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Abstract

The most widely studied explainable AI (XAI) approaches are unsound. This is the case
with well-known model-agnostic explanation approaches, and it is also the case with ap-
proaches based on saliency maps. One solution is to consider intrinsic interpretability, which
does not exhibit the drawback of unsoundness. Unfortunately, intrinsic interpretability can
display unwieldy explanation redundancy. Formal explainability represents the alternative
to these non-rigorous approaches, with one example being PI-explanations. Unfortunately,
PI-explanations also exhibit important drawbacks, the most visible of which is arguably
their size. Recently, it has been observed that the (absolute) rigor of PI-explanations can
be traded off for a smaller explanation size, by computing the so-called relevant sets. Given
some positive δ, a set S of features is δ-relevant if, when the features in S are fixed, the
probability of getting the target class exceeds δ. However, even for very simple classifiers, the
complexity of computing relevant sets of features is prohibitive, with the decision problem
being NPPP-complete for circuit-based classifiers. In contrast with earlier negative results,
this paper investigates practical approaches for computing relevant sets for a number of
widely used classifiers that include Decision Trees (DTs), Naive Bayes Classifiers (NBCs),
and several families of classifiers obtained from propositional languages. Moreover, the
paper shows that, in practice, and for these families of classifiers, relevant sets are easy to
compute. Furthermore, the experiments confirm that succinct sets of relevant features can
be obtained for the families of classifiers considered.
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1. Introduction

The advances in Machine Learning (ML) in recent years motivated an ever increasing range
of practical applications of systems of Artificial Intelligence (AI). Some uses of ML models
are deemed high-risk given the impact that their operation can have on people [28]. (Other
authors refer to high-stakes applications [84].) In some domains, with high-risk applications
representing one key example, the deployment of AI systems is premised on the availability
of mechanisms for explaining the often opaque operation of ML models [28]. The need for
explaining the opaque operation of ML models motivated the emergence of eXplainable AI
(XAI). Moreover, the rigor of explanations is a cornerstone to delivering trustworthy AI [64].
For example, rigorous explanations can be mathematically proven correct, and so a human
decision maker can independently validate that an explanation is (logically) rigorous. The
rigor of explanations is even more significant in high-risk AI systems, where human decision
makers must be certain that provided explanations are sound.

Motivated by the importance of understanding the operation of blackbox ML models,
recent years have witnessed a growing interest in XAI [72, 33, 86, 87, 71, 85]. The best-known
XAI approaches can be broadly categorized as either model-agnostic methods, that include
for example LIME [81], SHAP [60] and Anchor [82], or intrinsic interpretability [84, 71],
for which the explanation is represented by the actual (interpretable) ML model. For
specific ML models, e.g. neural networks, there are dedicated explainability approaches,
including those based on saliency maps [91, 8]; these exhibit limitations similar to model-
agnostic approaches [1, 55, 99, 92]. Moreover, intrinsic interpretability may not represent
a viable option in some uses of AI systems. Also, it has been shown, both in theory and
in practice, that intrinsic interpretable models (such as decision trees or sets) also require
being explained [45, 41, 46]. On the other hand, model-agnostic methods, even if locally
accurate, can produce explanations that are unsound [39], in addition to displaying several
other drawbacks [16, 93, 57, 25]. Unsound explanations are hopeless whenever rigor is a
key requirement; thus, model-agnostic explanations ought not be used in high-risk settings.
Indeed, it has been reported [39] that an explanation X can be consistent with different
predicted classes. For example, for a bank loan application, X might be consistent with an
approved loan application, but also with a declined loan application. An explanation that
is consistent with both a declined and an approved loan applications offers no insight to
why one of the loan applications was declined. There have been recent efforts on rigorous
XAI approaches [89, 43, 22, 7, 61, 13, 32], most of which are based on feature selection,
namely the computation of so-called abductive explanations (AXp’s). However, these
efforts have mostly focused on the scalability of computing rigorous explanations, with
more recent work investigating input distributions [32]. Nevertheless, another important
limitation of rigorous XAI approaches is the often unwieldy size of explanations. Recent
work studied probabilistic explanations, as a mechanism to reduce the size of rigorous
explanations [102, 101, 100]. Some approaches for computing probabilistic explanations have
extended model-agnostic approaches [102], and so can suffer from unsoundness. Alternatively,
more rigorous approaches to computing probabilistic explanations have been shown to be
computationally hard, concretely hard for NPPP [101, 100], and so are all but certain to fall
beyond the reach of modern automated reasoners.
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Figure 1: Summary of results

This paper builds on recent work [101, 100] on computing rigorous probabilistic explana-
tions, and investigates their practical scalability. However, instead of considering classifiers
represented as boolean circuits (as in [101]), the paper studies families of classifiers that are
shown to be amenable to the practical computation of relevant sets. As the paper shows,
such examples include decision trees (DTs), naive Bayes classifiers (NBCs), but also several
propositional classifiers, graph-based classifiers, and their multi-valued variants 1.

The paper revisits the original definition of δ-relevant set, and considers different variants,
in addition to the one proposed in earlier work [101, 100], i.e. smallest relevant sets. These
include subset-minimal relevant sets, and locally-minimal relevant sets. Throughout the
paper, relevant sets will be referred to as probabilistic abductive explanations (PAXp’s).
Whereas computing a smallest and a subset-minimal PAXp’s is shown to be in NP for decision
trees and different propositional classifiers, computing locally-minimal PAXp’s is shown to
be in P for decision trees and different propositional classifiers, and in pseudo-polynomial
time for naive Bayes classifiers. Furthermore, the experiments confirm that locally-minimal
PAXp’s most often match subset-minimal PAXp’s. As a result, locally-minimal relevant
sets are shown to represent a practically efficient approach for computing (in polynomial
or pseudo-polynomial time) PAXp’s that are most often subset-minimal. The paper’s
contributions are summarized in Figure 1. Figure 1 overviews complexity class membership
results for several families of classifiers, most of which are established in this paper. For
several families of classifiers, the paper proves that computing one locally-minimal PAXp
is either in polynomial time or pseudo-polynomial time. Similarly, computing one subset-

1. This paper aggregates and extends recent preprints that compute relevant sets for concrete families of
classifiers [48, 50].
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minimal (and also one cardinality-minimal) PAXp is shown to be in NP (or pseudo-NP) for
several families of classifiers.

The paper is organized as follows. Section 2 introduces the definitions and notation used
throughout. Section 3 offers an overview of probabilistic abductive explanations (or relevant
sets). Section 4 investigates the computation of relevant sets in the case of decision trees.
Sections 5 and 6 replicate the same exercise, respectively in the case of naive Bayes classifiers,
and also for graph-based classifiers and classifiers based on propositional languages. Section 7
presents experimental results on computing relevant sets for the classifiers studied in the
earlier sections. The paper concludes in Section 9.

2. Preliminaries

Complexity classes. The paper addresses a number of well-known classes of decision
and function problems, that include P, NP, FPNP, NPPP, among others. The interested
reader is referred to a standard reference on the computational complexity [5].

2.1 Logic Foundations

Propositional logic. The paper assumes the notation and definitions that are standard
when reasoning about the decision problem for propositional logic, i.e. the Boolean Satisfia-
bility (SAT) problem [12]. SAT is well-known to be an NP-complete [17] decision problem. A
propositional formula ϕ is defined over a finite set of Boolean variables X = {x1, x2, . . . , xn}.
Formulas are most often represented in conjunctive normal form (CNF). A CNF formula is
a conjunction of clauses, a clause is a disjunction of literals, and a literal is a variable (xi)
or its negation (¬xi). A term is a conjunction of literals. Whenever convenient, a formula
is viewed as a set of sets of literals. A Boolean interpretation µ of a formula ϕ is a total
mapping of X to {0, 1} (0 corresponds to False and 1 corresponds to True). Interpretations
can be extended to literals, clauses and formulas with the usual semantics; hence we can refer
to µ(l), µ(ω), µ(ϕ), to denote respectively the value of a literal, clause and formula given an
interpretation. Given a formula ϕ, µ is a model of ϕ if it makes ϕ True, i.e. µ(φ) = 1. A
formula ϕ is satisfiable (ϕ2 ⊥) if it admits a model, otherwise, it is unsatisfiable (ϕ� ⊥).
Given two formulas ϕ and ψ, we say that ϕ entails ψ (denoted ϕ�ψ) if all models of ϕ are
also models of ψ. ϕ and ψ are equivalent (denoted ϕ ≡ ψ) if ϕ�ψ and ψ �ϕ.

First Order Logic (FOL) and SMT. When necessary, the paper will consider the
restriction of FOL to Satisfiability Modulo Theories (SMT). These represent restricted
(and often decidable) fragments of FOL [10]. All the definitions above apply to SMT. A
SMT-solver reports whether a formula is satisfiable, and if so, may provide a model of this
satisfaction. (Other possible features include dynamic addition and retraction of constraints,
production of proofs, and optimization.)

2.2 Classification Problems

This paper considers classification problems, which are defined on a set of features (or
attributes) F = {1, . . . ,m} and a set of classes K = {c1, c2, . . . , cK}. Each feature i ∈ F
takes values from a domain Di. In general, domains can be categorical or ordinal, with
values that can be boolean or integer. (Although real-valued could be considered for some of
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the classifiers studied in the paper, we opt not to specifically address real-valued features.)
Feature space is defined as F = D1 × D2 × . . . × Dm; |F| represents the total number of
points in F. For boolean domains, Di = {0, 1} = B, i = 1, . . . ,m, and F = Bm. The notation
x = (x1, . . . , xm) denotes an arbitrary point in feature space, where each xi is a variable
taking values from Di. The set of variables associated with features is X = {x1, . . . , xm}.
Moreover, the notation v = (v1, . . . , vm) represents a specific point in feature space, where
each vi is a constant representing one concrete value from Di. With respect to the set of
classes K, the size of K is assumed to be finite; no additional restrictions are imposed on
K. Nevertheless, with the goal of simplicity, the paper considers examples where |K| = 2,
concretely K = {	,⊕}, or alternatively K = {0, 1}. An ML classifier M is characterized by
a (non-constant) classification function κ that maps feature space F into the set of classes K,
i.e. κ : F→ K. An instance (or observation) denotes a pair (v, c), where v ∈ F and c ∈ K,
with c = κ(v).

2.3 Families of Classifiers

Throughout the paper, a number of families of classifiers will be studied in detail. These
include decision trees [14, 80], naive Bayes classifiers [29], graph-based classifiers [76, 77, 35]
and classifiers based on propositional languages [23, 21].

Decision trees. A decision tree T = (V,E) is a directed acyclic graph, with V =
{1, . . . , |V |}, having at most one path between every pair of nodes. T has a root node,
characterized by having no incoming edges. All other nodes have one incoming edge. We
consider univariate decision trees where each non-terminal node is associated with a single
feature xi. Each edge is labeled with a literal, relating a feature (associated with the edge’s
starting node) with some values (or range of values) from the feature’s domain. We will
consider literals to be of the form xi ∈ Ei. xi is a variable that denotes the value taken by
feature i, whereas Ei ⊆ Di is a subset of the domain of feature i ∈ F . The type of literals
used to label the edges of a DT allows the representation of the DTs generated by a wide
range of decision tree learners (e.g. [96]). The set of paths of T is denoted by R. Φ(Rk)
denotes the set of features associated with path Rk ∈ R, one per node in the tree, with
repetitions allowed. It is assumed that for any v ∈ F there exists exactly one path in T
that is consistent with v. By consistent we mean that the literals associated with the path
are satisfied (or consistent) with the feature values in v. Given v, the set of paths R is
partitioned into P and Q, such that each of the paths in P yields the prediction c = κ(v,
whereas each of the paths in Q yields a prediction in K \ {c}. For the purposes of this paper,
the path consistent with v as Pt ∈ P, i.e. the target path. (A more in-depth analysis of
explaining decision trees is available in [46].)

Naive Bayes Classifiers (NBCs). An NBC [26] is a Bayesian Network model [29]
characterized by strong conditional independence assumptions among the features. Given
some observation x ∈ F, the predicted class is given by:

κ(x) = argmaxc∈K (Pr(c|x)) (1)

Using Bayes’s theorem, Pr(c|x) can be computed as follows: Pr(c|x) = Pr(c,x)/Pr(x). In
practice, we compute only the numerator of the fraction, since the denominator Pr(x) is
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constant for every c ∈ K. Moreover, given the conditional mutual independency of the
features, we have:

Pr(c,x) = Pr(c)×
∏

i
Pr(xi|c)

Furthermore, it is also common in practice to apply logarithmic transformations on proba-
bilities of Pr(c,x), thus getting:

log Pr(c,x) = log Pr(c) +
∑

i
log Pr(xi|c)

Therefore, (1) can be rewritten as follows:

κ(x) = argmaxc∈K

(
log Pr(c) +

∑
i
log Pr(xi|c)

)
(2)

For simplicity, and following the notation used in earlier work [62], lPr denotes a logarithmic
probability. Thus, we get:

κ(x) = argmaxc∈K

(
lPr(c) +

∑
i
lPr(xi|c)

)
(3)

(Note that also for simplicity, it is common in practice to add a sufficiently large positive
constant T to each probability, which allows using only positive values.)

Graph-based classifiers. The paper considers the class of graph-based classifiers (referred
to as Decision Graphs) studied in earlier work [35]. A Decision Graph (DG) is a Directed
Acyclic Graph (DAG) consisting of two types of nodes, non-terminal nodes and terminal
nodes, and has a single root node. Each non-terminal node is labeled with a feature and has
at least one child node, each terminal node is labeled with a class and has no child node.
Moreover, for an arbitrary non-terminal node p labeled with feature i, we use Ci ⊆ Di to
denote the set of values of feature i which are consistent with any path connecting the root
to p. Each outgoing edge of node p represents a literal of the form xi ∈ Ei (Ei 6= ∅) where
Ei ⊆ Ci. Furthermore, the following constraints are imposed on DGs:

1. The literals associated with the outgoing edges of p represent a partition of Ci.
2. Any path connecting the root node to a terminal node contains no inconsistent literals.
3. No dead-ends.

A DG is read-once if each feature tested at most once on any path. A DG is ordered,
if features are tested in the same order on all paths. An Ordered Multi-valued Decision
Diagrams (OMDD) is a read-once and ordered DG such that every Ei is a singleton, which
means multiple-edges between two nodes may exist. Furthermore, the OMDDs considered
in this paper are reduced [53, 94], i.e.

1. No node p such that all child nodes of p are isomorphic; and
2. No isomorphic subgraphs.

When the domains of features are all boolean and the set of classes is binary, then OMDDs
corresponds to Ordered Binary Decision Diagrams (OBDDs) [15].

Propositional languages & classifiers. For classification problems for which the feature
space F is restricted to Bm, then boolean circuits can be used as binary classifiers. Each
boolean circuit is a sentence of some propositional language. We briefly review some well-
known propositional languages and queries/transformations that these languages support in
polynomial time.

7
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The language negation normal form (NNF) is the set of all directed acyclic graphs, where
each terminal node is labeled with either >, ⊥, xi or ¬xi, for xi ∈ X. Each non-terminal
node is labeled with either ∧ (or AND) or ∨ (or OR). The language decomposable NNF
(DNNF) [19, 23] is the set of all NNFs, where for every node labeled with ∧, α = α1∧· · ·∧αk,
no variables are shared between the conjuncts αj . A deterministic DNNF (d-DNNF) [23, 73]
is a DNNF, where for every node labeled with ∨, β = β1 ∨ · · · ∨ βk, each pair βp, βq, with
p 6= q, is inconsistent, i.e. βp ∧ βq �⊥. A Smooth d-DNNF (sd-DNNF) [20] is a d-DNNF,
where for every node labeled with ∨, β = β1 ∨ · · · ∨ βk, each pair βp, βq is defined on the
same set of variables. We focus in this paper on d-DNNF, but for simplicity of algorithms,
sd-DNNF is often considered. Furthermore, sentential decision diagrams (SDDs) [21, 98]
represent a well-known subset of the d-DNNF. (Furthermore, it should be noted that OBDD
is a proper subset of SDD.) SDDs are based on a strongly deterministic decomposition [21],
which is used to decompose a Boolean function into the form: (p1∧s1)∨· · ·∨(pn∧sn), where
each pi is called a prime and each si is called a sub (both primes and subs are sub-functions).
Furthermore, the process of decomposition is governed by a variable tree (vtree) which
stipulates the variable order [21].

The languages d-DNNF, sd-DNNF and SDD satisfy the query polytime model counting
(CT), and the transformation polytime conditioning (CD). Let ∆ represent a propositional
formula and let ρ denote a consistent term (ρ2⊥). The conditioning [23] of ∆ on ρ, denoted
∆|ρ is the formula obtained by replacing each variable xi by > (resp. ⊥) if xi (resp. ¬xi) is a
positive (resp. negative) literal of ρ. A propositional language L satisfies CT if there exists
a polynomial-time algorithm that maps every formula ∆ from L into a non-negative integer
denoting the number of models of ∆. L satisfies CD iff there exists a polynomial-time
algorithm that maps every formula ∆ from L and every consistent term ρ into a formula
in L that is logically equivalent to ∆|ρ. There are additional queries and transformations
of interest [23], but these are beyond the goals of this paper. It is important to note that
OMDD and OBDD also satisfy CT and CD [23, 75].

2.4 Running Examples

Example Decision Tree. Figure 2 shows the example DT used throughout the paper.
This example DT also illustrates the notation used to represent DTs. The set of paths R is
partitioned into two sets P and Q, such that the paths in P = {P1, P2, P3} yield a prediction
of ⊕, and such that the paths in Q = {Q1, Q2} yield a prediction of 	. (In general, P
denotes the paths with prediction c ∈ K, and Q denotes the paths with prediction other
than c, i.e. any class in K \ {c}.)

Example Naive Bayes Classifier. Consider the NBC depicted graphically in Figure 3 2.
The features are the boolean random variables R1, R2, R3, R4 and R5. Each Ri can take
values t or f denoting, respectively, whether a listener likes or not that radio station. The
boolean random variable G corresponds to an age class: the target class ⊕ denotes the
prediction that the listener is young and 	 denotes the prediction that the listener is old.
Thus, K = {	,⊕}. Let us consider v = (R1, R2, R3, R4, R5) = (t, f , f , f , t). We associate ri
to each literal (Ri = t) and ¬ri to literals (Ri = f). Using (3), we get the values shown

2. This example of an NBC is adapted from [62], and it was first studied in [9, Ch.10].
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Figure 2: Example DT.
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⊕ 0.20

	 0.75
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⊕ 0.95

	 0.03

Figure 3: Example NBC.

in Figure 4. (Note that to use positive values, we added T = +4 to each lPr(·).). As can be
seen by comparing the values of lPr(⊕|v) and lPr(	|v), the classifier will predict ⊕.

Example graph-based classifiers. Figure 5 shows two examples of graph-based classi-
fiers. Figure 5a shows an OBDD, and Figure 5b an OMDD. Figure 5b represents a function
defined on F = {1, 2, 3} and K = {	,⊕,⊗}, with the domains of features being D1 = {0, 1},
D2 = D3 = {0, 1, 2}. If we consider the instance v = {1, 1, 2}, the classifier predicts the class
⊗.

2.5 Formal Explainability

In contrast with well-known model-agnostic approaches to XAI [81, 60, 82, 33], formal
explanations are model-precise, i.e. their definition reflects the model’s computed function.

Abductive explanations. Prime implicant (PI) explanations [89] denote a minimal set
of literals (relating a feature value xi and a constant vi ∈ Di) that are sufficient for the
prediction. PI-explanations are related with abduction, and so are also referred to as
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Pr(⊕) Pr(r1|⊕) Pr(¬r2|⊕) Pr(¬r3|⊕) Pr(¬r4|⊕) Pr(r5|⊕) lPr(⊕|v)

Pr(·) 0.10 0.95 0.95 0.98 0.80 0.95

lPr(·) 1.70 3.95 3.95 3.98 3.78 3.95 21.31

(a) Computing lPr(⊕|v)

Pr(	) Pr(r1|	) Pr(¬r2|	) Pr(¬r3|	) Pr(¬r4|	) Pr(r5|	) lPr(	|v)

Pr(·) 0.90 0.03 0.05 0.66 0.25 0.03

lPr(·) 3.89 0.49 1.00 3.58 2.61 0.49 12.06

(b) Computing lPr(	|v)

Figure 4: Deciding prediction for v = (t, f , f , f , t). (Note that to use positive values, T = +4
was added to each lPr(·).)
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x3

	 ⊕

1

2

3

4 5
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(a) An OBDD
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x2

x3 x3

⊕	 ⊗

1

2

3 4

5 6 7

0
1

0
1

2

2
0

1 0
1

2

(b) An OMDD

Figure 5: Example DD.

abductive explanations (AXp’s) [43]3. Formally, given v = (v1, . . . , vm) ∈ F with κ(v) = c,
a set of features X ⊆ F is a weak abductive explanation [18] (or weak AXp) if the following
predicate holds true4:

WeakAXp(X ;F, κ,v, c) := ∀(x ∈ F).
[∧

i∈X (xi = vi)
]
→(κ(x) = c) (4)

3. PI-explanations were first proposed in the context of boolean classifiers based on restricted bayesian
networks [89]. Independent work [43] studied PI-explanations in the case of more general classification
functions, i.e. not necessarily boolean, and related instead explanations with abduction. This paper
follows the formalizations used in more recent work [62, 49, 41, 63, 35, 18, 34, 40, 64].

4. Each predicate associated with a given concept will be noted in sans-serif letterform. When referring to
the same concept in the text, the same acronym will be used, but in standard letterform. For example,
the predicate name AXp will be used in logic statements, and the acronym AXp will be used throughout
the text.
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Figure 6: A schematic representation of relationships between different types of explanations.
E1(X ; . . .) ⇒ E2(X ; . . .) means that if X is an E1 explanation then X must be an E2

explanation.

Moreover, a set of features X ⊆ F is an abductive explanation (or (plain) AXp) if the
following predicate holds true:

AXp(X ;F, κ,v, c) := WeakAXp(X ;F, κ,v, c) ∧
∀(X ′ ( X ).¬WeakAXp(X ′;F, κ,v, c) (5)

Clearly, an AXp is any weak AXp that is subset-minimal (or irrreducible). It is straightfor-
ward to observe that the definition of predicate WeakAXp is monotone, and so an AXp can
instead be defined as follows:

AXp(X ;F, κ,v, c) := WeakAXp(X ;F, κ,v, c) ∧
∀(j ∈ X ).¬WeakAXp(X \ {j};F, κ,v, c) (6)

This alternative equivalent definition of abductive explanation is at the core of most algo-
rithms for computing one AXp. (Throughout the paper, we will drop the parameterization
associated with each predicate, and so we will write AXp(X ) instead of AXp(X ;F, κ,v, c),
when the parameters are clear from the context.)

Example 1. The computation of (weak) AXp’s is illustrated with the DT from Figure 2a.
The instance considered throughout is v = (v1, v2, v3) = (4, 4, 2), with c = κ(v) = ⊕. The
point v is consistent with P3, and Φ(P3) = {1, 2, 3}. Table 1 (columns 1 to 4) analyzes three
sets of features {1, 2, 3}, {1, 3} and {3} in terms of being a weak AXp or an AXp. The
decision on whether each set is a weak AXp or an AXp can be obtained by analyzing all the
32 points in feature space, or by using an off-the-shelf algorithm. (The analysis of all points
in feature space is ommited for brevity.)

It is apparent that (4), (5), and (6) can be viewed as representing a (logic) rule of the
form:

IF [∧i∈X (xi = vi)] THEN [κ(x) = c] (7)

Unless otherwise noted, this interpretation of explanations will be assumed throughout the
paper.

11



Izza, Huang, Ignatiev, Narodytska, Cooper & Marques-Silva

S U WeakAXp? AXp? Prx(κ(x) = c|(xS = vS)) WeakPAXp? PAXp? #(S) #(P1) #(P2) #(P3) #(Q1) #(Q2)

{1, 2, 3} ∅ Yes No 1 ≥ δ Yes No 1 0 0 1 0 0

{1, 3} {2} Yes Yes 1 ≥ δ Yes No 4 0 1 3 0 0

{3} {1, 2} No – 15/16 = 0.9375 ≥ δ Yes Yes 16 3 3 9 1 0

Table 1: Examples of sets of fixed features given v = (4, 4, 2) and δ = 0.93

Abductive explanations can be viewed as answering a ‘Why?’ question, i.e. why is some
prediction made given some point in feature space. A different view of explanations is a
contrastive explanation [70], which answers a ‘Why Not?’ question, i.e. which features can be
changed to change the prediction. The formalization of contrastive explanations revealed a
minimal hitting set duality relationship between abductive and contrastive explanations [42].
The paper does not detail further contrastive explanations, as the focus is solely on abductive
explanations.

Figure 6 shows relationships between different classes of explanations that we investigate
in the paper. AXp(X ;F, κ,v, c) and WeakAXp(X ;F, κ,v, c) are deterministic classes of
explanations. These classes are shown in yellow boxes. Other classes of explanations, shown
in blue boxes, represent probabilistic counterparts of AXp’s. We study them in the following
sections.

Progress in formal explainability. The introduction of abductive explanations [89, 43]
also revealed practical limitations in the case of bayesian network classifiers [89, 90] and neural
networks [43]. However, since then there has been a stream of results, that demonstrate the
practical applicability of formal explainability. These results can be broadly organized as
follows (a more detailed overview is available in [64]):

• Tractable explanations.
Recent work showed that computing one explanation is tractable for naive Bayes
classifiers [62], decision trees [45, 35, 46], graph-based classifiers [35], monotonic
classifiers [63, 18], and classifiers represented with well-known classes of propositional
languages [34]. Additional tractability results were obtained in [18].

• Efficient explanations.
For some other families of classifiers, recent work showed that computing one expla-
nation is computationally hard, but it is nevertheless efficient in practice. This is
the case with decision lists and sets [41], random forests [49], and tree ensembles in
general [43, 39, 40].

• Explainability queries.
There has been interest in understanding the complexity of answering different queries
related with reasoning about explainability [7, 36, 35, 6]. For example, the feature
membership problem is the decision problem of deciding whether some (possibly
sensitive) feature occurs in some explanation. Although computationally hard in
general [35], it has been shown to be solved efficiently in theory and in practice for
specific families of classifiers [35, 37]. Queries related with enumeration of explanations
have been extensively studied [62, 42, 41, 63, 35, 34, 40].
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• Properties of explanations.
A number of works studied the connections between explanations and robustness [44],
and connections between different types of explanations [42].

Despite the observed progress, formal explainability still faces several important challenges.
First, for some widely used families of classifiers, e.g. neural networks, formal explainability
does not scale in practice [43]. Second, input distributions are not taken into account,
since these are not readily available. There is however recent work on accounting for
input constraints [18, 32, 104]. Third, the size of explanations may exceed the cognitive
limits of human decision makers [69], and computing smallest explanations does not offer
a computationally realistic alternative [43]. Recent work studied δ-relevant sets [101, 100],
and these are also the focus of this paper.

Finally, we note that there have been different approaches to formal explainability based
on the study of the formal logic or the axiomatics of explainers [103, 2, 59]. This paper
studies exclusively those approaches for which there is practical supporting evidence of
observed progress, as attested above.

2.6 δ-Relevant Sets

δ-relevant sets were proposed in more recent work [101, 100] as a generalized formalization
of PI-explanations (or AXp’s). δ-relevant sets can be viewed as probabilistic PIs [100], with
AXp’s representing a special case of δ-relevant sets where δ = 1, i.e. probabilistic PIs that are
actual PIs. We briefly overview the definitions related with relevant sets. The assumptions
regarding the probabilities of logical propositions are those made in earlier work [101, 100].
Let Prx(A(x)) denote the probability of some proposition A defined on the vector of variables
x = (x1, . . . , xm), i.e.

Prx(A(x)) = |{x∈F:A(x)=1}|
|{x∈F}|

Prx(A(x) |B(x)) = |{x∈F:A(x)=1∧B(x)=1}|
|{x∈F:B(x)=1}|

(8)

(Similar to earlier work, it is assumed that the features are independent and uniformly
distributed [101]. Moreover, the definitions above can be adapted in case some of the features
are real-valued. As noted earlier, the present paper studies only non-continuous features.)

Definition 1 (δ-relevant set [101]). Consider κ : Bm → K = B, v ∈ Bm, κ(v) = c ∈ B, and
δ ∈ [0, 1]. S ⊆ F is a δ-relevant set for κ and v if,

Prx(κ(x) = c |xS = vS) ≥ δ (9)

(Where the restriction of x to the variables with indices in S is represented by xS = (xi)i∈S .
Concretely, the notation xS = vS represents the constraint ∧i∈Sxi = vi.)

(Moreover, observe that Prx(κ(x) = c |xS = vS) is often referred to as the precision
of S [82, 74].) Thus, a δ-relevant set represents a set of features which, if fixed to some
pre-defined value (taken from a reference vector v), ensures that the probability of the
prediction being the same as the one for v is no less than δ.

Definition 2 (Min-δ-relevant set). Given κ, v ∈ Bm, and δ ∈ [0, 1], find the smallest k,
such that there exists S ⊆ F , with |S| = k, and S is a δ-relevant set for κ and v.
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With the goal of proving the computational complexity of finding a minimum-size set
of features that is a δ-relevant set, earlier work [101] restricted the definition to the case
where κ is represented as a boolean circuit. (Boolean circuits were restricted to propositional
formulas defined using the operators ∨, ∧ and ¬, and using a set of variables representing
the inputs; this explains the choice of inputs over sets in earlier work [101].) The main
complexity result from earlier work is that the computation of δ-relevant sets is hard for
NPPP [101]. Hence, as noted in earlier work [101, 100], it is unlikely that exact computation
of δ-relevant sets will be practically feasible.

3. Relevant Sets – Probabilistic Abductive Explanations

In contrast with Min-δ-relevant sets, whose focus are smallest-size explanations, this section
investigates alternative definitions of relevant sets (which we will also and indistinguishably
refer to as probabilistic abductive explanations).

3.1 Definitions of Probabilistic AXp’s

Conceptually, Definition 1 does not need to impose a restriction on the classifier considered
(although this is done in earlier work [101]), i.e. the logical representation of κ need not be a
boolean circuit. As a result, Definition 1 can also be considered in the case of multi-class
classifiers defined on categorical or ordinal (non-continuous) features.

Given the above, a weak probabilistic AXp (or weak PAXp) is a pick of fixed features for
which the conditional probability of predicting the correct class c exceeds δ, given c = κ(v).
Thus, X ⊆ F is a weak PAXp if the following predicate holds true,

WeakPAXp(X ;F, κ,v, c, δ)
:= Prx(κ(x) = c |xX = vX ) ≥ δ (10)

:=
|{x ∈ F : κ(x) = c ∧ (xX = vX )}|

|{x ∈ F : (xX = vX )}|
≥ δ

which means that the fraction of the number of points predicting the target class and
consistent with the fixed features (represented by X ), given the total number of points in
feature space consistent with the fixed features, must exceed δ. (Observe that the difference
to (1) is solely that features and classes are no longer required to be boolean. Hence,
weak PAXp’s can be viewed as generalized δ-relevant sets.) Moreover, a set X ⊆ F is a
probabilistic AXp (or (plain) PAXp) if the following predicate holds true,

PAXp(X ;F, κ,v, c, δ) :=

WeakPAXp(X ;F, κ,v, c, δ) ∧ (11)

∀(X ′ ( X ).¬WeakPAXp(X ′;F, κ,v, c, δ)

Thus, X ⊆ F is a PAXp if it is a weak PAXp that is also subset-minimal,

As can be observed, the definition of weak PAXp (see (10)) does not guarantee mono-
tonicity. In turn, this makes the computation of (subset-minimal) PAXp’s harder. With
the purpose of identifiying classes of weak PAXp’s that are easier to compute, it will be
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convenient to study locally-minimal PAXp’s. A set of features X ⊆ F is a locally-minimal
PAXp if,

LmPAXp(X ;F, κ,v, c, δ) :=

WeakPAXp(X ;F, κ,v, c, δ) ∧ (12)

∀(j ∈ X ).¬WeakPAXp(X \ {j};F, κ,v, c, δ)

As observed earlier in Section 2.5, because the predicate WeakAXp is monotone, subset-
minimal AXp’s match locally-minimal AXp’s. An important practical consequence is that
most algorithms for computing one subset-minimal AXp, will instead compute a locally-
minimal AXp, since these will be the same. Nevertheless, a critical observation is that in
the case of probabilistic AXp’s (see (10)), the predicate WeakPAXp is not monotone. Thus,
there can exist locally-minimal PAXp’s that are not subset-minimal PAXp’s. (As shown
in the experiments, computed locally minimal APXp’s are most often PAXp’s. However,
exceptions do exist, even though these are rarely observed). Furthermore, the fact that a set
of features X ⊆ F may satisfy (12) but not (11) imposes that subset-minimal PAXp’s must
be computed by using (11); as shown later, this requires more complex algorithms.

Finally, minimum-size PAXp’s (or a smallest PAXp’s) generalize Min-δ-relevant sets
in Definition 2. A set of features X ⊆ F is a minimum-size AXp if,

MinPAXp(X ;F, κ,v, c, δ) :=

WeakPAXp(X ;F, κ,v, c, δ) ∧ (13)

∀(X ′ ⊆ F).
[
(|X ′| < |X |)→¬WeakPAXp(X ′;F, κ,v, c, δ)

]
(As stated earlier, throughout the paper, we will drop the parameterization associated with
each predicate, and so we will write PAXp(X ) instead of PAXp(X ;F, κ,v, c, δ), when the
parameters are clear from the context. Although the parameterization on δ is paramount,
we opt instead for simpler notation.)

Example 2. The computation of (probabilistic) AXp’s is illustrated with the DT from Fig-
ure 2. The instance considered throughout is v = (v1, v2, v3) = (4, 4, 2), with c = κ(v) = ⊕.
Clearly, v is consistent with P3. The goal is to compute a δ-relevant set given δ = 0.93. Let
#(Rk) denote the number of points in feature space that are consistent with path Rk. More-
over, let #(X ) denote the total number of points in feature space that are consistent with the
set of fixed features X ∈ F . Table 1 summarizes the computation of Prx(κ(x) = c|xS = vS)
for different sets S. The table also includes information on whether each set is a weak AXp,
an AXp, a weak PAXp, or a PAXp. The set {1, 3} represents an AXp, since for any point
consistent with the assignments x1 = 4 and x3 = 2, the prediction is ⊕. However, by setting
S = {3}, the probability of predicting ⊕ given a point consistent with x3 = 2 still exceeds δ,
since 15/16 = 93.75%. Hence, {3} is a PAXp for v = (4, 4, 2) when δ = 0.93.

Properties of locally-minimal PAXp’s. Let X denote an AXp. Clearly, X is also a
PAXp. Then, for any locally-minimal A ⊆ X (i.e. A is computed using X as a seed), we
have the following properties, which follow from the definition:

1. A ⊆ X (by hypothesis);
2. A is a weak PAXp (by definition); and
3. There exists at least one PAXp E such that E ⊆ A.
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Algorithm 1 Computing one locally-minimal PAXp

Input: Features {1, . . . ,m}; feature space F, classifier κ, instance (v, c), threshold δ
Output: Locally-minimal PAXp S

1: procedure findLmPAXp({1, . . . ,m};F, κ,v, c, δ)
2: S ← {1, . . . ,m}
3: for i ∈ {1, . . . ,m} do
4: if WeakPAXp(S \ {i};F, κ,v, c, δ) then
5: S ← S \ {i}
6: return S

Thus, given some AXp X , we can compute a locally-minimal PAXp A that is both a subset
of X and a a superset of some PAXp, and such that A exhibits the strong probabilistic
properties of relevant sets. Although any locally-minimal PAXp is a subset of a weak AXp,
there can exist locally-minimal PAXp’s that are not subsets of some (plain) AXp.

3.2 Computing Locally-Minimal PAXp’s

Algorithm 1 shows one approach for computing a locally-minimal PAXp5. As shown, to
compute one locally-minimal PAXp, one starts from F = {1, . . . ,m} and iterately removes
features while it is safe to do so, i.e. while (10) holds for the resulting set. Beside Algorithm 1,
one could consider for example variants of the QuickXplain [52] and the Progression [65, 66]
algorithms. Both of which also allow computing preferred (locally-minimal) sets subject to
anti-lexicographic preferences [52, 67]. Furthermore, we note that the same algorithms (i.e.
Deletion, Progression and QuickXplain, among others) can also be used for computing one
AXp. Moreover, observe that these algorithms can also be applied to any classifier with
respect to which we seek to compute one locally-minimal PAXp. Furthermore, another simple
observation is that explanations can be enumerated by exploiting hitting set dualization [42],
e.g. using a MARCO-like algorithm [58].

Practically efficient computation of relevant sets. Further to the computation of
locally-minimal PAXp’s, the next few sections show that the computation of relevant sets
(PAXp’s) can be achieved efficiently in practice, for several families of classifiers. Concretely,
over the next few sections we analyze decision trees, naive Bayes classifiers, but also several
families of propositional and graph-based classifiers, studied in recent work [35, 34].

4. Probabilistic Explanations for Decision Trees

This section shows that the problem of deciding whether a set X ⊆ F is a PAXp is in
NP when κ is represented by a decision tree6. As a result, a minimum-size PAXp can be

5. This simple algorithm is often referred to as the deletion-based algorithm, namely in settings related with
solving function problems in propositional logic and constraint programming [66]. However, the same
general algorithm can be traced at least to the work of Valiant [97], and some authors [51] argue that it
is implicit in works from the 19th century [68].

6. As noted earlier, and for simplicity, the paper considers the case of non-continuous features. However, in
the case of DTs, the results generalize to continuous features.
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computed with at most a logarithmic number of calls to an NP oracle. (This is a consequence
that optimizing a linear cost function, subject to a set of constraints for which deciding
satisfiability is in NP, can be achieved with a logarithmic number of calls to a NP oracle.)
An SMT formulation of the problem is proposed and the empirical evaluation confirms its
practical effectiveness. This section also proposes a polynomial time algorithm to compute
one locally-minimal PAXp, thus offering an alternative to computing one PAXp. The
results in Section 7 confirm that in practice computed locally-minimal PAXp’s are often
subset-minimal, i.e. a locally-minimal PAXp actually represents a (plain) PAXp.

4.1 Path Probabilities for DTs

This section investigates how to compute, in the case of DTs, the conditional probability,

Prx(κ(x) = c |xX = vX ) (14)

where X is a set of fixed features (whereas the other features are not fixed, being deemed
universal), and Pt is a path in the DT consistent with the instance (v, c). (Also, note that
(14) is the left-hand side of (9).) To motivate the proposed approach, let us first analyze how
we can compute Prx(κ(x) = c), where P ⊆ R is the set of paths in the DT with prediction
c. Let Λ(Rk) denote the set of literals (each of the form xi ∈ Ei) in some path Rk ∈ R. If a
feature i is tested multiple times along path Rk, then Ei is the intersection of the sets in
each of the literals of Rk on i. The number of values of Di consistent with literal xi ∈ Ei
is |Ei|. Finally, the features not tested along Rk are denoted by Ψ(Rk). For path Rk, the
probability that a randomly chosen point in feature space is consistent with Rk (i.e. the path
probability of Rk) is given by,

Pr(Rk) =
[∏

(xi∈Ei)∈Λ(Rk) |Ei|×
∏

i∈Ψ(Rk) |Di|
]
/|F| (15)

As a result, we get that,

Prx(κ(x) = c) =
∑

Rk∈PPr(Rk) (16)

Given an instance (v, c) and a set of fixed features X (and so a set of universal features
F \ X ), we now detail how to compute (14). Since some features will now be declared
universal, multiple paths with possibly different conditions can become consistent. For
example, in Figure 2 if feature 1 and 2 are declared universal, then (at least) paths P1, P2

and Q1 are consistent with some of the possible assignments. Although universal variables
might seem to complicate the computation of the conditional probability, this is not the
case.

A key observation is that the feature values that make a path consistent are disjoint
from the values that make other paths consistent. This observation allows us to compute the
models consistent with each path and, as a result, to compute (9). Let Rk ∈ R represent
some path in the decision tree. (Recall that Pt ∈ P is the target path, which is consistent
with v.) Let nik represent the (integer) number of assignments to feature i that are consistent
with path Rk ∈ R, given v ∈ F and X ⊆ F . For a feature i, let Ei denote the set of domain
values of feature i that is consistent with path Rk. Hence, for path Rk, we consider a literal
(xi ∈ Ei). Given the above, the value of nik is defined as follows:

1. If i is fixed:
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(a) If i is tested along Rk and the value of xi is inconsistent with v, i.e. there exists
a literal (xi ∈ Ei) ∈ Λ(Rk) and {vi} ∩ Ei = ∅, then nik = 0;

(b) If i is tested along Rk and the value of xi is consistent with Rk, i.e. there exists a
literal (xi ∈ Ei) ∈ Λ(Rk) and {vi} ∩ Ei 6= ∅, then nik = 1;

(c) If i is not tested along Rk, then nik = 1.
2. Otherwise, i is universal:

(a) If i is tested along Rk, with some literal xi ∈ Ei, then nik = |Ei|;
(b) If i is not tested along Rk, then nik = |Di|.

Using the definition of nik, we can then compute the number of assignments consistent with
Rk as follows:

#(Rk; v,X ) =
∏
i∈Fnik (17)

Finally, (14) is given by,

Prx(κ(x) = c |xX = vX ) =
∑

Pk∈P
#(Pk;v,X )/

∑
Rk∈R

#(Rk;v,X ) (18)

As can be concluded, and in the case of a decision tree, both Prx(κ(x) = c |xX = vX ) and
WeakPAXp(X ;F, κ,v, c, δ) are computed in polynomial time on the size of the DT.

Example 3. With respect to the DT in Figure 2, and given the instance ((4, 4, 2),⊕),
the number of models for each path is shown in Table 1. For example, for set {3}, we
immediately get that Prx(κ(x) = c |xX = vX ) = 15/(15+1) = 15/16.

4.2 Computing Locally-Minimal PAXp’s for DT’s

Recent work showed that, for DTs, one AXp can be computed in polynomial time [45, 35, 46].
A simple polynomial-time algorithm can be summarized as follows. The AXp X is initialized
with all the features in F . Pick the path consistent with a given instance (v, c). The features
not in the path are removed from X . Then, iteratively check whether X \ {i} guarantees
that all paths to a prediction in K \ {c} are still inconsistent. If so, then update X . As
argued in Section 3, we can use a similar (deletion-based) approach for computing one
locally-minimal PAXp for DTs. Such an approach builds on Algorithm 1. In the case of
DTs, (10) is computed using (18) on some given set S \ {i}. to decide whether the precision
of the approximation S \ {i} is no smaller than the threshold δ. As stated earlier, (18) is
computed in polynomial time. Hence, Algorithm 1 runs in polynomial time for DTs.

4.3 Computing Minimum-Size PAXp’s for DTs

For computing a minimum-size PAXp, we propose two SMT encodings, thus showing that
the decision problem is in NP, and that finding a smallest set requires a logarithmic number
of calls to an NP-oracle. Regarding the two SMT encodings, one involves the multiplication
of integer variables, and so it involves non-linear arithmetic. Given the structure of the
problem, we also show that linear arithmetic can be used, by proposing a (polynomially)
larger encoding.

A multiplication-based SMT encoding. Taking into account the definition of path
probabilities (see Section 4.1), we now devise a model that computes path probabilities based
on the same ideas. Let j ∈ F denote a given feature. Let njk denote the number of elements
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in Dj consistent with path Rk (for simplicity, we just use the path index k). Also, uj is a
boolean variable that indicates whether feature j is fixed (uj = 0) or universal (uj = 1). If
feature j is not tested along path Rk, then if j is fixed, then njk = 1. If not, then njk = |Dj |.
Otherwise, j is tested along path Rk. njk is 0 if j is fixed (i.e. uj = 0) and inconsistent with
the values of Dj allowed for path Rk. njk is 1 if j is fixed and consistent with the values of
Dj allowed for path Rk. If feature j is not fixed (i.e. it is deemed universal and so uj = 1),
then njk denotes the number of domain values of j consistent with path Rk. Let the fixed
value of njk be n0jk and the universal value of njk be n1jk. Thus, njk is defined as follows,

njk = ite(uj , n1jk, n0jk) (19)

Moreover, let ηk denote the number of models of path Rk. Then, ηk is defined as follows:

ηk =
∏
i∈Φ(k)nik (20)

If the domains are boolean, then we can use a purely boolean formulation for the problem.
However, if the domains are multi-valued, then we need this formulation.

Recall what we must ensure that (10) holds true. In the case of DTs, since we can count
the models associated with each path, depending on which features are fixed or not, then
the previous constraint can be translated to:∑

Rk∈Pηk ≥ δ ×
∑

Rk∈Pηk + δ ×
∑

Rk∈Qηk (21)

Recall that P are the paths with the matching prediction, and Q are the rest of the paths.
Finally, the soft constraints are of the form (ui), one for each feature i ∈ F \Ψ(Rk), i.e.

for the features tested along path Rk. (For each feature i not tested along Rk, i.e. i ∈ Ψ(Rk),
enforce that the feature is universal by adding a hard clause (ui).) The solution to the
optimization problem will then be a smallest weak PAXp, and so also a (plain) PAXp. (The
minimum-cost solution is well-known to be computed with a worst-case logarithmic number
of calls (on the number of features) to an SMT solver.)

Example 4. For the running example, let us consider X = {3}. This means that u1 = u2 =
1. As a result, given the instance and the proposed encoding, we get Table 2 and Table 3.
Finally, by plugging into (21) the values from Table 3, we get: 15 ≥ 0.93× (15 + 1). Thus, X
is a weak PAXp, and we can show that it is both a plain PAXp and a smallest PAXp. Indeed,
with Y = ∅, we get Prx(κ(x) = c |xY = vY) = 21/32 = 0.65625 < δ. Hence, X = {3} is
subset-minimal. Since there can be no PAXp’s of smaller size, then X is also a smallest
PAXp.

An alternative addition-based SMT encoding. A possible downside of the SMT
encoding described above is the use of multiplication of variables in (20); this causes the
SMT problem formulation to involve different theories (which may turn out to be harder to
reason about in practice). Given the problem formulation, we can use an encoding that just
uses linear arithmetic. This encoding is organized as follows. Let the order of features be:
〈1, 2, . . . ,m〉. Define ηj,k as the sum of models of path Rk taking into account features 1 up
to j, with η0,k = 1. Given ηj−1,k, ηj,k is computed as follows:

• Let the domain of feature j be Dj = {vj1, . . . , vjr}, and let sj,l,k denote the number of
models taking into account features 1 up to j − 1 and domain values vj1 up to vjl−1.
Also, let sj,0,k = 0.
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Feature Attr. P1 P2 P3 Q1 Q2

1

n01k 0 1 1 0 1

n11k 1 3 3 1 3

n1k n1k = ite(u1, n11k, n01k)

2

n02k 1 0 1 0 1

n12k 3 1 3 1 3

n2k n2k = ite(u2, n12k, n02k)

3

n03k 1 1 1 1 0

n13k 2 2 1 2 1

n3k n3k = ite(u3, n13k, n03k)

Path counts ηk = n1k × n2k × n3k

Table 2: SMT encoding for multiplication-based encoding

Path n1k n2k n3k ηk

R1 1 3 1 3
R2 1 3 1 3
R3 3 3 1 9

R4 1 1 1 1
R5 3 3 0 0

Table 3: Concrete values for the multiplication-based encoding for the case X = {3}, i.e.
u1 = u2 = 1 and u3 = 0

• For each value vjl in Dj , for l = 1, . . . , r:
– If j is tested along path Rk: (i) If vjl is inconsistent with path Rk, then sj,l,k =
sj,l−1,k; (ii) If vjl is consistent with path Rk and with v, then sj,l,k = sj,l−1,k +
ηj−1,k; (iii) If vjl is consistent with path Rk but not with v, or if feature j is not
tested in path Rk, then sj,l,k = sj,l−1,k + ite(uj , ηj−1,k, 0).

– If j is not tested along path Rk: (i) If vjl is consistent with v, then sj,l,k =
sj,l−1,k + ηj−1,k; (ii) Otherwise, sj,l,k = sj,l−1,k + ite(uj , ηj−1,k, 0).

• Finally, define ηj,k = sj,r,k.

After considering all the features in order, ηm,k represents the number of models for path
Rk given the assigment to the uj variables. As a result, we can re-write (21) as follows:

∑
Rk∈Pηm,k ≥ δ ×

∑
Rk∈Pηm,k + δ ×

∑
Rk∈Qηm,k (22)

As with the multiplication-based encoding, the soft clauses are of the form (ui) for i ∈ F .

Example 5. Table 4 summarizes the SMT encoding based on iterated summations for
paths with either prediction ⊕ or 	. The final computed values are then used in the linear
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Var. R1
∼= P1 R2

∼= P2 R3
∼= P3 R4

∼= Q1 R5
∼= Q2

s1,0,k s1,0,1 = 0 s1,0,2 = 0 s1,0,3 = 0 s1,0,4 = 0 s1,0,5 = 0

s1,1,k s1,0,1 + ite(u1, η0,1, 0) s1,0,2 s1,0,3 s1,0,4 + ite(u1, η0,4, 0) s1,0,5

s1,2,k s1,1,1 s1,1,2 + ite(u1, η0,2, 0) s1,1,3 + ite(u1, η0,3, 0) s1,1,4 s1,1,5 + ite(u1, η0,5, 0)

s1,3,k s1,2,1 s1,2,2 + ite(u1, η0,2, 0) s1,2,3 + ite(u1, η0,3, 0) s1,2,4 s1,2,5 + ite(u1, η0,5, 0)

s1,4,k s1,3,1 s1,3,2 + η0,2 s1,3,3 + η0,3 s1,3,4 s1,3,5 + η0,5

η1,k s1,4,1 s1,4,2 s1,4,3 s1,4,4 s1,4,5

s2,0,k s2,0,1 = 0 s2,0,2 = 0 s2,0,3 = 0 s2,0,4 = 0 s2,0,5 = 0

s2,1,k s2,0,1 s2,0,2 + η1,2 s2,0,3 s2,0,4 + ite(u2, η1,4, 0) s2,0,5 + ite(u2, η1,5, 0)

s2,2,k s2,1,1 + ite(u2, η1,1, 0) s2,1,2 s2,1,3 + ite(u2, η1,3, 0) s2,1,4 s2,1,5

s2,3,k s2,2,1 + ite(u2, η1,1, 0) s2,2,2 s2,2,3 + ite(u2, η1,3, 0) s2,2,4 s2,2,5

s2,4,k s2,3,1 + η1,1 s2,3,2 s2,3,3 + η1,3, 0 s2,3,4 s2,3,5

η2,k s2,4,1 s2,4,2 s2,4,3 s2,4,4 s2,4,5

s3,0,k s3,0,1 = 0 s3,0,2 = 0 s3,0,3 = 0 s3,0,4 = 0 s3,0,5 = 0

s3,1,k s3,0,1 + ite(u3, η2,1, 0) s3,0,2 + ite(u3, η2,2, 0) s3,0,3 s3,0,4 + ite(u3, η2,4, 0) s3,0,5 + ite(u3, η2,5, 0)

s3,2,k s3,1,1 + η2,1 s3,1,2 + η2,2 s3,1,3 + η2,3 s3,1,4 + η2,4 s3,1,5

η3,k s3,4,1 s3,4,2 s3,4,3 s3,2,4 s3,2,5

Table 4: Partial addition-based SMT encoding for paths with prediction ⊕, with (v, c) =
((4, 4, 2),⊕), and with η0,1 = η0,2 = η0,3 = 1

inequality (22), as follows,

η3,1 + η3,2 + η3,2 ≥ δ × (η3,1 + η3,2 + η3,2) + δ × (η3,4 + η3,5)

The optimization problem also includes B = {(¬u1), (¬u2), (¬u3)} as the soft clauses. For the
counting-based encoding, and from Table 4, we get the values shown in Table 5. Moreover,
we can then confirm that 15 ≥ 0.93× 16, as intended.

Discussion. In this as in the following sections, one might consider the use of a model
counter as a possible alternative. However, a model counter would have to be used for each
pick of features. Given the complexity of exactly computing the number of models, such
approaches are all but assured to be impractical in practice.

4.4 Deciding Whether a Locally-Minimal PAXp is a Plain PAXp for DTs

The problem of deciding whether a set of features X , representing an LmPAXp, is subset-
minimal can be achieved by using one of the models above, keeping the features that are
already universal, and checking whether additional universal features can be made to exist.
In addition, we need to add constraints forcing universal features to remain universal, and
at least one of the currently fixed features to also become universal. Thus, if X is the set of
fixed features, the SMT models proposed in earlier sections is extended with the following
constraints: ∧

j∈F\X (uj)
∧(∨

j∈Xuj

)
(23)

which allow checking whether some set of fixed features can be declared universal while
respecting the other constraints.
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Var. R1
∼= P1 R2

∼= P2 R3
∼= P3 R4

∼= Q1 R5
∼= Q2

s1,0,k 0 0 0 0 0

s1,1,k 1 0 0 1 0

s1,2,k 1 2 1 1 1

s1,3,k 1 2 2 1 2

s1,4,k 1 3 3 1 3

η1,k 1 3 3 1 3

s2,0,k 0 0 0 0 0

s2,1,k 0 3 0 0 3

s2,2,k 1 3 3 1 3

s2,3,k 2 3 6 1 3

s2,4,k 3 3 9 1 3

η2,k 3 3 9 1 3

s3,0,k 0 0 0 0 0

s3,1,k 0 2 0 0 0

s3,2,k 3 3 9 1 0

η3,k 3 3 9 1 0

Table 5: Assignment to variables of addition-based SMT encoding, given X = {3}, i.e.
u1 = u2 = 1 and u3 = 0

4.5 Instance-Based vs. Path-Based Explanations

The standard definitions of abductive explanations consider a concrete instance (v, c). As
argued earlier (see (7)), each (weak) AXp X can then be viewed as a rule of the form:

IF [∧i∈X (xi = vi)] THEN [κ(x) = c]

In the case of DTs, a given v is consistent with a concrete path Pt. As argued in recent
work [46], this enables studying instead generalizations of AXp’s, concretely to so-called
path-based explanations, each of which can be viewed as representing instead a rule of the
form:

IF [∧i∈X (xi ∈ Ei)] THEN [κ(x) = c] (24)

where Ei ⊆ Di and where each literal xi ∈ Ei is one of the literals in the path Pt consistent
with the instance (v, c).

Clearly, the literals associated with a path Rk offer more information than those associated
with a concrete point v in feature space. As a result, in the case of DTs, we consider a
generalization of the definition of relevant set, and seek instead to compute:

Prx(κ(x) = c |xX ∈ EX ) (25)

where the notation xX ∈ EX represents the constraint ∧i∈Xxi ∈ Ei, and where Ei denotes
the set of values consistent with feature i in path Rk.) Thus, the condition of weak PAXp
considers instead the following probability:

Prx(κ(x) = c |xX ∈ EX ) ≥ δ (26)
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The rest of this section investigates the computation of path probabilities in the case of
path-based explanations. For instance-based explanations, the definition of nik needs to be
adapted. Let Pt ∈ P be the target path. (For example, Pt can be the path consistent with
v.) Moreover, let RK ∈ R by some path in the decision tree. For a feature i, let Eik denote
the set of domain values of feature i that is consistent with path Rk. Hence, for path Rk,
we consider a literal (xi ∈ Eik). Similarly, let Eit denote the set of domain values of feature
i that is consistent with path Pt. Thus, for path Pt, we consider a literal (xi ∈ Eit). Given
the above, the value of nik is now defined as follows:

1. If i is fixed:
(a) If i is tested along Rk and the value of xi is inconsistent with Eit, i.e. there exists

a literal (xi ∈ Ei) ∈ Λ(Rk) and Eit ∩ Eik = ∅, then nik = 0;
(b) If i is tested along Rk and the value of xi is consistent with Rk, i.e. there exists a

literal (xi ∈ Ei) ∈ Λ(Rk) and Eit ∩ Eik 6= ∅, then nik = 1.
(c) If i is not tested along Rk, then nik = 1.

2. Otherwise, i is universal:
(a) If i is tested along Rk, with some literal xi ∈ Eik, then nik = |Eik|;
(b) If i is not tested along Rk, then nik = |Di|.

Using the modified definition of nik, we can now compute (25) as follows:

Prx(κ(x) = c |xX ∈ EX ) =
∑

Pk∈P
#(Pk;F\X ,v)/

∑
Rk∈R

#(Rk;F\X ,v) (27)

The computation of probabilistic explanations proposed in the previous sections can
either assume instance-based or path-based explanations. For consistency with the rest of
the paper, we opted to investigate instance-based explanations. Changing the proposed
algorithms to consider instead path-based explanations would be straightforward, but that
is beyond the scope of this paper.

5. Probabilistic Explanations for Naive Bayes Classifiers

This section investigates the computation of relevant sets in the concrete case of NBCs.

5.1 Explaining NBCs in Polynomial Time

This section overviews the approach proposed in [62] for computing AXp’s for binary NBCs.
The general idea is to reduce the NBC problem into an Extended Linear Classifier (XLC)
and then explain the resulting XLC. Our purpose is to devise a new approach that builds
on the XLC formulation to compute δ-relevant sets for NBCs. Hence, it is useful to recall
first the translation of NBCs into XLCs and the extraction of AXp’s from XLCs.

Extended Linear Classifiers. We consider an XLC with categorical features. (Recall
that the present paper considers NBCs with binary classes and categorical data.) Each
feature i ∈ F has xi ∈ {1, . . . , di}, (i.e. Di = {1, . . . , di}). Let,

ν(x) , w0 +
∑

i∈F
σ(xi, v

1
i , v

2
i , . . . , v

di
i ) (28)

σ is a selector function that picks the value vri iff xi takes value r. Moreover, let us define
the decision function, κ(x) = ⊕ if ν(x) > 0 and κ(x) = 	 if ν(x) ≤ 0.
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w0 v1
1 v2

1 v1
2 v2

2 v1
3 v2

3 v1
4 v2

4 v1
5 v2

5

-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32 -2.97 3.46

(a) Example reduction of NBC to XLC (Example 6)

Γ δ1 δ5 δ2 δ3 δ4 Φ

9.25 6.43 6.43 5.90 3.23 2.49 15.23

(b) Computing δj ’s for the XLC (Example 7)

Figure 7: Values used in the running example (Example 6 and Example 7)

The reduction of a binary NBC, with categorical features, to an XLC is completed
by setting: w0 , lPr(⊕) − lPr(	), v1

i , lPr(xi = 1|⊕) − lPr(xi = 1|	), v2
i , lPr(xi =

2|⊕)− lPr(xi = 2|	), . . . , vdii , lPr(xi = di|⊕)− lPr(xi = di|	). Hence, the argmax in (3)
is replaced with inequality to get the following:

lPr(⊕)− lPr(	) +
∑m

i=1

∑k=di

k=1
(lPr(xi = k|⊕)− lPr(xi = k|	))(xi = k) > 0 (29)

Example 6. Figure 7a shows the resulting XLC formulation for the example in Figure 4.
We also let f be associated with value 1 and t be associated with value 2, and di = 2.

Explaining XLCs. We now describe how AXp’s can be computed for XLCs. For a given
instance x = a, define a constant slack (or gap) value Γ given by,

Γ , ν(a) =
∑

i∈F
σ(ai, v

1
i , v

2
i , . . . , v

di
i ) (30)

Computing an AXp corresponds to finding a subset-minimal set of literals S ⊆ F such
that (5) holds, or alternatively,

∀(x ∈ F).
∧

i∈S
(xi = ai) → (ν(x) > 0) (31)

under the assumption that ν(a) > 0. Thus, the purpose is to find the smallest slack that can
be achieved by allowing the feature not in S to take any value (i.e. universal/free features),
given that the literals in S are fixed by a (i.e.

∧
i∈S(xi = ai)).

Let vωi denote the smallest (or worst-case) value associated with xi. Then, by letting
every xi take any value, the worst-case value of ν(e) is,

Γω = w0 +
∑

i∈F
vωi (32)

Moreover, from (30), we have: Γ = w0 +
∑

i∈F v
ai
i . The expression above can be rewritten

as follows,
Γω = w0 +

∑
i∈F v

ai
i −

∑
i∈F (vaii − vωi )

= Γ−
∑

i∈F δi = −Φ
(33)
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where δi , v
ai
i −vωi , and Φ ,

∑
i∈F δi−Γ = −Γω. Recall the goal is to find a subset-minimal

set S such that the prediction is still c (whatever the values of the other features):

w0 +
∑

i∈S
vaii +

∑
i/∈S

vωi = −Φ +
∑

i∈S
δi > 0 (34)

In turn, (34) can be represented as the following knapsack problem [54]:

min
∑m

i=1 pi

such that
∑m

i=1 δipi > Φ

pi ∈ {0, 1}
(35)

where the variables pi assigned value 1 denote the indices included in S. Note that, the fact
that the coefficients in the cost function are all equal to 1 makes the problem solvable in
log-linear time [62].

Example 7. Figure 7b shows the values used for computing explanations for the example
in Figure 4. For this example, the sorted δj ’s become 〈δ1, δ5, δ2, δ4, δ3〉. By picking δ1, δ2

and δ5, we ensure that the prediction is ⊕, independently of the values assigned to features
3 and 4. Thus {1, 2, 5} is an AXp for the NBC shown in Figure 3, with the input instance
(v1, v2, v3, v4, v5) = (t, f , f , f , t). (It is easy to observe that κ(t, f , f , t, t) = κ(t, f , t, f , t) =
κ(t, f , t, t, t) = ⊕.)

The next section introduces a pseudo-polynomial time algorithm for computing locally-
minimal PAXp’s. Although locally-minimal PAXp’s are not necessarily subset/cardinality
minimal, the experiments (see Section 7) show that the proposed approach computes (in
pseudo-polynomial time) succinct [69] and highly precise locally-minimal explanations.

5.2 Counting Models of XLCs

Earlier work [27, 31, 30, 83] proposed the use of dynamic programming (DP) for approxi-
mating the number of feasible solutions of the 0-1 knapsack constraint, i.e. the #knapsack
problem. Here we propose an extension of the basic formulation, to allow counting feasible
solutions of XLCs.

We are interested in the number of solutions of,∑
j∈F

σ(xj , v
1
j , v

2
j , . . . , v

dj
j ) > −w0 (36)

where we assume all vij to be integer-valued and non-negative (e.g. this is what our translation
from NBCs to XLCs yields after scaling and rounding). Moreover, (36) can be written as
follows: ∑

j∈F
σ(xj ,−v1

j ,−v2
j , . . . ,−v

dj
j ) < w0 (37)

which reveals the relationship with the standard knapsack constraint.
For each j, let us sort the −vij in non-decreasing order, collapsing duplicates, and counting

the number of duplicates, obtaining two sequences:

〈w1
j , . . . , w

d
′
j

j 〉

〈n1
j , . . . , n

d
′
j

j 〉
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such that w1
j < w2

j < . . . < w
d
′
j

j and each nij ≥ 1 gives the number of repetitions of weight

wij .

Counting. Let C(k, r) denote the number of solutions of (37) when the subset of features
considered is {1, . . . , k} and the sum of picked weights is at most r. To define the solution
for the first k features, taking into account the solution for the first k − 1 features, we must
consider that the solution for r can be obtained due to any of the possible values of xj . As
a result, for an XLC the general recursive definition of C(k, r) becomes,

C(k, r) =
∑d

′
k

i=1
nik × C(k − 1, r − wik)

Moreover, C(1, r) is given by,

C(1, r) =



0 if r < w1
1

n1
1 if w1

1 ≤ r < w2
1

n1
1 + n2

1 if w2
1 ≤ r < w3

1

. . .∑d
′
1
i=1 n

i
1 if w

d
′
1

1 ≤ r

In addition, if r < 0, then C(k, r) = 0, for k = 1, . . . ,m. Finally, the dimensions of the
C(k, r) table are as follows:

1. The number of rows is m.
2. The (worst-case) number of columns is given by:

W ′ =
∑
j∈F

n
d′j
j × w

d′j
j (38)

W ′ represents the largest possible value, in theory. However, in practice, it suffices to
set the number of columns to W = w0 + T , which is often much smaller than W ′.

Example 8. Consider the following problem. There are 4 features, F = {1, 2, 3, 4}. Each
feature j takes values in {1, 2, 3}, i.e. xj ∈ {1, 2, 3}. The prediction should be 1 when the
sum of the values of the xj variables is not less than 8. We set w0 = −7, and get the
formulation, ∑

j∈{1,2,3,4}

σ(xj , 1, 2, 3) > 7

where each xj picks value in {1, 2, 3}. We translate to the extended knapsack formulation
and obtain: ∑

j∈{1,2,3,4}

σ(xj ,−1,−2,−3) < −7

We require the weights to be integer and non-negative, and so we add to each wkj the

complement of the most negative wkj plus 1. Therefore, we add +4 to each j and +16 to
right-hand side of the inequality. Thus, we get∑

j∈{1,2,3,4}

σ(xj , 3, 2, 1) < 9
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k
r

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 3 3 3 3 3 – – – –

2 0 0 1 3 6 8 9 9 9 – – – –

3 0 0 0 1 4 10 17 23 16 – – – –

4 0 0 0 0 1 5 15 31 50 – – – –

Table 6: DP table for Example 8

For this formulation, xj = 1 picks value 3. (For example, we can pick two (but not three) xj
with value 1, which is as expected.)

In this case, the DP table size will be 4 × 12, even though we are interested in entry
C(4, 8). Table 6 shows the DP table, and the number of solutions for the starting problem,
i.e. there are 50 combinations of values whose sum is no less than 8.

By default, the dynamic programming formulation assumes that features can take any
value. However, the same formulation can be adapted when features take a given (fixed)
value. Observe that this will be instrumental for computing LmPAXp’s.

Consider that feature k is fixed to value l. Then, the formulation for C(k, r) becomes:

C(k, r) = nlk × C(k − 1, r − wlk) = C(k − 1, r − wlk)

Given that k is fixed, then we have nlk = 1.

Example 9. For Example 8, assume that x2 = 1 and x4 = 3. Then, the constraint we want
to satisfy is: ∑

j∈{1,3}

σ(xj , 1, 2, 3) > 3

Following a similar transformation into knapsack formulation, we get∑
j∈{1,3}

σ(xj , 3, 2, 1) < 5

After updating the DP table, with fixing features 2 and 4, we get the DP table shown
in Table 7. As a result, we can conclude that the number of solutions is 6.

The table C(k, r) can be filled out in pseudo-polynomial time. The number of rows is m.
The number of columns is W (see (38)). Moreover, the computation of each entry uses the
values of at most m other entries. Thus, the total running time is: Θ(m2 ×W ).

From NBCs to positive integer knapsacks. To assess heuristic explainers, we consider
NBCs, and use a standard transformation from probabilities to positive real values [78].
Afterwards, we convert the real values to integer values by scaling the numbers. However, to
avoid building a very large DP table, we implement the following optimization. The number
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k
r

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 3 3 3 3 3 – – – –

2 0 0 0 0 1 2 3 3 3 – – – –

3 0 0 0 0 0 1 3 6 8 – – – –

4 0 0 0 0 0 0 1 3 6 – – – –

Table 7: DP table for Example 9

of decimal places of the probabilities is reduced while there is no decrease in the accuracy of
the classifier both on training and on test data. In our experiments, we observed that there
is no loss of accuracy if four decimal places are used, and that there is a negligible loss of
accuracy with three decimal places.

Assessing explanation precision. Given a Naive Bayes classifier, expressed as an XLC,
we can assess explanation accuracy in pseudo-polynomial time. Given an instance v, a
prediction κ(v) = ⊕, and an approximate explanation S, we can use the approach described
in this section to count the number of instances consistent with the explanation for which the
prediction remains unchanged (i.e. number of points x ∈ F s.t. (κ(x) = κ(v) ∧ (xS = vS))).
Let this number be n⊕ (given the assumption that the prediction is ⊕). Let the number of
instances with a different prediction be n	

7. Hence, the conditional probability (8) can be
defined, in the case of NBCs, as follow:

Prx(κ(x) = ⊕ |xS = vS) =
n⊕

|{x ∈ F : (xS = vS)}|

Observe that the numerator |{x ∈ F : κ(x) = ⊕ ∧ (xS = vS)}| is expressed by the
number of models n⊕, i.e. the points x in feature space that are consistent with v given S
and with prediction ⊕. Further, we have

Prx(κ(x) = ⊕ |xS = vS) =1− Prx(κ(x) = 	 |xS = vS)

=1− n	
|{x ∈ F : (xS = vS)}|

where n	 = |{x ∈ F : κ(x) = 	 ∧ (xS = vS)}|.

5.3 Computing Locally-Minimal PAXp’s for NBCs

Similarly to the case of DTs, we can also use Algorithm 1 for computing locally-minimal
PAXp’s in the case of NBCs. The only difference is in the definition of the predicate
WeakPAXp. For NBCs, the procedure isWeakPAXp implements the pseudo-polynomial

7. Recall that we are assuming that K = {	,⊕}.

28



approach, described in the previous section, for model counting. Hence, in the case of NBCs,
it is implicit that the DP table is updated at each iteration of the main loop of Algorithm 1.
More specifically, when a feature i is just set to universal, its associated cells C(i, r) are

recalculated such that C(k, r) =
∑d

′
k
i=1 n

i
k × C(k − 1, r − wik); and when i is fixed, i.e. i ∈ S,

then C(i, r) = C(i− 1, r − vji ) where vji , lPr(vi = j|c)− lPr(vi = j|¬c). Furthermore, we
point out that in our experiments, S is initialized to an AXp X that we compute initially for
all tested instances using the outlined (polynomial) algorithm in Section 5.1. It is easy to
observe that features not belonging to X do not contribute in the decision of κ(v) (i.e. their
removal does not change the value of n	 that is equal to zero) and thus can be set universal
at the initialisation step, which allows us to improve the performance of Algorithm 1.

Moreover, we apply a heuristic order over S that aims to remove earlier less relevant
features and thus to produce shorter approximate explanations. Typically, we order S
following the increasing order of δi values, namely the reverse order applied to compute the
AXp. Preliminary experiments conducted using a (naive heuristic) lexicographic order over
the features produced less succinct explanations.

Finally, notice that Algorithm 1 can be used to compute an AXp, i.e. locally-minimal
PAXp when δ = 1. Nevertheless, the polynomial time algorithm for computing AXp’s
proposed in [62] remains a better choice to use in case of AXp’s than Algorithm 1 which
runs in pseudo-polynomial time.

Example 10. Let us consider again the NBC of the running example (Example 6) and
v = (t, f , f , f , t). The corresponding XLC is shown in Figure 7b (Example 7). Also, consider
the AXp {1, 2, 5} of v and δ = 0.85. The resulting DP table for S = {1, 2, 5} is shown
in Table 8. Note that for illustrating small tables, we set the number of decimal places to
zero (greater number of decimal places, i.e. 1,2, etc, were tested and returned the same
results). (Also, note that the DP table reports “—” if the cell is not calculated during the
running of Algorithm 1.) Moreover, we convert the probabilities into positive integers, so
we add to each wkj the complement of the most negative wkj plus 1. The resulting weights

are shown in Figure 8. Thus, we get
∑

i∈{1,2,3,4,5} σ(xi, w
1
i , w

2
i ) < 17. Observe that the

number of models n⊕ = C(5, 16), and C(5, 16) is calculated using C(4, 16− w2
5) = C(4, 15),

i.e. C(4, 15) = C(5, 16) (feature 5 is fixed, so it is allowed to take only the value w2
5 = 1).

Next, C(4, 15) = C(3, 15 − w1
4) + C(3, 15 − w2

4) = C(3, 12) + C(3, 14) (feature 4 is free,
so it is allowed to take any value of {w1

4, w
2
4}); the recursion ends when k=1, namely for

C(1, 5) = C(2, 6) = n2
1 = 1, C(1, 7) = C(2, 7) = n2

1 = 1, C(1, 8) = C(2, 8) = n2
1 = 1 and

C(1, 10) = C(2, 11) = n2
1 = 1 (feature 1 is fixed and takes value w2

1). Next, Table 9 (resp.
Table 10 and Table 11) report the resulting DP table for S = {2, 5} (resp. S = {1, 5} and
S = {1}). It is easy to confirm that after dropping feature 2, the precision of S = {1, 5}
becomes 87.5%, i.e. 7

8 = 0.875 > δ. Furthermore, observe that the resulting S when dropping
feature 1 or 2 and 5, are not weak PAXp’s, namely, the precision of {2, 5} is 6

8 = 0.75 < δ and
the precision of {1} is 9

16 = 0.5625 < δ. In summary, Algorithm 1 starts with S = {1, 2, 5},
then at iteration #1, feature 1 is tested and since {2, 5} is not a weak PAXp then 1 is kept
in S; at iteration #2, feature 2 is tested and since {1, 5} is a weak PAXp, then S is updated
(i.e. S = {1, 5}); at iteration #3, feature 5 is tested and since {1} is not a weak PAXp, then
5 is saved in S. As a result, the computed locally-minimal PAXp is {1, 5}.
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k
r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 — — — — 1 — 1 1 — 1 — — — — — —

2 0 — — — — — 1 — 1 1 — 1 — — — — —

3 0 — — — — — — — — — — — 2 — 2 — —

4 0 — — — — — — — — — — — — — — 4 —

5 0 — — — — — — — — — — — — — — — 4

Table 8: DP table for S = {1, 2, 5} (Example 10)

k
r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 — — — — 1 — 1 2 — 2 — — — — — —

2 0 — — — — — 1 — 1 2 — 2 — — — — —

3 0 — — — — — — — — — — — 3 — 3 — —

4 0 — — — — — — — — — — — — — — 6 —

5 0 — — — — — — — — — — — — — — — 6

Table 9: DP table for S = {2, 5} (Example 10)

We underline that we could initialize S to F , in which case the number of models would
be 1. However, we opt instead to always start from an AXp. In the example, the AXp is
{1, 2, 5} which, because it is an AXp, the number of models must be 4 (i.e. 22, since two
features are free).

For any proper subset of the AXp, with r free variables, it must be the case that the
number of models is strictly less than 2r. Otherwise, we would have an AXp as a proper
subset of another AXp; but this would contradict the definition of AXp. The fact that the
number of models is strictly less than 2r is confirmed by the examples of subsets considered.
It must also be the case that if S ′ ⊆ S, then the number of models of S ′ must not exceed
the number of models of S. So, we can argue that there is monotonicity in the number of
models, but not in the precision.

W w1
1 w2

1 w1
2 w2

2 w1
3 w2

3 w1
4 w2

4 w1
5 w2

5

16 7 1 1 6 3 6 1 3 7 1

Figure 8: #knapsack problem of Example 10
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k
r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 — 1 1 — 1 — 1 1 — 1 — — — — — —

2 0 — — — — — 1 — 2 2 — 2 — — — — —

3 0 — — — — — — — — — — — 3 — 4 — —

4 0 — — — — — — — — — — — — — — 7 —

5 0 — — — — — — — — — — — — — — — 7

Table 10: DP table for S = {1, 5} (Example 10)

k
r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 1 1 1 1 — 1 1 — 1 — — — — — —

2 0 — 0 1 — 1 1 — 2 2 — 2 — — — — —

3 0 — — — — — 1 — 1 — — — 3 — 4 — —

4 0 — — — — — — — — 2 — — — — — 7 —

5 0 — — — — — — — — — — — — — — — 9

Table 11: DP table for S = {1} (Example 10)

6. Probabilistic Explanations for Other Families of Classifiers

This section investigates additional families of classifiers, namely those either based on
propositional languages [34] or based on graphs [35]. It should be noted that some families
of classifiers can be viewed as both propositional languages and as graphs.

6.1 Propositional Classifiers

This section considers the families of classifiers represented as propositional languages and
studied in [34]. Examples include classifiers based on d-DNNFs and SDDs.

Proposition 1. For any language that allows conditioning (CD) in polynomial time, a
locally-minimal PAXp can be found in polynomial time (for all δ ∈ [0, 1]) if and only if the
language allows counting (CT) in polynomial time.

Proof. If the language allows CD and CT in polynomial time, Algorithm 1 finds a locally-
minimal PAXp in polynomial time. Conversely, testing whether X = ∅ is a locally-minimal
PAXp amounts to determining whether the number of models of the classifier κ is at least
δ2m, and hence a binary search on δ computes the number of models (i.e. CT) in polynomial
time.

31



Izza, Huang, Ignatiev, Narodytska, Cooper & Marques-Silva

Proposition 2. For any language that allows CT and CD in polynomial time, given an
integer k, the problem of deciding the existence of a weak PAXp of size at most k is in NP.

Proof. Let P ⊆ F denote a guessed set of picked features of size k′ ≤ k, to be fixed. Since
CT and CD run in polynomial time, the left-hand side of (10), i.e. Prx(κ(x) = c |xX = vX )
can be computed in polynomial time. Consequently, we can decide in polynomial time
whether or not P is a weak PAXp, and so the decision problem is in NP.

Corollary 1. For any language that allows CT and CD in polynomial time, the problem
of finding a minimum-size PAXp belongs to FPNP[O(logm)].

Proof. It suffices to run a binary search, on the number k of features, using an NP oracle
that decides the decision problem introduced in the proof of Proposition 2. This algorithm
finds a smallest weak PAXp P, which is necessarily a PAXp (and hence a smallest PAXp)
since no proper subset of P can be a weak PAXp.

Corollary 1 notably applies to the following languages:

• the language EADT of extended affine decision trees [56] which are a strict generalisa-
tion of decision trees.

• the language d-DNNF and sublanguages of d-DNNF, such as SDD and OBDD.

6.2 Graph-Based Classifiers

This section considers the DG classifiers introduced in Section 2.3, and in particular two
restricted types of DGs: OMDDs and OBDDs. For OMDDs and OBDDs, it is well-known
that there are poly-time algorithms for model counting [23, 75]. Hence, we can compute a
minimum-size PAXp with a logarithmic number of calls to an NP oracle. We will describe
one such algorithm in this section. Moreover, a general method for counting models of DGs
will be described as well.

Counting models of OBDD/OMDD. We describe next a dedicated algorithm for
counting models of an OMDD, which can also be used with OBDDs.

We associate an indicator np to each node p, the indicator of the root node being n1,
such that the value of n1 represents the number of models consistent with the class c. And
let si be the boolean selector of feature i such that si = 1 if feature i is included in PAXp,
otherwise it is free. Besides, we assume that the feature-index order is increasing top-down,
and the leftmost outgoing edge of a non-terminal node is consistent with the given instance
v.

1. For a terminal node p, np = 1 if the label of node p is consistent with the class c;
otherwise np = 0.

2. For a non-terminal node p label with feature i, that has k child nodes q1, . . . , qk,
let q be an arbitrary child node of p labeled with feature j, and edge (p, q1) be the
leftmost edge. By assumption, since i < j, there may exist some untested features
i < l < j along the outgoing edge (p, q). Let bp,q be the indicator of the edge
(p, q), we have: bp,q = nq ×

∏
i<l<j ite(sl, 1,Dl)× |(p, q)|, so the indicator of node p is

np = ite(si, bp,q1 ,
∑

q1≤l≤qk bp,l). It should be noted that multiple edges may exist; we
use |(p, q)| to denote the number of edges between node p and q.
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3. The number of models consistent with the class c is n1.

In the case of |K| = 2 and F = Bm, this algorithm is still applicable to OBDDs with
some minor modifications. Note that each non-terminal node of an OBDD has exactly two
outgoing edges and multiple edges between two nodes are not allowed (otherwise, the OBDD
is not reduced); this means that Dl = B, and |(p, q)| = 1.

Counting models for unrestricted DGs. For unrestricted DG classifiers, given Sec-
tion 2.3, any path connecting the root to a terminal node is consistent with some input, and
no two paths are consistent with the same input. As a result, in the case of unrestricted
DG classifiers, it suffices to enumerate all paths, and count the models associated with the
path. Of course, the downside is that the number of paths is worst-case exponential on the
size of the graph. To alleviate this, an approach similar to the one outlined above can be
considered.

7. Experiments

This section reports the experimental results on computing relevant sets for the classifiers
studied in the earlier sections, namely: decision trees, naive Bayes classifiers and graph-
based classifiers (in our case OMDDs). For each case study, we describe the prototype
implementation and the used benchmarks; we show a table that summarizes the results and
then we discuss the results. Furthermore, for the case of DTs, the evaluation includes a
comparison with the model-agnostic explainer Anchor [82], aiming at assessing not only the
succinctness and precision of computed explanations but also the scalability of our solution.
(Observe that for the case of NBCs, earlier work on computing AXp’s [62] have compared
their approach with the heuristic methods, e.g. Anchor, SHAP, and show that the latter
are slower and do not show a strong correlation between features of their explanations
and common features identified from AXp’s. As a result, the comparison with Anchor is
restricted to the case of DTs.)

All experiments were conducted on a MacBook Air with a 1.1GHz Quad-Core Intel
Core i5 CPU with 16 GByte RAM running macOS Monterey.

7.1 Case Study 1: Decision Trees

Prototype implementation. A prototype implementation8 of the proposed algorithms
for DTs was developed in Python; whenever necessary, it instruments oracle calls to the
well-known SMT solver z39 [24] as described in Section 4 . Hence, the prototype implements
the LmPAXp procedure outlined in Algorithm 1 and augmented with a heuristic that orders
the features in X . The idea consists in computing the precision loss of the overapproximation
of each X \ {j} and then sorting the features from the less to the most important one.
This strategy often allows us to obtain the closest superset to a PAXp, in contrast to the
simple lexicographic order applied over X . (Recall that X is initialized to the set of features
involved in the decision path.) Algorithm MinPAXp outlined in Section 4.3 implements the
two (multiplication- and addition-based) SMT encodings. Nevertheless, preliminary results
show that both encodings perform similarly, with some exceptions where the addition-based

8. All sources implemented in these experiments will be publicly available after the paper gets accepted.
9. https://github.com/Z3Prover/z3/
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Dataset
MinPAXp LmPAXp Anchor

DT Path δ Length Prec Time Length Prec m⊆ Time D Length Prec Time

N A M m avg M m avg avg avg M m avg avg avg M m avg F 6∈P avg avg

100 11 3 6.8 100 2.34 11 3 6.9 100 100 0.00 d 12 2 7.0 26.8 76.8 0.96
adult 1241 89 14 3 10.7 95 11 3 6.2 98.4 5.36 11 3 6.3 98.6 99.0 0.01 u 12 3 10.0 29.4 93.7 2.20

90 11 2 5.6 94.6 4.64 11 2 5.8 95.2 96.4 0.01

100 12 1 4.4 100 0.35 12 1 4.4 100 100 0.00 d 31 1 4.8 58.1 32.9 3.10
dermatology 71 100 13 1 5.1 95 12 1 4.1 99.7 0.37 12 1 4.1 99.7 99.3 0.00 u 34 1 13.1 43.2 87.2 25.13

90 11 1 4.0 98.8 0.35 11 1 4.0 98.8 100 0.00

100 12 2 4.8 100 0.93 12 2 4.9 100 100 0.00 d 36 2 7.9 44.8 69.4 1.94
kr-vs-kp 231 100 14 3 6.6 95 11 2 3.9 98.1 0.97 11 2 4.0 98.1 100 0.00 u 12 2 3.6 16.6 97.3 1.81

90 10 2 3.2 95.4 0.92 10 2 3.3 95.4 99.0 0.00

100 12 4 8.2 100 16.06 11 4 8.2 100 100 0.00 d 16 3 13.2 43.1 71.3 12.22
letter 3261 93 14 4 11.8 95 12 4 8.0 99.6 18.28 11 4 8.0 99.5 100 0.00 u 16 3 13.7 47.3 66.3 10.15

90 12 4 7.7 97.7 16.35 10 4 7.8 97.8 100 0.00

100 14 3 6.4 100 0.92 14 3 6.5 100 100 0.00 d 35 2 8.6 55.4 33.6 5.43
soybean 219 100 16 3 7.3 95 14 3 6.4 99.8 0.95 14 3 6.4 99.8 100 0.00 u 35 3 19.2 66.0 75.0 38.96

90 14 3 6.1 98.1 0.94 14 3 6.1 98.2 98.5 0.00

0 12 3 7.4 100 1.23 12 3 7.5 100 100 0.01 d 38 2 6.3 65.3 63.3 24.12
spambase 141 99 14 3 8.5 95 9 1 3.7 96.1 2.16 9 1 3.8 96.5 100 0.01 u 57 3 28.0 86.2 65.3 834.70

90 6 1 2.4 92.4 2.15 8 1 2.4 92.2 100 0.01

100 12 3 6.2 100 2.01 11 3 6.2 100 100 0.01 d 40 2 16.5 80.6 32.2 532.42
texture 257 100 13 3 6.6 95 11 3 5.4 99.3 2.19 11 3 5.4 99.4 100 0.01 u 40 5 17.5 84.4 31.6 402.07

90 11 3 5.4 98.5 2.20 11 3 5.4 99.4 100 0.01

Table 12: Assessing explanations of MinPAXp, LmPAXp and Anchor for DTs. (For each dataset, we run
the explainers on 500 samples randomly picked or all samples if there are less than 500.) In column DT, N
and A denote, resp., the number of nodes and the training accuracy of the DT. Column δ reports (in %) the
value of the threshold δ. In column Path, avg (resp. M and m) denotes the average (resp. max. and min.)
depth of paths consistent with the instances. In column Length, avg (resp. M and m) denotes the average
(resp. max. and min.) length of the explanations; and F6∈P denotes the avg. % of features in Anchor’s
explanations that do not belong to the consistent paths. Prec reports (in %) the average precision (defined
in (9)) of resulting explanations. m⊆ shows the number in (%) of LmPAXp’s that are subset-minimal, i.e.
PAXp’s. Time reports (in seconds) the average runtime to compute an explanation. Finally, D indicates
which distribution is applied on data given to Anchor: either data distribution (denoted by d) or uniform
distribution (denoted by u).

encoding is much larger and so slower. Therefore, the results reported below refer only to
the multiplication-based encoding.

Benchmarks. The benchmarks used in the experiments comprise publicly available and
widely used datasets obtained from the UCI ML Repository [95]. All the DTs are trained
using the learning tool IAI (Interpretable AI ) [11, 38]. The maximum depth parameter in
IAI is set to 16. As the baseline, we ran Anchor with the default explanation precision of
0.95. Two assessments are performed with Anchor: (i) with the original training data10 that
follows the data distribution; (ii) with using sampled data that follows a uniform distribution.
Our setup assumes that all instances of the feature space are equally possible, and so there
is no assumed probability distribution over the features. Therefore in order to be fair with
Anchor, we further assess Anchor with uniformly sampled data. (Also, we point out that the
implementation of Anchor demonstrates that it can generate samples that do not belong to
the input distribution. Thus, there is no guarantee that these samples come from the input

10. The same training set used to learn the model.
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Dataset (#F #I)
NBC AXp LmPAXp≤9 LmPAXp≤7 LmPAXp≤4

A% Length δ Length Precision W% Time Length Precision W% Time Length Precision W% Time

adult (13 200) 81.37 6.8± 1.2

98 6.8± 1.1 100± 0.0 100 0.003 6.3± 0.9 99.61± 0.6 96 0.023 4.8± 1.3 98.73± 0.5 48 0.059
95 6.8± 1.1 99.99± 0.2 100 0.074 5.9± 1.0 98.87± 1.8 99 0.058 3.9± 1.0 96.93± 1.1 80 0.071
93 6.8± 1.1 99.97± 0.4 100 0.104 5.7± 1.3 98.34± 2.6 100 0.086 3.4± 0.9 95.21± 1.6 90 0.093
90 6.8± 1.1 99.95± 0.6 100 0.164 5.5± 1.4 97.86± 3.4 100 0.100 3.0± 0.8 93.46± 1.5 94 0.103

agaricus (23 200) 95.41 10.3± 2.5

98 7.7± 2.7 99.12± 0.8 92 0.593 6.4± 3.0 98.75± 0.6 87 0.763 6.0± 3.1 98.67± 0.5 29 0.870
95 6.9± 3.1 97.62± 2.1 95 0.954 5.3± 3.2 96.59± 1.6 92 1.273 4.8± 3.3 96.24± 1.2 55 1.217
93 6.5± 3.1 96.65± 2.8 95 1.112 4.8± 3.1 95.38± 1.9 93 1.309 4.3± 3.1 94.92± 1.3 64 1.390
90 5.9± 3.3 94.95± 4.1 96 1.332 4.0± 3.0 92.60± 2.8 95 1.598 3.6± 2.8 92.08± 1.7 76 1.830

chess (37 200) 88.34 12.1± 3.7

98 8.1± 4.1 99.27± 0.6 64 0.383 5.9± 4.9 98.70± 0.4 64 0.454 5.7± 5.0 98.65± 0.4 46 0.457
95 7.7± 3.8 98.51± 1.4 68 0.404 5.5± 4.4 97.90± 0.9 64 0.483 5.3± 4.5 97.85± 0.8 46 0.478
93 7.3± 3.5 97.56± 2.4 68 0.419 5.0± 4.1 96.26± 2.2 64 0.485 4.8± 4.1 96.21± 2.1 64 0.493
90 7.3± 3.5 97.29± 2.9 70 0.413 4.9± 4.0 95.99± 2.6 64 0.483 4.8± 4.0 95.93± 2.5 64 0.543

vote (17 81) 89.66 5.3± 1.4

98 5.3± 1.4 100± 0.0 100 0.000 5.3± 1.3 99.95± 0.2 100 0.007 4.6± 1.1 99.60± 0.4 64 0.014
95 5.3± 1.4 100± 0.0 100 0.000 5.3± 1.3 99.93± 0.3 100 0.008 4.1± 1.0 98.25± 1.7 64 0.018
93 5.3± 1.4 100± 0.0 100 0.000 5.2± 1.3 99.78± 1.1 100 0.012 4.1± 0.9 98.10± 1.9 64 0.018
90 5.3± 1.4 100± 0.0 100 0.000 5.2± 1.3 99.78± 1.1 100 0.012 4.0± 1.2 97.24± 3.1 64 0.022

kr-vs-kp (37 200) 88.07 12.2± 3.9

98 7.8± 4.2 99.19± 0.5 64 0.387 6.5± 4.7 98.99± 0.4 64 0.427 6.1± 4.9 98.88± 0.3 43 0.457
95 7.3± 3.9 98.29± 1.4 64 0.416 6.0± 4.3 97.89± 1.1 64 0.453 5.5± 4.5 97.79± 0.9 43 0.462
93 6.9± 3.5 97.21± 2.5 69 0.422 5.6± 3.8 96.82± 2.2 64 0.448 5.2± 4.0 96.71± 2.1 43 0.468
90 6.8± 3.5 96.65± 3.1 69 0.418 5.4± 3.8 95.69± 3.0 64 0.468 5.0± 4.0 95.59± 2.8 61 0.487

mushroom (23 200) 95.51 10.7± 2.3

98 7.5± 2.4 98.99± 0.7 90 0.641 6.5± 2.6 98.74± 0.5 83 0.751 6.3± 2.7 98.70± 0.4 18 0.828
95 6.5± 2.6 97.35± 1.8 96 1.011 5.1± 2.5 96.52± 1.0 90 1.130 5.0± 2.5 96.39± 0.8 54 1.113
93 5.8± 2.8 95.77± 2.7 96 1.257 4.4± 2.5 94.67± 1.6 94 1.297 4.2± 2.4 94.48± 1.3 65 1.324
90 5.3± 3.0 94.01± 3.9 97 1.455 3.8± 2.3 92.36± 2.2 96 1.543 3.6± 2.2 92.07± 1.6 76 1.650

threeOf9 (10 103) 83.13 4.2± 0.4

98 4.2± 0.4 100± 0.0 100 0.000 4.2± 0.4 100± 0.0 100 0.000 4.2± 0.4 100± 0.0 78 0.001
95 4.2± 0.4 100± 0.0 100 0.000 4.2± 0.4 100± 0.0 100 0.000 4.0± 0.2 99.23± 1.4 100 0.002
93 4.2± 0.4 100± 0.0 100 0.000 4.2± 0.4 100± 0.0 100 0.000 3.9± 0.2 99.20± 1.5 100 0.002
90 4.2± 0.4 100± 0.0 100 0.000 4.2± 0.4 100± 0.0 100 0.000 3.8± 0.4 98.29± 3.3 100 0.003

xd6 (10 176) 81.36 4.5± 0.9

98 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 73 0.001
95 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 73 0.001
93 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 100 0.000 4.3± 0.4 98.30± 2.7 73 0.001
90 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 100 0.000 4.3± 0.4 98.30± 2.7 73 0.002

mamo (14 53) 80.21 4.9± 0.8

98 4.9± 0.7 100± 0.0 100 0.000 4.9± 0.7 100± 0.0 100 0.000 4.6± 0.6 99.66± 0.5 53 0.007
95 4.9± 0.7 100± 0.0 100 0.000 4.9± 0.7 100± 0.0 100 0.000 3.9± 0.6 97.80± 1.6 85 0.009
93 4.9± 0.7 100± 0.0 100 0.000 4.9± 0.7 100± 0.0 100 0.000 3.9± 0.6 97.68± 1.7 85 0.009
90 4.9± 0.7 100± 0.0 100 0.000 4.9± 0.7 100± 0.0 100 0.000 3.6± 0.8 96.18± 3.2 96 0.011

tumor (16 104) 83.21 5.3± 0.9

98 5.3± 0.8 100± 0.0 100 0.000 5.2± 0.7 99.96± 0.2 100 0.008 4.1± 0.7 99.41± 0.5 91 0.012
95 5.3± 0.8 100± 0.0 100 0.000 5.2± 0.6 99.83± 0.7 100 0.012 3.2± 0.6 96.02± 1.5 94 0.016
93 5.3± 0.8 100± 0.0 100 0.000 5.2± 0.6 99.74± 1.2 100 0.014 3.1± 0.7 95.50± 1.4 95 0.016
90 5.3± 0.8 100± 0.0 100 0.000 5.1± 0.7 99.67± 1.4 100 0.016 3.0± 0.6 95.30± 1.6 95 0.017

Table 13: Assessing LmPAXp explanations for NBCs. Columns #F and #I show, respectively, number
of features and tested instances in the Dataset. Column A% reports (in %) the training accuracy of the
classifier. Column δ reports (in %) the value of the parameter δ. LmPAXp≤9, LmPAXp≤7 and LmPAXp≤4

denote, respectively, LmPAXp’s of (target) length 9, 7 and 4. Columns Length and Precision report,
respectively, the average explanation length and the average explanation precision (± denotes the standard
deviation). W% shows (in %) the number of success/wins where the explanation size is less than or equal to
the target size. Finally, the average runtime to compute an explanation is shown (in seconds) in Time. (Note
that the reported average time is the mean of runtimes for instances for which we effectively computed an
approximate explanation, namely instances that have AXp’s of length longer than the target length; whereas
for the remaining instances the trimming process is skipped and the runtime is 0 sec, thus we exclude them
when calculating the average.)

distribution.) Also, the prototype implementation was tested with varying the threshold δ
while Anchor runs guided by its own metric.

Results. Table 12 summarizes the results of our experiments for the case study of DTs.
One can observe that MinPAXp and LmPAXp compute succinct explanations (i.e. of average
size 7±2 [69]), for the majority of tested instances across all datasets, noticeably shorter than
consistent-path explanations. More importantly, the computed explanations are trustworthy
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and show good quality precision, e.g. dermatology, soybean and texture show average precisions
greater than 98% for all values of δ. Additionally, the results clearly demonstrate that our
proposed SMT encoding scales for deep DTs with runtimes on average less than 20 sec for
the largest encodings while the runtimes of LmPAXp are negligible, never exceeding 0.01 sec.
Also, observe from the table (see column m⊆) that the over-approximations computed by
LmPAXp are often subset-minimal PAXp’s, and often as short as computed MinPAXp’s. This
confirms empirically the advantages of computing LmPAXp’s, i.e. in practice one may rely
on the computation of LmPAXp’s, which pays off in terms of (1) performance, (2) sufficiently
high probabilistic guarantees of precision, and (3) good quality over-approximation of subset-
minimal PAXp’s. In contrast, Anchor is unable to provide precise and succinct explanations
in both settings of data and uniform distribution. Moreover, we observe that Anchor’s
explanations often include features that are not involved in the consistent path, e.g. for
texture less than 20% of an explanation is shared with the consistent path. (This trend
was also pointed out by [39].) In terms of average runtime, Anchor is overall slower, being
outperformed by the computation of LmPAXp by several orders of magnitude.

Overall, the experiments demonstrate that our approach efficiently computes succinct
and provably precise explanations for large DTs. The results also substantiate the limitations
of model-agnostic explainers, both in terms of explanation quality and computation time.

7.2 Case Study 2: Naive Bayes Classifiers

Prototype implementation. A prototype implementation of the proposed approach for
computing relevant sets for NBCs was developed in Python. To compute AXp’s, we use the
Perl script implemented by [62]11. The prototype implementation was tested with varying
thresholds δ ∈ {0.90, 0.93, 0.95, 0.98}. When converting probabilities from real values to
integer values, the selected number of decimal places is 3. (As outlined earlier, we observed
that there is a negligible accuracy loss from using three decimal places). In order to produce
explanations of size admissible for the cognitive capacity of human decision makers [69], we
selected three different target sizes for the explanations to compute: 9, 7 and 4, and we
computed a LmPAXp for the input instance when its AXp X is larger than the target size
(recall that S is initialized to X ); otherwise we consider that the AXp is succinct and the
explainer returns X . For example, assume the target size is 7, an instance v1 with an AXp
S1 of 5 features and a second instance v2 with an AXp S2 of 8 features, then for v1 the
output will be S1 and for v2 the output will be a subset of S2.

Benchmarks. The benchmarks used in this evaluation originate from the UCI ML Repos-
itory [95] and Penn ML Benchmarks [79]. The number of training data (resp. features) in
the target datasets varies from 336 to 14113 (resp. 10 to 37) and on average is 3999.1 (resp.
20.0). All the NBCs are trained using the learning tool scikit-learn [88]. The data split for
training and test data is set to 80% and 20%, respectively. Model accuracies are above 80%
for the training accuracy and above 75% for the test accuracy. For each dataset, we run the
explainer on 200 instances randomly picked from the test data or on all instances if there
are less than 200.

11. Publicly available from: https://github.com/jpmarquessilva/expxlc
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Results. Table 13 summarizes the results of our experiments for the case study of NBCs.
For all tested values for the parameter threshold δ and target size, the reported results show
the sizes and precisions of the computed explanations. As can be observed for all considered
settings, the approximate explanations are succinct, in particular the average sizes of the
explanations are invariably lower than the target sizes. Moreover, theses explanations offer
strong guarantees of precision, as their average precisions are strictly greater than δ with
significant gaps (e.g. above 97%, in column LmPAXp≤7, for datasets adult, vote, threeOf9,
xd6, mamo and tumor and above 95% for chess and kr-vs-kp). An important observation
from the results, is the gain of succinctness (explanation size) when comparing AXp’s with
LmPAXp’s. Indeed, for some datasets, the AXp’s are too large (e.g. for chess and kr-vs-kp
datasets, the average number of features in the AXp’s is 12), exceeding the cognitive limits
of human decision makers [69] (limited to 7 ± 2 features). To illustrate that, one can focus
on the dataset agaricus or mushroom and see that for a target size equal to 7 and δ = 0.95,
the average length of the LmPAXp’s (i.e. 5.3 and 5.1, resp.) is 2 times less than the average
length of the AXp’s (i.e. 10.3 and 10.7, resp.). Besides, the results show that δ = 0.95 is a
good probability threshold to guarantee highly precise and short approximate explanations.

Despite the computational complexity of the proposed approach being pseudo-polynomial,
the results demonstrate that in practice the algorithm is effective and scales for large datasets.
As can be seen, the runtimes are negligible for all datasets, never exceeding 2 seconds for
the largest datasets (i.e. agaricus or mushroom) and the average is 0.33 seconds for all
tested instances across all datasets and all settings. Furthermore, we point out that the
implemented prototype was tested with 4 decimal places to assess further the scalability of
the algorithm on larger DP tables, and the results show that computing LmPAXp’s is still
feasible, e.g. with agaricus the average runtime for δ set to 0.95 and target size to 7 is 10.08
seconds and 7.22 seconds for δ = 0.98.

The table also reports the number of explanations being shorter than or of size equal to
the target size over the total number of tested instances. We observe that for both settings
LmPAXp≤9 and LmPAXp≤7 and for the majority of datasets and with a few exceptions the
fraction is significantly high, e.g. varying for 96% to 100% for adult dataset. However, for
LmPAXp≤4 despite the poor percentage of wins for some datasets, it is the case that the
average lengths of computed explanations are close to 4.

Overall, the experiments demonstrate that our approach efficiently computes succinct and
provably precise explanations for NBCs. The results also showcase empirically the advantage
of the algorithm, i.e. in practice one may rely on the computation of LmPAXp’s, which
pays off in terms of (1) performance, (2) succinctness and (3) sufficiently high probabilistic
guarantees of precision.

7.3 Case Study 3: Graph-Based Classifiers

Prototype implementation. A prototype implementation of the proposed algorithms
from computing models and assessing explanation precision was implemented in Python.
A deletion-based procedure was used to compute LmPAX’s and an SMT-based approach,
similarly like DTs, was adopted for extracting MinPAXp’s. Hence, the z3 solver was
employed to perform SMT oracle calls to the SMT encoding. Moreover, OMDD’s were
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Dataset #I #F δ
MinPAXp LmPAXp

OMDD Length Prec Time Length Prec m⊆ Time

#N A% M m avg avg avg M m avg avg avg

100 3 3 3.0 100 0.02 3 3 3.0 100 100 0.00
corral 100 6 15 90.6 95 3 3 3.0 100 0.02 3 3 3.0 100 100 0.00

90 2 2 2.0 93.8 0.02 2 2 2.0 93.8 100 0.00

100 9 6 8.0 100 24.24 9 6 7.9 100 100 1.57
lending 100 9 1103 81.7 95 9 5 7.8 99.7 21.48 9 6 7.8 99.8 100 1.49

90 9 4 7.2 96 24.65 9 5 7.4 97.0 100 1.48

100 6 4 5.1 100 0.10 6 4 5.1 100 100 0.03
monk2 100 6 70 79.3 95 6 4 5.1 100 0.09 6 4 5.1 100 100 0.03

90 6 3 4.8 98.1 0.09 6 3 4.8 98.1 100 0.03

100 8 4 6.1 100 0.26 8 4 6.2 100 100 0.04
postoperative 74 8 109 80 95 8 2 6.0 99.3 0.25 8 2 6.0 99.3 100 0.04

90 8 2 5.3 95.9 0.23 8 2 5.4 96.6 94.6 0.04

100 9 5 7.7 100 3.60 9 5 7.8 100 100 0.38
tic tac toe 100 9 424 70.3 95 9 5 7.5 99.5 3.24 9 5 7.7 99.6 99.0 0.38

90 9 3 7.3 98.3 4.06 9 3 7.5 98.6 98.0 0.38

100 9 4 4.6 100 0.10 9 4 4.6 100 100 0.03
xd6 100 9 76 83.1 95 9 3 3.8 97 0.09 9 3 3.8 97.0 99.0 0.03

90 9 3 3.3 94.8 0.10 9 3 3.4 94.6 100 0.03

Table 14: Assessing MinPAXp and LmPAXp explanations of OMDDs. Columns #I, #F denote, resp. the
number of tested instances and the number of features. In column OMDD, N and A denote, resp., the
number of nodes and the test accuracy of the OMDD. Column δ reports (in %) the value of the threshold
δ. In column Length, avg (resp. M and m) denotes the average (resp. max. and min.) length of the
explanations. Prec reports (in %) the average precision (defined in (9)) of resulting explanations. m⊆
shows the number in (%) of LmPAXp’s that are subset-minimal, i.e. PAXp’s. Time reports (in seconds) the
average runtime to compute an explanation.

built heuristically using a publicly available package MEDDLY12, which is implemented in
C/C++.

Benchmarks. The benchmarks used in this experimental study all originate from Penn
ML Benchmarks [79]. For each dataset, we picked a consistent subset of samples (i.e. no
two instances are contradictory) for building OMDDs. The picked subset of the data are
randomly split into training (80%) and test set (20%). To assess the explanation precisions
and the runtimes of our algorithms, we test for each dataset 100 instances picked randomly
or all instances if there are less than 100 rows in the dataset.

Results. Table 14 summarizes the results of our experiments. As can be observed from
the column m⊆, at least 94.6% of the computed LmPAXp’s are indeed MinPAXp’s. As
indicated by the column Prec, both LmPAXp and MinPAXp offer good precision. On average,
the precision of the computed explanation is greater than or equal to 93.8% for the values of
δ we considered. Regarding the succinctness of the computed explanations, compared with
the case δ = 100, when δ = 95, the size of computed explanations almost remain unchanged.
When δ = 90, for dataset monk2, lending and tic tac toe , the reduction is still negligible.

12. https://asminer.github.io/meddly/
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But for dataset corral, postoperative and xd6, the reduction of size is at least 13%. Not
surprisingly, the time for computing LmPAXp’s is almost negligible, while the computation
time for MinPAXp’s cannot be overlooked; for example, the average time for computing
one MinPAXp of dataset lending is around 20s. Moreover, even though the runtime for
computing a MinPAXp is at least an order of magnitude larger than the time for computing
a LmPAXp, the average size of the MinPAXp is not significantly smaller than that of the
LmPAXp. Overall, the experiments demonstrate that our approach efficiently computes
succinct and provably precise explanations for OMDDs.

8. Related Work

Work on probabilistic (abductive) explanations (or probabilistic prime implicants) can be
traced to [101, 100]. There has been recent progress on computing probabilistic abductive
explanations of decision trees [47, 48, 3, 4]. Moreover, there is also recent work on computing
probabilistic abductive explanations of naive Bayes classifiers [50]. The work reported in
this paper builds on our own recent work [47, 48, 50] with the focus being the efficient
computation of probabilistic explanations, both for decision trees and naive Bayes classifiers.
More recent work [3, 4] targets the complexity of computing probabilistic explanations for
decision trees. The experimental results (see Section 7) confirm the practicality of the work
proposed in this paper.

9. Conclusions

Explanation size is one of the most visible limitations of formal approaches for explaining
the predictions of ML classifiers. To address this limitation, recent work established the
NPPP-hardness of computing a probabilistic explanation known as a δ-relevant set: a set
of features which, when identical to those of the vector to be explained, is sufficient to
guarantee the same output with probability at least δ [101, 100]. As acknowledged by earlier
work [101, 100], the hardness result makes the problem of exactly computing (minimum-size)
δ-relevant sets unrealistic to solve in practice, at least for general classifiers. As a result,
instead of considering the general problem of computing (minimum-size) δ-relevant sets, this
paper tackles the problem’s complexity by analyzing instead restricted classes of classifiers,
and by considering related but different definitions of relevant sets, that include subset-
minimal and locally-minimal relevant sets. Furthermore, the paper proves that, for several
families of classifiers that include decision trees, graph-based classifiers, and propositional
classifiers, subset-minimal relevant sets can be computed in polynomial time using an oracle
for NP, and that locally-minimal relevant sets can be computed in polynomial time. In
the case of naive Bayes classifiers, we obtain similar results, but in pseudo-polynomial
deterministic and non-deterministic time. The experimental results validate the practical
interest of computing relevant sets, either locally-minimal or subset-minimal.

Future work will extend the results presented in this paper, e.g. by considering additional
families of classifiers, but also by further validating the quality of locally-minimal relevant
sets. Additional optimizations to the algorithms proposed can also be envisioned. For
example, additional heuristics could be considered for selecting smaller AXp’s, e.g. by
picking the smallest of a number of computed AXp’s. Such improvements will not change

39



Izza, Huang, Ignatiev, Narodytska, Cooper & Marques-Silva

the conclusions of the present paper, but can serve to further improve the quality of the
results the paper reports.
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[3] M. Arenas, P. Barceló, M. Romero, and B. Subercaseaux. On computing probabilistic
explanations for decision trees. CoRR, abs/2207.12213, 2022.
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[66] J. Marques-Silva, M. Janota, and C. Menćıa. Minimal sets on propositional formulae.
problems and reductions. Artif. Intell., 252:22–50, 2017.

[67] J. Marques-Silva and A. Previti. On computing preferred MUSes and MCSes. In SAT,
pages 58–74, 2014.

[68] J. S. Mill. A System of Logic, Ratiocinative and Inductive, volume 1. John W. Parker,
1843.

[69] G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 63(2):81–97, 1956.

[70] T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif.
Intell., 267:1–38, 2019.

[71] C. Molnar. Interpretable Machine Learning. Leanpub, 2020. http://tiny.cc/6c76tz.

[72] G. Montavon, W. Samek, and K. Müller. Methods for interpreting and understanding
deep neural networks. Digit. Signal Process., 73:1–15, 2018.

[73] C. J. Muise, S. A. McIlraith, J. C. Beck, and E. I. Hsu. Dsharp: Fast d-DNNF
compilation with sharpSAT. In CAI, pages 356–361, 2012.

[74] N. Narodytska, A. A. Shrotri, K. S. Meel, A. Ignatiev, and J. Marques-Silva. Assessing
heuristic machine learning explanations with model counting. In SAT, pages 267–278,
2019.

[75] A. Niveau, H. Fargier, and C. Pralet. Representing csps with set-labeled diagrams: A
compilation map. In Graph Structures for Knowledge Representation and Reasoning,
pages 137–171. Springer, 2012.

[76] J. J. Oliver. Decision graphs – an extension of decision trees. Technical Report 92/173,
Monash University, 1992.

[77] J. J. Oliver, D. L. Dowe, and C. S. Wallace. Inferring decision graphs using the
minimum message length principle. In AAI, 1992.

[78] J. D. Park. Using weighted MAX-SAT engines to solve MPE. In AAAI, pages 682–687,
2002.

[79] Penn Machine Learning Benchmarks. https://github.com/EpistasisLab/

penn-ml-benchmarks.

44

http://tiny.cc/6c76tz
https://github.com/EpistasisLab/penn-ml-benchmarks
https://github.com/EpistasisLab/penn-ml-benchmarks


[80] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1986.

[81] M. T. Ribeiro, S. Singh, and C. Guestrin. “Why should I trust you?”: Explaining the
predictions of any classifier. In KDD, pages 1135–1144, 2016.

[82] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI, pages 1527–1535, 2018.

[83] R. Rizzi and A. I. Tomescu. Faster FPTASes for counting and random generation of
knapsack solutions. Inf. Comput., 267:135–144, 2019.

[84] C. Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[85] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K. Müller. Explaining
deep neural networks and beyond: A review of methods and applications. Proc. IEEE,
109(3):247–278, 2021.

[86] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K. Müller, editors. Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning. Springer, 2019.

[87] W. Samek and K. Müller. Towards explainable artificial intelligence. In Samek et al.
[86], pages 5–22.

[88] scikit-learn: Machine Learning in Python. https://scikit-learn.org/.

[89] A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining bayesian
network classifiers. In IJCAI, pages 5103–5111, 2018.

[90] A. Shih, A. Choi, and A. Darwiche. Compiling bayesian network classifiers into decision
graphs. In AAAI, pages 7966–7974, 2019.

[91] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In ICLR, 2014.

[92] L. Sixt, M. Granz, and T. Landgraf. When explanations lie: Why many modified BP
attributions fail. In ICML, pages 9046–9057, 2020.

[93] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and SHAP:
adversarial attacks on post hoc explanation methods. In AIES, pages 180–186, 2020.

[94] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton. Algorithms for discrete function
manipulation. In 1990 IEEE international conference on computer-aided design, pages
92–93. IEEE Computer Society, 1990.

[95] UCI Machine Learning Repository. https://archive.ics.uci.edu/ml.

[96] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on
efficient tree restructuring. Mach. Learn., 29(1):5–44, 1997.

[97] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

45

https://scikit-learn.org/
https://archive.ics.uci.edu/ml


Izza, Huang, Ignatiev, Narodytska, Cooper & Marques-Silva

[98] G. Van den Broeck and A. Darwiche. On the role of canonicity in knowledge compilation.
In AAAI, pages 1641–1648, 2015.

[99] T. J. Viering, Z. Wang, M. Loog, and E. Eisemann. How to manipulate cnns to make
them lie: the GradCAM case. CoRR, abs/1907.10901, 2019.
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