37
60 600 82 103.51238 57 233.96428 6.42

70 105 100 0.00192 100 0.02184 8.79
70 140 100 0.00420 100 0.04426 9.49
70 210 100 0.00955 100 0.11276 8.47
70 350 100 0.04834 100 0.63682 7.59
70 700 100 2.19582 100 21.85140 10.05

80 120 100 0.00059 100 0.01675 3.52
80 160 100 0.00135 100 0.02601 5.19
80 240 100 0.00688 100 0.08797 7.82
80 400 100 0.01517 100 0.21788 6.96
80 800 100 0.12882 100 1.44934 8.89

The results in Table 2, obtained from instances with the parameter setting p = 0.25, q = 0.25, are in line with those 
reported in Table 1, yet reveal that the generated instances are more difficult to solve in general than the instances generated 
with p = 0.2, q = 0.3. The averaged running times of the LFC and FC implementations reported in Table 2 for instances 
with n ≥ 20, are consistently higher than those reported in Table 1. For the 47 instances with n = 40, t = 120, solved 
within the time limit, for example, Table 2 reports that LFC used some 154 seconds on average, while Table 1 reveals 
that all instances with this same combination of n, t values, yet generated with the parameter setting p = 0.2, q = 0.3, 
were particularly easy, requiring less than one second for their solution on average. Of the total of 4 000 instances offered 
to the two implementations, LFC and FC successfully completed fast-closure computation for 2 675 and 573 instances, 
respectively, within the allotted time. Of the 100 instances with n = 20, t = 30, the LFC implementation could solve only 
sixteen instances in time and FC just ten. Both implementations were not able to complete the fast-closure computation for 
any of the instances with n = 20, 40 ≤ t ≤ 200, and also were not able to solve any instance with n = 30, 90 ≤ t ≤ 300, with 
n = 40, 200 ≤ t ≤ 400 or with n = 50, t = 500.

Second set of runs We recall that the second set of experimental runs were aimed at gaining insight in the computational 
gains from the properties of the organisational lattice structure, as discussed in the Sections 3.2 and 4. For this purpose, 
the LFC implementation and its stripped LFC− version were compared as to the number of g-inclusion checks performed 
and the number of applications of the gc-operator. The experimental setting for this second set of runs was the same as 
for the first set of runs: the same values of the parameters n, t, p, q, the same number of instances and the same time 
limit were used. The results in Table 3, obtained from instances with p = 0.2, q = 0.3, demonstrate the computational 
advantages of exploiting the various properties of the organisational structure. With respect to running times, we observe 
that LFC is consistently faster on the instances that were solved by both implementations than LFC− . We also observe that 
LFC performs fewer g-inclusion checks and applications of the gc-operator than LFC− . Especially for the larger instances, 
the difference between LFC and LFC− in terms of these basic operations is quite striking, with LFC often performing fewer 
than 10% of the operations performed by LFC− . The results in Table 4, obtained from instances with the parameter setting 
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Table 3
Experimental results for the number of g-inclusion checks and gc-applications, obtained with the LFC and LFC − implementations respectively, on instances 
with p = 0.2, q = 0.3.

Instance LFC LFC− Summary (in %)

n t S1 T̄1 Ī1 Ō 1 S2 T̄2 Ī2 Ō 2 rT rI rO

10 15 100 5.51300 5.480e+07 1.382e+06 100 9.00174 1.806e+08 1.879e+06 61.24 30.34 73.53
10 20 100 35.71958 3.838e+08 5.091e+06 100 55.64773 1.200e+09 6.622e+06 64.19 31.98 76.88
10 30 98 99.87797 1.027e+09 1.112e+07 97 128.72476 2.631e+09 1.227e+07 67.88 35.02 88.62
10 50 100 102.72593 1.092e+09 1.417e+07 100 146.14107 3.177e+09 1.547e+07 70.29 34.39 91.60
10 100 100 43.34913 4.950e+08 7.802e+06 100 47.51959 8.751e+08 8.040e+06 91.22 56.57 97.04

20 30 13 258.20675 2.736e+09 5.447e+07 10 134.62556 3.511e+09 6.488e+07 27.47 7.12 23.40

30 45 57 79.87952 6.276e+08 2.066e+07 51 136.92963 3.390e+09 4.886e+07 24.45 6.68 20.65
30 60 16 121.69160 9.354e+08 2.972e+07 11 62.01840 1.582e+09 3.303e+07 20.56 5.06 16.39

40 60 100 9.09404 7.579e+07 1.969e+06 98 2.84747 7.153e+07 1.996e+06 31.27 8.59 20.87
40 80 84 39.91208 2.844e+08 7.559e+06 81 60.17316 1.562e+09 1.913e+07 31.63 8.74 22.08
40 120 35 144.29563 9.504e+08 2.845e+07 30 277.70144 6.527e+09 1.095e+08 24.58 6.38 14.67

50 75 100 5.44947 8.054e+07 5.393e+05 98 0.09967 1.544e+06 1.635e+05 36.20 8.44 17.06
50 100 100 0.30131 1.626e+06 1.371e+05 100 0.70042 1.544e+07 6.603e+05 43.02 10.53 20.77
50 150 98 12.14560 9.848e+07 2.175e+06 97 24.23507 5.809e+08 9.720e+06 26.35 7.12 15.11
50 250 63 133.68460 7.769e+08 1.825e+07 53 217.00852 5.455e+09 8.208e+07 24.26 5.18 10.67

60 90 100 0.00539 8.044e+03 3.836e+03 100 0.01567 1.042e+05 5.643e+04 34.40 7.72 6.80
60 120 100 0.01332 1.391e+04 6.856e+03 100 0.03502 2.294e+05 1.128e+05 38.04 6.06 6.08
60 180 100 0.40491 1.575e+06 9.534e+04 100 1.15226 2.658e+07 7.784e+05 35.14 5.92 12.25
60 300 100 2.86227 1.323e+07 5.512e+05 100 8.54102 2.205e+08 4.236e+06 33.51 6.00 13.01
60 600 74 184.95981 6.901e+08 1.672e+07 58 161.86385 4.104e+09 8.091e+07 24.69 2.42 5.87

70 105 100 0.00160 1.020e+03 1.141e+03 100 0.00960 2.904e+04 5.153e+04 16.67 3.51 2.21
70 140 100 0.00428 2.727e+03 2.396e+03 100 0.02337 7.539e+04 9.863e+04 18.31 3.62 2.43
70 210 100 0.01030 5.502e+03 5.344e+03 100 0.06198 2.163e+05 2.428e+05 16.62 2.54 2.20
70 350 100 0.15701 4.101e+05 3.604e+04 100 0.43872 6.464e+06 8.845e+05 35.79 6.34 4.07
70 700 100 6.21826 2.563e+07 7.749e+05 100 15.16104 4.095e+08 9.090e+06 41.01 6.26 8.53

80 120 100 0.00060 2.971e+02 5.246e+02 100 0.00799 1.984e+04 5.960e+04 7.51 1.50 0.88
80 160 100 0.00210 9.457e+02 1.209e+03 100 0.01847 4.952e+04 1.113e+05 11.37 1.91 1.09
80 240 100 0.00599 1.628e+03 2.438e+03 100 0.04586 1.193e+05 2.563e+05 13.06 1.36 0.95
80 400 100 0.03464 5.248e+04 1.087e+04 100 0.21906 1.254e+06 7.736e+05 15.82 4.18 1.41
80 800 100 0.18260 1.356e+05 3.902e+04 100 1.12584 6.950e+06 3.604e+06 16.22 1.95 1.08

p = 0.25, q = 0.25, are much in line with those reported in Table 3, and in fact demonstrate that the computational gains 
derived from properties of the organisational lattice structure are larger for the harder instances.

To conclude, we take a closer look at the instances with n = 10, t ≥ 50. Both Tables 3 and 4 show that the numbers of 
applications of the gc-operator by the LFC and LFC− implementations are more or less the same, with LFC− applying the 
operator just a little more often than LFC. A possible explanation for this finding is that, with this combination of n, t values 
and the parameter values for p, q under study, many instances are generated for which the fast-closure basis is composed 
of saturated triplets with an empty separating set. With the parameter setting n = 10, t = 100, p = 0.2, q = 0.3, for example, 
this phenomenon was seen in 89 of the 100 generated instances. For such instances, the triplets that are generated upon 
fast-closure computation, tend to get concentrated in a single element of the lattice structure, as a result of which the 
organisation of the basis under construction is similar to a simple list and the properties of the lattice structure do not 
bring any computational advantages. To corroborate this observation, Table 5 describes the dynamics of the organisational 
lattice structure for a single run of the LFC implementation on an instance with the parameter setting under consideration. 
After each iteration of the basic algorithm for fast-closure computation, the table reports the number of non-empty elements 
in the lattice and the height of the lattice, that is, the highest level at which a non-empty element resides, plus one. The 
table shows that, in the run under study, triplets initially are distributed over 148 elements on the first seven levels of 
the lattice structure. As more iterations are executed, the number of non-empty lattice elements, and hence the number of 
different separating sets occurring in the triplets, are reduced to just eight after the fifth iteration and eventually fall to one. 
Simultaneously, the height of the lattice structure is reduced to one, indicating that the fast-closure basis computed for the 
instance under study is composed of triplets with the empty set for their separating set. In this run, the number of triplets 
in the fast-closure basis equals the 511 which is the maximum number of saturated triplets with an empty separating set.

6. Concluding observations

Despite important advances in the past decades, fast-closure computation for (semi-graphoid) independence relations is 
still computationally challenging in general. In this paper, we have proposed a lattice-based representation for triplet sets 
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Table 4
Experimental results for the number of g-inclusion checks and gc-applications, obtained with the LFC and LFC − implementations respectively, on instances 
with p = 0.25, q = 0.25.

Instance LFC LFC− Summary (in %)

n t S1 T̄1 Ī1 Ō 1 S2 T̄2 Ī2 Ō 2 rT rI rO

10 15 100 0.25641 2.712e+06 1.475e+05 100 0.42638 1.116e+07 2.395e+05 60.14 24.31 61.58
10 20 100 3.18333 3.242e+07 1.215e+06 100 5.70802 1.241e+08 2.039e+06 55.77 26.12 59.57
10 30 100 37.32756 3.873e+08 7.884e+06 100 62.01636 1.553e+09 1.061e+07 60.19 24.94 74.33
10 50 97 206.72493 2.139e+09 2.560e+07 95 277.71476 5.334e+09 2.562e+07 69.05 36.60 91.23
10 100 95 134.78078 1.356e+09 2.399e+07 93 208.42896 4.630e+09 2.483e+07 61.21 26.94 96.64

20 30 100 2.56051 2.377e+07 1.040e+06 100 7.61312 2.288e+08 3.190e+06 33.63 10.39 32.61
20 40 92 9.96577 9.538e+07 3.256e+06 91 13.32583 3.365e+08 6.352e+06 40.09 16.61 29.01
20 60 56 53.96527 4.506e+08 1.154e+07 53 42.41975 8.836e+08 2.350e+07 28.82 8.75 21.96
20 100 1 0.42700 4.558e+05 4.001e+05 1 2.37900 1.214e+07 3.373e+06 17.95 3.76 11.86

30 45 100 0.00661 1.345e+04 5.950e+03 100 0.01393 1.032e+05 3.470e+04 47.45 13.03 17.15
30 60 100 0.46784 3.359e+06 2.240e+05 100 1.44357 3.932e+07 7.698e+05 32.41 8.54 29.10
30 90 100 1.60082 1.012e+07 5.845e+05 100 5.21942 1.357e+08 2.173e+06 30.67 7.46 26.90
30 150 96 12.82293 1.001e+08 3.461e+06 96 50.72901 1.323e+09 1.868e+07 25.28 7.57 18.52
30 300 11 126.18510 5.906e+08 3.220e+07 8 315.79800 5.326e+09 2.122e+08 14.86 2.63 7.04

40 60 100 0.00083 9.372e+02 9.954e+02 100 0.00358 1.346e+04 1.894e+04 23.29 6.96 5.26
40 80 100 0.00184 1.945e+03 1.926e+03 100 0.00836 3.354e+04 3.755e+04 22.07 5.80 5.13
40 120 100 0.00961 3.760e+04 7.273e+03 100 0.03327 3.571e+05 1.018e+05 28.89 10.53 7.15
40 200 100 0.04449 6.820e+04 2.406e+04 100 0.15599 1.603e+06 4.253e+05 28.52 4.25 5.66
40 400 97 8.72945 3.526e+07 1.648e+06 97 25.34841 6.256e+08 1.182e+07 34.44 5.64 13.95

50 75 100 0.00010 8.854e+01 2.591e+02 100 0.00253 6.744e+03 2.276e+04 3.95 1.31 1.14
50 100 100 0.00051 3.034e+02 5.713e+02 100 0.00589 1.543e+04 4.222e+04 8.68 1.97 1.35
50 150 100 0.00182 7.886e+02 1.424e+03 100 0.01770 4.302e+04 9.943e+04 10.30 1.83 1.43
50 250 100 0.00848 2.252e+03 4.128e+03 100 0.06682 1.583e+05 2.963e+05 12.69 1.42 1.39
50 500 100 0.07850 6.525e+04 2.522e+04 100 0.46577 3.128e+06 1.470e+06 16.85 2.09 1.72

60 90 100 0.00007 1.159e+01 1.255e+02 100 0.00444 8.255e+03 3.216e+04 1.50 0.14 0.39
60 120 100 0.00030 1.692e+02 3.189e+02 100 0.00723 1.751e+04 5.861e+04 4.15 0.97 0.54
60 180 100 0.00108 2.433e+02 6.245e+02 100 0.01699 3.917e+04 1.321e+05 6.34 0.62 0.47
60 300 100 0.00471 5.498e+02 1.623e+03 100 0.05429 1.161e+05 3.709e+05 8.68 0.47 0.44
60 600 100 0.02797 2.047e+03 6.628e+03 100 0.33687 5.562e+05 1.530e+06 8.30 0.37 0.43

70 105 100 0.00009 0.000e+00 6.258e+01 100 0.00460 1.092e+04 4.368e+04 1.93 0.00 0.14
70 140 100 0.00018 2.359e+01 1.243e+02 100 0.00862 1.998e+04 7.806e+04 2.06 0.12 0.16
70 210 100 0.00162 7.487e+01 2.910e+02 100 0.02026 4.619e+04 1.767e+05 8.01 0.16 0.16
70 350 100 0.00334 7.077e+01 7.116e+02 100 0.05472 1.255e+05 4.902e+05 6.11 0.06 0.15
70 700 100 0.01750 3.649e+02 2.886e+03 100 0.25651 5.295e+05 1.975e+06 6.82 0.07 0.15

80 120 100 0.00010 0.000e+00 2.938e+01 100 0.00648 1.428e+04 5.712e+04 1.54 0.00 0.05
80 160 100 0.00030 0.000e+00 5.653e+01 100 0.01071 2.544e+04 1.018e+05 2.80 0.00 0.06
80 240 100 0.00127 0.000e+00 1.179e+02 100 0.02412 5.736e+04 2.294e+05 5.25 0.00 0.05
80 400 100 0.00350 2.359e+01 3.476e+02 100 0.06911 1.610e+05 6.390e+05 5.06 0.01 0.05
80 800 100 0.01586 9.436e+01 1.419e+03 100 0.29046 6.503e+05 2.562e+06 5.46 0.01 0.06

Table 5
The dynamics of the lattice structure, per iteration of the basic 
algorithm, for a run of the LFC implementation on an instance 
with n = 10, t = 100, p = 0.2, q = 0.3.

iteration # elements height

1 148 7
2 181 6
3 147 6
4 70 5
5 8 3
6 1 1
7 1 1

to support more efficient computation of fast-closure bases in practice. This lattice representation allowed us to study the 
structure of triplet sets in general. From the insights gained, we formulated various useful properties, for example for reduc-
ing the computations involved in maintaining a non-redundant triplet set by allowing redundancy checks to be restricted 
to parts of the lattice and for effectively selecting triplets for application of the main operator involved in fast-closure 
computation. In an experimental setting, we compared different implementations of the state-of-the-art algorithm for fast-
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closure computation, with and without using the supporting lattice structure; for the comparison of these implementations, 
an instance generator was used, allowing properties of the generated instances of triplet sets to be governed by multiple 
parameters. The results obtained from our experiments demonstrate that the computational advantages of using the new 
lattice-based representation for independence relations can be substantial in practice.

Having studied the advantages of our lattice representation for semi-graphoid independence relations, we are now ex-
tending our investigations to other types of relation, among which are the graphoid independence relations; we expect that 
triplet sets of different types of relation embed more structural properties than triplet sets of semi-graphoid relations in 
general, which in turn may be exploited to further reduce computation times. In addition, we plan to further investigate 
such structural properties from a more foundational perspective, with the ultimate goal of arriving at algorithms for ma-
nipulating independence relations with improved properties of scalability. For the same goal, we further intend to expand 
our experimental studies, by investigating the hardness of instances of triplet sets, in terms of the parameters governing the 
composition of the triplets themselves and of the sizes of the starting sets, for fast-closure computation.
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