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Abstract

Supervised learning is an important branch of machine learning (ML), which
requires a complete annotation (labeling) of the involved training data. This
assumption is relaxed in the settings of weakly supervised learning, where labels
are allowed to be imprecise or partial. In this article, we study the setting of
superset learning, in which instances are assumed to be labeled with a set of
possible annotations containing the correct one. We tackle the problem of learn-
ing from such data in the context of rough set theory (RST). More specifically,
we consider the problem of RST-based feature reduction as a suitable means
for data disambiguation, i.e., for the purpose of figuring out the most plausi-
ble precise instantiation of the imprecise training data. To this end, we define
appropriate generalizations of decision tables and reducts, using tools from gen-
eralized information theory and belief function theory. Moreover, we analyze the
computational complexity and theoretical properties of the associated computa-
tional problems. Finally, we present results of a series of experiments, in which
we analyze the proposed concepts empirically and compare our methods with
a state-of-the-art dimensionality reduction algorithm, reporting a statistically
significant improvement in predictive accuracy.

Keywords: Superset Learning, Rough Sets, Feature Selection, Evidence
Theory, Entropy.

1. Introduction

Weakly supervised learning [69] refers to machine learning tasks in which
training instances are not required to be associated with a precise target la-
bel. Instead, the annotations can be imprecise or partial. Such tasks could be
the consequence of certain data pre-processing operations such as anonymiza-
tion [15, 49] or censoring [17], could be due to imprecise measurements or expert
opinions, or meant to limit data annotation costs [45]. Some examples of weakly
supervised learning tasks include semi-supervised learning, but also more gen-
eral tasks like learning from soft labels [8, 12, 13, 48], (in which partial labels are
represented through belief functions) which, in turn, encompasses both learning
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from fuzzy labels [14, 28] (in which partial labels are represented through pos-
sibility distributions) and superset learning [29, 40, 44]. In this latter setting,
which will be the focus of this article, each instance x is annotated with a set S
of candidate labels that are deemed (equally) possible. In other words, we know
that the label of x is an element of S, but nothing more. For example, an image
could be tagged with {horse,pony, zebra}, suggesting that the animal shown on
the picture is one of these three, though it is not exactly known which of them.

In the recent years, the superset learning task has been widely investigated
both under the classification perspective [19, 30, 64, 66] and from a theoretical
standpoint [39]. The latter result is particularly relevant, as it shows that, as
in the standard PAC learning model, superset learnability is characterized by
combinatorial dimensions (e.g., Vapnik-Chervonenkis or Natarajan dimension)
which, in general, depend on the dimensionality (i.e., the number of features)
of the learning problem. Thus, the availability of effective feature selection [24]
or dimensionality reduction algorithms would be of critical importance in or-
der to control model capacity and, hence, ensure proper model generalization.
Nevertheless, this task has not received much attention so far [61].

In this article, which is an extension of our previous article [6], we study
the application of rough set theory in the setting of superset learning. In par-
ticular, adhering to the generalized risk minimization principle [28], we con-
sider the problem of feature reduction as a mean for data disambiguation, i.e.,
for the purpose of figuring out the most plausible precise instantiation of the
imprecise training data. Compared to our previous work, we provide a finer
characterization of the theoretical properties and relations among the proposed
definitions of reduct through Theorems 3.4, 3.5, 3.7 that were previously left
as open problems. In Section 4, which has been newly added, we also discuss
two computational experiments by which we study the empirical performance
of the proposed reduct definitions, also in comparison with the state-of-the-art
method for dimensionality reduction in superset learning.

2. Background

In this section, we recall basic notions of rough set theory (RST) and belief
function theory, which will be used in the main part of the article.

2.1. Rough Set Theory

Rough set theory has been proposed by Pawlak [46] as a framework for
representing and managing uncertain data, and has since been widely applied
for various problems in the ML domain (see [4] for a recent overview and survey).
We briefly recall the main notions of RST, especially regarding its applications
to feature reduction.

A decision table (DT) is a triple DT = 〈U,Att, t〉 such that U is a universe
of objects and Att is a set of attributes employed to represent objects in U .
Formally, each attribute a ∈ Att is a function a : U → Va, where Va is the
domain of values of a. Moreover, t /∈ Att is a distinguished decision attribute,
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which represents the target decision (also labeling or annotation) associated
with each object in the universe. We say that DT is inconsistent if the following
holds: ∃x1, x2 ∈ U,∀a ∈ Att, a(x1) = a(x2) and t(x1) 6= t(x2).

Given B ⊆ Att, we can define the indiscernibility relation with respect to B
as xIBx

′ iff ∀a ∈ B, a(x′) = a(x). Clearly, it is an equivalence relation that par-
titions the universe U in equivalence classes, also called granules of information,
[x]B . Then, the indiscernibility partition is denoted as πB = {[x]B |x ∈ U}.

We say that B ⊆ Att is a decision reduct for DT if πB ≤ πt (where the order
≤ is the refinement order for partitions, that is, πt is a coarsening of πB) and
there is no C ( B such that πC ≤ πt. Then, evidently, a reduct of a decision
table DT represents a set of non-redundant and necessary features to represent
the information in DT . We say that a reduct R is minimal if it is among the
smallest (with respect to cardinality) reducts.

Given B ⊆ Att and a set S ⊆ U , a rough approximation of S (with respect to
B) is defined as the pair B(S) = 〈lB(S), uB(S)〉, where lB(S) =

⋃
{[x]B | [x]B ⊆

S} is the lower approximation of S, and uB(S) =
⋃
{[x]B | [x]B ∩ S 6= ∅} is the

corresponding upper approximation.
Finally, given B ⊆ Att, the generalized decision with respect to B for an

object x ∈ U is defined as δB(x) = {t(x′) |x′ ∈ [x]B}. Notably, if DT is
consistent and B is a reduct, then δB(x) = {t(x)} for all x ∈ U .

We notice that in the RST literature, there exist several definitions of reduct
that, while equivalent on consistent DTs, are generally non-equivalent for in-
consistent ones. We refer the reader to [55] for an overview of such a list and
a study of their dependencies, while here we report two specific definitions that
are useful for the following:

Definition 2.1. B ⊂ Att is a δ-reduct if ∀x ∈ U, δB(x) = δAtt(x).

Definition 2.2. B ⊂ Att is µ-reduct if ∀x ∈ U,∀v ∈ Vt, P r(v|[x]B) =
Pr(v|[x]Att), where

Pr(v|[x]B) =
|{x′ ∈ [x]B : t(x′) = v}|

|[x]B |
.

Further, we recall the following result:

Theorem 2.1. Let DT be a decision table. Then, every µ-reduct of DT is also
a δ-reduct of DT, but not vice versa.

We further notice that, given a decision table, the problem of finding the
minimal reduct is in general NP -hard (by reduction to the Shortest Implicant
problem [53, 59]).

2.2. Belief Function Theory

Belief Function Theory (BFT), also known as Dempster-Shafer theory (DST)
or Evidence theory (ET), has originally been introduced by Dempster in [10]
and subsequently formalized by Shafer in [50] as a generalization of probability
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theory (although this interpretation has been disputed [47]). The starting point
is a frame of discernment X, which represents all possible states of a system
under study, together with a basic belief assignment (bba) m : 2X → [0, 1], such
that m(∅) = 0 and

∑
A∈2X m(A) = 1. From this bba, a pair of functions, called

respectively belief and plausibility, can be defined as follows:

Belm(A) =
∑

B:B⊆A

m(B) (1)

Plm(A) =
∑

B:B∩A6=∅

m(B) (2)

As can be seen from these definitions, there is a clear correspondence between
belief functions (resp., plausibility functions) and lower approximations (resp.,
upper approximations) in RST: this connection has been first established in [63],
in which the authors showed that every belief function can be derived from
a corresponding (generalized) decision table. More recently, the connection
between BFT and RST have been investigated from both the theoretical point
of view, for example in [68], where the authors provide a characterization of
belief functions in terms of lower and upper approximation operators, and in
[65], where the author discuss a novel approach to decision-theoretic rough sets
based on BFT; and also from the application point of view: in [67] the authors
propose an algorithm for feature reduction based on BFT in the setting of
Pythagorean fuzzy rough approximation spaces; while in [7] the authors propose
an algorithm to induce weighted decision rules based on RST and BFT.

Starting from a bba, a probability distribution, called pignistic probability,
can be obtained [57]:

PmBet(x) =
∑
A:x∈A

m(A)

|A|
(3)

Finally, we recall that appropriate generalizations of information-theoretic con-
cepts [51], specifically the concept of entropy (which was also proposed to gen-
eralize the definition of reducts in RST [54]), have been defined for evidence
theory. These include measures of non-specificity [1, 16], measures of conflict
or dissonance [26, 35, 56, 62], and measures of total uncertainty [2, 25, 34]: see
[34] for a comprehensive review on generalizations of entropy for evidence the-
ory. Most relevantly for the purposes of this article, we recall the definition of
aggregate uncertainty [25]:

AU(m) = max
p∈P(m)

Hp(X) , (4)

where P(m) is the set of probability distributions p such that Belm ≤ p ≤ Plm,
and Hp(X) = −

∑
x∈X p(x)log2p(x) the Shannon entropy of p. While this mea-

sure is not compatible with Dempster combination rule (see [34]; note, however,
that we do not rely on Dempster combination rule in this paper), it complies
with the generalized risk minimization approach [28] to superset learning and,
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more in particular, with the pessimistic loss approach to generalized risk min-
imization [22, 23, 31]. Another relevant approach is the normalized pignistic
entropy (see [36] for the non-normalized definition)

HBet(m) =
H(PmBet)

H(p̂m)
, (5)

where p̂m is the probability distribution that is uniform on the support of
PmBet(x), i.e., on the set of elements {x |PmBet(x) > 0}. Similarly to the AU ,
also the pignistic entropy is not compatible with Dempster combination rule,
but has the advantage of being efficiently computable.

2.3. Superset Learning

As already mentioned in the introduction, superset learning is a specific type
of weakly supervised learning and, more precisely, a specific type of the learning
from soft labels [8, 11, 13, 48] task. While in learning from soft labels the
partial labels are represented through general belief functions [11], in the case
of superset learning each instance (or object) x ∈ U , where U is a data set (e.g.,
the training data in a machine learning setting), is annotated with a collection
of labels S ⊆ Y (i.e., in BFT terminology, the partial labels are represented by
belief functions with a single focal set). The common interpretation of S is in
terms of a set of candidates of an underlying ground-truth: There is a true label
y, which is not precisely known, but which is known to be an element of S. In
other words, S is a superset of y, hence the name “superset learning”.

As an illustration, consider the famous Iris data, where the objects are iris
plants characterized by four attributes a1, . . . , a4 (sepal length, sepal width,
petal length, petal width). Moreover, each plant belongs to either of the three
categories Setosa, Versicolor, Virginica. Thus, a labeled instance in a data set
might be given by (6.1, 2.9, 4.7, 1.4,Versicolor). Now, imagine that a botanist
who is responsible for the categorization is not entirely certain about the type
of a plant with features x = (6.1, 2.9, 4.7, 1.4), but can at least exclude Setosa as
an option. She could then label the instance with S = {Versicolor,Virginica}.

In spite of the ambiguous, set-valued training data, the goal that is com-
monly considered in superset learning is to induce a unique model, i.e., a map
h : X → Y that generalizes beyond the training data and can be used to make
predictions h(x) ∈ Y for any new query instance x ∈ X . In one way or the other,
this requires the “disambiguation” of the training data. To this end, various
methods and algorithmic approaches have been proposed in the literature, for
example based on maximum likelihood estimation [8, 13, 33, 40, 48], general-
izations of empirical risk minimization [28, 30, 31], convex optimization [9, 18],
and instance-based approaches [11, 29, 66]. In [39], superset learning has been
studied from a theoretical perspective in the framework of PAC learning.

Superset learning has mostly been studied for classification problems so
far, while other (related) machine learning tasks have been considered much
less. This also includes feature selection, despite its important influence on
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model complexity, generalization performance, and transparency of learning al-
gorithms. Indeed, while many works have studied feature selection and dimen-
sionality reduction in the setting of semi-supervised learning [3, 52], which is
actually a special case of superset learning, to the knowledge of the authors,
the only work focusing on the more general setting of superset learning is the
DELIN algorithm proposed in [61]. Compared to the method put forward in this
article, we note two main differences. First, being based on Linear Discriminant
Analysis (LDA), DELIN relies on specific assumptions regarding the statistical
distribution of the data, whereas our method (based on Rough Set Theory) is
completely non-parametric. Second, DELIN is a dimensionality reduction al-
gorithm, which means that it constructs a new set of attributes that is not (in
general) a subset of the original one. By contrast, our approach is a feature
selection algorithm, which selects a subset of the original set of attributes. In
Section 4, we will provide an experimental comparison of the two methods.

As for the notation and connection to RST, it should be clear that the at-
tribute y and its domain Y in superset learning play the role, respectively, of the
decision attribute t and its domain Vt in RST. As an aside, let us note that the
information provided in superset learning may also be interpreted in a different
way, which provides an alternative motivation for the superset extension of de-
cision tables in general and the search for reducts of such tables in particular.
As explained above, the superset extension is mostly motivated by the assump-
tion of imprecise labeling: The value of the decision attribute is not known
precisely but only characterized in terms of a set of possible candidates. As will
be seen further below, finding a reduct is then supposed to help disambiguate
the data, i.e., figuring out the most plausible among the candidates. Instead of
this “don’t know” interpretation, a superset S can also be given a “don’t care”
interpretation: In a certain context characterized by x, all decisions in S are
sufficiently good, or “satisficing” in the sense of March and Simon [42]. A reduct
can then be considered as a maximally simple (least cognitively demanding) yet
satisficing decision rule.

3. Superset Decision Tables and Reducts

In this section, we extend some key concepts of rough set theory to the
setting of superset learning.

3.1. Superset Decision Tables

In superset learning, an object x ∈ U is not necessarily assigned a single
annotation t(x) ∈ Vt, but instead a set S of candidate annotations, one of which
is assumed to be the true annotation associated with x. To model this idea in
terms of RST, we generalize the definition of a decision table as follows.

Definition 3.1. A superset decision table (SDT) is a tuple SDT = 〈U,Att, t, d〉,
where 〈U,Att, t〉 is a decision table, i.e.:

• U is a universe of objects of interest;
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• Att is a set of attributes (or features);

• t is the (real) decision attribute (whose value, in general, is not known);

• d 6∈ Att is a candidate decision attribute, that is, a set-valued map d : U →
P(Vt) such that the superset property holds: t(x) ∈ d(x) for all x ∈ U .

The intuitive meaning of the set-valued information d is that, if |d(x)| > 1
for some x ∈ U , then the real decision associated with x (i.e., t(x)) is not known
precisely, but is known to be in d(x). Notice that Definition 3.1 is a proper
generalization of decision tables: if |d(x)| = 1 for all x ∈ U , then we have a
standard decision table.

Remark 3.1. In Definition 3.1, a set-valued decision attribute is modelled as a
function d : U → P(Vt). While this mapping is formally well-defined for a con-
crete decision table, let us mention that, strictly speaking, there is no functional
dependency between x and d(x). In fact, d(x) is not considered as a property
of x, but rather represents information about a property of x, namely the un-
derlying decision attribute t(x). As such, it reflects the epistemic state of the
decision maker.

A SDT can be associated with a collection of compatible (standard) decision
tables, which we call instantiations of the SDT.

Definition 3.2. An instantiation of a SDT 〈U,Att, t, d〉 is a standard DT I =
〈U,Att, tI〉 such that tI(x) ∈ d(x) for all x ∈ U . The set of instantiations of
SDT is denoted I(SDT ).

The notion of inconsistency of a SDT has to reflect this richness. The fol-
lowing definition reflects the idea that no instantiations are consistent.

Definition 3.3. For B ⊂ Att, the SDT is B-inconsistent if

∃x1, x2 ∈ U,∀a ∈ B, a(x1) = a(x2) and d(x1) ∩ d(x2) = ∅ . (6)

We call such a pair x1, x2 inconsistent. If condition (6) is not satisfied, the
SDT is B-consistent.

Thus, inconsistency implies the existence of (at least) two indiscernible ob-
jects with non-overlapping superset decisions. We say that an instantiation I
is consistent with a SDT S (short, is consistent) if the following holds for all
x1, x2: if x1, x2 are consistent in S, then they are also consistent in I.

3.2. Superset Reducts

Learning from superset data is closely connected to the idea of data disam-
biguation in the sense of figuring out the most plausible instantiation of the
set-valued training data [27, 31]. But what makes one instantiation more plau-
sible than another one? One approach originally proposed in [29] refers to the
principle of simplicity in the spirit of Occam’s razor (which can be given a the-
oretical justification in terms of Kolmogorov complexity [38]): An instantiation
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that can be explained by a simple model is more plausible than an instantiation
that requires a complex model. In the context of RST-based data analysis, a
natural measure of model complexity is the size of the reduct. This leads us to
the following definition.

Definition 3.4. A set of attributes R ⊆ Att is a (consistent) superset reduct
if there exists a (consistent) instantiation I = 〈U,Att, tI〉 such that R is a
reduct for I and there is no other (consistent) instantiation I ′ = 〈U,Att, tI′〉
with reduct R′ ⊂ R. We denote with Rsuper (resp., Rcsuper) the set of super-
set reducts (resp., consistent superset reducts). A minimum description length
(MDL) instantiation is one of the (consistent) instantiations of SDT that admits
a reduct of minimum size compared to all the reducts of all possibile (consistent)
instantiations. We will call the corresponding reducts MDL reducts.

First of all, in order to clarify these concepts, we show a brief example.

Example 3.1. Consider the superset decision table

SDT =
〈
U = {x1, ..., x6}, A = {a1, a2, a3, a4}, d

〉
given in Table 1.

Table 1: An example of superset decision table

a1 a2 a3 a4 d

x1 0 0 0 0 0
x2 0 0 0 1 {0, 1}
x3 0 1 1 0 0
x4 0 1 1 1 {0, 1}
x5 0 1 0 1 1
x6 0 1 0 0 {0, 1}

It is easy to observe that the SDT admits 8 possible instantiations:

• I1 s.t. tI1(x1) = tI1(x2) = tI1(x3) = tI1(x4) = tI1(x6) = 0 and tI1(x5) =
1;

• I2 s.t. tI2(x1) = tI2(x2) = tI2(x3) = tI2(x4) = 0 and tI2(x5) = tI2(x6) =
1;

• I3 s.t. tI3(x1) = tI3(x2) = tI3(x3) = tI3(x6) = 0 and tI3(x5) = tI3(x4) =
1;

• I4 s.t. tI4(x1) = tI4(x3) = tI4(x4) = tI4(x6) = 0 and tI4(x5) = tI4(x2) =
1;

• I5 s.t. tI5(x1) = tI5(x2) = tI5(x3) = 0 and tI5(x4) = tI5(x5) = tI5(x6) =
1;

• I6 s.t. tI6(x1) = tI6(x3) = tI6(x4) = 0 and tI6(x2) = tI6(x5) = tI6(x6) =
1;
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• I7 s.t. tI7(x1) = tI7(x3) = tI7(x6) = 0 and tI7(x2) = tI7(x4) = tI7(x5) =
1;

• I8 s.t. tI8(x1) = tI8(x3) = 0 and tI8(x2) = tI8(x4) = tI8(x5) = tI8(x6) =
1;

All of the instantiations are Att-consistent, since no two x, x′ ∈ U are asso-
ciated with the same representation. It is easy to observe that the single shortest
reduct among all instantiations is R = {a4}, with corresponding instantiation
I7: thus I7 is a MDL instantiation and {a4} is the unique MDL reduct (and thus
also a superset reduct). The SDT also admits another superset reduct, namely
{a2, a3} (with corresponding instantiation I2).

Then, we briefly comment on the fact that the definition of MDL reduct
generalizes the standard definition of (minimal) reduct. Indeed, in a classical
decision table, there is only one possible instantiation, hence the MDL reduct is
exactly (one of) the minimal reducts of the decision table. Further, if we denote
by RMDL the set of MDL reducts, and by RcMDL the set of consistent MDL
reducts (i.e., the MDL reducts corresponding only to consistent instantiations),
then we can prove the following result:

Theorem 3.1. RMDL ⊆ Rsuper and RcMDL ⊆ Rcsuper. Furthermore, if R ∈
RcMDL (resp., Rcsuper), then ∃R′ ∈ RMDL (resp., Rsuper) s.t. R′ ⊆ R.

Proof. If R is a consistent MDL reduct, then by definition it is also a consistent
superset reduct, thus RcMDL ( Rcsuper. The same holds for RMDL, Rsuper.

As regard the second pair of statement, it is obviously the case that if we
consider also inconsistent instantiations then the set of superset super-reducts
(denoted with SRsuper) contains the set of superset super-reducts that we would
obtain were we to consider only consistent instantiations (denoted SRcsuper): this
implies that if R ∈ SRcsuper then R ∈ SRsuper and the result easily follows.

An algorithmic solution to the problem of finding the MDL reduct for an
SDT can be given as a brute-force algorithm, which computes the reducts of
all the possible instantiations, see Algorithm 1. It is easy to see that the worst
case runtime complexity of this algorithm is exponential in the size of the input.
Unfortunately, it is unlikely that an asymptotically more efficient algorithm
exists. Indeed, if we consider the problem of finding any MDL reduct, then
the number of instantiations of S is, in the general case, exponential in the
number of objects, and for each such instantiation one should find the shortest
reduct for the corresponding decision table, which is known to be NP -hard.
Interestingly, we can prove that the following decision problem (i.e., does there
exists a superset reduct of size ≤ k?) related to finding MDL-Reducts is in
NPNP (i.e., the class of problems that can be checked in polynomial time with
access to an oracle for SAT ).

Theorem 3.2. Let MDL-Reduct be the problem of deciding if, given an SDT
S and k ∈ N+, the MDL reducts of S are of size ≤ k. Then, MDL-Reduct is
in NPNP .
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Algorithm 1 The brute-force algorithm for finding MDL reducts of a superset
decision table S.

procedure Brute-Force-MDL-Reduct(S: superset decision table)
reds← ∅
l←∞
ists← enumerate-instantiations(S)
for all i ∈ ists do

tmp-reds← find-shortest-reducts(i)
len← |red| where red ∈ tmp-reds
if len < l then

reds← tmp-reds
l← len

else if len = l then
reds← reds ∪ tmp-reds

end if
end for
return reds . The MDL reducts for S

end procedure

Proof. We need to show that there is an algorithm for verifying instances of
MDL-Reduct whose runtime is polynomial given access to an oracle for an
NP-complete problem. Indeed, a certificate can be given by an instantiation I
(whose size is clearly polynomial in the size of the input SDT) together with a
minimal reduct r for I s.t. |r| ≤ k. Verifying whether r is a minimal reduct for
I can then be done in polynomial time with an oracle for NP, from which the
result follows.

From the above proof we can observe that the pair (I, r), used as a certificate,
only requires that r is a reduct of I, which means that in general it is a superset
super-reduct of S and not necessarily also a superset reduct.

While heuristics could be applied to speed up the computation of reducts [58]
(specifically, to reduce the complexity of the find-shortest-reducts step in Al-
gorithm 1) the approach described in Algorithm 1 still requires enumerating all
the possible instantiations. Therefore, in the following section, we propose two
alternative definitions of reduct in order to reduce the computational costs.

3.3. Entropy Reducts

We begin with a definition based on the notion of entropy [54], which sim-
plifies the complexity of finding a reduct for an SDT. Indeed, while finding
Superset and MDL reducts requires to enumerate all possible instantiations of
a given SDT (which, in general, are exponentially many in the size of the SDT),
the two alternative notions of entropy-based reducts that we propose in this
Section do not require such an enumeration.

Given a decision d, we can associate with it a pair of belief and plausibility
functions. Let v ∈ Vt and [x]B for B ⊆ Att an equivalence class, i.e. [x]B =
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{x′ ∈ U : ∀a ∈ B, a(x′) = a(x)}. Then:

BelS(v|[x]B) =
|{x′ ∈ [x]B : d(x′) = {v}}|

|[x]B |

PlS(v|[x]B) =
|{x′ ∈ [x]B : v ∈ d(x′)}|

|[x]B |
For each W ⊆ Vt, the corresponding basic belief assignment is defined as

m(W |[x]B) =
|{x′ ∈ [x]B : d(x′) = W}|

|[x]B |
. (7)

Given this setting, we now consider two different entropies. The first one is the
pignistic entropy HBet(m) as defined in (5). As regards the second definition,
we will not directly employ the AU measure (see equation (4)). This measure, in
fact, corresponds to a quantification of the degree of conflict in the bba m, which
is not appropriate in our context, as it would imply finding an instantiation
which is maximally inconsistent. We thus consider a modification of the AU
measure called Optimistic Aggregate Uncertainty (OAU), which is consistent
with the optimistic approach to generalized risk minimization [28, 30, 31]. This
measure, which has already been studied in the context of evidence theory [1],
superset decision tree learning [29] and soft clustering [5], is defined as follows:

OAU(m) = min
p∈P(m)

Hp(X) , (8)

where m is a bba, and H is the Shannon entropy (see Section 2).
We now show how these two entropies can be defined for a given SDT. Let

SDT = 〈U,Att, t, d〉 be an SDT, B ⊆ Att be a set of attributes and denote
by INDB = {[x]B : x ∈ U} the collection of equivalence classes (granules)
determined by B. Let d[x]B be the restriction of d on the equivalence class [x]B ,
that is d[x]B = {d(x′) : x′ ∈ [x]B}. The HBet and OAU entropy of d, conditional
on B, are defined as

HBet(d|B) =
∑

[x]B∈INDB

|[x]B |
|U |

HBet(d[x]B )

=
∑

[x]B∈INDB

|[x]B |
|U |

H(PmBet(d[x]B ))

H(p̂m(d[x]B ))

=
∑

[x]B∈INDB

|[x]B |
|U |

∑
v∈d[x]B

P
m(·|[x]B)
Bet (v) ∗ log(P

m(·|[x]B)
Bet (v))∑

v∈d[x]B

1
|d[x]B

| ∗ log( 1
|d[x]B

| )

(9)

OAU(d|B) =
∑

[x]B∈INDB

|[x]B |
|U |

OAU(d[x]B )

=
∑

[x]B∈INDB

|[x]B |
|U |

minI∈I(SDT )

∑
v∈δIB(x)

Pr(v|[x]IB) ∗ log(
1

Pr(v|[x]IB)
)

(10)
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where m(·|[x]B) is the bba determined by the granule [x]B (see Eq. 7),

P
m(·|[x]B)
Bet is the pignistic probability distribution (see Section 2), [x]IB is the

granule of x determined by B ⊂ Att in the instantiation I ∈ I(SDT ), δIB is the
generalized decision w.r.t B for the instantiation I ∈ I(SDT ) (see Section 2),
and Pr(v|[x]IB) is the probability of class label v in the granule of x determined
by B ⊂ Att in instantiation I (see the definition of µ-reduct in Section 2).

Definition 3.5. We say that B ⊆ Att is

• an OAU super-reduct (resp., HBet super-reduct) if OAU(d |B) ≤ OAU(d |Att)
(resp., HBet(d |B) ≤ HBet(d |Att));

• an OAU reduct (resp., HBet reduct) if no proper subset of B is also a
super-reduct.

As a further heuristic, we introduce appoximate reducts as follows.

Definition 3.6. We say that B ⊆ Att is

• an OAU ε-approximate super-reduct (resp., HBet ε-approximate super-
reduct), with ε ∈ [0, 1), if OAU(d |B) ≤ OAU(d |Att)− log2(1− ε) (resp.,
HBet(d |B) ≤ HBet(d |Att)− log2(1− ε));

• an OAU ε-approximate reduct (resp., HBet ε-approximate reduct) if no
proper subset of B is also an ε-approximate super-reduct.

It is easy to observe that both OAU and HBet naturally define two families
of instantiations of the underlying SDT. Indeed, let B be an OAU reduct and
let [x]B be one of the granules with respect to an OAU reduct. Then, a OAU
instantiation is any instantiation IOAU ∈ I(SDT ) s.t.:

decOAU ([x]B) = arg max
v∈Vt

{
Pr(v|[x]IB) :

I ∈ { arg min
J∈I(SDT )

∑
v∈δJB(x)

Pr(v|[x]JB) ∗ log(
1

Pr(v|[x]JB)
}
}
.

(11)

That is, an OAU reduct determines an instantiation in which each object is
assigned to the most probable among the classes, under the probability distri-
bution which corresponds to the minimum value of entropy.
Similarly, a HBet instantiation with respect to [x]B is given by

decHBet
([x]B) = arg max

v∈Vt

P
m(·|[x]B)
Bet (v) (12)

We note that, in general, neither decOAU ([x]B) nor decHBet
([x]B) are unique: for

the case of decOAU(B)([x]B) there may exist two instantiations I, I ′ ∈ I(SDT )
with corresponding probability distributions p, p′ (over the labels v ∈ Vt) s.t.
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both p, p′ ∈ arg minp∈Pm
Hp(X); while for the case of decHBet

([x]B) there may
be two classes v′, v′′ ∈ Vt s.t.

P
m(·|[x]B)
Bet (v′) = P

m(·|[x]B)
Bet (v′′) = maxv∈VtP

m(·|[x]B)
Bet (v).

The following example shows, for a simple SDT, the OAU reducts, MDL reducts,
and HBet reducts and their relationships.

Example 3.2. Consider the superset decision table

SDT =
〈
U = {x1, ..., x6}, A = {a1, a2, a3, a4}, d

〉
given in Table 1 and described in Example 3.1. We have that, for B = {a2, a3}:

OAU(d |A) = OAU(d |B) = 0.

Thus, B is an OAU reduct of SDT, as OAU(d | a2) = OAU(d | a3) > 0. It can
easily be seen that B admits only a single OAU instantiation, which is given by
{a2, a3} is deca2,a3({x1, x2}) = deca2,a3({x3, x4}) = 0, deca2,a3({x5, x6}) = 1.
Indeed, every other possible assignment of class labels to the equivalence classes
determined by B would result in a greater entropy.

Note that {a4} is also an OAU reduct and also in this case there exists a sin-
gle corresponding OAU instantiation: this is given by {a4} is deca4({x1, x3, x6}) =
0, deca4({x2, x4, x5}) = 1.

On the other hand, HBet(d |A) = 1
2 , while HBet(d | {a2, a3}) = 0.81. There-

fore, {a2, a3} is not an HBet reduct. Notice that, in this case, there are no HBet

reducts (excluding A). However, it can easily be seen that {a2, a3} is an HBet

approximate reduct when ε ≥ 0.20. We note that there exists 8 different HBet

instantiations corresponding to the HBet reduct A: in all these instantiations
we have that decA(x1) = decA(x3) = 0 and decA(x5) = 1, while we have a dif-
ferent instantiation for each of the possible class assignments for the remaining
objects.

As shown in Example 3.1, the unique MDL reduct is {a4}, with corresponding
MDL instantiation decMDL({x1, x3, x6}) = 0, decMDL({x2, x4, x5}) = 1. Thus,
in this case, the MDL reduct is equivalent to one of the OAU reducts.

We note that also the other possible superset reduct (i.e. {a2, a3}, as shown
in Example 3.1) is an OAU reduct: as we’ll show in the next Section, this is a
general property of OAU reducts.

Before studying the formal properties of the proposed entropy reducts, we
observe that the computation of HBet and OAU entropies do not require one
to enumerate all instantiations of a SDT, and can be performed in polynomial
time. This is clearly immediate for the computation of HBet:

Proposition 3.1. HBet can be computed in polynomial time, without enumer-
ating the instantiations I ∈ I(SDT ).

Proof. In Equation 9 we only perform |INDB ||d[x]B | ∈ O (|U ||Vt|) operations,
and there is clearly no dependency on |I(SDT )|.
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The analogous result for the computation of the OAU entropy is less imme-
diate (indeed, in Eq. 10 we need to solve a minimization problem over I(SDT )),
and rests on a previous characterization of this uncertainty measure [5, 29]:

Proposition 3.2. OAU can be computed in polynomial time, without enumer-
ating the instantiations I ∈ I(SDT ).

Proof. The OAU entropy can be computed efficiently through the P-LLE (Poly-
nomial Lower Logical Entropy) algorithm proposed in [5]: the time complexity
of this procedure is Ω (|Vt|) and O(|U ||Vt| ∗ log|Vt|), and has no dependency on
|I(SDT )|.

These properties imply that the computation of HBet and OAU reduct does not
require one to enumerate the instantiations I ∈ I(SDT ), and instead the re-
quired computations can be performed by directly relying on the statistics in the
original SDT: this property will be useful for designing efficient (heuristic) pro-
cedures for searching reducts, as we show in Section 3.4, and is similarly useful
for computing OAU and HBet instantiations. Indeed, it can easily be seen that,
as a consequence of Propositions 3.1 and 3.2, the OAU (resp. HBet) instantia-
tions, corresponding to a given OAU (resp. HBet) reduct, can be computed in
polynomial time.

3.4. Properties of Reducts

In this section, we study the properties of, and relationships among, the
different definitions of reducts on superset decision tables. In Example 3.2, it is
shown that the MDL reduct is one of the OAU reducts. Indeed, we can prove
that this holds in general.

Theorem 3.3. Let R be an MDL reduct whose MDL instantiation is consistent
(that is, R ∈ RcMDL). Then R is also an OAU reduct.

Proof. As the instantiation corresponding to R is consistent, OAU(d |R) = 0.
Thus, R is an OAU reduct.

Corollary 3.1. Finding the minimal OAU reduct for a consistent SDT is NP -
hard.

Proof. As any MDL reduct of a consistent SDT is also an OAU reduct and
MDL reducts are by definition minimal, the complexity of finding a minimal
OAU reduct is equivalent to that of finding MDL reducts.

More in general, if we consider a consistent SDT, we can prove that the
collection of OAU reducts and (consistent) superset reducts are equivalent, that
is, the following result holds.

Theorem 3.4. Let S be a consistent SDT, then Rcsuper = ROAU , that is each
OAU reduct is a consistent superset reduct (and viceversa). Furthermore, for
each r ∈ ROAU there exists r′ ∈ Rsuper (i.e. a superset reduct) s.t. r′ ⊆ r, that
is each OAU reduct is a superset super-reduct.
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Proof. Let r ∈ Rcsuper, then its instantiation is consistent and henceOAU(d|r) =
0, thus r ∈ ROAU . Conversely, let r ∈ ROAU and notice that every OAU instan-
tiation (i.e., an instantiation s.t. ∀[x]r, d([x]r) = decOAU(r)([x]r)) is necessarily
consistent (as OAU(d|r) = 0). Hence, r is a reduct of a consistent instantiation,
thus r ∈ Rcsuper.

For the last part of the theorem, it suffices to notice that no inconsistent
instantiation can be an OAU instantiation, and that each consistent superset
reduct is also a (not necessarily consistent) superset super-reduct (by Theorem
3.1). The result follows.

In inconsistent SDTs, only the last part of the previous theorem holds, as
shown by the following theorem.

Theorem 3.5. Let S be an inconsistent SDT. Then, for each r ∈ ROAU , there
exists r′ ∈ Rsuper s.t. r′ ⊆ r.

Proof. We can notice that each r ∈ ROAU corresponds to a OAU instantia-
tion, whose Shannon entropy (by definition of the OAU measure) is minimal
with respect to all possible instantiations. Thus, ROAU is the collection of su-
perset super-reducts whose corresponding instantiations have minimal entropy.
Further, note that there may be r′ ∈ Rsuper s.t. r′ ⊆ r.

On the other hand, as shown in Example 3.2, the relationship between MDL
reducts (or OAU reducts) and HBet reducts is more complex as, in general,
an OAU reduct is not necessarily a HBet reduct. In particular, one could be
interested in knowing whether an HBet (smaller than the whole set of attributes
Att) exists and whether there exists a HBet reduct which is able to disambiguate
objects that are not disambiguated when taking in consideration the full set of
attributes Att. The following two results provide a characterization in the binary
(i.e., Vt = {0, 1}), consistent case.

Theorem 3.6. Let B ⊆ Att be a set of attributes, [x1]Att, [x2]Att be two distinct
equivalence classes (i.e., [x1]Att∩[x2]Att = ∅) that are merged by B (i.e., [x1]B =
[x1]Att∪[x2]Att), that are consistent and such that |[x1]Att| = n1+m1, |[x2]Att| =
n2 + m2, where the n1 (resp., n2) objects are such that |d(x)| = 1 and the m1

(resp., m2) objects are such that |d(x)| = 2. Then, HBet(d |B) ≥ HBet(d |Att),
with equality holding iff one of the following two holds:

1. m1 = m2 = 0 and n1, n2 > 0;

2. m1,m2 > 0 and n1 ≥ 0, n2 = m2n1

m1
(and, symmetrically when changing

n1, n2).

Proof. A sufficient and necessary condition for HBet(d |B) ≥ HBet(d |Att) is:

n1 + m1+m2

2 + n2

n1 +m1 + n2 +m2
≥ max

{
n1 + m1

2

n1 +m1
,
m2

2 + n2

n2 +m2

}
(13)

under the constraints n1, n2,m1,m2 ≥ 0, as the satisfaction of this inequality
implies that the probability is more peaked on a single alternative. The integer
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solutions for this inequality provide the statement of the theorem. Further, one
can see that the strict inequality is not achievable.

Corollary 3.2. On a binary consistent SDT, a subset B ⊆ Att is a HBet reduct
iff, whenever it merges a pair of equivalence classes, the conditions expressed in
Theorem 3.6 are satisfied.

Notably, these two results also provide an answer to the second question,
that is, whether an HBet reduct can disambiguate instances that are not dis-
ambiguated when considering the whole attribute set Att. Indeed, Theorem
3.6 provides sufficient conditions for this property and shows that, in the binary
case, disambiguation is possible only when at least one of the equivalence classes
(w.r.t. Att), that are merged by the reduct, is already disambiguated.

As we described in the statement of Theorem 3.6, our result applies only to
the binary case: indeed, the general n-ary case is much more complex and, in
such cases, disambiguation could happen also in more general situations. This
is shown by the following example.

Example 3.3. Let SDT = 〈U = {x1, ..., x10}, Att = {a1, a2}, d〉 such that
∀i ≤ 5, d(xi) = {0, 1} and ∀i > 5, d(xi) = {1, 2}. Then, assuming the
equivalence classes determined by Att are {x1, ..., x5}, {x6, ..., x10}, it holds that
HBet(d |Att) = 1. If we further assume that a1 determines a single equivalence
class U , then it is easy to observe that HBet(d | a1) < 0.95 < HBet(d |Att) and
hence a1 is a HBet reduct.

Note that the conditions expressed in Theorem 3.6 are satisfied for the set
of all attributes Att, but Att is not a HBet reduct: indeed, if we consider the
equivalence classes determined by Att, then n1 = n2 = 0 while m1 = m2 = 5
and therefore condition 2 in Theorem 3.6 holds. However, as previously shown,
Att is not a HBet reduct.
Furthermore, note that Att is not able to disambiguate, since

decHBet(Att)([x1]Att) = {0, 1} ,
decHBet(Att)([x6]Att) = {1, 2} .

On the other hand, decHBet(a1)
(xi) = 1 for all xi ∈ U . Notice that, in this case,

{a1} would also be an OAU reduct (and hence a MDL reduct, as it is minimal).

On the other hand, regarding the relationships between HBet reducts and the
other families of reducts, it is easy to show that, even on consistent SDTs, the
conditions for existence of HBet reducts (smaller than the whole set of attributes
Att) are quite restrictive. Indeed, the following result holds.

Theorem 3.7. Let S be an SDT and r be an HBet reduct. Then, there exists
r′ ⊆ r s.t. r′ is an OAU reduct. That is, the collection of HBet reducts is a
sub-collection of the OAU super-reducts.

Proof. First, let us assume that S is consistent, and let r ∈ RHBet
. Then,

since S is consistent, each [x]r is also consistent and therefore, by definition,
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OAU(d|r) = 0 and r is an OAU super-reduct (but not necessarily also a OAU
reduct). Consequently, the result holds for consistent SDTs.

For the inconsistent case, let r be an HBet reduct, and {[x]ir}i be the col-
lection of the equivalence classes w.r.t. r. By definition of HBet reducts, we
have

∑
i Pr([x]ir) · HBet(d|[x]ir) ≤ HBet(d|Att). Therefore, for the (weighted)

majority of equivalence classes the probability distributions PBet(d|[x]ir) are
more peaked (equivalently, less uniform) and, hence, there exists an instantia-
tion I s.t. the probability distributions PI(d

I |xir) are also more peaked. Hence,
OAU(d | r) ≤ OAU(d |Att) holds. Notice, however, that this only guarantees
that r is a OAU super-reduct, thus the result.

As we did not find an appropriate generalization of Theorem 3.6 for the
general multi-class case, we leave this as an open problem: such a result would
be useful to provide general existence conditions for HBet reducts. Moreover,
we also leave as open problem that of finding conditions required for an HBet

to also be an OAU (or MDL) reduct.
Concerning the computational complexity of finding OAU or HBet reducts,

since as we shown in the previous Section,both OAU and HBet can be computed
in polynomial time, the following result holds as a simple consequence of the
general hardness result for finding reducts in standard decision tables.

Theorem 3.8. Finding all OAU (resp. HBet) reduct is NP-hard.

Finally, we notice that, while the complexity of finding OAU (resp. HBet)
reducts is still NP-hard, even in the approximate case, these definitions are more
amenable to optimization through heuristics, as they employ a quantitative
measure of quality for each attribute. Indeed, a simple greedy procedure can be
implemented, as shown in Algorithm 2, which obviously has polynomial time
complexity, and is guaranteed to find an OAU (resp., HBet) reduct (albeit not
necessarily a minimal one).

Proposition 3.3. Algorithm 2 returns an OAU (resp. HBet) reduct in polyno-
mial time. In particular:

• The complexity of finding a OAU reduct is O
(
|Att|2|U ||Vt| ∗ log|Vt|

)
;

• The complexity of finding a HBet reduct is O
(
|Att|2|U ||Vt|

)
Proof. That the algorithm returns an OAU (resp. HBet) reduct is obvious, thus
we only need to prove that its complexity is polynomial in the size of the SDT.

Indeed, Algorithm 2 requires a polynomial number of evaluations of the
OAU (resp. HBet) entropy: in particular, the number of such evaluations is
O
(
|Att|2

)
. As shown in Propositions 3.1 and 3.2, both OAU and HBet can be

computed in polynomial time, thus the result follows.

Thus, Algorithm 2 has a linear dependence in the number of objects, a lin-
ear (or log-linear, depending on whether HBet or OAU reducts are searched
for) dependence in the number of possible class labels, and a quadratic de-
pendence in the number of conditional attributes: we note that since usually
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|Vt| � min{|U |, |Att|}, one can assume w.l.o.g. that the complexity of search-
ing reducts is dominated by the leading term among {|U |, |Att|2}, and it is thus
more or less independent of the number of possible class labels.

Algorithm 2 A heuristic greedy algorithm for finding approximate entropy
reducts of a superset decision table S.

procedure Heuristic-Entropy-Reduct(S: superset decision table, ε: ap-
proximation level, E ∈ {OAU,HBet})

red← Att
Ent← E(d | red)
check ← True
while check do

Find a ∈ red s.t.

{
E(d | red \ {a}) ≤ E(d |Att)− log2(1− ε)
E(d | red \ {a}) is minimal

if a exists then
red← red \ {a}

else
check ← False

end if
end while
return red

end procedure

4. Experiments

In this section, we present a series of experimental studies meant to eval-
uate the different definitions of reduct in superset learning as put forward in
this paper, as well as the performance of the proposed algorithms in light of
the state-of-the-art in superset dimensionality reduction (DELIN algorithm, see
Section 2). More specifically, our experiments are aimed at studying the follow-
ing aspects:

• Reduct approximation: The ability of the different types of reducts to
recover the true reducts (i.e., the reducts w.r.t. the true, but generally
unknown, decision attribute t) when varying both the number of objects
associated with a set-valued decision and the size of the set-valued decision.

• Predictive Performance: The quality of the selected feature subsets from
a machine learning point of view. We measured the latter in terms of the
predictive accuracy of a model trained on that subset of features, using a
suitable algorithm for superset learning.

We conduct experiments with the following datasets from the UCI repository
[20]:

• Iris: 150 objects, 3 classes, 4 attributes
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• Boston house prices (Boston): 506 objects, 3 classes, 13 attributes

• Wine: 178 objects, 3 classes, 13 attributes

• Breast Cancer: 569 objects, 2 classes, 30 attributes

• Diabetes: 442 objects, 3 classes, 10 attributes

• Adult Census Income: 48842 objects, 2 classes, 14 attributes

• Abalone: 4177 objects, 15 classes, 8 attributes

• Forest Fires: 517 objects, 5 classes, 13 attributes

For the second experiment, we used the PL-KNN [29] classifier, a simple gen-
eralization of the k-nearest neighbor algorithm for superset learning. Of course,
more sophisticated methods for superset learning might be used as well, and
the choice of the learning methods may clearly influence the results. However,
as one advantage of a simple nearest neighbor approach, let us mention that its
performance critically depends on the underlying feature representation, which
is exactly what we seek to capture. Many other algorithms have in-built feature
selection or transformation capabilities, which may bias the results.

For each UCI dataset, we created 5 different SDTs, each one generated
through random coarsening: For each value y ∈ Vt \ {t(x)}, a biased coin with
success probability γ was flipped to decide whether or not it is added to the
true decision t(x) as an additional candidate. Obviously, the parameter γ allows
for varying and controlling the degree of ambiguity [9, 39]. We considered the
following values: 0% (i.e., the case in which d(x) = t(x), which allows us to
compute the true reducts for the SDT as a reference comparison), 5%, 10%,
and 25%.

To estimate predictive performance, we adopted a 5-fold cross-validation ap-
proach: during each iteration, 4 folds were used for training while the remaining
fold was used for testing. The training folds were used for feature selection, using
the proposed methods and the DELIN algorithm, and for training the PL-KNN
algorithm. The test fold was then used to measure the accuracy of the trained
PL-KNN models. Specifically, we measured both the average accuracy across
the 5 folds and the corresponding 95% confidence intervals.

4.1. Comparison of Reducts for Superset Decision Tables

In the first experiment, each dataset was discretized in a pre-processing step,
i.e., numerical attributes were replaced by categorical attributes. In particular,
since Boston, Abalone and Forest Fires are originally regression datasets (i.e.,
the target attribute t is continuous), we also discretized the target attribute.
The discretization was performed by applying the k-means algorithm [37] with
k = 5 (on the values of the respective numerical attribute, i.e., running k-means
on a one-dimensional dataset) and k = 2 (on the values of the target attribute).
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We evaluated five different algorithms: the brute-force enumeration algo-
rithm for computing MDL reducts (see Algorithm 1), the brute-force enumer-
ation algorithms for computing HBet and OAU reducts, and the greedy algo-
rithms to compute HBet and OAU reducts (see Algorithm 2). The algorithms
were compared with respect to both their running time and their ability to
recover the true reducts (that is, the reducts on the SDT with 0% ambiguity
degree). A time budget of 10,000 seconds was assigned to each algorithm. The
results of the experiments are reported in Tables 2–10. Based on these results,
the following observations can be made:

• Computing MDL reducts, at least through the application of the brute-
force algorithm (see Algorithm 1), is in general infeasible in terms of com-
putation time. Indeed, among all 8 examined datasets, only on two 5%
SDT and only on one 10% SDT, the algorithm finished the computation
within the time budget. The two datasets were the smallest in terms of
number of objects and attributes. This is hardly surprising, as the time
complexity of Algorithm 1 is exponential in both the number of attributes
and the number of objects. In the average case, we expect the algorithm to
have a time complexity of O(2|Att| · 2ε|U |) on an ε% SDT. Let us also note
that for all three datasets, the MDL reducts coincided with the minimal
OAU reducts. This finding is interesting as, in light of Theorems 3.3 and
3.5, we know that the two definitions of reducts are equivalent only for
consistent SDT, while all the considered SDTs were actually inconsistent.

• Regarding OAU reducts, it is interesting to observe that on all datasets,
in the 5% and 10% SDT, the true reducts (that is, the reducts on the
0% SDT) were among the OAU reducts, and in all cases but three (Wine,
Boston, and Forest Fires), the OAU reducts coincided with the true reducts.
For the 25% SDT, on all datasets but three (Boston House Prices, Breast
Cancer, Adult Census Income), the true reducts were among the OAU
reducts, while on the three remaining datasets, the OAU reducts were
subsets of the true reducts. Thus, from an empirical point of view, the
notion of OAU reduct seems to be effective as a method to discover the
true reducts.

• On the other hand, regarding HBet reducts, in only three 5% SDT (Forest
Fires, Abalone, Iris) and in only one 10% SDT (Forest Fires), the HBet

(minimal) reducts were among the true (minimal) reducts. In only one
case (the 5% SDT for dataset Iris), the HBet reducts coincided with the
true reducts, while in all other cases the HBet reducts were either a sub-
family of the true reducts or super-reducts (indeed, in most cases the
only HBet reduct was the set Att of all attributes). Thus, compared with
OAU reducts, the requirement imposed by HBet entropy seems to be too
conservative. This provides a stronger empirical counterpart of Theorems
3.2 and 3.7 and suggests that, in most practical cases, the requirements
for the existence of HBet reducts are strictly stronger than those for OAU
reducts.
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Table 2: Results for dataset Iris.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0% 1 reduct (2,3)

5%
1 reduct 1 reduct 1 reduct (2,3) (2,3)

(2,3) (2,3) (2,3)
60 sec 0.24 sec 0.17 sec 0.15 sec 0.13 sec

10%
1 reduct 1 reduct 1 reduct (2,3) A

(2,3) (2,3) A
5570 sec 0.24 sec 0.17 sec 0.15 sec 0.13 sec

25%
2 reducts 1 reduct (1,2) A

- (1,2)(2,3) A
0.24 sec 0.17 sec 0.15 sec 0.13 sec

Table 3: Results for dataset Boston house prices.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0% 2 reducts, 1 minimal (0, 3, 5, 6, 7, 10, 11, 12)

5%
2 reducts, 1 minimal 1 reduct (0,1,5,6,7,8,10,11,12) A
(0,3,5,6,7,10,11,12) A

- 86 sec 70 sec 1.73 sec 1.26 sec

10%

2 minimal reducts 1 reduct (0,3,5,6,7,10,11,12) A
(0,3,5,6,7,10,11,12) A

- (0,5,6,7,8,10,11,12)
86 sec 70 sec 1.73 sec 1.26 sec

25%

1 minimal reducts 1 reduct (0,5,6,7,10,11,12) A
- (0,5,6,7,10,11,12) A

86 sec 70 sec 1.73 sec 1.26 sec

• As for the approximate entropy (both OAU andHBet) computed according
to Algorithm 2, the computed reduct was in all cases except two (the
Wine dataset for HBet reducts, Boston House Prices for OAU reducts) a
minimal reduct (according to the respective definition of entropy reducts).
In particular, the approximate Algorithm for computing OAU reducts
was able to recover one of the true minimal reducts in most datasets, at
a computational cost which was, on average, at least ten times smaller.
Thus, the heuristic greedy algorithm for finding OAU reducts seems to
be effective in finding minimal reducts with significantly reduced time
complexity.

4.2. Comparison between Rough Set Feature Selection and DELIN

Based on the results of the first experiment, we decided to use the algorithm
for computing OAU reducts for the second study, since this algorithm has shown
strong performance in discovering the real reducts, as discussed in Section 4.1.
Specifically, we evaluated the greedy algorithm for computing OAU reducts
(see Algorithm 2), in order to limit the execution time, as the evaluation was

Table 4: Results for dataset Breast Cancer.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0%
6 reducts

(0,3,4,5,6,10,11,12,13,14)(0,3,4,5,7,10,11,12,13,14)(0,3,4,5,8,10,11,12,13,14)
(1,3,4,5,6,10,11,12,13,14)(1,3,4,5,7,10,11,12,13,14)(1,3,4,5,8,10,11,12,13,14)

5%
6 reducts 1 reduct (0,3,4,5,6,10,11,12,13,14) A

- As in the 0% SDT A
3316 sec 3186 sec 15.3 sec 13.8 sec

10%

6 reducts 1 reduct (0,3,4,5,6,10,11,12,13,14) A
- As in the 0% SDT A

3316 sec 3186 sec 15.3 sec 13.8 sec

25%

1 minimal reducts 1 reduct (0,5,6,7,10,11,12) A
- (0,5,6,7,10,11,12) A

86 sec 70 sec 1.73 sec 1.26 sec
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Table 5: Results for dataset Diabetes.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0%
2 reducts

(0,1,2,3,4,6,7,8,9)(0,1,2,3,5,6,7,8,9)

5%
2 reducts 1 reduct (0,1,2,3,4,6,7,8,9) A

- As in the 0% SDT A
147 sec 147 sec 16.2 sec 16.7 sec

10%
2 reducts 1 reduct (0,1,2,3,4,6,7,8,9) A

- As in the 0% SDT A
147 sec 147 sec 16.2 sec 16.7 sec

25%
2 reducts 1 reduct (0,1,2,3,4,6,7,8,9) A

- As in the 0% SDT A
147 sec 147 sec 16.2 sec 16.7 sec

Table 6: Results for dataset Adult Census Income.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0%
8 reducts, 2 minimal

(1,2,4,5,7,8,11,12,13,14)(1,2,4,5,7,10,11,12,13,14)

5%

8 reducts, 2 minimal 4 reducts, 2 minimal A \ {0, 3, 9, 10} A \ {0, 9, 10}
- As in the 0% SDT (1,2,3,4,5,6,7,8,11,12,13,14)

(1,2,3,4,5,6,7,10,11,12,13,14)
2645 sec 2637 sec 15 sec 11 sec

10%
8 reducts, 2 minimal 3 reducts, 2 minimal A \ {0, 3, 9, 10} A \ {0, 9, 10}

- As in the 0% SDT As in the 5% SDT
2645 sec 2637 sec 15 sec 11 sec

25%
4 reducts, 1 minimal 2 reducts, 1 minimal (1,2,4,5,7,11,12,13,14) A \ {8, 9}

- (1,2,4,5,7,11,12,13,14) A \ {8, 9}
2645 sec 2637 sec 15 sec 11 sec

Table 7: Results for dataset Abalone.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0% 1 reduct (2,3,5,6,7)

5%
1 reduct 1 reduct (2,3,5,6,7) (2,3,5,6,7)

- As in the 0% SDT As in the 0% SDT
475 sec 421 sec 16 sec 16 sec

10%
1 reduct 1 reduct (2,3,5,6,7) (0,2,3,5,6,7)

- As in the 0% SDT (0,2,3,5,6,7)
475 sec 421 sec 16 sec 16 sec

25%
2 reducts 1 reduct (2,3,5,6) A

- (2,3,5,6)(2,3,5,7) A
475 sec 421 sec 16 sec 11 sec

Table 8: Results for dataset Forest Fires.
MDL reducts OAU reducts HBet reducts Greedy OAU reduct Greedy HBet reduct

0%
3 reducts, 2 minimal

(0,1,3,4,5,6,7,8,10) (0,1,3,5,6,7,8,9,10)

5%
3 reducts, 2 minimal 2 reducts, 1 minimal (0,1,3,4,5,6,7,8,10) (0,1,3,5,6,7,8,9,10)

- As in the 0% SDT (0,1,3,5,6,7,8,9,10)
1258 sec 1212 sec 14 sec 12 sec

10%

4 reducts, 3 minimal 1 reduct (0,1,2,3,5,6,7,8,10) (0,1,3,5,6,7,8,9,10)
- As in the 0% SDT plus (0,1,3,5,6,7,8,9,10)

(0,1,2,3,5,6,7,8,10)
1258 sec 1212 sec 14 sec 12 sec

25%
4 reducts, 3 minimal 1 reduct (0,1,2,3,5,6,7,8,10) A

- As in the 10% SDT A
1258 sec 1207 sec 14 sec 9 sec
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implemented using 5-fold cross-validation. For comparison, as already said, we
used the DELIN algorithm. For the DELIN algorithm, at each iteration of 5-
fold cross-validation procedure, the number of dimensions to be selected was set
equal to the size of the minimal reduct found by the greedy OAU algorithm.1

For each iteration of the 5-fold cross-validation procedure, the training fold
was used to both compute the minimal reducts (respectively, applying dimen-
sionality reduction using the DELIN algorithm) and the reduced training set
was then used to train the PL-KNN algorithm and the performance of the two
feature selection approaches was compared by assessing the accuracy of the
trained models on the reduced test fold. The results were then averaged across
the 5 folds. The results are reported in Table 9. In most datasets (6 out of 8),
the rough set-based feature selection algorithm performed better (in terms of
average predictive accuracy) than the DELIN algorithm. In order to evaluate
if the reported differences are statistically significant, we performed a Wilcoxon
signed rank test [60] with a confidence level of 95% (α = 0.05). The obtained
statistic was z = −3.2797 (p-value = 0.001), which means the difference be-
tween the two algorithms is statistically significant at the selected confidence
level. Thus, our results provide evidence in favor of the conjecture that the
features selected by the rough set-based approach are more informative than
the features constructed using the DELIN algorithm.

That said, these results should of course be taken with some caution. Indeed,
one may argue that a direct comparison between the two algorithms is difficult,
for example because OAU requires discrete data while DELIN is working on
numerical attributes. Moreover, DELIN relies on certain assumptions regarding
the distribution of the data, so that its performance will depend on whether
or not these assumptions are met. Rough set-based feature selection methods,
on the other side, are entirely non-parametric and thus allow more flexibility
in modeling the relationship between the target and the features. While this is
clearly an advantage, some information might be lost through the discretization
of numerical features: future work should be devoted toward generalizing the
proposed approach to encompass rough set-techniques that can directly manage
continuous features.

In terms of computational complexity and running time, the DELIN algo-
rithm is vastly more efficient than the standard brute-force algorithm to compute
OAU reducts. Indeed, the algorithm for finding OAU reducts is combinatorial
and, in general, has exponential running time (in the number of features). Com-
pared to this, DELIN is based on LDA and has a running time which is essen-
tially quadratic (more precisely, O(|U ||Att|2)) and can easily be implemented
using standard linear algebra and optimization software. We note, though, that
Algorithm 2, which was the method we adopted in our comparison, has the same
computational complexity as DELIN, and in our experiments was shown to still
be effective at finding the true reducts. Thus, the heuristic greedy approach to

1Moreover, since DELIN requires numerical features, categorical features were first one-hot
encoded.
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Table 9: Accuracy of the PL-KNN algorithm on reduced datasets, using both the OAU
algorithm and the DELIN algorithm. For each dataset and level of ambiguity, the numbers
in bold denote the feature selection algorithm resulting in the best performance.

Dataset
5% 10% 25%

OAU DELIN OAU DELIN OAU DELIN
Iris 0.91± 0.09 0.91± 0.07 0.90± 0.10 0.83 ± 0.13 0.90± 0.10 0.82 ± 0.15

Cancer 0.91 ± 0.03 0.92± 0.03 0.89 ± 0.05 0.90± 0.03 0.89 ± 0.05 0.90± 0.05
Wine 0.82± 0.12 0.78 ± 0.08 0.81± 0.12 0.72 ± 0.17 0.79± 0.13 0.71 ± 0.17

Boston 0.81± 0.10 0.73 ± 0.12 0.81± 0.10 0.71 ± 0.12 0.79± 0.11 0.70 ± 0.12
Diabetes 0.72± 0.03 0.71 ± 0.03 0.71± 0.03 0.71± 0.05 0.70± 0.04 0.69 ± 0.05

Adult 0.73± 0.04 0.72 ± 0.04 0.73± 0.04 0.72 ± 0.04 0.73± 0.04 0.72 ± 0.04
Forest Fires 0.86± 0.07 0.82 ± 0.07 0.86± 0.07 0.82 ± 0.07 0.83± 0.09 0.79 ± 0.10

Abalone 0.76± 0.07 0.76± 0.07 0.75± 0.07 0.75± 0.07 0.75± 0.09 0.75± 0.09

finding OAU reducts could be seen as a useful trade-off on large-scale datasets.

5. Conclusion

Addressing the problem of superset learning in the context of rough set
theory, as we did in this paper, appears to be interesting and mutually beneficial
for both sides:

• RST provides natural tools for data disambiguation, which is at the core
of methods for superset learning, most notably the notion of a reduct.
Here, the basic idea is that the plausibility of an instantiation of the data
is in direct correspondence with the (information-theoretic) complexity it
implies for the dependency between input features and target (decision)
variable (and a reduct in turn captures just this complexity).

• For RST itself, the setting of superset learning is a quite natural extension
of the standard setting of supervised learning, and comes with a number of
interesting challenges and non-trivial generalizations of existing concepts.

One such challenge has been tackled in this paper, namely the question how
to generalize the notion of a reduct as well as devising algorithms for feature
selection on the basis of this notion.

To this end, we first proposed a generalization of decision tables and then
studied a purely combinatorial definition of reducts inspired by the Minimum
Description Length principle, which we called MDL reducts. Since, as we
showed, the computational complexity of finding this type of reducts is NP-
hard, we proposed two alternative definitions based on the notion of entropy
and harnessing the natural relationship between superset learning and belief
function theory. We then provided a characterization for both these notions
in terms of their relationship with MDL reducts, their existence conditions and
their disambiguation power. Moreover, we developed simple heuristic algorithms
for computing approximate entropy reducts.
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Table 10: Results for dataset Wine.
MDL OAU HBet Greedy OAU Greedy HBet

0%

163 reducts, 9 minimal
(0,1,4,5,8,9),(0,2,3,5,7,10),(0,2,3,5,10,11)
(0,2,3,7,10,11),(0,2,5,8,9,11)(0,3,4,5,7,10)
(0,3,4,5,8,9),(0,4,5,6,8,9),(4,5,6,9,10,12)

5%

174 reducts, 16 minimal 174 reducts, 16 minimal 9 reducts, 6 minimal (0,2,5,6,8,9) (0,2,3,6,7,8,9,10,11)
(0,1,2,5,6,9)(0,1,4,5,8,9) Same as MDL reducts (0,2,3,6,7,8,9,11)
(0,2,3,5,6,9)(0,2,3,5,6,10) (0,2,3,7,8,9,10,11)
(0,2,3,5,7,10)(0,2,3,5,9,10) (0,2,4,7,8,9,10,11)

(0,2,3,5,10,11)(0,2,3,7,10,11) (0,3,4,6,7,8,9,11)
(0,2,5,6,8,9)(0,2,5,8,9,11) (0,3,5,6,7,8,9,11)
(0,3,4,5,7,10)(0,3,4,5,8,9) (0,3,5,7,8,9,10,11)
(0,4,5,6,8,9)(1,2,6,7,9,12)

(4,5,6,9,10,12)(4,5,8,9,10,12)
9281 sec 98 sec 70 sec 1.73 sec 1.26 sec

10%

188 reducts, 16 minimal 9 reducts, 3 minimal (0,2,5,6,8,9) (0,2,3,6,7,8,9,10,11)
The minimal reducts are (0,1,2,3,7,8,9,10,11)

as in the 5% SDT (0,2,3,4,7,8,9,10,11)
(0,2,4,5,7,8,9,10,11)

98 sec 70 sec 1.73 sec 1.26 sec

25%

191 reducts, 34 minimal 1 reduct (0,1,2,7,9,10) A
- The minimal reducts are as A

in the 5% SDT plus
(0,1,2,7,9,10)(0,1,2,7,10,12)
(0,1,4,5,9,10)(0,2,3,4,5,10)
(0,2,3,4,6,7)(0,2,3,4,7,10)
(0,2,3,6,7,10)(0,2,3,7,8,10)
(0,2,3,7,9,10)(0,2,3,7,10,12)
(0,2,4,7,9,10)(0,2,5,7,8,9)
(0,2,7,8,9,10)(0,3,4,5,6,10)
(0,3,4,5,9,10)(0,3,4,5,10,11)
(0,4,5,7,9,10)(0,4,5,8,9,11)

98 sec 70 sec 1.73 sec 1.26 sec

Finally, we conducted experiments on real datasets in order to empirically
compare the different definitions of reducts for superset learning and the algo-
rithms for computing them. As a result of these experiments, we conclude that
the definition based on OAU entropy seems to be more effective in terms of its
ability to recover the true but unknown reducts, compared with the definition
based on HBet entropy. We have also shown that our heuristic algorithm for
computing approximate entropy provides an effective approach to finding min-
imal reducts with limited computational resources. Finally, we compared the
proposed feature selection methods with a state-of-the-art dimensionality re-
duction algorithm for superset learning and showed that the proposed method
leads to a significantly higher classification accuracy on a collection of bench-
mark datasets, thus highlighting its usefulness in applications.

While this paper provides a promising direction for the application of RST-
based feature reduction in superset learning, it naturally leaves many questions
open. Specifically, we plan to address the following problems in future works:

• In Theorem 3.5, we proved that, in general, OAU reducts are a sub-family
of the superset super-reducts. However, our experiments also showed that
in most cases (in which the MDL reducts were actually computed within
the assigned time budget) the MDL reducts were exactly equivalent to the
OAU reducts. Thus, the conditions for such an equivalence between the
two definitions should be investigated in more depth;

• In Theorems 3.6 and 3.7, we described two characterizations of HBet

reducts: first, showing sufficient and necessary conditions for their ex-
istence on binary decision tables; second, showing that, in general, HBet

reducts are OAU super-reducts. Therefore, the generalization of Theorem
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3.6 to the multi-class case, together with a characterization of the condi-
tions for the equivalence between HBet reducts and OAU reducts, should
be investigated;

• The proposed RST feature reduction methods require the available data
to be discrete: otherwise, data discretization techniques need to be applied
which, in turn, could have an impact on the results and performance of the
feature selection procedure. While, at least in principle, scaling techniques
[21] (such as those applied in Formal Concept Analysis) could be applied
to manage continuous features, these would likely have a huge impact
on the computational complexity of the proposed methods. Thus, the
generalization of the proposed approach to also encompass RST techniques
that can directly manage continuous features, such as neighborhood- [43]
or fuzzy-rough [32] based approaches, should be investigated;

• We studied the application of RST feature reduction to the superset learn-
ing task, however, it would also be interesting to study an extension of the
proposed framework to other, even more general settings, such as learning
from fuzzy [14, 28] or evidential [8, 11, 13, 48, 41] data.

• In this paper, the superset assumption was motivated by the problem of
imprecise labeling. As explained in Section 2.3, this “don’t know” interpre-
tation can be distinguished from a “don’t care” interpretation. Proceeding
from the latter, a reduct can be considered as a maximally simple (least
cognitively demanding) yet satisfying decision rule. Interestingly, in spite
of very different interpretations, the theoretical problems that arise are
essentially the same as those studied in this paper. Nevertheless, elabo-
rating on the idea of reduction as a means for finding satisfying decision
rules from a more practical point of view is another interesting direction
for future work.
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[27] E. Hüllermeier. Learning from imprecise and fuzzy observations: Data dis-
ambiguation through generalized loss minimization. International Journal
of Approximate Reasoning, 55(7):1519–1534, 2014.
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