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Universidade Federal do Rio Grande do Norte

Natal, Brazil

Email: {bedregal,regivan}@dimap.ufrn.br

Abstract

In this paper, we introduce the concept of residuated implications derived from

quasi-overlap functions on lattices and prove some related properties. In addition,

we formalized the residuation principle for the case of quasi-overlap functions

on lattices and their respective induced implications, as well as revealing that the

class of quasi-overlap functions that fulfill the residuation principle is the same

class of continuous functions according to topology of Scott. Also, Scott’s con-

tinuity and the notion of densely ordered posets are used to generalize a classifi-

cation theorem for residuated quasi-overlap functions. Finally, the concept of au-

tomorphisms are extended to the context of quasi-overlap functions over lattices,

taking these lattices into account as topological spaces, with a view to obtaining

quasi-overlap functions conjugated by the action of automorphisms.

Keywords: Quasi-overlap functions, Scott topology, Residuated implications,

Residuation principle, Lattices

1. Introduction

Overlap functions were introduced by Bustince et al. [4] as a class of aggre-

gate functions with two entries over the interval [0, 1] to be applied to the image

processing field. Basically, these functions transform pixel images with values at

[0, 1]. Many researchers have began to develop the theory of overlap functions to

explore their potentialities in different scenarios, such as problems involving clas-

sification or decision making [12, 6, 19, 22, 23, 24, 26] and from the theoretical

Preprint submitted to xxxxxxxxxx February 28, 2020

http://arxiv.org/abs/2002.12267v1


point of view [1, 8, 9, 21, 27]. However, when you consider that pixels (or signs)

may contain uncertainties, for example noise, this noise information can be cap-

tured on objects that extend real numbers, for example intervals, fuzzy numbers

or interval-valued fuzzy sets, intuitionistic fuzzy sets and soft sets, which offer

different perspectives for the structures containing the uncertainties. In this case,

the notion overlap needed to be extended to handle this types of objects. In this

perspective, in [21] the authors generalized the notion of overlap to the context

of lattices and introduced a weaker definition, called a quasi-overlap, that arises

from the removal of the continuity condition. To this end, the main properties of

(quasi-) overlaps over bounded lattices, namely: convex sum, migrativity, homo-

geneity, idempotency, and cancellation law was investigated, as well as an overlap

characterization of Archimedian overlap functions was presented.

In this paper, we propose a theoretical framework of order theory and topo-

logy with a view to establishing a connection between the notion of convergence

in terms of order and Scott’s topology, to obtain a pair of residuated applications,

namely: (O, IO), where O is a quasi-overlap function and IO is an induced im-

plication of O. We proved that the class of quasi-overlap functions that fulfill

the residuation principle is the same class of Scott-continuous quasi-overlap func-

tions. Also, Scott’s continuity and the notion of densely ordered posets are used to

generalize a classification theorem for residuated quasi-overlap functions. Finally,

the concept of automorphisms are extended to the context of quasi-overlap func-

tions over lattices, taking these lattices into account as topological spaces, with

a view to obtaining quasi-overlap functions conjugated by the action of automor-

phisms.

To this end, the Section 2 presents an interaction between order theory and

topology. The directed complete posets class (DCPO’s) and the filtered complete

posets class (FCPO’s) as well as the lattice class are briefly explored. This sec-

tion also shows the notion of convergence via nets (a generalization of sequences

for general topological spaces.). Finally, an overview of Galois connections and

residuated mappings is recalled. In Section 3, we present some results investi-

gated on residuated implications induced by fuzzy conjunctions that extend over-

lap functions to any lattice and some properties that these implications satisfy

are presented. This section also shows how the notion of dense order coincides

with the concept of density of topological spaces in Scott’s topology. In section

4, presents a definition that generalizes automorphisms of bounded lattices, tak-

ing these lattices as topological spaces and the class of quasi-overlap functions is

closed under Ω-automorphisms, where Ω represents, in this context, Scott’s topol-

ogy. In addition, some immediate properties of the action of Scott-automorphisms
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on quasi-overlap functions are explored. Finally, Section 5 gives some final re-

marks.

2. Preliminaries

2.1. Partial orders

In this subsection we will review some results of order theory, the branch of

mathematics that deals among other things with order relations. For more details

we recommend [7, 11, 13, 17, 25].

Definition 2.1. Let 〈X,≤〉 be a poset. A subset D of X is called directed if D is

not empty and ∀u, v ∈ D, ∃w ∈ D such that u ≤ w and v ≤ w. On the other

hand, a subset F of X is called dual directed or co-directed or filtered if F is not

empty and ∀u, v ∈ F , ∃w ∈ F such that w ≤ u and w ≤ v.

Remark 2.1. Since one usually can work on the dual order explicitly, notions of

directed set and filtered set satisfy the principle of duality.

In what follows, it is easy to prove the

Lemma 2.1. Let 〈X,≤〉 be a poset. The following are valid:

(i) A non-empty chain in X is directed and filtered;

(ii) For any x ∈ X , the set ↓x = {y ∈ X | y ≤ x} is directed and sup ↓x = x;

(iii) For any x ∈ X , the set ↑x = {y ∈ X | x ≤ y} is filtered and inf ↑x = x;

(iv) In a finite poset X , a subset of X has maximal element ⊤ if, and only if, it

is directed;

(v) In a finite poset X , a subset of X has minimal element ⊥ if, and only if, it

is filtered.

Remark 2.2. The sets ↓ x and ↑ x are known in the literature by principal ideal

generated by x and principal filter generated by x respectively.

Definition 2.2 ([7], p. 587). A poset 〈X,≤〉 is called a complete partial order

with respect to directed sets (DCPO), if any directed subset of X has supremum

in X . Dually, a poset 〈X,≤〉 is called a complete partial order with respect to

filtered sets (FCPO), if any filtered subset of X has infimum in X .
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Remark 2.3. We remember that every poset 〈X,≤〉 in which any two elements

x, y ∈ X have infimum and supremum, denoted respectively by x ∧ y and x ∨ y,

is called lattice. We also remember that a lattice is said to be complete, if for

every non-empty subset Y of X , Y has infimum and supremum in X . Thus, every

complete lattice is a DCPO and a FCPO.

Definition 2.3 (Order-density of posets). Let 〈X,≤〉 be a poset. A subset Y of

X is order dense in X if for any elements x, y ∈ X satisfying the condition x < y,

there exists an element z in Y such that x < z < y. If X himself has order dense

then 〈X,≤〉 has order dense.

2.2. Scott topology

This subsection will discuss important issues for the development of this paper.

It is assumed that the reader is familiar with some elementary notions of general

topology, such as the notions of topological spaces, open and closed sets, the basis

of a topology, as well as the separation axioms. Some of the results presented are

well known in the literature, however, For more details we suggest [11, 15, 18].

Definition 2.4 (Scott’s open sets). Let 〈X,≤〉 be a DCPO and A ⊆ X . The set

A says a Scott open if it satisfies:

(i) If x ∈ A and x ≤ y then y ∈ A;

(ii) If D ⊆ X is a set directed and supD ∈ A then D ∩A 6= ∅.

Proposition 2.1 ([11], Remark II-1.4). Let 〈X,≤〉 be a DCPO and consider the

set

σ(X) = {A ⊆ X |A is a Scott open set}.

Under these conditions, σ(X) is a topology on X . Moreover, 〈X, σ(X)〉 is a

topological T0
1 space.

Remark 2.4. σ(X) it’s well-known Scott’s topology on X .

We recall that the notation 〈X, T ,≤〉 is used to denote a set X endowed with

a topology T and a order relation “≤” on X . Such a structure is called ordered

topolo-gical space. From now on, every DCPO will be considered an ordered

topological space, in which the topology considered is Scott’s topology.

1 A topological space X is a T0 space or Kolmogorov space if, for any two different points x

and y there is an open set which contains one of these points and not the other.
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Proposition 2.2 ([11], Proposition II-2.1). Given a function f : X → Y , where

X and Y are DCPO’s. The following conditions are equivalents:

(i) f is continuous with respect to Scott’s topology: f−1(V ) ∈ σ(X), for all

V ∈ σ(Y );

(ii) f preserves supremum of directed sets, that is, f preserves order and satis-

fies: f(supD) = sup f(D), for every directed set D of X .

Similarly, the dual theorem can be demonstrated.

Proposition 2.3. Given a function f : X → Y , where X and Y are FCPO’s. The

following conditions are equivalents:

(i) f is continuous with respect to Scott’s topology: f−1(V ) ∈ σ(X), for all

V ∈ σ(Y );

(ii) f preserves infimum of filtered sets, that is, f(inf F ) = inf f(F ), for every

set filtered F of X .

Therefore, considering the Remark 2.3 and the Propositions 2.2 and 2.3, the

next result is quickly obtained.

Theorem 2.1. Given a function f : X → Y , where X and Y are complete lat-

tices. The following conditions are equivalents:

(i) f is continuous with respect to Scott’s topology: f−1(V ) ∈ σ(X), for all

V ∈ σ(Y );

(ii) f preserves supremum of directed sets and infimum of filtered sets: f pre-

serves order and satisfies: f(supD) = sup f(D) and f(inf F ) = inf f(F ),
for every directed set D and every set filtered F , both subsets of X .

2.3. Scott-convergence

An interesting concept in topological spaces is that of convergence, as well as

the properties of boundary points. In this section we will discuss these and other

subject in terms of nets. For more details we suggest [11, 15].
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Definition 2.5. A net in a set X is a function j 7→ xj : J → X whose domain is

a join-semilattice 2. Nets are also denoted by (xj)j∈J , by (xj) or xj , whenever the

context is clear. If the set X is provided with an order, then the net xj is called

monotonic if i ≤ j implies xi ≤ xj . A subnet of (xj) is any net of the form

(xψ(i))i∈I , where I is a directed set and there is an application ψ : I → J such

that for each j ∈ J there is eventually ψ(i) ≥ j in I .

In the following definition, it is verified that the convergence of nets is a natural

generalization of the convergence of sequences.

Definition 2.6. A net (xj)j∈J in a topological space X converges to x ∈ X (no-

tation xj → x) if, whenever U ⊆ X is open and x ∈ U , so there is a i ∈ J such

that xj ∈ U for all j ≥ i.

Remark 2.5. Each subnet of a net that converges to a point (relative to a topo-

logical space) converges to the same limit. [15, Affirmation b, p. 74]

We still recall that given a topological space X , a collection A = {Aλ}λ∈I
of subsets of X is called a covering of X , when X ⊆

⋃

λ∈I Aλ. We say A is an

open (closed) cover of X when all elements of the cover are opened (closed). A

topological space X is called compact when all open covering of X has a finite

subcollection that covers it. We say that Y is a compact subset of X if Y , with the

topology induced by X , is a compact topological space.

We now present a well-known characterization of topological space compact-

ness via nets.

Proposition 2.4 ([15], Theorem 2, p. 136). A topological space X is compact if

and only if each net in X admits a subnet converging to a point of X .

In general, a net in a topological space X can converge to several different

points. For example, consider the two element set {a, b} with topology

{∅, {b}, {a, b}}. Then every net, that converges to a also converges to b and the

net, which is constant b converges only to b. However, the following proposition

points out spaces in which the convergence is unique in the sense that if a net sn
converges to s and also to a point t, then s = t. Before, we recall some useful

2We recall that J is a join-semilattice if J is a partially ordered set that has a join (a least upper

bound) for any nonempty finite subset of J .
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notions. By a neighbourhood of a subset A (in particular of a singleton and there-

fore of a point) in a topological space X , we mean a subset of X that contains an

open set containing A. We say that a topological space X is Hausdorff if any two

distinct points of X have disjoint neighbourhoods.

Proposition 2.5 ([15], Theorem 3, p. 67). A topological space X is a Hausdorff

space if and only if each net in X converges to at most one point.

In view of proposition 2.5 above, the notion of lower bound and upper bound

for nets is given below. This is a particular case of Definition II-1.1 in [11], for

the case where X is a complete lattice.

Definition 2.7. Given a complete latticeX and a net (xi)i∈J inX , the lower limit

of (xi)i∈J is:

limi∈Jxi = sup
i∈J

inf
j≥i

xj (1)

and its upper limit is:

limi∈Jxi = inf
i∈J

sup
j≥i

xj (2)

Let S be the class of those elements u ∈ X such that u ≤ limi∈Jxi and T be the

class of those elements w ∈ X such that limi∈Jxi ≤ w. For each such elements

we say that u is a lower S-limit and w is a upper T -limit of (xi)i∈J . In this case

we write respectively u ≡S limi∈J xi and w ≡T limi∈J xi.

Proposition 2.6 ([11], prop. II-2.1). Let X and Y be DCPO’s and f : X → Y
a function. The following conditions are equivalent:

1. f preserves suprema of directed sets, i.e. f is order preserving and

f(sup∆) = sup{f(x) | x ∈ ∆} (3)

for all directed subset ∆ of X ,

2. f is order preserving and

f(limi∈Jxi) ≤ limi∈Jf(xi) (4)

for any net (xi)i∈J on X such that limi∈Jxi and limi∈Jf(xi) both exist.
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Similarly, the dual proposition can be demonstrated.

Proposition 2.7. Let X and Y be FCPO’s and f : X → Y a function. The

following conditions are equivalent:

1. f preserves infimum of filtered sets, i.e. f is order preserving and

f(inf ∆) = inf{f(x) | x ∈ ∆} (5)

for all filtered subset ∆ of X;

2. f is order preserving and

f(limi∈Jxi) ≥ limi∈Jf(xi) (6)

for any net (xi)i∈J on X such that limi∈Jxi and limi∈Jf(xi) both exist.

Notice that all complete lattice is a DCPO (FCPO) in which limi∈Jxi and

limi∈Jf(xi) (limi∈Jxi and limi∈Jf(xi)) always exist [11]. Hence Propositions 2.6

and 2.7 hold for complete lattices.

Theorem 2.1 establishes a connection between convergence given in terms of

lower bound order theory, or liminfs, and Scott’s topology. In this perspective,

Equations (3) and (5) generalize the notion of continuity of functions on lattices.

These facts motivate the following definition.

Definition 2.8. Let X and Y be two complete lattices. A function f : X → Y
is Scott-continuous (simply continuous, if the context is clear) if and only if it

satisfies any of the Equations (3) or (5).

Remark 2.6. Note that if X is finite so any function f : X → Y is continuous

because for each directed set ∆ of X , sup∆ ∈ ∆ and for each filtered set ∆,

inf ∆ ∈ ∆.

2.4. Galois connections and the residuation principle

Galois connections generalize the correspondence between subgroups and

fields investigated in Galois theory. In order theory, a Galois connection is a

particular correspondence between posets and is closely related to the concept of

residuated functions. In turn, the residuated functions, besides being important

in themselves, have a very relevant role in the characterization of partial orders.

In this section we provide the basics necessary for the development of this paper.

More details at [2, 3, 5, 10, 20].
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Definition 2.9. A monotonic Galois connection from a poset X to a poset Y is a

pair (α, β) of monotonic applications X
α
→ Y

β
→ X such that for all x ∈ X and

y ∈ Y , one has that

α(x) ≤Y y ⇐⇒ x ≤X β(y).

The α application is called the lower adjunct while the β application is called the

upper adjunct connection:

X

α

;; Y

β

{{
.

Figure 1: Galois monotonic connection between the posets X and Y

In the family of monotonic functions between partial orders there is a very

important class of functions, called residuated functions.

Definition 2.10. A function f : X → Y between posets X and Y is said to

be residuated if it is monotonic, and in addition there is a monotonic function

g : Y → X such that

g ◦ f ≥ idX and f ◦ g ≤ idY . (7)

If f is a residuated function, the monotonic function g that satisfies the in-

equalities in (7) is called residue of f and is denoted by fR. It is easy to see that

the residue of a residuated function, when it exists, is unique ([3], p. 7).

Residuated functions, besides being important in themselves, play a funda-

mental role in the preservation of ideals.

Theorem 2.2 ([3], Theorem 1.3). Let f : X → Y be an application between

posets. The following statements are equivalents:

(i) f is residuated;

(ii) For each principal ideal ↓ w of Y , the set f−1 (↓ w) is a principal ideal of

X .
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Theorem 2.3 ([10], Lemma 3.2). Let X and Y be posets. An application

f : X → Y is residuated if, and only if, the pair (f, fR) forms a monotonic

Galois connection.

Therefore, whenever f is a residuated function, it is established that the pair

(f, fR) satisfies the residuation principle, or adjunct principle, or that it forms a

Galois connection. The next result can be found in [5], page 162, in topic 7.33. It

is a characterization theorem for residuated functions.

Theorem 2.4 (Characterization of residuated functions). Let f : X → Y and

g : Y → X be functions any between the posets X and Y . The following state-

ments are equivalents:

(i) f is residuated and g = fR;

(ii) For all x ∈ X and y ∈ Y one has x ≤ g(y) ⇔ f(x) ≤ y;

(iii) f is monotonic and for each y ∈ Y , g(y) = max{x ∈ X | f(x) ≤ y};

(iv) g is monotonic and for each x ∈ X , f(x) = min{y ∈ Y | x ≤ g(y)}.

Galois connections are used to describe classes of functions for modeling

fuzzy logic connectors. In the next section, the notions of quasi-overlap on lat-

tices, as well as their derived implications, will be investigated.

3. Residuated implications derived from quasi-overlap on lattices

In this section, we present some results investigated on residuated implica-

tions induced by conjunctions that extend overlap functions to any lattice. Over-

lap functions were proposed by Bustince et al. [4] in order to solve the problem of

fuzziness on the process of image classification. Initially, overlap functions were

defined as continuous functions. Bustince et al. in [4] justify the requirement of

continuity by saying that it is considered in order to avoidO to be a uninorm, how-

ever it is easy to see that if a uninorm is an overlap function, then it is necessarily

a t-norm. However, in some contexts, continuity is not an indispensable property,

especially when we consider finite lattices. This situation appears in some situa-

tions in the field of digital image processing. Considering this, in [21] the authors

proposed a more general definition, called of quasi-overlap, which arises from the

removal of the continuity condition.
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Definition 3.1 ([21], Definition 3.2). Let X be a bounded lattice. A function O :
X2 → X is called a quasi-overlap function on X (simply quasi-overlap, if the

context is clear) if all of following properties hold:

(OL1) O(x, y) = O(y, x) for all x, y ∈ X;

(OL2) O(x, y) = 0 if and only if x = 0 or y = 0;

(OL3) O(x, y) = 1 if and only if x = y = 1;

(OL4) O is non-decreasing in each variable, that is

x1 ≤ x2 ⇒ O(x1, y) ≤ O(x2, y)

y1 ≤ y2 ⇒ O(x, y1) ≤ O(x, y2).

Proposition 3.1. A quasi-overlap O is associative if and only if, for any x, y, z ∈
X , it satisfies the exchange principle: O (x,O(y, z)) = O (y, O(x, z)).

Proof. The necessary and the sufficient conditions follows easily from the com-

mutativity of O. ✷

In order to extend the notion of continuity presented in the Definition 2.8 for

the context of quasi-overlap functions, the following Definition is considered.

Definition 3.2 ([21], Definition 3.1). Let X be a complete lattice. An Overlap

function on X is a quasi-overlap that is Scott-continuous.

In the following, the concept of residuated implications derived from quasi-

overlap functions on lattices will be introduced.

Definition 3.3. Let X be a bounded lattice. A binary operation I : X2 → X is

called a implication if it is descending on the first variable, and nondecreasing

with respect to the second variable. Moreover, I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0.

In the following, some properties that implications satisfy are presented.

Definition 3.4. An implication I is said to fulfill:

(NP) Neutral Property: I(1, y) = y, where y ∈ X;

(EP) Exchange Principle: I(x, I(y, z)) = I(y, I(x, z))where x, y, z ∈ X;

11



(IP) Identity Principle: I(x, x) = 1where x ∈ X;

(OP) Ordering Property: x ≤ y ⇔ I(x, y) = 1where x, y ∈ X .

Lemma 3.1. Let X be a complete lattice. Given a quasi-overlap O : X2 → X ,

the function defined by formula

IO(x, y) = sup{t ∈ X |O(x, t) ≤ y}, ∀x, y ∈ X (8)

is nondecreasing with respect to second variable and decreasing with respect to

first variable. Moreover, IO(0, 0) = IO(0, 1) = IO(1, 1) = 1 and IO(1, 0) = 0.

Proof. In fact, first note that the function IO is well defined. Fix x, y ∈ X and

denote

R(x, y) := {t ∈ X |O(x, t) ≤ y}. (9)

Since 0 ≤ O(x, 0) = 0, it follows that 0 ∈ R(x, y). This means that R(x, y) 6= ∅
and once X is complete, there is supR(x, y) in X . Let x, y, v ∈ X , with y ≤ v.

Then

{t ∈ X |O(x, t) ≤ y} ⊆ {t ∈ X |O(x, t) ≤ v}

and therefore, sup{t ∈ X |O(x, t) ≤ y} ≤ sup{t ∈ X |O(x, t) ≤ v},that is,

IO(x, y) ≤ IO(x, v). This means that the function IO is nondecreasing on the

second variable. Now, let x, u, y ∈ X , com x ≤ u. From the monotonicity of

O with respect to the first variable one has that O(x, t) ≤ O(u, t), for all t ∈ X .

Therefore,

{t ∈ X |O(u, t) ≤ y} ⊆ {t ∈ X |O(x, t) ≤ y},

then sup{t ∈ X |O(u, t) ≤ y} ≤ sup{t ∈ X |O(x, t) ≤ y} and therefore,

IO(u, y) ≤ IO(x, y). Thus IO is decreasing on the first variable. Moreover, since

every quasi-overlap satisfies (OL2) and (OL3) from Definition 3.1, one has that

• IO(0, 0) = sup{t ∈ X |O(0, t) ≤ 0} = 1;

• IO(0, 1) = sup{t ∈ X |O(0, t) ≤ 1} = 1;

• IO(1, 1) = sup{t ∈ X |O(1, t) ≤ 1} = 1;

• IO(1, 0) = sup{t ∈ X |O(1, t) ≤ 0} = 0.

✷
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Definition 3.5. Let O be a quasi-over a complete lattice X . The function IO
defined by (8) is called the implication induced by O.

In order to develop the notion of residuation for quasi-overlap and its induced

implications, it is necessary to explore some important facts about a particular

class of lattices, namely, the class of dense complete lattices. For this, we present

below a sequence of useful results.

First we remember that given a subset B ⊆ X of a topological space X , the

interior of B, denoted by int(B), is the largest open set contained in B.

Lemma 3.2. Le 〈X,≤〉 be a poset. If B ⊆ X , then int(B) = {x ∈ B | ↑x ⊆ B}.

Proof. Let w ∈ {x ∈ B | ↑ x ⊆ B}. Then ↑w ⊆ B. But ↑w is open, hence

↑w ⊆ int(B). Thus, w ∈ int(B). On the other hand, let y ∈ int(B) ⊆ B. Since

int(B) =↑ int(B), one has that int(B) ⊆↑B. Then, y ∈ {x ∈ B | ↑x ⊆ B}. ✷

We recall also that a subset S of a topological space X is dense in X when its

closure S coincides with the whole space X . This is equivalent to say that every

open non-empty in X contains some point of S, or else, that the complement of

S does not have interior points. In order to establish a connection between this

topological definition for density and that given by the Definition 2.3 and which

is given in terms of order, we present the following assertion.

Theorem 3.1. Let 〈X,≤〉 be a DCPO. A set S ⊆ X is order dense in X if, and

only if, S is dense in X in the Scott’s topology.

Proof. (⇒) Suppose that the set S ⊆ X is order dense in X and let x, y ∈ X
be such that x < y. Then, the set D = {z ∈ S | x < z < y} is non-empty and

directed, with supD = y. On the other hand, ↑x = {r ∈ X | x ≤ r} is an open

set of X in Scott’s topology, since it satisfies the properties (i) and (ii) of Defini-

tion 2.4. Therefore, since ↑ x ∩ D 6= ∅ and D ⊆ S, it follows that ↑ x ∩ S 6= ∅.

Therefore, S is dense in X in the Scott’s topology.

In that follows, if neither x ≤ y nor y ≤ x, then x and y are said to be incom-

parable, which is denoted here as x ‖ y.

(⇐) For each x ∈ X which satisfies the condition: x < y or x ‖ y, for some

y ∈ X , define the set Px = {w ∈ X | x < w or x ‖ y}. It is clear that Px 6= ∅.

Let’s show that Px is a Scott’s open. In fact, the condition (i) of Definition 2.4

is trivially satisfied. As for condition (ii), suppose there is a directed set D ⊆ X
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such that supD ∈ Px and D ∩ Px = ∅. So, for all w ∈ D one has that w ≤ x.

Therefore, x is an upper bound for w and supD ≤ x, which contradicts the

fact that supD ∈ Px. Therefore, D ∩ Px 6= ∅ and hence Px is a Scott’s open.

Moreover, since S is topologically dense in X , one has that Px∩S 6= ∅ and hence

exists z ∈ S such that x < z < y for all x, y ∈ X that satisfy the condition x < y.

✷

Proposition 3.2. Let 〈X,≤〉 be a poset provided with Scott’s topology σ(X). For

all y ∈ X , the set ↑y is compact.

Proof. In fact, let A = {Aλ}λ∈I be an open covering of X . Then, for all y ∈ X ,

y ∈
⋃

λ∈I Aλ. Hence, y ∈ Aλ0 , for some λ0 ∈ I . But Aλ0 is Scott’s open, then

Aλ0 =↑Aλ0 . Also, as ↑ y ⊆↑Aλ0 , it follows that ↑Aλ0 is a finite subcolection of

A. Therefore, since ↑y ⊆↑Aλ0 , it follows that ↑y is compact. ✷

In Scott’s topology, for complete lattices, compactness is a trivial feature.

Proposition 3.3. If 〈X, σ(X),≤〉 is a complete lattice equipped with Scott topo-

logy, then X is compact.

Proof. let A = {Aλ}λ∈I be an open covering of X . Since X is complete it

follows that it is bounded. Let 0 be its bottom element. Then, 0 ∈
⋃

λ∈I Aλ.

Hence, 0 ∈ Aλ0 , for some λ0 ∈ I . But Aλ0 is Scott’s open, then Aλ0 =↑ Aλ0 .

Also, as ↑0 ⊆↑Aλ0 , it follows that ↑Aλ0 is a finite subcolection of A. Also, since

↑0 = {x ∈ X | 0 ≤ x}, it follows that X ⊆↑0. Therefore, X is compact. ✷

Therefore, follows from Theorem 3.1 and Proposition 3.3, which every com-

plete dense order lattice is compact and dense in Scott’s topology.

Another point that deserves attention is the fact that these spaces must not

necessarily have a definite total order about them. Consider the set of subintervals

of [0, 1] defined as I([0, 1]) = {[a, b] | a ≤ b and a, b ∈ [0, 1]}, provided with the

product order “�” defined as follows:

[u, v] � [p, q] if, and only if, u ≤ p and v ≤ q

where “≤” is the usual order of R. The next lemma shows that 〈I([0, 1]),�〉 is a

partially ordered complete lattice.

Lemma 3.3. The structure 〈I([0, 1]),⊓,⊔, 0, 1〉, where [a, b]⊓[c, d] = [a∧c, b∧d]
and [a, b] ⊔ [c, d] = [a ∨ c, b ∨ d], for all a, b, c, d ∈ [0, 1], it is a complete lattice

with the top element 1 = [1, 1] and the bottom element 0 = [0, 0].
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Proof. According to the definition of ⊓ and ⊔ operators, just consider for each

[a, b], [c, d] ∈ I([0, 1]), inf{[a, b], [c, d]} = [a, b] ⊓ [c, d] and sup{[a, b], [c, d]} =
[a, b] ⊔ [c, d]. Thus 〈I([0, 1]),⊓,⊔, 0, 1〉 is a lattice. Now consider the non-empty

set X ⊆ I([0, 1]). It is obvious that [0, 0] is a lower bound of X , then the set:

Xℓ = {J ∈ I([0, 1]) | J is lower bound of X}

it is not empty. Define

v = sup
[p,q]∈Xℓ

(p) and w = sup
[p,q]∈Xℓ

(q).

This implies that [v, w] is lower bound of X . We affirm that [v, w] it is the largest

of the lower bounds of X . Indeed, suppose there exists [r, s] ∈ Xℓ such that

[v, w] ⊑ [r, s], then v ≤ r and w ≤ s. On the other hand, by way v and w
are defined, we have v ≥ r and w ≥ s. Therefore v = r, w = s and hence

infX = [v, w]. Similarly, since [1, 1] is upper bound for X , define

Xu = {T ∈ I([0, 1]) | T is upper bound of X} 6= ∅.

and call

m = inf
[a,b]∈Xu

(a) and n = inf
[a,b]∈Xu

(b).

This leads us to conclude that supX = [m,n]. ✷

In addition, since [0, 1] is dense, it follows that I([0, 1]) is also dense. On

the other hand, the interval [0, 1] provided with the usual order of reais is also

complete lattice of dense order. Finally, a final point to be discussed on this topic

is linked to the issue of convergence, which is clarified in the next lemma.

Lemma 3.4. If X is a complete lattice of dense order, then X is Hausdorff.

Proof. Let x, y ∈ X , so we have the following possibilities:

(i) x and y incomparable: In this case, x, y < sup{x, y}. Then, of the

density of X , there are x0, y0 ∈ X such that x < x0 < sup{x, y} and

y < y0 < sup{x, y}. Let’s show that the sets B = {w ∈ X | x ≤
w < x0} and C = {u ∈ X | y ≤ u < y0} are open non-empty of X in

Scott’s topology and thatB∩C = ∅. Indeed, first note that by definition

int(B) ⊆ B always worth it. On the other hand, if b ∈ B ⊆ X , then

x ≤ b < x0 and more, the set ↑ x ∩ B = {r ∈ B | x ≤ r} is an
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open of B in Scott’s topology induced of X . Therefore, by Lemma 3.2,

b ∈ int(B) = {r ∈ B | ↑ r ⊆ B}. That is, B is an open of X that

contains x. Similarly it is shown that C = int(C). That is, C is a open

of X that contains y. Moreover, if B ∩ C 6= ∅ so there is α ∈ X such

that x ≤ α and y ≤ α, which leads to a contradiction with sup{x, y}.

(ii) x and y are comparables: In this case, assume without loss of generality

x < y. From the density of X there is z ∈ X such that x < z < y.

Define the sets M = {p ∈ X | x ≤ p < z} and ↑ z = {q ∈ X | z ≤ q}.

Notice that M is a open of X that contains x and ↑z is a open of X that

contains y. Moreover, M∩ ↑z = ∅.

Therefore, it follows that the lattice X is a Hausdorff space.

✷

Remark 3.1. The Lemma 3.4 together with Proposition 2.5 guarantee the unique-

ness of convergence of converging nets in a complete lattice of dense order.

Let X be the complete lattice of dense order. For each x ∈ X , define the

functions Ox, IOx
: X → X por Ox(z) = O(x, z) and IOx

(y) = IO(x, y), for

all y, z ∈ X , where O is a quasi-overlap and IO its induced implication. In what

follows, it will be presented under what conditions Ox and IOx
represent a family

of residuated functions and their respective family of residues.

Definition 3.6. The pair (O, IO) is said to satisfy the residuation principle when-

ever

O(x, z) ≤ y ⇐⇒ z ≤ IO(x, y), ∀x, y, z ∈ X. (10)

The next theorem reveals that the class of quasi-overlap functions that fulfill

the residuation principle is the class of continuous functions according to Scott’s

topology.

Theorem 3.2. Let X be a complete lattice of dense order and O a quasi-overlap

over X . So the following items are equivalent:

(i) O is Scott-continuous;

(ii) O and IO satisfy the residuation principle;

(iii) IO(x, y) = max{t ∈ X |O(x, t) ≤ y}.
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Proof. ((i) ⇒ (ii)): For any x, y, z ∈ X suppose that O(x, z) ≤ y. Then

z ∈ R(x, y) (cf. Equation (9)). Hence, z ≤ supR(x, y) = IO(x, y). Now assume

that for x, y, z ∈ X one has z ≤ IO(x, y). If z < IO(x, y) then, since X is dense

order, there is t0 ∈ X such that z < t0 < IO(x, y) and O(x, t0) ≤ y. From the

monotonicity of O in each variable one has thate O(x, z) ≤ y. On the other hand,

if z = IO(x, y), so we have two possibilities:

(P1) z ∈ R(x, y): In this case obviously that O(x, z) ≤ y;

(P2) z /∈ R(x, y): In this case, since X is complete and of dense order, then

X It is compact and dense in Scott’s topology. Thus, by Proposition 2.4,

There is a non-decreasing net (zj)j∈J in X such that zj < z and, since

O is monotonic in the second variable, from the residuation principle

it follows that O(x, zj) ≤ O(x, z) ≤ y, for all j ∈ J . Let’s show

that z = limj∈Jzj . In fact, let A be a Scott open containing z. Since

{zj ∈ X |O(x, zj) ≤ y} is directed (since (zj) is non-decreasing) and

z = sup{zj ∈ X |O(x, zj) ≤ y}, then by item (ii) from Definition 2.4

(Scott’s open), it follows {zj ∈ X |O(x, zj) ≤ y} ∩ A 6= ∅. Therefore,

for some i ∈ J , we have xj ∈ A for all j ≥ i. Thus, by Definition

2.6, we have zj → z. That is, z = limj∈Jzj . Finally, since O is Scott-

continuous, by Proposition 2.6

O(x, z) = O(x, limj∈Jzj) ≤ limj∈JO(x, zj) ≤ y. (11)

Therefore, anyway, one has that O(x, z) ≤ y.

((ii) ⇒ (iii)): Assume that pair (O, IO) satisfies the residuation principle. So since

IO(x, y) ≤ IO(x, y) for all x, y ∈ X , it follows that O(x, IO(x, y)) ≤ y. This

means that IO(x, y) ∈ R(x, y) and supR(x, y) = maxR(x, y).
((iii) ⇒ (i)): Suppose that IO(x, y) = max{t ∈ X |O(x, t) ≤ y} for all x, y ∈

X . We must show that O

(

x, sup{zj | j ∈ J}

)

= sup{O(x, zj) | j ∈ J}, for

each x ∈ X and for any non-decreasing net (zj)j∈J in X . On the one hand, the

monotonicity of O and by definition of supremum it follows that

sup{O(x, zj) | j ∈ J} ≤ O

(

x, sup{zj | j ∈ J}

)

(12)

On the other hand, let w = sup{O(x, zj) | j ∈ J}. Then O(x, zj) ≤ w and so for

all j ∈ J , zj ∈ {t ∈ X |O(x, t) ≤ w} and consequently, zj ≤ IO(x, w) for all
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j ∈ J . Therefore, by monotonicity of O one has

O

(

x, sup{zj | j ∈ J}

)

≤ O(x, IO(x, w)) ≤ w = sup{O(x, zj) | j ∈ J}. (13)

Therefore, from inequalities (12) and (13), it is concluded that O is continuous.✷

Corollary 3.1. If O is a Quasi-overlap over X and X is order dense, then O and

IO satisfy residuation principle and IO(x, y) = max{z |O(x, z) ≤ y}.

Definition 3.7. The functions O and IO are respectively called residuated quasi-

overlap and residuated implication (or RO-implication), if any of the items in

Theorem 3.2 are checked.

In the following, properties that RO-implications and their residuated quasi-

overlap satisfy are presented.

Proposition 3.4. Let X be a complete lattice of order dense and O a residuated

quasi-overlap over X . Then:

(i) IO satisfies (NP) if, and only if, 1 is neutral element of O;

(ii) IO satisfies (IP) if, and only if, O is deflationary:

O(x, 1) ≤ x, x ∈ X;

(iii) IO satisfies (OP) if, and only if, O have neutral element 1.

Proof. The proof is based on considerations similar to [16]. But adapted to the

lattice context. Indeed,

(i) (⇒) Suppose that for all y ∈ X

IO(1, y) = max{t ∈ X |O(1, t) ≤ y} = y. (14)

So for an arbitrary y ∈ X one has O(1, y) ≤ y. If for some y0 in X , one has

O(1, y0) < y0, then by density of X exists z such that z < y0 and O(1, y0) < z.

According to the residuation principle, z < y0 ≤ IO(1, z), which contradicts the

equation (14).

(⇐) Suppose that O(1, r) = r, for all r ∈ X . Then

IO(1, y) = max{t ∈ X |O(1, t) ≤ y}

= max{t ∈ X | t ≤ y}

= y. (15)
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(ii) Just note that for an arbitrary x ∈ X , we have

IO(x, x) = max{t ∈ X |O(x, t) ≤X x} = 1 ⇔ O(x, 1) ≤ x.

(iii) (⇒) Suppose for each x, y ∈ X , such that x and y are comparables, one has

x ≤ y ⇔ IO(x, y) = 1. Then IO(x, x) = max{t ∈ X |O(x, t) ≤ x} = 1. This

means that O(x, 1) ≤ x, for all x ∈ X . Moreover, by the monotonicity of O,

IO(x,O(x, 1)) = max{t ∈ X |O(x, t) ≤ O(x, 1)} = 1.

Thus, by (OP), x ≤ O(x, 1). So for an arbitrary x ∈ X , O(x, 1) = x.

(⇐) Suppose O has neutral element 1. If for x, y ∈ X ,

IO(x, y) = max{t ∈ X |O(x, t) ≤ y} = 1,

then we have x = O(x, 1) ≤ y. On the other hand, if for each x, y ∈ X , if x ≤ y,

so since 1 is neutral element of O, one has O(x, 1) = x ≤ y . Therefore, by

residuation, it follows that IO(x, y) = 1. ✷

Proposition 3.5. Let X be a complete lattice of order dense and O a residuated

quasi-overlap over X . Under these conditions:

(i) If IO satisfies (EP), O(x,O(y, z)) and O(y, O(x, z)) are comparables

for all x, y, z ∈ X , then O is associative;

(ii) If O is associative, then IO satisfies (EP).

Proof. (i) Assume that IO fulfills the property of the exchange principle (EP).

Suppose that there are x, y, z ∈ X such that O(x,O(y, z)) 6= O(O(x, y), z).
Then, by Proposition 3.1 it follows that O(x,O(y, z)) 6= O(y, O(x, z)). Thus,

by hipoteses, we can assume without loss of generality that O(x,O(y, z)) <
O(y, O(x, z)). Applying two times the residuation principle we get

z < IO(y, IO(x,O(y, O(x, z)))).

Using the exchange principle we have z < IO(x, IO(y, O(y, O(x, z)))). Applying

the residuation principle again two times we go back to

O(y, O(x, z)) < O(y, O(x, z)),
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which is trivially a contradiction.

(ii) Assume that O is associative. From residuation principle we have

IO(x, IO(y, z)) = max{t ∈ X |O(x, t) ≤ IO(y, z)}

= max{t ∈ X |O(y, O(x, t)) ≤ z}

= max{t ∈ X |O(O(y, x), t) ≤ z}

= max{t ∈ X |O(O(x, y), t) ≤ z}

= max{t ∈ X |O(x,O(y, t)) ≤ z}

= max{t ∈ X |O(y, t) ≤ IO(x, z)}

= IO(y, IO(x, z)).

✷

4. Quasi-overlap conjugated and their induced implications

We begin this section by presenting a definition that generalizes automor-

phisms of bounded lattices, taking these lattices as topological spaces.

Definition 4.1. Let X be a bounded lattice and Ω a topology on X . A function

ρ : X → X is a Ω-automorphism if:

(i) ρ is bijective;

(ii) ρ is continuous according to topology Ω;

(iii) x 6 y if, and only if, ρ(x) 6 ρ(y).

Remark 4.1. The set of all Ω-automorphism of X is denoted by AutΩ(X).

Lemma 4.1. The set AutΩ(X) of all Ω-automorphism of a bounded latticeX is a

group under composition of mappings.

Proof. It is routine to check this proof. ✷

Note that Definition 4.1 generalizes the definition of automorphisms over [0, 1],
which implies continuity in the Euclidean topology. In addition, since ρ is a con-

tinuous bijection whose inverse ρ−1 is also continuous, it follows that ρ is an

application known in topology as homeomorphism. It is an application that pre-

serves the topological structure of your space. It should also be noted that ρ (as

well as its inverse) can be seen as an order isomorphism.
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Furthermore, the next result shows that the class of quasi-overlap functions is

closed under Ω-automorphisms, where Ω represents, in this context, Scott’s topo-

logy, and for this reason, instead of Ω-automorphism the term Scott-automorphism

is used.

Proposition 4.1. Let O be a quasi-overlap function and ρ a Scott-automorphism,

both defined over a complete lattice X . Then, the conjugated of O, denoted by

Oρ, is also quasi-overlap function. Moreover, if O is Scott-continuous, Oρ is also

Scott-continuous.

Proof. (OL1): It follows directly from the fact that composed of non-decreasing

functions is a non-decreasing function.;

(OL2): Immediately follows from the commutativity of O;

(OL3): (⇒) Suppose that Oρ(x, y) = 0. Then we have

ρ−1 (O (ρ(x), ρ(y))) = 0 ⇔ O (ρ(x), ρ(y)) = 0

⇔ ρ(x) = 0 or ρ(y) = 0

⇔ x = 0 or y = 0

(⇐) If x = 0 or y = 0 then, suppose without loss of generality that x = 0. Then,

ρ(x) = 0 and so,

Oρ(x, y) = ρ−1 (O (ρ(x), ρ(y)))

= ρ−1 (O (0, ρ(y)))

= ρ−1(0)

= 0.

8: (⇒) Suppose that Oρ(x, y) = 1. Then one has that

ρ−1 (O (ρ(x), ρ(y))) = 1 ⇔ O (ρ(x), ρ(y)) = 1

⇔ ρ(x) = ρ(y) = 1

⇔ x = y = 1

(⇐) Suppose that x = y = 1, ρ(x) = ρ(y) = 1. Then one has that

Oρ(x, y) = ρ−1 (O (1, 1))

= ρ−1(1)

= 1.
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The continuity of Oρ follows from the composition of continuous functions. ✷

A first application of the action of Scott-automorphisms on quasi-overlap func-

tions is that the conjugated of an induced implication of a quasi-overlap O coin-

cides with the induced implication of the conjugated Oρ.

Proposition 4.2. IρO coincides with IOρ .

Proof. Indeed,

IρO(x, y) = ρ−1 (IO(ρ(x), ρ(y)))

= ρ−1 (sup{ρ(z) ∈ X|O(ρ(x), ρ(z)) ≤ ρ(y)})

= max{z ∈ X|ρ−1 (O(ρ(x), ρ(z))) ≤ y}

= max{z ∈ X|Oρ (x, z) ≤ y}

= IOρ(x, y).

✷

Remark 4.2. The above proposition states that the processes for obtaining con-

jugated adjunct or adjunct conjugated are invariant, as shown in Figure 2.

O IO

Oρ IOρ = IρO

Adjunction

Conjugation

Figure 2: Diagram of Adjunct and Conjugation

Another interesting application of quasi-overlap conjugated is linked to the no-

tion of closed operators3. The following is a theoretical framework for obtaining

the closure of the conjugated of O and IO.

Proposition 4.3. Let X be a complete lattice of dense order and Oρ a conjugated

of quasi-overlap function O set over X . The following conditions are equivalent:

3Remember that a function f : X → X over a poset 〈X,≤〉 is a closed operator on X if f is

non-descreasing, idempotent (f(f(x)) = f(x)), and inflationary (x ≤ f(x)).
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(i) Oρ is residuated if, and only if, Oρ
y and Oρ

x are both monotonic and

Scott-continuous;

(ii) Oρ is residuated if, and only if, Oρ
y and Oρ

x are residuated.

Proof. ((i) ⇒ (ii)) On the space X define the following partial order relation:

(a, b) ≤ (u, v) ⇔ a ≤ u and b ≤ v.

It is routine to check that this provides two natural topologies X2, namely:

Scott’s topology in space 〈X,≤〉 and Scott’s topology product in 〈X2,≤〉. So if

a function defined on X2 is Scott-continuous, its projections on the X factor are

clearly Scott-continuous. Therefore, since O is commutative, non-decreasing at

each variable and residuated (particularly Scott-continuous), so for each x ∈ X
fixed, set Ox : X → X by Ox(z) = O(z, y) for all y, z ∈ X , and for each y ∈ X
fixed, set Oy : X → X by Oy(z) = O(x, z) for all x, z ∈ X . Hence, by the

Theorem 3.2, follow the result.

((ii) ⇒ (i)) It is an immediate consequence of (i). ✷

A pictorial representation of the Proposition 4.3 can be seen in Figure 3.

X ×X X

X X

X ×X

Proj.2

Proj.1 Oρ O
ρ
x

I
O
ρ
x

I
O
ρ
y

O
ρ
y

IOρ

Figure 3: Diagram of residuated functions

Therefore, given a residuated application Oρ : X2 → X and z ∈ X the

function ϕz : X → X defined by ϕz(x) = IOρ
x
(z), where IOρ

x
is the residue of

Oρ
x : X → X . Similarly define ψz : X → X by ψz(y) = IOρ

y
(z), where IOρ

y
is the

residue of Oρ
y : X → X .

Corollary 4.1. Let X a complete lattice of dense order. For all z ∈ X the follow-

ing items are worth:
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(i) The pair (ψz, ϕz) forms an adjunction;

(ii) The applications ψz and ϕz are closed operators on X .

5. Final remarks

In this paper we propose was the residuation principle for the case of quasi-

overlap functions on lattices and their respective induced implications. It has been

found that the class of quasi-overlap functions that fulfill the residuation principle

is the same class of continuous functions according to Scott’s topology. Get a

generalization of the residuation principle for quasi-orverlap functions was one of

the motivations that led to the writing of this paper, which demonstrated the need

for a topology on lattice. This topology is Scott’s topology. In fact, given any

lattice, it is always possible to know how each element behaves relative to the other

elements, but it is difficult to know what the overall structure looks like. However,

by defining Scott’s topology, the topological properties related to the order that

this lattice contains allowed to develop its own visualization for this lattice. Thus,

a large number of properties that occur in the closed real interval [0, 1] (eg density,

connectivity, as well as being a Hausdorff space) could be generalized to general

lattices with specific topological properties. Thus, concepts such as density were

expressed both in topological terms and in terms of the defined order relation

over the set. Another example was the concept of compactness, which allowed

generalizations of the well-known extreme value theorem 4. The results for any

lattice adjunctions using overlap functions allow these operators to be used in

tools such as Mathematical Morphology, which is applied to the field of signal

and image processing through dilation operators, erosion, and others [14].

In the field of logic, an important point is that residuation is an essential al-

gebraic property that must be required to have good semantics for fuzzy logic

systems based on the modus ponens rule, the necessary and sufficient condi-

tion for a conjunction fuzzy have a residue is not continuity but left-continuity.

Since Scott-continuous quasi-overlap functions are actually a generalization of

left-continuous overlap functions to lattices, it is definitely interesting, from a

logical point of view, to focus on the study of properties related to left-continuous

overlap functions, as well as investigating how these properties are interpreted

for Scott-continuous quasi-overlap functions. It is noteworthy that knowledge of

4The extreme value theorem ensures that a continuous function defined in a compact set reaches

its maximum and minimum somewhere in the set.
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left-continuous overlap functions is drastically limited compared to the good de-

scription in the continuous case literature.
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