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Abstract

We consider arbitrary subsets L of random variables de�ned on an arbitrary non-
additive probability space (
;F ; �). A topology � on L satis�es Condition BU if
every open set in this topology which contains X 2 L as a member also contains as a
subset some (c; �)�ball aroundX, de�ned asBc;� (X) = fY 2 Lj� (jX � Y j � c) < �g.
Condition BU is satis�ed by any topology of convergence in non-additive measure
� (Ouyang and Zhang 2011; Li 2012) but also by all coarser topologies. Next we
consider preference relations that are continuous with respect to any topology � sat-
isfying Condition BU. For non-atomic � we prove that any convex and � -continuous
preference relation over the random variables in a given local cone L must satisfy
monotonicity in the local cone order. This monotonicity result comes with surpris-
ingly strong decision theoretic implications: (i) The only � -continuous and convex
preference relation de�ned over all random variables is the indi¤erence relation; (ii)
Any � -continuous and convex preference relation de�ned over all positive random
variables must satisfy payo¤-monotonicity; (iii) Any convex and payo¤-monotone
preference relation de�ned over all loss random variables must violate � -continuity.
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1 Introduction

Preferences over random variables are typically required to satisfy the three decision-
theoretic principles of payo¤-monotonicity, continuity, and convexity. Payo¤-monotonicity
translates the �more-is-better�principle into a probabilistic context by stipulating that the
decision maker should prefer random variables that payo¤-dominate other random vari-
ables on non-null events. According to the behavioral principle of continuity, the decision
maker should evaluate random variables in a similar manner whenever she perceives these
random variables as similar. Similarity perceptions are thereby formally pinned down by
the modeler�s choice of a topological or/and metric space. The principle of convexity is
used to characterize risk, uncertainty, and/or ambiguity aversion (cf., e.g., Maccheroni
et al. 2006; Cerreia-Vioglio et al. 2011) as well as the desire for portfolio diversi�cation
(Dekel 1989; Föllmer and Schied 2002). For example, risk-averse expected utility decision
makers are characterized through convex preferences which are represented by concave
Bernoulli utility functions. Similarly, convex Choquet expected utility preferences�which
combine risk and ambiguity aversion�are represented through a combination of concave
Bernoulli utility functions and convex non-additive probability measures.
Given that these fundamental decision-theoretic principles have quite di¤erent behav-

ioral meanings, one might intuitively expect that they are also mathematically indepen-
dent of each other, i.e., that the modeler might impose them as behavioral axioms in
arbitrary combinations. Contrary to this intuition we show that preferences which are
convex and continuous with respect to topologies from a speci�c class�including topologies
of convergence in a non-additive measure�force monotonicity properties whenever these
preferences are de�ned over a subdomain of random variables that comes with a local
cone structure.1

Our analysis is organized in two parts. The �rst part concerns our topological frame-
work which introduces the relevant topological Condition BU and discusses convergence
in a non-additive measure. The second part derives new results about mathematical and
decision theoretic implications under the assumption that local cones of random variable
are endowed with any topology satisfying Condition BU such as, e.g., the topology of
convergence in non-additive measure. In what follows, we brie�y sketch the main insights
from both parts of our analysis.

1To work with a non-additive rather than just an additive probability space is motivated by the
descriptively successful decision theoretic models of Choquet expected utility theory (Schmeidler 1989;
Gilboa 1987) and of (cumulative) prospect theory (Tversky and Kahneman 1992; Wakker and Tversky
1993). These generalizations of expected utility theory use non-additive probability measures to cap-
ture, e.g., behavioral attitudes towards ambiguity or/and risk but also cognitive features like likelihood
insensitivity (cf. Wakker 2004; 2010).
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1.1 Our topological framework

Denote by L0 the set of all random variables (i.e., measurable functions) de�ned on a
non-additive (=not necessarily additive) probability space (
;F ; �). Fix an arbitrary
L � L0. We introduce through a weak-base construction the class of �C-topologies which
all satisfy the following condition�referred to as Condition BU : For every open set U 2 �C
containing X 2 L we can �nd some (c; �)-ball Bc;� (X) such that

Bc;� (X) � U

where
Bc;� (X) = fY 2 Lj� (jX � Y j � c) < �g

for c; � 2 Q>0.
A sequence of random variables fXng � L converges in the non-additive measure �

to X 2 L, denoted Xn !� X, if and only if (=i¤)

lim
n!1

� (jXn �Xj � c) = 0 for all c > 0.

We have that
Xn !� X implies Xn !� X (1)

i¤ � satis�es Condition BU. We say that a topology � is a �topology of convergence in the
non-additive measure ��i¤ it satis�es in addition to (1) also

Xn !� X implies Xn !� X.

Denote by � � the �nest �C-topology, which is induced by the weak basen
B 1

m
; 1
m
(X) j m 2 N+

o
, X 2 L.

Although our subsequent analysis will apply to any topology satisfying Condition BU, we
ask for interpretational reasons the following question: Under which conditions on � is � �

a topology of convergence in �? To answer this question we prove two di¤erent Theorems
in the Appendix.

Theorem 1. Suppose that � satis�es

(i) �uniform autocontinuity from above�and

(ii) �order continuity�.

Then all
�
1
m
; 1
m

�
-balls are open sets in the �nest topology � � 2 TC.
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Theorem 2. We have that � � = � d0 such that the topology � d0 is induced by the distance
function

d0 (X;Y ) = (C)

Z jX � Y j
1 + jX � Y jd�

where the integral is the Choquet integral.

Theorem 1 implies that � � is a �topology of convergence in ��whenever � satis�es the
two structural properties (i) �uniform autocontinuity from above�and (ii) �order continu-
ity�. The topology � d0 had been introduced by Ouyang and Zhang (2011) who derive the
seminal result that �uniform autocontinuity of � from above�(as de�ned in Wang 1984)
is a su¢ cient condition for � d0 being a topology of convergence in �. Combined with our
Theorem 2, the analysis in Ouyang and Zhang (2011) implies that �uniform autocontinu-
ity from above�is already su¢ cient to guarantee that � � is a �topology of convergence in
��(cf. Remark 4 in the Appendix).

1.2 New results: Combining our topological framework with a
local cone structure and non-atomicity

A local cone is a set L � L0 of random variables de�ned on (
;F ; �) that combines a
convex cone structure with the locality property that 1AZ 2 L whenever Z 2 L and
A 2 F (where 1A denotes the indicator function). The space (
;F ; �) is non-atomic if
we can �nd for every � > 0 some �nite partition � = f
1; :::;
ng � F such that

� (
i) � � for all i 2 f1; :::; ng .

As our main mathematical �nding we derive the following result:

Theorem 3. Consider the topological space (L; �) such that (i) (
;F ; �) is an arbitrary
non-atomic, non-additive probability space, (ii) L is a local cone, and (iii) � satis�es
Condition BU. We have for any X;Z 2 L and any open set U 2 � that

X 2 U implies X + Z 2 co (U)

where co (U) denotes the convex hull of U .
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As one implication of Theorem 3, the only non-empty, convex and open set in the
topological space (L0; �) is the set of all random variables L0 itself whenever (
;F ; �) is
non-atomic and � satis�es Condition BU.
Turn now to our decision theoretic analysis. A complete preference relation over the

random variables in L is � -continuous i¤ all strictly better and strictly worse sets are
open sets in the topological space (L; �). As our main decision theoretic result we prove:

Theorem 4. Consider the topological space (L; �) such that (i) (
;F ; �) is an arbitrary
non-atomic, non-additive probability space, (ii) L is a local cone, and (iii) � satis-
�es Condition BU. Any � -continuous and convex preference relation on L must be
monotone in the local cone order �L de�ned as follows:

X �L Y , Y �X 2 L.

This monotonicity result comes with surprisingly powerful implications for subdomains
of random variables that are relevant to applications in economics and �nance. To see
this, �x some topology � that satis�es Condition BU and consider the following three
relevant examples of subdomains which all have a local cone structure: (i) the subdomain
of all random variables L0 (e.g., all random monetary gains and losses), (ii) the subdomain
of all non-negative random variables L0+ (e.g., all random consumption levels in economic
applications), and (iii) the subdomain of all non-positive random variables L0� (e.g., all
random losses in portfolio risk models).2

For L = L0 the local cone order is the equivalence order so that the only � -continuous
and convex preference relation on L0 must be the indi¤erence relation. As a conse-
quence, there cannot exist any non-trivial (i.e., non-constant) Choquet expected utility
representation of preferences on L0 that expresses risk and ambiguity aversion as well as
� -continuity.
For L = L0+ the local cone order coincides with the payo¤ dominance order. Any � -

continuous and convex preference relation on L0+ must therefore satisfy the fundamental

2In addition, we establish conditions on � such that the subdomains

L�0+ =
�
Y 2 L0 j � (Y < 0) = 0

	
and

L�1+ =
�
Y 2 L0 j � (Y � 0) = 1

	
become local cones, respectively. Our mathematical and decision theoretic results will also apply to the
corresponding (�-dependent) local cone orders.
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behavioral principle of payo¤-monotonicity. Moreover, there exist non-trivial � -continuous
and convex utility representations of preference relation on L0+ such as, e.g., the Choquet
expected utility with respect to a convex non-additive probability measure and a strictly
increasing, concave, and bounded Bernoulli utility function.
Finally, for L = L0�, the local cone order becomes the loss-dominance order (i.e., the

opposite of the payo¤-dominance order). Consequently, any � -continuous and convex
preference relation on L0� must violate the behavioral principle of payo¤-monotonicity.
This implies that preferences which are induced by convex and monotone risk measures
de�ned on the subdomain of loss random variables�as axiomatized, e.g., in Artzner et al.
(1997; 1999) and Föllmer and Schied (2002)�cannot be � -continuous.
In Assa and Zimper (2018) we had shown that any non-trivial preference relation

which is complete on the space of all random variables L0 cannot be simultaneously
convex and continuous in a non-atomic, additive measure. On the other hand, there
exist non-trivial preference relations that are only complete for the non-negative random
variables in L0+ which are convex as well as continuous in measure (think, e.g., of expected
utility preferences with a strictly concave and bounded Bernoulli utility function de�ned
on R+ only). As both subdomains of random variables L0 and L0+ are large spaces, this
di¤erence had been puzzling to us. This paper establishes that the di¤erence in the local-
cone order of both subdomains L0 and L0+ is the underlying mathematical structure that
drives this fundamental di¤erence.

The remainder of our analysis proceeds as follows. Section 2 recalls non-additive prob-
ability measures and de�nes non-atomicity. Section 3 develops our topological framework.
Section 4 introduces the notions of local cones and local cone orders. In Section 5 we de-
rive new mathematical results that combine our topological framework with the local
cone structure of relevant subdomains of random variables. Section 6 discusses decision
theoretic implications. Section 7 concludes.

2 Set-up, preliminaries

2.1 Non-additive probability measures

Throughout the paper we consider arbitrary measurable spaces (
;F) where F denotes
a sigma-algebra on the state space 
. A non-additive probability measure � : F ! [0; 1]

de�ned on (
;F) satis�es

� � (?) = 0, � (
) = 1 (normalization);

� For all A;B 2 F , A � B implies � (A) � � (B) (monotonicity).
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The following properties may or may not be satis�ed by a non-additive probability
measure � whereby these properties become (strictly) weaker in ascending order. That
is, if � satis�es property i, it also satis�es property i+ 1 whereas the converse statement
does not hold for all �.

1. � is additive i¤, for all A;B 2 F ,

� (A) + � (B) = � (A [B) + � (A \B) .

2. � is concave (i.e., submodular) i¤, for all A;B 2 F ,

� (A) + � (B) � � (A [B) + � (A \B) .

3. � is subadditive i¤, for all A;B 2 F with A \B = ;

� (A) + � (B) � � (A [B) .

4. � is uniformly autocontinuous from above i¤ for any � > 0 there is an n 2 N+ such
that, for all A;B 2 F ,

� (B) <
1

n
implies � (A [B) < � (A) + �.

5. � is autocontinuous from above i¤, for all fAng � F , A 2 F ,

lim
n!1

� (An) = 0 implies lim
n!1

� (A [ An) = � (A)

The de�nitions of �autocontinuity from above�and �uniform autocontinuity from above�
had been introduced byWang (1984). This author also shows that �uniform autocontinuity
from above�is weaker than �subadditivity�(Proposition 8 in Wang 1984) but stronger than
�autocontinuity from above�(cf. Example 3 in Wang 1984). Next write

An & A

for
A1 � A2 � ::: and

\
n2N

An = A.

1. � is continuous from above i¤

An & A implies lim
n!1

� (An) = A.
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2. � is order continuous (i.e., continuous from above at zero) i¤

An & ; implies lim
n!1

� (An) = 0.

As pointed out in the seminal contribution by Wang (1984), �autocontinuity from
above�is a very di¤erent structural property than �continuity from above�(cf. Example 2
in Wang 1984 and Example 4.2 in Ouyang and Zhang 2011). Note that �order continuity�
and �autocontinuity from above�together imply �continuity from above�(Proposition 5 in
Wang 1984).

2.2 Non-atomicity

We introduce the following de�nition of non-atomicity for non-additive probability mea-
sures.

De�nition 1. We call the non-additive probability space (
;F ; �) non-atomic i¤ there
exists for every � > 0 some �nite partition � = f
1; :::;
ng � F , depending on �,
such that

� (
i) � � for all i 2 f1; :::; ng .

The standard example of a non-atomic probability space for an additive measure is�
(0; 1) ;FB; �L

�
where FB is the Borel sigma-algebra on the open unit interval and �L

is the Lebesgue measure. In particular, this space is su¢ cient to capture all possible
(additive probability) distributions of random variables (cf. the Second Proof of Theorem
14.1 in Billingsley 1995).

Example 1. Consider the non-additive space
�
(0; 1) ;FB; �L

�
such that

the non-additive measure � is given as

� (A) = w
�
�L (A)

�
for all A 2 F (2)

for some probability weighting function w : [0; 1] ! [0; 1] that is increasing
and satis�es w (0) = 0 and w (1) = 1. One can show the following: If w (�)
is strictly increasing and continuous on some open neighborhood around zero,
this non-additive probability space must also be non-atomic.
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The above de�nition of a non-atomic space is, however, much more general than the
generated � considered in Example 1. The following example implies that non-atomicity
for non-additive measures can even hold for �nite state spaces 
, which would be impos-
sible for additive probability measures.3

Example 2. Suppose that there exists some �nite partition� = f
1; :::;
ng �
F such that � (
i) = 0 for i = 1; ::; n. Non-atomicity is trivially satis�ed so
that (
;F ; �) is non-atomic in our sense.

3 Topological framework

3.1 Condition BU

Denote by L0 the set of all F-measurable real-valued functions, i.e., all random variables,
de�ned on an arbitrary non-additive probability space (
;F ; �). Fix an arbitrary subset
of random variables L � L0. For given X 2 L and c; � 2 Q>0 introduce the following
(c; �)-ball at X

Bc;� (X) = fY 2 Lj� (jX � Y j � c) < �g

whereby Bc;� (X) = L for � > 1. Denote by

B (X) = fBc;� (X) j c; � 2 Q>0g

the collection of all these (c; �)-balls. Bc;� (X) contains all Y 2 L which are close to X in
the sense that any di¤erence between X and Y weakly greater than c > 0 only happens
on an event with �-probability less than �. Observe that

Bc;� (X) � Bc0;�0 (X) for c � c0 and � � �0. (3)

Consider now any topology � de�ned on L � L0 for a given �. Central to our analysis
will be the following property, which may or may not be satis�ed by any given topology.

De�nition 2. We say that a topology � satis�es the Condition BU i¤, for every open
set U 2 � ,

X 2 U implies Bc;� (X) � U

for some Bc;� (X) 2 B (X).
3We owe this example to an anonymous referee.
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Fix any topology � on L. Recall that the neighborhood system at X that corresponds
to � is de�ned as

NX = fV � L j U � V for some U 2 � with X 2 Ug . (4)

A sequence fXng � L converges in the topology � to X 2 L, denoted Xn !� X, i¤ it is
eventually in every neighborhood V 2 NX of X.
A sequence fXng � L converges in the non-additive measure � to X, denoted Xn !�

X, i¤ for every c > 0
lim
n!1

� (jXn �Xj � c) = 0.

Or equivalently: Xn !� X i¤, for every �xed c > 0, the sequence fXng is eventually in
every (c; �)-ball Bc;� (X) with � > 0. By set-inclusion (3), Xn !� X i¤ there exists for
every m 2 N+ some M such that

Xn 2 B 1
m
; 1
m
(X) for all n �M . (5)

Proposition 1. A topology � comes with the convergence behavior

Xn !� X implies Xn !� X (6)

i¤ � satis�es Condition BU.

Proof. The if-part. If � satis�es Condition BU, there exists some Bc;� (X) � U
whenever X 2 U 2 � . Fix this Bc;� (X) and U and suppose that Xn !� X. If fXng is
eventually in every B 1

m
; 1
m
(X), it must eventually be in Bc;� (X) and therefore in every

neighborhood V of X such that U � V. Since this argument applies to every U 2 �
with X 2 U , fXng will be eventually in every neighborhood of X which gives us the
convergence behavior (6).
The only-if part. Any U 2 � with X 2 U is itself a neighborhood of X. Suppose

that Xn !� X so that (5) must hold. If Condition BU is violated, there are no
�
1
m
; 1
m

�
-

balls such that B 1
m
; 1
m
(X) � U . Consequently, fXng will never be in the neighborhood

U 2 NX of X.��
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3.2 The class of � C-topologies

Fix � and L � L0. We introduce the class of �C-topologies which all satisfy, by a weak base
construction, Condition BU. To this purpose, de�ne the following countable collection of
all �nite intersections of (c; �)-balls in B (X)

C� (X) = fBc1;�1 (X) \ � � � \Bcn;�n (X) jn 2 N; ci; �i 2 Q>0g . (7)

We write C (X) as the generic expression for any subset of C� (X) that is closed under
�nite intersections, i.e., C (X) � C� (X) and

y; z 2 C (X) implies y \ z 2 C (X) .

De�nition 3. Fix some collection of C (X) for all X 2 L:

C = fC (X) j X 2 Lg . (8)

(i) We say that the following topology is induced by C:

�C = fU � L j for all X 2 U , U 2 WXg [ f;; Lg

such that
WX = fV � L j y � V for some y 2 C (X)g .

(ii) We denote by TC the class of all such �C-topologies induced by all possible collections
(8).

The family C forms a weak base for the �C-topology so that �C is weakly �rst-countable
(or g-�rst countable) (cf. Arhangel�ski¼¬ 1966; Siwiec 1974; Hong 1999; Yang and Shi
2011). To see that any �C 2 TC satis�es Condition BU, observe that there must be for
every U 2 �C with X 2 U some y � U such that y 2 C (X) has the following form

y = Bc1;�1 (X) \ � � � \Bcn;�n (X) .

Let now 1
m
� min fc1; �1; :::; cn; �ng so that we obtain, by set-inclusion (3),

B 1
m
; 1
m
(X) � y � U .

Since B 1
m
; 1
m
(X) 2 B (X), Condition BU is satis�ed.
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Denote by C and C 0 two weak bases with corresponding topologies �C and �C0. Suppose
that we have for all X 2 L: for every y 2 C (X) 2 C there exists some y0 2 C 0 (X) 2 C 0
such that

y0 � y.

In that case, we must have for the corresponding topologies

U 2 �C implies U 2 �C0
,

�C � �C0

so that �C0 is �ner than �C (or: �C is coarser than �C0). Both topologies are equivalent,
i.e., �C = �C0, i¤ �C0 is �ner than �C while �C is also �ner than �C0.
The coarsest topology in TC is the trivial topology

�C = fL; ;g

induced by
C = fC (X) = fLg j X 2 Lg .

The �nest topology in TC is induced by (7) itself for all X 2 L:

C = fC� (X) j X 2 Lg .

For later reference we denote the �nest topology in TC by � �.

Proposition 2. The �nest topology � � in TC is equivalent to the topology �C0 2 TC
induced by

C 0 =
n
C 0 (X) =

n
B 1

m
; 1
m
(X) j m 2 N+

o
j X 2 L

o
.

Proof. We have, by set inclusion (3), for every

y = Bc1;�1 (X) \ � � � \Bcn;�n (X) 2 C� (X)

some
y0 = B 1

m
; 1
m
(X) 2 C 0 (X)

with 1
m
� min fc1; �1; :::; cn; �ng such that

y0 � y.
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This shows that �C0 is �ner than � �. On the other hand, � � is trivially �ner than �C0
because all B 1

m
; 1
m
(X) 2 C� (X).��

By Proposition 1, we thus obtain the following equivalent characterization of � �.

Observation 1. The �nest topology � � in TC is equivalently given as

� � = fU � L j for all X 2 U , U 2 WXg [ f;; Lg

such that
WX =

n
V � L j B 1

m
; 1
m
(X) � V for some m 2 N+

o
.

3.3 Convergence in the non-additive measure �

We call a topology � with convergence behavior

Xn !� X i¤Xn !� X

a �topology of convergence in (the non-additive measure) ��. By Proposition 1, we know
that any �topology of convergence in ��must satisfy Condition BU. Although our subse-
quent mathematical and decision-theoretic results will be derived for all topologies sat-
isfying Condition BU�regardless of whether they are �topologies of convergence in ��or
not�it is interesting to ask under which conditions does a topology � become a �topology
of convergence in ��.

Proposition 3.

(i) The �nest topology � � 2 TC is a topology of convergence in �, i.e.,

Xn !�� X i¤Xn !� X,

whenever all
�
1
m
; 1
m

�
-balls at X are neighborhoods of X.

(ii) This is in particular the case whenever all
�
1
m
; 1
m

�
-balls are open sets in � �.

Proof. The if-part. As a �C-topology � � satis�es, by construction, Condition BU
which gives us, by Proposition 1, that Xn !� X implies Xn !�� X.
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The only-if part. Suppose now that Xn !�� X. If fXng is eventually in every
neighborhood of X, it must also be eventually in every B 1

m
; 1
m
(X) whenever all

�
1
m
; 1
m

�
-

balls at X are neighborhoods of X, i.e., Xn !�� X implies Xn !� X. ��

Proposition 3 comes with the caveat, however, that not all
�
1
m
; 1
m

�
-balls are necessarily

neighborhoods in the topology � � 2 TC for arbitrary (
;F ; �) and L. As it is, there are
(
;F ; �) and L for which there does not exist any topology of convergence in � whereas
the �nest topology � � 2 TC always exists by construction.

Example 3. Let fA1; A2g � F be some partition of 
 and assume that

� (A1) = � (A2) = 0.

Consider L = fX; Y; Zg such that

A1 A2
X 1 1

Y 1 0

Z 0 1

Note that we have for any m > 1

B 1
m
; 1
m
(X) = fX; Y; Zg ,

B 1
m
; 1
m
(Y ) = fX; Y g ,

B 1
m
; 1
m
(Z) = fX;Zg ,

resulting for the weak base

C =
n
C (X) =

n
B 1

m
; 1
m
(X) j m 2 N+

o
j X 2 L

o
in

WX = ffX; Y; Zgg ,
WY = ffX; Y g ; fX; Y; Zgg ,
WZ = ffX;Zg ; fX; Y; Zgg .

This gives us as the �nest topology in TC the trivial topology

� � = f;; fX;Y; Zgg
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for which the B 1
m
; 1
m
(Y ) and B 1

m
; 1
m
(Z) are neither open sets nor neighborhoods

of Y and Z, respectively, for m > 1. Note that everything converges to
everything in the trivial topology � �, including Y !�� Z. On the other hand,
the Y do not converge in � to Z because, for every c 2 (0; 1],

lim
n!1

� (jY � Zj � c) = 1,

implying
Y !�� Z but not Y !� X.

Consequently, � � is not a topology of convergence in �. To see that there does
not exist any topology of convergence in � for the above example, observe that
any topology which is strictly �ner than � � would violate Condition BU.�

3.4 Excursus: When is the � �-topology a topology of conver-
gence in �?

Although it is not essential to the remaining analysis of this paper�which applies to all
topologies satisfying Condition BU�it would be interesting to identify structural properties
of � which ensure that � � is a topology of convergence in � for arbitrary L � L0. We
prove the following result in the Appendix.

Theorem 1. Suppose that � satis�es

(i) �uniform autocontinuity from above�and

(ii) �order continuity�.

Then all
�
1
m
; 1
m

�
-balls are open sets in the �nest topology � � 2 TC.

By Proposition 3(ii), we immediately obtain the following corollary to Theorem 1.

Corollary 1. The �nest topology � � 2 TC is a �topology of convergence in ��for any �
that satis�es

(i) �uniform autocontinuity from above�and

(ii) �order continuity�.
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Theorem 1 and Corollary 1 are closely related to the analysis in Ouyang and Zhang
(2011)�and to a lesser extend to Li (2012)4�who consider topologies of convergence in �
induced by some distance function d, denoted � d. These authors�strategy for constructing
� d-topologies that are also topologies of convergence in � is as follows:

1. Find a distance function d that comes with the convergence behavior

lim
n!1

d (Xn; X) = 0 i¤Xn !� X. (9)

2. Identify conditions on � which ensure that all d-balls are open sets in � d.

To be precise, recall that a distance function d : L0 � L0 ! [0;1) has to satisfy
d (X;X) = 0. Fix a distance function d : L0 � L0 ! [0;1) and an arbitrary L � L0.
De�ne the d-ball at X of radius 1

n
as

Bd1
n
(X) =

�
Y 2 L j d (X; Y ) < 1

n

�
and consider the collection of all such d-balls at X

Bd (X) =
n
Bd1

n
(X) j n 2 N+

o
.

De�nition 4. For a �xed d and L � L0 de�ne the d-induced topology

� d =
�
U � L j for all X 2 U , U 2 Wd

X

	
[ f;; Lg

such that
Wd
X =

n
V � L j Bd1

n
(X) � V for some n 2 N+

o
.

In our terminology, the family �
Bd (X) j X 2 L

	
4Li (2012) considers conditons such that the distance function

dinf " (X;Y ) = inf f" j � (jX � Y j > ") � "g ,

which comes with convergence behavior (9), induces a pseudometric space.
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forms a weak base for the � d-topology. Ouyang and Zhang (2011) consider the topology
� d0 induced by the distance function d0 : L

0 � L0 ! [0; 1) such that5

d0 (X; Y ) = (C)

Z jX � Y j
1 + jX � Y jd�, (10)

which comes with convergence behavior (9). The integral in (10) is the Choquet integral
with respect to � de�ned for bounded, F-measurable functions f as follows (Choquet
1954; Schmeidler 1986; Wakker 1993; König 2003):

(C)

Z
fd� =

Z 0

�1
(� (f � t)� 1) dt+

Z 1

0

� (f � t) dt.

Ouyang and Zhang (2011) show, in a �rst step, that d0 becomes a pseudometric for
concave � because concavity of � ensures�via the triangle inequality�that all d0-balls are
open sets (Theorem 3.1 in Ouyang and Zhang 2011). For non-concave �, however, d0
might violate the triangle-inequality so that it is no longer guaranteed that the d0-balls
are open sets. In a second step, Ouyang and Zhang (2011) look therefore for conditions
on � beyond concavity which would ensure that all d0-balls are open sets. The proof of
Theorem 4.1 in Ouyang and Zhang (2011) implies the following results for L = L0.6

Su¢ ciency part. Suppose that � is �uniformly autocontinuous from above�. Then the
d0-balls are open sets in � d0.

Necessity part. If � violates �autocontinuity from above�, not all d0-balls are open sets
in � d0.

In the Appendix we prove the following equivalence result.

Theorem 2. For arbitrary (
;F ; �) and L � L0 we have th cfr345at � � = � d0.
5For additive �, d0 is the standard pseudometric which captures convergence in � and which becomes a

metric for the standard concept of equivalence classes of random variables (cf. 13.40 Lemma in Aliprantis
and Border 2006).

6The original formulation of Theorem 4.1 in Ouyang and Zhang (2011) states that (i) �uniform au-
tocontinuity from above�is su¢ cient for �d0 being a topology whereas (ii) �autocontinuity from above�
is necessary for �d0 being a topology. In our opinion, this formulation is somewhat misleading because,
by the weak base construction of De�nition 4, �d0 is a tautology for an arbitrary �. What these authors
actually prove is that the respective autocontinuity conditions are su¢ cient, resp. necessary, for the d0-
balls to be open sets in �d0 . Also note that one can construct examples such that �

� = �d0 is a topology
of convergence in � even if �autocontinuity from above�is violated so that not all d0-balls are open sets
in �d0 .
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Combined with the su¢ ciency part of Theorem 4.1 in Ouyang and Zhang (2011),
Theorem 2 implies that all d0-balls are open sets in � � whenever � is �uniformly autocon-
tinuous from above�. Moreover, the proof of Theorem 2 shows that there exists for every�
1
m
; 1
m

�
-ball B 1

m
; 1
m
(X) some d0-ball B

d0
1
n

(X) such that

Bd01
n

(X) � B 1
m
; 1
m
(X) .

Consequently, any
�
1
m
; 1
m

�
-ball B 1

m
; 1
m
(X) is a neighborhood of X in the topology � �

whenever the d0-balls B
d0
1
n

(X) are open sets in � �. By Proposition 3(i), we therefore

obtain the following stronger version of Corollary 1.

Corollary 1�. The �nest topology � � 2 TC is a �topology of convergence in ��for any �
that satis�es �uniform autocontinuity from above�.

4 Local cones and local cone orders

We are going to use the following concepts and termini.

� A set L � L0 is a convex cone i¤ (i) X + Y 2 L for all X; Y 2 L and (ii) �X 2 L
for all � � 0, X 2 L.

� A set L � L0 is local i¤, for any X 2 L and any A 2 F , X1A 2 L where 1A denotes
the indicator function.

� We call L � L0 a local cone i¤ L is a convex cone and local.

De�nition 5. Let L be a local cone. We de�ne the local cone order �L (or simply the
L-order) as follows:

X �L Y , Y �X 2 L:

If L is a local cone such that X �L Y and X �L Z, we also have, for � 2 (0; 1),

� (Y �X) + (1� �) (Z �X) = �Y + (1� �)Z �X 2 L
,

X � L�Y + (1� �)Z.

The remainder of this section introduces examples of local cone orders that will be relevant
to our subsequent analysis.
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4.1 �-independent local cone orders

Denote by � the payo¤-dominance order, i.e.,

X � Y i¤X (!) � Y (!) for all ! 2 
.

If X � Y , we say that Y dominates X. Relevant subdomains of random variables which
are local cones are (i) the set L0 of all random variables itself, (ii) the set of all non-negative
random variables

L0+ =
�
Y 2 L0 j 0 � Y (!) for all ! 2 


	
,

and (iii) the set of all non-positive random variables

L0� =
�
Y 2 L0 j Y (!) � 0 for all ! 2 


	
.

The respective local cone orders for these relevant subdomains of random variables are
given as follows.

Observation 2.

(i) For L = L0 the L-order coincides with the equivalence order, i.e., for all X; Y 2 L0,

X �L Y .

(ii) For L = L0+ the L-order coincides with the payo¤-dominance order, i.e., for all
X; Y 2 L0+,

X �L Y , X � Y .

(iii) For L = L0� the L-order coincides with the reversed payo¤-dominance order, i.e.,
for all X; Y 2 L0�,

X �L Y , Y � X.

4.2 �-dependent local cone orders

We are going to refer to the following properties, which may or may not be satis�ed by
any given �.

� � is convex at one i¤, for all A;B 2 F ,

� (A) = 1 and � (B) = 1 implies � (A \B) = 1. (11)
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� � is concave at zero i¤, for all A;B 2 F ,

� (A) = 0 and � (B) = 0 implies � (A [B) = 0. (12)

For a �xed � de�ne the subdomain L�0+ of random variables that are non-negative
except on an �-zero event, i.e.,

L�0+ =
�
Y 2 L0 j � (Y < 0) = 0

	
. (13)

L�0+ is local because we have, for any A 2 F ,

(X1A < 0) � (X < 0) ,

so that, by monotonicity of �,

� (X < 0) = 0 implies � (X1A < 0) = 0.

In contrast to the �-independent de�nition of L0+, we can, in general, not be sure that L
�0
+

is also a convex cone. Clearly, we have that �X 2 L�0+ for all � � 0 and X 2 L�0+ . But we
might encounter situations where X; Y 2 L�0+ does not necessarily imply X + Y 2 L�0+ .

Example 4. Consider the space (
;F ; �) such that for some partition
fA1; A2g � F of 


� (A1) = � (A2) = 0.

Observe for the following random variables

A1 A2
X �1 0

Y 0 �1
X + Y �1 �1

that

� (X < 0) = 0 and � (Y < 0) = 0 but not � (X + Y < 0) = 0.

Consequently, L�0+ is not a convex cone.�

Proposition 4. If � is concave at zero, the subdomain L�0+ de�ned by (13) is a local
cone.
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Proof. To show that concavity at zero (12) is su¢ cient for L0�+ being a local cone, we
have to establish that X; Y 2 L0�+ implies X +Y 2 L0�+ whenever � is concave at zero. To
this purpose, de�ne the following events in F

A1 = (X < 0) \ (Y � 0) ,
A2 = (X < 0) \ (Y < 0) ,
A3 = (X � 0) \ (Y < 0) ,
A4 = (X � 0) \ (Y � 0) ,

which form a partition of 
. Next, observe that

(X + Y < 0) � (A1 [ A2 [ A3)

as well as

(X < 0) = A1 [ A2,
(Y < 0) = A2 [ A3.

By concavity at zero (12),

� (A1 [ A2) = 0 and � (A2 [ A3) = 0 implies � (A1 [ A2 [ A3) = 0

while monotonicity implies

� (X + Y < 0) � � (A1 [ A2 [ A3) .

Collecting terms gives us the desired result

� (X < 0) = 0 and � (Y < 0) = 0 implies � (X + Y < 0) = 0

,
X; Y 2 L0�+ implies X + Y 2 L0�+ .

��

As an alternative to (13), de�ne now the subdomain L�1+ of random variables that are
positive on an �-one event, i.e.,

L�1+ =
�
Y 2 L0 j � (Y � 0) = 1

	
. (14)
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L�1+ is local because, by monotonicity of �,

(X � 0) � (X1A � 0)
)

� (X � 0) = 1 implies � (X1A � 0) = 1.

Whereas �X 2 L�1+ holds for all � � 0 and X 2 L�1+ , we can, in general, not guarantee
that X; Y 2 L�1+ implies X + Y 2 L�1+ .

Example 4 (modi�ed). Consider the same set-up as under Example 3
except for the modi�ed non-additive probability measure �, which now satis�es

� (A1) = � (A2) = 1.

Observe that � (0 � X) = 1 and � (0 � Y ) = 1 but not � (0 � X + Y ) = 1,
which violates the de�nition of a convex cone.�

Proposition 5. If � is convex at one, the subdomain L�1+ de�ned by (14) is a local cone.

Proof. We have to show that

� (0 � X) = 1 and � (0 � Y ) = 1 implies � (0 � X + Y ) = 1

whenever convexity at one (11) is satis�ed. Observe that

((0 � X) \ (0 � Y )) � (0 � X + Y )

so that monotonicity implies

� ((0 � X) \ (0 � Y )) � � (0 � X + Y ) .

The result follows because we have, by (11), that

� (0 � X) = 1 and � (0 � Y ) = 1 implies � ((0 � X) \ (0 � Y )) = 1.

��
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Note that we have, by (13) and (14),

Y �X 2 L�0+ , � (Y �X < 0) = 0,

Y �X 2 L�1+ , � (Y �X � 0) = 1,

which gives us the following �-dependent local cone orders for these respective local cones.

Observation 3.

(i) Suppose that � is concave at zero. For L = L�0+ the L-order coincides with the ��-
zero payo¤ dominance order�according to which Y dominates X except on an �-zero
event, i.e.,

X �L Y , � (Y < X) = 0.

(ii) Suppose that � is convex at one. For L = L�1+ the L-order coincides with the ��-one
payo¤ dominance order�according to which Y dominates X on an �-one event, i.e.,

X �L Y , � (X � Y ) = 1.

5 New mathematical results

Our subsequent results will apply to any topology that satis�es Condition BU. The fol-
lowing Lemma combines a local cone structure of L with the topological Condition BU.

Lemma 1. Consider the topological space (L; �) such that (
;F ; �) is an arbitrary non-
additive probability space and L is a local cone. Suppose that � satis�es Condition
BU so that there exists for any given open set U 2 � with X 2 U some c; � > 0 such
that

Bc;� (X) � U .

Then we also have that

� (A) < � implies X + Y 1A 2 Bc;� (X) � U (15)

for an arbitrary Y 2 L.

Proof. By the local cone structure, we must have X + Y 1A 2 L for any X; Y 2 L
and any A 2 F . Suppose that there is some c; � > 0 such that

X 2 Bc;� (X) � U :
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Observe that

� (jX + Y 1A �Xj � c) = � (jY 1Aj � c)
� � (A)

where Y is arbitrary. Note that � (A) < � implies

� (jX + Y 1A �Xj � c) < �

)
X + Y 1A 2 Bc;� (X) � U ,

which gives us the desired result (15).��

To derive the following Theorem, we add non-atomicity to the assumptions of Lemma
1.

Theorem 3. Consider the topological space (L; �) such that (i) (
;F ; �) is an arbitrary
non-atomic, non-additive probability space, (ii) L is a local cone, and (iii) � satis�es
Condition BU. We have for any X;Z 2 L and any open set U 2 � that

X 2 U implies X + Z 2 co (U)

where co (U) denotes the convex hull of U .

In words: Under the conditions of Theorem 3, we can add arbitrary Z 2 L to X 2 L
such that the resulting random variables X +Z belong to the convex hull of any open set
U around X.

Proof of Theorem 3. Fix X;Z 2 L. Consider any partition � = f
1; :::;
ng � F
for n 2 N+. Because L is a local cone, we have (i) nZ 2 L as well as (ii) X + nZ1
i 2 L,
i = 1; :::; n. Since (
;F ; �) is non-atomic, there exists for every � > 0 some su¢ ciently
�ne partition � such that � (
i) < � for every i = 1; :::; n. By Lemma 1, we obtain that
� (
i) < � implies

X + nZ1
i 2 Bc;� (X) � U

whenever
X 2 Bc;� (X) � U .
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Because of

X + Z =

nX
i=1

1

n
(X + nZ1
i) ,

we obtain the desired result X + Z 2 co (U) whenever X 2 U .��

Observe that Theorem 3 only states that X + Z belongs to the convex hull of U and
not to U itself. However, under the assumption that the open set U around X is convex,
i.e., U = co (U), Theorem 3 comes with the powerful implication that

X 2 U implies X + Z 2 U for all Z 2 L. (16)

An application of (16) to the local cones considered in Observations 2 and 3 gives us the
following Corollary to Theorem 3 for relevant subdomains of random variables.

Corollary 2. Suppose that the assumptions of Theorem 3 are satis�ed.

(i) Any open and convex set U in the topological space (L0; �) around X 2 L0 contains
all random variables Y 2 L0.

(ii) Any open and convex set U in the topological space
�
L0+; �

�
around X 2 L0+ contains

all random variables Y 2 L+ that payo¤-dominate X, i.e., X � Y .

(iii) Any open and convex set U in the topological space
�
L0�; �

�
around X 2 L0� contains

all random variables Y 2 L� that are payo¤-dominated by X, i.e., Y � X.

(iv) Let � be concave at zero. Any open and convex set U in the topological space
�
L�0+ ; �

�
around X 2 L�0+ contains all random variables Y 2 L�0+ that �-zero payo¤-dominate
X, i.e., � (Y < X) = 0.

(v) Let � be convex at one. Any open and convex set U in the topological space
�
L�1+ ; �

�
around X 2 L�1+ contains all random variables Y 2 L�1+ that �-one payo¤-dominate
X, i.e., � (X � Y ) = 1.

Part (i) of Corollary 2 immediately gives us another result:

Corollary 3. Suppose that the assumptions of Theorem 3 are satis�ed. The only non-
empty open and convex set in the topological space (L0; �) is the set of all random
variables L0 itself.
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Remark 1. Denote by � any non-atomic, additive probability measure. In Assa and
Zimper (2018, Proposition 1) we had derived the following result: The only convex subset
of the topological space (L0; ��) with non-empty interior is the set L0 itself. Corollary
3 thus generalizes Proposition 1 in Assa and Zimper (2018) to any non-atomic, non-
additive measure. The conclusion of Proposition 1 in Assa and Zimper (2018) has been
well-established for topological Lp-spaces with 0 < p < 1. Topological Lp-spaces with
0 < p < 1 are de�ned for all random variables X such that

R


jXjp d� exists and they are

induced by the pseudometric

dp (X; Y ) =

Z



jX � Y jp d�

(cf. Theorem 13.30 in Aliprantis and Border 2006). In particular, Rudin (1991, paragraph
1.47) proves: The only convex subset of the topological space Lp-space with 0 < p < 1

with non-empty interior is the set Lp itself. This �nding is mathematically equivalent to
Theorem 1 in Day (1940) who shows that the null-functional is the only continuous linear
functional on a topological space Lp-space with 0 < p < 1.

6 New decision theoretic results

6.1 Continuous preferences on local cones

We consider a transitive and re�exive preference relation � that is complete over all pairs
(X; Y ) 2 L � L for a �xed subdomain L � L0.7 The usual conventions apply: X � Y

means that Y is at least as desirable as X; X � Y AND Y � X stand for �indi¤erence�,
abbreviated by X � Y ; X � Y AND NOT Y � X mean that Y is strictly preferred to
X, denoted X � Y . Introduce the strictly better set at X

S� (X) = fZ 2 LjX � Zg .

as well as the strictly worse set at X

s�(X) = fZ 2 LjZ � Xg .

De�nitions 6.
7See Remark 3 for a possible weakening of this completeness assumption.

26



(i) The preference relation � is � -continuous on L i¤ S� (X) and s� (X), are open sets
in the topological space (L; �).

(ii) The preference relation � is convex on L i¤, for any X 2 L, S� (X) is a convex set.

(iii) The preference relation � is L-monotone i¤

X �L Y ) X � Y:

The following result�based on Theorem 3�shows that � -continuity with respect to any
topology � that satis�es Condition BU in combination with convexity forces an ordering
property in terms of the local cone order �L.

Theorem 4. Consider the topological space (L; �) such that (i) (
;F ; �) is an arbitrary
non-atomic, non-additive probability space, (ii) L is a local cone, and (iii) � satis�es
Condition BU. If � is � -continuous and convex on L, then � must also be L-
monotone.

Proof. Step 1. Let X; Y 2 L such that

X �L Y , Y �X 2 L.

Fix an open set U such that X 2 U . By Theorem 3, we obtain

X + Y �X = Y 2 co (U) .

Step 2. It remains to prove the following statement: If S� (Y ) is open in (L; �) and
convex, then X � Y . Assume to the contrary that S� (Y ) is open and convex but Y � X.
Let U = S� (Y ) so that Y � X implies X 2 U . By Step 1, Y 2 co (U). But by convexity
of S� (Y ), we get co (U) = co (S� (Y )) = S� (Y ). This implies Y 2 S� (Y ), i.e., Y � Y ,
which is a contradiction.��

Theorem 4 comes with the following implications for the di¤erent L-orders of the
relevant subdomains identi�ed in Observations 2 and 3.

Corollary 4. Suppose that the assumptions of Theorem 4 are satis�ed.. Let � be � -
continuous and convex on L.

27



(i) If L = L0, then � must be the indi¤erence relation i.e., for all X; Y 2 L0, X � Y .

(ii) If L = L0+, then � must be payo¤-monotone, i.e., if X � Y , then X � Y .

(iii) If L = L0�, then � must be reverse payo¤-monotone, i.e., if X � Y , then Y � X.

(iv) Let � be concave at zero. If L = L�0+ , then � must be �-zero payo¤-monotone, i.e.,
if � (Y < X) = 0, then X � Y .

(v) Let � be convex at one. If L = L�1+ , then � must be �-one payo¤-monotone, i.e., if
� (X � Y ) = 1, then X � Y .

Remark 2. Observe that the conclusion (and the proof of) Theorem 4 applies to
preferences that are complete for all pairs (X; Y ) 2 L� L such that X �L Y . Of course,
for L = L0 this means that the preference ordering � has to be complete over all pairs of
random variables in L0 because X �L Y for all (X; Y ) 2 L0�L0. However, for the other
subdomains of Corollary 4 the assumption of complete preferences over all pairs in these
subdomains can e¤ectively be weakened. For example, for L = L0+ the preference ordering
� needs only to be complete over all (X; Y ) 2 L0+ � L0+ for which payo¤-monotonicity
holds, i.e., X � Y .

Remark 3. In Assa and Zimper (2018) we consider the topology of convergence in
additive measure � on equivalence classes of all random variables in L0 induced by the
metric

d0 (X;Y ) =

Z jX � Y j
1 + jX � Y jd�.

We had derived the following result for a non-atomic, additive probability space:

Theorem 1(a): Consider a binary preference relation � on L0 that is non-
trivial and complete. The preference relation � cannot simultaneously satisfy
continuity and convexity (of strictly better sets).

Non-triviality of � means that there is at least one pair (X; Y ) 2 L0 � L0 such that
X � Y . Consequently, for � = � this result from our previous paper obtains as a special
case of Corollary 4(i). Put di¤erently, Corollary 4(i) generalizes Theorem 1(a) (Assa and
Zimper 2018) from a non-atomic, additive probability space (
;F ; �) to a non-atomic,
non-additive probability space (
;F ; �). It also generalizes our previous analysis to all
topologies that satisfy Condition BU.
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6.2 Implications for utility- and risk-measure representations

Fix some topology � that satis�es Condition BU. Our decision theoretic analysis was
originally motivated by the following question: Given that both L0 and L0+ are large spaces
of random variables, what is the underlying mathematical structure for the fact that there
does not exist a non-trivial Choquet expected utility representation for � -continuous and
convex preferences over all random variables whereas such representation exists for all
non-negative random variables? Theorem 4�and, more speci�cally, Corollary 4(i)-(ii)�
answers this question by identifying the di¤erent local cone orders for the subdomains L0

and L0+, respectively, as the underlying mathematical reason.
To see this, consider an utility representation of preferences U : L! R such that

U (X) � U (Y ), X � Y for all X; Y 2 L.

By part (i) of Corollary 4, the only utility representation of � -continuous and convex
preferences over all random variables in L0 is the constant utility function

U (X) = c for all X 2 L0

for some c 2 R.
In contrast, part (ii) of Corollary 4 only requires payo¤-monotonicity for ��continuous

and convex preferences de�ned over all non-negative random variables only. In particular,
observe that the payo¤-monotone Choquet expected utility representation U : L0+ ! R
such that

U (X) = (C)

Z



u (X (!)) de�
for an arbitrary non-additive measure e� de�ned on (
;F) would represent � -continuous
and convex preferences on L0+ whenever (i) the Bernoulli utility function u : R+ ! R is
increasing, continuous (in the Euclidean metric), concave, and bounded from above and
(ii) the non-additive probability measure e� is convex, i.e., satisfying for all A;B 2 F

e� (A) + e� (B) � e� (A [B) + e� (A \B) .
To sum up: Every utility representation of � -continuous and convex preferences must

adhere to monotonicity in the local cone order. This local cone order corresponds to
equivalence for the subdomain L0 and to payo¤-dominance for the subdomain L0+, respec-
tively.

Turn now to the local cone order on the subdomain L0� which corresponds to loss-
dominance, i.e., to the opposite of payo¤-dominance. Fix some risk measure � : L0� ! R
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with the interpretation that the random variable Y is less risky than the random variable
X if and only if � (Y ) � � (X) whereby we consider �-induced preferences in the sense
that

� (Y ) � � (X), X � Y for all X; Y 2 L0�.

A convex risk measure � must satisfy (i) monotonicity in the payo¤-dominance order, i.e.,
X � Y implies � (Y ) � � (X), as well as (ii) convexity, i.e.,

� (�Y + (1� �)X) � �� (Y ) + (1� �) � (X) for all � 2 [0; 1] .

Convex risk measures induce convex preferences (cf. Föllmer and Schied 2002; 2016).
Convexity of a risk measure expresses the natural idea that a diversi�ed portfolio

should be less risky than a non-diversi�ed portfolio. Convexity is, e.g., satis�ed by coherent
risk measures that have been axiomatized in order to address the non-convexity of the
value-at-risk criterion (cf. Artzner et al. 1997; 1999; Delbaen 2002; 2009). By part (iii)
of Corollary 4, preferences that are induced by a convex risk measure � : L0� ! R must
violate ��continuity on the subdomain L0� of all loss random variables. The following
example illustrates this fact for the popular convex risk measure average value-at-risk
(also referred to as expected shortfall or conditional value-at-risk, cf. Föllmer and Schied
2016, Chapter 4.4)

Example 5: Average value-at-risk. Fix the non-atomic, non-additive
probability space

�
(0; 1) ;FB; �

�
where FB denotes the Borel-sigma algebra

on (0; 1). The average value-at-risk of any loss-random variable Z 2 L0� for
the con�dence level interval (0; �) is de�ned as

AVaR� (Z) =
1

�

�Z
0

VaR� (Z) d�.

such that the value-at-risk of Z at con�dence level � with respect to � is given
as follows (cf. Miryana 2014):

VaR� (Z) = � inf fx j � � � (Z � x)g

Let Y = 0 be the loss-random variable that gives a constant �loss�of zero.
Introduce the sequence f��g of partitions of (0; 1) such that, for � = 1

n
with

n � 1,

�� = f
�1; :::;
�ng =
��
0;
1

n

�
;

�
1

n
;
2

n

�
; :::;

�
n� 1
n

; 1

��
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and de�ne the loss-random variables Y �i 2 L0� such that

Y �i (!) =

(
0 if ! 2 
n
�i
� 1

�(
�i)
if ! 2 
�i

The Y �i converge, by construction, in measure to Y , i.e., Y
�
i !� Y . Next

observe that

VaR� (Y ) = 0,

VaR� (Y
�
i ) =

(
0 if � (
�i) < �
1

�(
�i)
if � (
�i) � �

implying, for � (
�i) < �,

AVaR� (Y ) = 0,

AVaR� (Y
�
i ) =

1

�

0BB@
�(
�i)Z
0

1

� (
�i)
d�+

�Z
�(
�i)

0d�

1CCA =
1

�
.

Consequently,

lim
�!0

AVaR� (Y
�
i ) =

1

�
6= 0 = AVaR� (Y )

which shows that the average value-at-risk criterionAVaR� induces preferences
that violate ��continuity on the subdomain L0�.�

7 Concluding remarks

We introduce the notions of (i) non-atomicity of a non-additive probability space (
;F ; �),
(ii) a local cone structure of a set of random variables L, and (iii) the Condition BU for a
topology � . Condition BU is always satis�ed for the class of �C-topologies which includes
the topology of convergence in the non-additive measure � but also coarser topologies.
Consider any open set U in (L; �) such that � satis�es Condition BU, (
;F ; �) is

non-atomic, and L is a local cone. We have established that X 2 U implies that any
random variable X +Z with Z 2 L must belong to the convex hull of U . For preferences
over the random variables in L we have shown that (i) convexity of preferences combined
with (ii) � -continuity of preferences forces monotonicity in the local cone order. The local
cone order for the set of all random variables is the equivalence order whereas it is payo¤-
dominance for the set of all positive random variables. Our decision theoretic �nding
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thus explains why there exist non-trivial, convex, and � -continuous Choquet expected
utility representations for the subdomain of positive but not for the subdomain of all
random variables. Another implication of our analysis is the impossibility of � -continuous
preferences induced by convex risk measures de�ned on the subdomain of all loss random
variables.
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Appendix

A Proof of Theorem 1

By Proposition 3(ii), � � is a topology of convergence in � if all
�
1
m
; 1
m

�
-balls are open sets

in � �.

Lemma 2. Suppose that the �nest topology � � in TC satis�es the following condition for
all m 2 N+ and all X 2 L:

Condition YX: Y 2 B 1
m
; 1
m
(X) implies that there exists some mY 2 N+ such that

B 1
mY

; 1
mY

(Y ) � B 1
m
; 1
m
(X) . (17)

Then all
�
1
m
; 1
m

�
-balls are open sets in � �.

Proof. By de�nition, B 1
m
; 1
m
(X) is an open set in � � i¤ for every Y 2 B 1

m
; 1
m
(X)

B 1
m
; 1
m
(X) 2 WY =

n
V � L j B 1

mY
; 1
mY

(Y ) � V for some mY 2 N+
o
.

Letting B 1
m
; 1
m
(X) = V shows that B 1

m
; 1
m
(X) is an open set in � � if (17) is satis�ed for

all Y 2 B 1
m
; 1
m
(X).��

Proof of Theorem 1. Step 1. Let

Y 2 B 1
m
; 1
m
(X)

,

�

�
jX � Y j � 1

m

�
<

1

m

and �x

�� =
1

m
� �

�
jX � Y j � 1

m

�
> 0. (18)

Observe that, for any n > m,�
jX � Zj � 1

m

�
�

�
jX � Y j+ jY � Zj � 1

m

�
�

�
jX � Y j � 1

m
� 1

n

�
[
�
jY � Zj � 1

n

�
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so that

�

�
jX � Zj � 1

m

�
� �

��
jX � Y j � 1

m
� 1

n

�
[
�
jY � Zj � 1

n

��
.

Pick some � > 0 such that � < �� and write �� = � + ". If �uniform autocontinuity from
above�holds, there exists some n� such that

�

�
jY � Zj � 1

n

�
<
1

n�

implies

�

�
jX � Zj � 1

m

�
< �

�
jX � Y j � 1

m
� 1

n

�
+ �

for an arbitrary n > m.
Step 2. Note that

�

�
jX � Y j � 1

m
� 1

n

�
= �

��
jX � Y j � 1

m

�
[
��
jX � Y j < 1

m

�
\
�
jX � Y j � 1

m
� 1

n

���
.

If �uniform autocontinuity from above�holds, there exists some n" such that

�

���
jX � Y j < 1

m

�
\
�
jX � Y j � 1

m
� 1

n

���
<
1

n"
(19)

implies

�

�
jX � Y j � 1

m
� 1

n

�
< �

�
jX � Y j � 1

m

�
+ ". (20)

Write

An =

�
jX � Y j < 1

m

�
\
�
jX � Y j � 1

m
� 1

n

�
=

�
jX � Y j �

�
1

m
� 1

n
;
1

m

��
and observe that

An & ; .

If �order continuity�holds, we thus have that

lim
n!1

�

��
jX � Y j < 1

m

�
\
�
jX � Y j � 1

m
� 1

n

��
= 0.
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This convergence result implies, by (19), the existence of some su¢ ciently large n� such
that

�

���
jX � Y j < 1

m

�
\
�
jX � Y j � 1

m
� 1

n�

���
<
1

n"
holds. �Uniform autocontinuity from above�combined with �order continuity�therefore
gives us, by (20),

�

�
jX � Y j � 1

m
� 1

n�

�
< �

�
jX � Y j � 1

m

�
+ " (21)

for some su¢ ciently large n�.8

Step 3. LetmY = max fm+ 1; n�; n�g. Observe that (i)mY � m+1 ensuresmY > m

and (ii) mY � n� ensures that

�

�
jY � Zj � 1

mY

�
<

1

mY

(22)

implies

�

�
jY � Zj � 1

mY

�
<
1

n�
.

By Step 1, we thus obtain that there exists some mY such that (22) implies

�

�
jX � Zj � 1

m

�
< �

�
jX � Y j � 1

m
� 1

mY

�
+ �. (23)

Next observe that mY � n� ensures, by Step 2, that

�

�
jX � Y j � 1

m
� 1

mY

�
< �

�
jX � Y j � 1

m

�
+ ". (24)

By combining (18), (23), and (24), we obtain that (22) implies

�

�
jX � Zj � 1

m

�
< �

�
jX � Y j � 1

m

�
+ "+ � (25)

= �

�
jX � Y j � 1

m

�
+ ��

=
1

m
.

That is, under the conditions of Theorem 1 there exists some mY such that

�

�
jY � Zj � 1

mY

�
<

1

mY
,

Z 2 B 1
mY

; 1
mY

(Y )

8Of course, we could have obtained (21) directly by assuming �continuity from above�, which is implied
by �(uniform) autocontinuity from above�combined with �order continuity�.
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implies

�

�
jX � Zj � 1

m

�
<

1

m
,

Z 2 B 1
m
; 1
m
(X) ,

which is the desired Condition YX of Lemma 2.��

B Proof of Theorem 2

Preliminaries. Fix an arbitrary c 2 Q>0 and de�ne the event

A = (jX � Y j � c) (26)

=

�
jX � Y j

1 + jX � Y j �
c

1 + c

�
.

Note that we have for the complement of A that

Ac =

�
jX � Y j

1 + jX � Y j <
c

1 + c

�
.

Our proof will employ the following properties of the Choquet integral (cf., e.g.,
Schmeidler 1986; König 2003):9

� Positive homogeneity:

(C)

Z
a �Xd� = a � (C)

Z
Xd� for a � 0

� Translation invariance:

(C)

Z
(X + c) d� = (C)

Z
Xd� + c for c 2 R

� Monotonicity (in the payo¤-dominance order):

X � Y implies (C)
Z
Xd� � (C)

Z
Y d�

9Schmeidler (1986, Theorem) characterizes the Choquet integral through (i) Comonotonic additivity
combined with (ii) Monotonicity in the payo¤-dominance order. Positive homogeneity and Translation
invariance are implied by these two properties (cf. Remark 1 in Schmeidler 1986).
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In what follows we show that the respective weak basesn
Bd1

n
(X) j n 2 N+; X 2 L

o
and n

B 1
m
; 1
m
(X) j m 2 N+; X 2 L

o
induce the same topology. To this purpose, Part 1 establishes that we can �nd for every
�xed m 2 N+ some n 2 N+ such that

Bd01
n

(X) � B 1
m
; 1
m
(X) ;

conversely, Part 2 establishes that we can �nd for every �xed n 2 N+ some m 2 N+ such
that

B 1
m
; 1
m
(X) � Bd01

n

(X) .

Part 1. We show that there exists for every m 2 N+ some n 2 N+ such that

d0 (X; Y ) <
1

n
implies �

�
jX � Y j � 1

m

�
<
1

m
.

Step 1. By the properties of the Choquet integral, we obtain

d0 (X; Y ) = (C)

Z �
jX � Y j

1 + jX � Y j1A +
jX � Y j

1 + jX � Y j1A
c

�
d�

� (C)

Z jX � Y j
1 + jX � Y j1Ad�, by monotonicity

� (C)

Z
c

1 + c
1Ad�, by monotonicity

=
c

1 + c
� (A) , by homogeneity

=
c

1 + c
� (jX � Y j � c) .

Step 2. By Step 1, we have that

1 + c

c
d0 (X; Y ) < c

implies

� (jX � Y j � c) < c.
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Or equivalently, for c = 1
m
,

(m+ 1) d0 (X; Y ) <
1

m
,

d0 (X; Y ) <
1

(m+ 1)m

implies

�

�
jX � Y j � 1

m

�
<
1

m
.

Choosing n such that

1

n
� 1

(m+ 1)m
,

m2 +m � n

gives us the desired relationship that

Y 2 Bd01
n

(X) implies Y 2 B 1
m
; 1
m
(X) .

Part 2. We show that there exists for every n 2 N+ some m 2 N+ such that

�

�
jX � Y j � 1

m

�
<
1

m
implies d0 (X; Y ) <

1

n
. (27)

Step 1. Recall the de�nition of event A by (26) and of it�s complement event. Because
of

jX � Y j
1 + jX � Y j � 1 for all ! 2 A, and

jX � Y j
1 + jX � Y j <

c

1 + c
for all ! 2 Ac,

the properties of the Choquet integral imply

d0 (X; Y ) = (C)

Z �
jX � Y j

1 + jX � Y j1A +
jX � Y j

1 + jX � Y j1A
c

�
d�

� (C)

Z �
1 � 1A +

c

1 + c
� 1Ac

�
d�, by monotonicity

� (C)

Z �
1 � 1A +

c

1 + c

�
d�, by monotonicity

= � (A) +
c

1 + c
, by translation invariance

= � (jX � Y j � c) + c

1 + c
.
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Step 2. By Step 1, we have that

� (jX � Y j � c) + c

1 + c
<
1

n

implies

d0 (X; Y ) <
1

n
. (28)

Since c > 0 was arbitrary, pick some su¢ ciently small c� such that

1

n
� c�

1 + c�
> 0

so that (28) holds if

� (jX � Y j � c�) < 1

n
� c�

1 + c�
. (29)

Let 1
m
� min

�
c�; 1

n
� c�

1+c�

	
to obtain, by (3) and (29), that

�

�
jX � Y j � 1

m

�
<

1

m
(30)

)
� (jX � Y j � c�) + c�

1 + c�
<

1

n
.

Consequently, (30) implies d0 (X; Y ) < 1
n
for su¢ ciently large m, e.g.,

c� =
1

n
) m = n (n+ 1)

will do.��

Remark 4. Our Theorem 1 establishes that (i) �uniform autocontinuity from above�
and (ii) �order continuity�together ensure that all

�
1
m
; 1
m

�
-balls are open sets in the �nest

topology � � 2 TC. Theorem 4.1 in Ouyang and Zhang (2011) implies, by our Theorem
2, that �uniform autocontinuity from above�alone ensures the weaker condition that all�
1
m
; 1
m

�
-balls are neighborhoods in � � 2 TC, which is su¢ cient for � � being a �topology

of convergence in ��. Provided that the analysis in Ouyang and Zhang (2011) as well as
our Theorem 2 are correct, there are two possibilities. Either there are situations such
that all d0-balls but not all

�
1
m
; 1
m

�
-balls are open sets in � � whereby � is �uniformly

autocontinuous from above� but not �continuous from above�. Or one should be able
to prove the conclusion of Theorem 1�according to which all

�
1
m
; 1
m

�
-balls are open sets

in � ��for all � that are �uniformly autocontinuous from above�without the additional
assumption of �order continuity�. We would like to leave this open issue to specialists
or/and to future research.
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