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Optimization Problems
with Evidential Linear Objective

Tuan-Anh Vua, Sohaib Afifia, Eric Lefèvrea, Frédéric Pichona

aUniv. Artois, UR 3926, Laboratoire de Genie Informatique et d’Automatique de l’Artois
(LGI2A), F-62400 Bethune, France

Abstract

We investigate a general optimization problem with a linear objective in which
the coefficients are uncertain and the uncertainty is represented by a belief
function. We consider five common criteria to compare solutions in this set-
ting: generalized Hurwicz, strong dominance, weak dominance, maximality and
E-admissibility. We provide characterizations for the non-dominated solutions
with respect to these criteria when the focal sets of the belief function are Carte-
sian products of compact sets. These characterizations correspond to established
concepts in optimization. They make it possible to find non-dominated solu-
tions by solving known variants of the deterministic version of the optimization
problem or even, in some cases, simply by solving the deterministic version.

Keywords: Belief function, Robust optimization, Combinatorial optimization,
Linear programming.

1. Introduction1

Our paper focuses on a very general class of optimization problems where2

the objective function is linear (LOP). LOP covers a broad range of practical3

problems in diverse areas such as transportation, scheduling, network design,4

and profit planning, to name only a few important domains. In many realistic5

situations, one often encounters uncertainty on the coefficients of the objective6

function. Various approaches have been developed to model the uncertainty7

on coefficients, including robust optimization frameworks that represent uncer-8

tainty using discrete scenario sets [19, 10, 12] and intervals [16, 17, 10, 19, 5].9

In the former representation, all possible realizations or scenarios of coefficients10

are explicitly listed to obtain the so-called scenario set. In the interval represen-11

tation, each coefficient is constrained to lie within a given closed interval, and12

the scenario set is the Cartesian product of these intervals.13

Email addresses: tanh.vu@univ-artois.fr (Tuan-Anh Vu),
sohaib.afifi@univ-artois.fr (Sohaib Afifi), eric.lefevre@univ-artois.fr (Eric
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In this paper, we investigate the case where the uncertainty on the coeffi-14

cients is evidential, i.e., modelled by a belief function [21]. More specifically, we15

assume that each so-called focal set of the considered belief function is a Carte-16

sian product of compact sets, with each compact set describing possible values17

of each coefficient. Such a belief function is a direct and natural generalization18

of the interval representation, which arises when intervals are extended to com-19

pact sets and probabilities are assigned to scenario sets. It can be illustrated as20

follows: in a network with three cities A, B, and C, under good weather condi-21

tions, it may take 20 to 30 minutes to travel from A to B, and 10 to 20 minutes22

to travel from B to C; however under bad weather conditions, the travel times23

from A to B (resp. B to C) takes 30 to 40 minutes (resp. 15 to 25 minutes) and24

the forecast tells us that the probability of good weather (resp. bad weather) is25

0.8 (resp. 0.2).26

In the presence of evidential uncertainty on coefficients, the notion of best,27

i.e., optimal, solutions becomes ill-defined. In our preliminary work1 [25], which28

considered the shortest path problem (SPP) where each path has an evidential29

weight, we drew inspiration from [10] and utilized decision theory under eviden-30

tial uncertainty [7], to define the best paths as those that are non-dominated31

with respect to some preference relation over paths built on the notions of their32

lower and upper expected weights. Specifically, we studied the cases of the33

preference relations obtained from three common criteria for decision-making,34

namely generalized Hurwicz, strong dominance, and weak dominance.35

Besides [25], optimization problems under evidential uncertainty were ex-36

plored recently in [15, 22, 12]. The authors of [15, 22] considered various vari-37

ants of the vehicle routing problem with different uncertainty factors. In the38

resulting optimization problems, solutions had evidential costs and were com-39

pared according to their upper expected costs, i.e., using a particular case of the40

generalized Hurwicz criterion. Guillaume et al. [12] considered the LOP prob-41

lem with evidential coefficients, where each focal set of the belief function on42

the coefficients can be any discrete scenario set. They defined best solutions as43

the non-dominated ones according to the generalized Hurwicz criterion and they44

provided complexity results regarding the problem of finding such solutions.45

In this paper, we expand upon the work [25] by investigating a much broader46

class of problems, i.e., LOP, and by incorporating two additional well-known cri-47

teria from the literature [2]: maximality and E-admissibility. More specifically,48

this paper’s primary contributions are summarized as follows:49

1. We propose models for LOPs in which the coefficients in the objective are50

subject to evidential uncertainty. Here, each feasible solution is regarded51

as an act, which is a fundamental concept in decision theory. These models52

are based on five common criteria from the literature for comparing acts,53

namely generalized Hurwicz, strong dominance, weak dominance, maxi-54

mality, and E-admissibility. A key feature of these models is that they55

1This paper is an extended and revised version of [25].
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make use of the expressive nature of the belief function framework as they56

allow for incomparability of some solutions due to a lack of information.57

2. We provide a characterization for the non-dominated solutions of each58

criterion, given our assumption about the focal sets. These characteriza-59

tions correspond to established concepts of optimization. This makes it60

possible to find non-dominated solutions by solving known variants of the61

deterministic version of the LOP or even, in some cases (e.g., the case of62

the generalized Hurwicz criterion), simply by solving its deterministic ver-63

sion. For instance, we can use SPP-related algorithms to efficiently find64

non-dominated solutions for the five criteria in the case of the SPP. In our65

opinion, this is the main advantage of our works compared to [15, 22, 12],66

where finding non-dominated solutions with respect to the Hurwicz crite-67

rion was much harder in general than solving the deterministic version.68

We note that the idea of using decision theory under uncertainty, and specif-69

ically maximality and a special case of the generalized Hurwicz criterion, to70

formalize optimization problems under (severe) uncertainty was first proposed71

in [20], where the very general theory of coherent lower previsions is used as72

the uncertainty representation framework. However, the resulting models were73

studied in detail and connected to their deterministic counterparts only in a few74

special uncertainty cases, such as the case of intervals (vacuous previsions); the75

case of the evidential representation of uncertainty was not investigated.76

The rest of this paper is organized as follows. Sections 2 and 3 present nec-77

essary background material on the LOP and belief function theory, respectively.78

Sections 4 and 5 are devoted to the formalization and resolution of the LOP79

with evidential coefficients, respectively. The paper ends with a conclusion in80

Section 6.81

2. Optimization problems with a linear objective (LOP)82

Many real-world problems have variables that are either integers or a mixture83

of integers and real numbers. In this paper, we mainly focus on the following84

optimization problem:85

max /min cTx

s.t. x ∈ X ⊆ Zn1

≥0 × Rn2

≥0 with n1 + n2 = n.
(LOP)

where X ̸= ∅ is a set of feasible solutions and c is a vector of objective function86

coefficients ci ∈ R.87

A very important class of Problem LOP is linear mixed-integer programming
(MIP) problems:

max /min cTx

s.t. Mx ≤ b, x ∈ Zn1

≥0 × Rn2

≥0.
(MIP)
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where M is a m× n matrix and b is a m-vector. We require that M and b have88

rational entries [28]. A practical instance of Problem MIP is the uncapacitated89

lot sizing problem (Example 1).90

Example 1 (Uncapacitated lot sizing). The problem is to decide on a produc-91

tion plan for an n-period horizon for a single product. The parameters of the92

problem are:93

• ft, which is the fixed cost of producing in period t;94

• pt, which is the production cost in period t;95

• ht, which is the unit storage cost in period t;96

• dt, which is the demand in period t.97

The problem can be modelled by the following optimization problem:

min

n∑
t=1

ptxt +

n∑
t=1

htst +

n∑
t=1

ftyt

st−1 + xt = dt + st (t = 1, 2, . . . , n)

xt ≤ Myt (t = 1, 2, . . . , n)

s0 = 0, st, xt ≥ 0, yt ∈ {0, 1} (t = 1, 2, . . . , n)

(ULS)

where the decision variables are:98

• xt, which is the amount produced in period t;99

• st, which is the stock at the end of period t;100

• yt = 1 if production occurs in t and yt = 0 otherwise;101

and where M is a big constant value.102

Problem LOP is referred to as a 0-1 combinatorial optimization problem
(01COP) when X ⊆ {0, 1}n:

max /min cTx

s.t. x ∈ X ⊆ {0, 1}n.
(01COP)

This class includes many important problems. Below, we provide two of the103

most notable examples.104

Example 2 (The shortest path problem (SPP)). Let G = (V,A) be a directed105

graph with set of vertices V , set of arcs A and weight cij ≥ 0 for each arc (i, j)106

in A. Let s and t be two vertices in V called the source and the destination,107

respectively.108
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Finding a s-t shortest path, i.e., a s-t path of lowest weight, can be modelled
as the following optimization problem:

min
∑

(i,j)∈A

cijxij

∑
(s,i)∈A

xsi −
∑

(j,s)∈A

xjs = 1

∑
(t,i)∈A

xti −
∑

(j,t)∈A

xjt = −1

∑
(k,i)∈A

xki −
∑

(j,k)∈A

xjk = 0, ∀k ∈ V \{s, t}

xij ∈ {0, 1}, ∀(i, j) ∈ A

(SPP)

where each s-t path is identified with a set x = {xij |(i, j) ∈ A} of which element109

xij = 1 if arc (i, j) is in the path and xij = 0 otherwise.110

Example 3 (The 0-1 knapsack problem (01KP)). Suppose a company has a
budget of W and needs to choose which items to manufacture from a set of
n possible items, each with a production cost of wi and fixed profit of pi (all
values are numbers in unit e). The 01KP involves selecting a subset of items to
manufacture that maximizes the total profit while keeping the total production
costs below W . The 01KP can be formulated as

max

n∑
i=1

pixi

s.t.

n∑
i=1

wixi ≤ W

xi ∈ {0, 1} (i = 1, 2, . . . , n).

(01KP)

The sets of feasible solution in Examples 2 and 3 are described by linear111

constraints. However, it should be noted that Problem 01COP is not limited to112

problems with linear constraints as X can be any set.113

When X is a convex subset of Rn
≥0, Problem LOP becomes a convex opti-

mization problem (CV):

max /min cTx

s.t. x ∈ X ⊆ Rn
≥0 is convex.

(CV)

This class includes linear programming as a particular case.114

3. Belief function theory115

Let Ω be the set, called frame of discernment, of all possible values of a116

variable of interest ω. In belief function theory [21], adapting the presentation117
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of [27], partial knowledge about the true (unknown) value of ω, when Ω is118

a closed subset of Rn as will be the case in this paper, is represented by a119

mapping m : C 7→ [0, 1] called mass function, where C is assumed here to be a120

finite collection of closed subsets of Ω, such that
∑

A∈C m(A) = 1 and m(∅) = 0.121

Mass m(A) quantifies the amount of belief allocated to the fact of knowing only122

that ω ∈ A. A subset A ⊆ Ω is called a focal set of m if m(A) > 0. The set of123

all focal sets of m is denoted by F .124

The mass functionm induces a belief function Bel and a plausibility function
Pl defined on B(Ω) the Borel subsets of Ω:

Bel(A) =
∑

B∈F :B⊆A

m(B), P l(A) =
∑

B∈F :B∩A ̸=∅

m(B). (1)

A probability measure P on B(Ω) is compatible with m if Bel(A) ≤ P (A) ∀A ∈
B(Ω). We denote by P(m) the set of all probability measures that are compatible
with m. The upper expected value Em(h) and lower expected value Em(h) of a
bounded, measurable function function h : Ω → R, relative to m, are defined as

Em(h) := sup
P∈P(m)

EP (h), Em(h) := inf
P∈P(m)

EP (h). (2)

A well-known result [27, Section 2.4] states that the upper and lower expected
values of h can be computed as:

Em(h) =
∑
A∈F

m(A) sup
ωi∈A

h(ωi), (3)

Em(h) =
∑
A∈F

m(A) inf
ωi∈A

h(ωi). (4)

When mass function m is clear from the context, Em(h) and Em(h) may be125

simply written E(h) and E(h), respectively.126

Assume Ω represents the state of nature and its true value is known in the127

form of some mass function m. Assume further that a decision maker (DM)128

needs to choose an act (decision) f from a set Q. The outcome of each act can129

vary based on the prevailing state of nature. Denoting by O the set of possible130

outcomes, each act can thus be formalized as a mapping f : Ω → O.131

Depending on the context, outcomes induce either utilities or costs. Utilities132

(resp. costs) of outcomes can be quantified by an utility function u : O → R133

(resp. cost function l : O → R). We assume that for any f , u ◦ f (resp. l ◦ f)134

is a bounded real-valued map. In the following, to keep the discussion concise,135

we concentrate on presenting the treatment when the outcomes are associated136

with an utility function since a cost minimization can be turned in a utility137

maximization by taking the negative. Moreover, to enhance comprehension, we138

will use a specific problem, the SPP, to illustrate the results of the cost function139

case in Section 5.140

In this framework, the DM’s preference over acts is denoted by ⪰, where141

f ⪰ g means that act f is preferred to act g. The preference relation is typically142
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assumed to satisfy the reflexivity property (f ⪰ f for any f) and the transitivity143

property (if f ⪰ g and g ⪰ k, then f ⪰ k for any f , g, and k), making it a144

preorder. Furthermore, if the relation is antisymmetric (f = g for any f and g145

such that f ⪰ g and g ⪰ f), then it becomes an order. Relation ⪰ is complete if146

for any two acts f and g, f ⪰ g or g ⪰ f , otherwise, it is partial. Additionally,147

f is strictly (resp. equally) preferred to g, which is denoted by f ≻ g (resp.148

f ∼ g), if f ⪰ g but not g ⪰ f (resp. if f ⪰ g and g ⪰ f).149

Typically, the DM seeks solutions in the set Opt of non-dominated acts:

Opt = {f ∈ Q : ∄g such that g ≻ f}. (5)

If relation ⪰ is complete, finding one solution in Opt is enough since solutions in150

Opt are preferred equally between each other and strictly preferred to the rest151

Q\Opt. In this case, solutions in Opt are also called optimal acts. On the other152

hand, if relation ⪰ is partial, the DM may need to identify all solutions in Opt.153

Usually, the DM constructs his preference over acts based on some criterion.154

We denote by ⪰cr his preference according to some criterion cr and by Optcr155

its associated set of non-dominated (or best) acts. In this paper, we consider156

five common criteria defined as follows for any two acts f and g [7]:157

1. Generalized Hurwicz criterion: f ⪰α
hu g if

αEm(u ◦ f) + (1− α)Em(u ◦ f) ≥ αEm(u ◦ g) + (1− α)Em(u ◦ g) (6)

for some fixed parameter α ∈ [0, 1], representing an optimism/pessimism158

degree, and where Em(u ◦ f) and Em(u ◦ f) denote, respectively, the159

upper and lower expected utilities of act f with respect to mass function160

m. Relation ⪰α
hu is complete and we have f ≻α

hu g if (6) is strict. The set161

of non-dominated acts with respect to ⪰α
hu is denoted by Optαhu.162

2. Strong dominance criterion: f ⪰str g if

Em(u ◦ f) ≥ Em(u ◦ g). (7)

Relation ⪰str is partial and we have f ≻str g if (7) is strict. The set of163

non-dominated acts with respect to ⪰str is denoted by Optstr.164

3. Weak dominance criterion: f ⪰weak g if

Em(u ◦ f) ≥ Em(u ◦ g) and Em(u ◦ f) ≥ Em(u ◦ g). (8)

Relation ⪰weak is partial and we have f ≻weak g if at least one inequality165

in (8) is strict. The set of non-dominated acts with respect to ⪰weak is166

denoted by Optweak.167

4. Maximality criterion: f ⪰max g if

Em(u ◦ f − u ◦ g) ≥ 0 ⇐⇒ ∀P ∈ P(m), EP (u ◦ f) ≥ EP (u ◦ g), (9)

Relation ⪰max is partial and we have f ≻max g if Em(u ◦ f − u ◦ g) > 0.168

The set of non-dominated acts with respect to ⪰max is denoted by Optmax.169
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5. E-admissibility criterion: Let Optadm be the set of non-dominated solu-170

tions with respect to E-admissibility criterion, then f ∈ Optadm iff there171

exists P ∈ P(m) such that EP (u ◦ f) ≥ EP (u ◦ g) for any act g.172

Note that Optadm ⊆ Optmax and Optweak ⊆ Optmax ⊆ Optstr with usually173

strict inclusions (see [8]).174

We can observe that E-admissibility differs from other decision criteria, as175

it directly defines a set of non-dominated acts (choice set), without the need176

for explicitly defining a preference relation. However, we can still construct a177

preference relation from the choice set (see [7]).178

Given these criteria, a relevant question for the DM is which criterion should179

be chosen. The choice of the criterion depends on factors such as its proper-180

ties or its associated computational cost of determining non-dominated acts.181

For instance, when comparing strong dominance and maximality, the computa-182

tional cost associated with maximality is generally higher than that of strong183

dominance, but strong dominance is more conservative than maximality since184

Optmax ⊆ Optstr. However, dealing with this question is beyond the scope of our185

paper. We refer to the excellent review papers of Troffaes [23] and Denoeux [7]186

for comprehensive discussions of these criteria.187

4. LOP with evidential coefficients: modelling188

In this section, we formalize what we mean by best solutions of Problem LOP189

when coefficients in the objective function are evidential, i.e., are known in the190

form of a mass function, and we also describe a particular assumption about191

the focal sets of this mass function.192

Let us assume that the coefficients ci, for all i ∈ 1, . . . , n, in the objective193

of Problem LOP are only partially known. More specifically, we consider the194

case where information about the coefficients is modelled by a mass function.195

Formally, let Ωi be the frame of discernment for the variable ci, i.e., the set of196

possible values for the coefficients ci and let Ω := ×n
i=1Ωi. Any c ∈ Ω will be197

called a scenario: it represents a possible assignment of values for all coefficients198

in the objective function. A mass function m on Ω, with set of focal sets denoted199

by F = {F1, . . . , FK}, represents uncertainty about the coefficients.200

Example 4. Consider the Problem SPP, let c1 and c2 be the two scenarios201

represented by Figures 1a and 1b, respectively. The mass function m such that202

m(F1) = 0.4 and m(F2) = 0.6, with F1 = {c1, c2} and F2 = {c1}, represents203

partial knowledge about arc weights.204

As will be seen, making a particular assumption about the nature of the205

focal sets of m is useful. This assumption relies on the following definition.206

Definition 1. Given a subset A ⊆ Ω, we denote by A↓i its projection on Ωi.207

We say that A is a rectangle iff it can be expressed as the Cartesian product of208

its projections, that is: A = ×n
i=1A

↓i.209

The assumption about the focal sets of m is the following:210
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(a) Scenario c1
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a

b

t

1 2

1

2 3

(b) Scenario c2

Figure 1: Two possible assignments of values, i.e., two scenarios, for the arc weights.

Assumption 1 (Rectangular with Compact projections (RC)). Each focal set211

of m is a rectangle where each of its projection is a compact subset of R.212

Let m be a mass function satisfying the RC assumption and let Fr be a213

focal set of m. The minimum and maximum values of its projection F ↓i
r will be214

denoted hereafter lri and ur
i , respectively.215

While assuming focal sets to be rectangular may seem restrictive, it has216

been argued in [1] that such focal sets arise in many practical situations, such217

as in the example given in the Introduction and, for instance, it results from the218

combination of marginal mass functions mi defined on Ωi under the assumption219

of independence [6]. The compactness assumption is also rather mild as it allows220

F ↓i to be, e.g., any closed (real) interval or any finite set of real numbers (and221

thus the practical situation of independent marginal mass functions mi having222

closed intervals or finite sets as focal sets, fits the RC assumption). RC focal223

sets are further illustrated by Example 5 in a particular case where they are224

Cartesian products of intervals.225

Example 5. Consider the Problem SPP. Let m be the mass function such that
m(F1) = 0.5 and m(F2) = 0.5 with focal sets F1 and F2, depicted in Figure 2,
such that

F1 =[lsa, usa]× [lsb, usb]× [lst, ust]× [lat, uat]× [lbt, ubt]

=[2, 3]× [1, 3]× [4, 5]× [1, 2]× [2, 4].

and, similarly,

F2 =[3, 4]× [2, 4]× [5, 6]× [2, 3]× [3, 5].

Each focal set is a subset of Ω. For instance, the scenario c = {csa, csb, cst, cat, cbt}226

with csa = 2, csb = 3, cst = 4, cat = 1 and cbt = 2 is included in F1.227

When coefficients are evidential, i.e., there is some uncertainty about them228

in the form of a mass function m on Ω, the preference over feasible solutions229

9



s

a

b

t

[2,3] [1,2]

[4,5]

[1,3] [2,4]

(a) Focal set F1

s

a

b

t

[3,4] [2,3]

[5,6]

[2,4] [3,5]

(b) Focal set F2

Figure 2: Two focal sets which are Cartesian products of intervals.

with respect to the (uncertain) coefficients can be established using the decision-230

making framework recalled in Section 3. Specifically, the set Ω of scenarios231

represents the possible states of nature. The set of feasible solutions X repre-232

sents the possible acts. By a slight abuse of notation, each solution x can be233

interpreted as a function x : Ω → O such that x(c) = cTx, and the intended234

interpretation should be clear from the context.235

If Problem LOP is a maximization problem (resp. minimization), the value236 ∑n
i=1 cixi of x ∈ X under scenario c = {ci|i = 1, . . . , n} ∈ Ω represents the237

utility u ◦ x(c) (resp. cost l ◦ x(c)) of solution (act) x for the scenario (state of238

nature) c, with u (resp. l) being the identity function. From here on, we will239

use the notation x to represent u ◦ x and l ◦ x for convenience.240

The preference over feasible solutions, and the associated best solutions, can241

then be defined using any of the five criteria recalled in Section 3. In the next242

section, we provide the main results of this paper, which concern best solutions243

with respect to these five criteria and under assumption RC.244

Remark 1. In [12], Problem LOP with evidential coefficients is also considered.245

The essential difference2 between [12] and the present paper is the nature of the246

focal sets of the mass function m on the coefficients: in [12], they are assumed247

to be discrete scenario sets, whereas here we assume them to be RC. Hence, for248

instance, the mass function in Example 4 fits the setting of [12] but does not fit249

ours, whereas the mass function in Example 5 fits our setting but does not fit250

the one of [12].251

5. LOP with evidential coefficients: solving252

In this section, we provide methods for finding best (non-dominated) solu-253

tions, with respect to the five criteria presented in Section 3, of Problem LOP254

2Another important difference with [12] is that only the generalized Hurwicz criterion is
considered in this latter paper, whereas we consider four additional criteria.
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when coefficients in the objective function are evidential, i.e., are known in the255

form of some mass function m on Ω with set of focal sets F = {F1, . . . , FK}.256

For i ∈ {1, . . . , n}, let πi be the map from Ω to R such that πi(c) = ci, i.e.,257

πi(c) is nothing but coefficient ci of scenario c ∈ Ω. As will be seen, the upper258

E(πi) and lower E(πi) expected values of πi with respect to m are central in259

our characterizations of the non-dominated solutions for the five criteria. These260

values can be computed easily under assumption RC:261

Proposition 1. Under assumption RC, we have

E(πi) =

K∑
r=1

m(Fr)u
r
i , (10)

E(πi) =
K∑
r=1

m(Fr)l
r
i . (11)

Proof. We have

E(πi) =

K∑
r=1

m(Fr)max
c∈Fr

πi(c) (12)

=

K∑
r=1

m(Fr) max
ci∈F↓i

r

ci. (13)

Similarly, we obtain E(πi) =
∑K

r=1 m(Fr)minci∈F↓i
r

ci. The proposition follows262

from the fact that under assumption RC, the projection F ↓i
r of focal set Fr ∈ F ,263

has maximum value ur
i and minimum value lri .264

To simplify the exposition of our results, E(πi) and E(πi) under assumption
RC will be denoted hereafter by ūi and l̄i, respectively, i.e., we have

ūi :=

K∑
r=1

m(Fr)u
r
i , (14)

l̄i :=

K∑
r=1

m(Fr)l
r
i . (15)

Example 6 (Example 5 continued). Consider the Problem SPP and the mass
function in Example 5, with evidential weighted graph in Figure 2. We have for
instance for arc s-a:

ūsa = m(F1) · u1
sa +m(F2) · u2

sa (16)

= 0.5 · 3 + 0.5 · 4 = 3.5, (17)

l̄sa = 0.5 · 2 + 0.5 · 3 = 2.5. (18)

We treat in this section the five criteria in the order that they were introduced265

in Section 3. Note that, as is the case for Proposition 1 above, all the following266

Propositions require assumption RC to hold, and thus, for conciseness, we will267

no longer explicitly state this assumption in the Propositions.268
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5.1. Generalized Hurwicz criterion269

We give a characterization for non-dominated solutions with respect to the270

generalized Hurwicz criterion.271

First, we can remark that this criterion relies on the notions of upper and272

lower expected utilities of acts, acts being here feasible solutions. The upper273

E(x) and lower E(x) expected utilities of a solution x can be computed easily274

under assumption RC:275

Proposition 2. (Under assumption RC) We have

E(x) =

n∑
i=1

ūixi, (19)

E(x) =

n∑
i=1

l̄ixi. (20)

Proof. By definition and since each focal set is compact, the upper and lower
expected utilities of x are

E(x) =

K∑
r=1

m(Fr) max
cr∈Fr

(

n∑
i=1

crixi), (21)

E(x) =

K∑
r=1

m(Fr) min
cr∈Fr

(

n∑
i=1

crixi). (22)

The inner maximum and minimum in (21) and (22) are obtained when each276

component cri in cr equals ur
i and lri , respectively. By regrouping terms we get277

the desired result.278

Since ⪰α
hu is complete, it is sufficient to find one solution of the set Optαhu,

as explained in Section 3. To find one such solution, we need to solve the
optimization problem,

max /min αEm(x) + (1− α)Em(x)

x ∈ X ,
(23)

for some specified value of α ∈ [0, 1].279

In the case of general focal sets, solving Problem (23) is usually much more280

challenging than solving its deterministic counterpart Problem LOP. For in-281

stance, the deterministic Problem SPP can be solved efficiently in polynomial282

time, but if α = 1 the Problem (23) is weakly NP-hard already in the case283

when mass function m has a single focal set containing two elements [30]. The284

situation worsens if α = 0, as the problem becomes strongly NP-hard and not285

approximable [12, Theorem 1]. However, under assumption RC, the complexity286

of Problem (23) remains unchanged compared to Problem LOP, since it is a287

direct consequence of the following characterization.288
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Proposition 3. A solution x is in Optαhu iff x is an optimal solution of Prob-289

lem LOP with coefficients ci = αūi + (1− α)l̄i.290

Proof. Using Proposition 2, the Problem (23) becomes

max /min

n∑
i=1

(αūi + (1− α)l̄i)xi (24)

x ∈ X (25)

291

s

a

b

t

α+ 2.5 α+ 1.5

α+ 4.5

2α+ 1.5 2α+ 2.5

Figure 3: The parametric weighted graph associated with Optαhu.

Example 7 (Example 5 continued). To find a best path in Optαhu for the ev-292

idential weighted graph in Figure 2, we need to solve the deterministic SPP in293

the graph showed in Figure 3, for some specified value of α (we have for instance294

for arc s-a, using Example 6: αūsa+(1−α)l̄sa = α ·3.5+(1−α) ·2.5 = α+2.5).295

For example, if α = 0 then the corresponding shortest paths are s-a-t and s-b-t,296

while the shortest one is s-t, if α = 1.297

Remark 2. Thanks to Proposition 3, we can establish that best acts with respect298

to the generalized Hurwicz criterion for various α are solutions of a parametric299

LOP. Hence, methods from parametric optimization can help to solve a whole300

family of problems parameterized by α. For instance, the standard approach for301

solving parametric linear programming is the parametric simplex method [24,302

Chapter 7]. In the parametric SPP from Figure 3, as the DM varies his opti-303

mism/pessimism degree from 0 to 1, the break-point (point where a change in304

the parameter α causes a sudden change in the solutions) is 0.5. More precisely,305

for all α ∈ [0, 0.5] the best path is s-a-t, while for all α ∈ [0.5, 1] the optimal one306

is s-t. We refer to the work of Gusfield [13] for a comprehensive discussion of307

parametric combinatorial optimization problems.308
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5.2. Strong dominance criterion309

In the same spirit as Proposition 3, we give now a characterization for non-310

dominated solutions with respect to the strong dominance criterion when Prob-311

lem LOP is a maximization problem.312

Proposition 4. A solution x is in Optstr iff x is feasible with respect to the
following constraints:

x ∈ X (26)
n∑

i=1

ūixi ≥ z (27)

where z is the optimal value of Problem LOP in which ci = l̄i, i = 1, 2, . . . , n.313

Proof. By definition,

x ∈ Optstr ⇔ ∄y ∈ X such that E(y) > E(x) (28)

⇔ ∀y ∈ X then E(y) ≤ E(x) (29)

⇔ max
y∈X

E(y) ≤ E(x) (30)

As a special case of Proposition 3, when α = 0, z = maxy∈X E(y) is obtained314

by solving Problem LOP with ci = l̄i. From Proposition 2, we have E(x) =315 ∑n
i=1 ūixi, and thus the result follows.316

We also have a similar result when Problem LOP is a minimization problem.317

318

Proposition 5. A solution x is in Optstr iff x is a feasible with respect to the
following constraints:

x ∈ X (31)
n∑

i=1

l̄ixi ≤ z (32)

where z is the optimal value of Problem LOP in which ci = ūi, (i = 1, 2, . . . , n).319

Problem (26 -27) is called a lower bound feasibility problem since it is the320

feasibility problem with the additional constraint
∑n

i=1 ūixi ≥ z (see [28, Section321

I.5.5]).322

Since the relation ⪰str is partial, it may be necessary to identify all solutions323

in the set Optstr, meaning all feasible solutions of (26 -27). The complexity of324

this task depends on the structure of Problem LOP itself. In a specific case325

mentioned in our previous works [25], enumerating Optstr for the SPP amounts326

to finding all paths in G with arc weights cij = l̄ij , whose weights are lower327

than or equal to the lowest weight of a s-t path in G with arc weights cij = ūij .328

Hence, we can use efficient algorithms such as the ones in [3, 4], where the329
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authors studied a problem of determining near optimal paths; for example, they330

wished to find all s-t paths in a directed graph whose weights do not exceed331

more than 5% the lowest weight, which is equivalent to finding all paths whose332

weights are less than or equal to a given threshold.

s

a

b

t

2.5 1.5

4.5

1.5 2.5

(a)

s

a

b

t

3.5 2.5

5.5

3.5 4.5

(b)

Figure 4: Two graphs associated with Optstr.

333

Example 8 (Example 5 continued). To find the paths in Optstr for the evi-334

dential weighted graph in Figure 2, according to Proposition 5 we first compute335

the lowest weight of a s-t path in the graph in Figure 4b, which is 5.5. The set336

Optstr comprises then the s-t paths in the graph in Figure 4a that have weights337

no more than 5.5, which are the paths s-t, s-a-t, and s-b-t.338

5.3. Weak dominance criterion339

There is a strong connection between the weak dominance criterion and bi-
objective optimization. A bi-objective optimization problem can be expressed as

max /min f1(x) (33)

max /min f2(x) (34)

x ∈ X (35)

As the objectives (33-34) are typically conflicting, there is usually no solution340

x that maximizes (resp. minimizes) simultaneously f1(x) and f2(x). Instead,341

we seek to find all so-called efficient solutions of (33-35): a solution x is efficient342

if there is no feasible solution y ∈ X such that f1(y) ≥ f1(x) and f2(y) ≥ f2(x)343

(resp. f1(y) ≤ f1(x) and f2(y) ≤ f2(x)) where at least one of the inequalities is344

strict.345

Example 9. The bi-objective SPP is a particular bi-objective optimization prob-
lem. Assume that each arc (i, j) in G has two deterministic attributes cij and
tij that describes, e.g.,, the cost and the travel time from i to j, respectively. The
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goal is to find all efficient solutions, i.e., s-t paths, of the following problem:

min
∑

(i,j)∈A

cijxij (36)

min
∑

(i,j)∈A

tijxij (37)

x is a s-t path (38)

We now give a characterization for solutions in Optweak in terms of efficient346

solutions of a bi-objective optimization problem.347

Proposition 6. A solution x is in Optweak iff x is a efficient solution of the
problem:

max /min

n∑
i=1

l̄ixi

max /min

n∑
i=1

ūixi

x ∈ X

(39)

Proof. It is easy to see that x ∈ Optweak iff x is an efficient solutions with348

objectives f1(x) := E(x) and f2(x) := E(x), which, using Proposition 2, leads349

to Problem (39).350

From Proposition 6, identifying solutions in Optweak is equivalent to finding351

solutions for Problem (39). Considering again Problem SPP as an example, we352

can remark that the bi-objective SPP has been extensively studied in the liter-353

ature. Hence, we can apply off-the-shelf fast methods developed specifically for354

the bi-objective SPP, such as [11], to find solutions in Optweak for Problem SPP.355

s

a

b

t

(2.5,3.5) (1.5,2.5)

(4.5,5.5)

(1.5,3.5) (2.5,4.5)

Figure 5: The graph associated with Optweak of which each arc (i, j) has two attributes
(l̄ij , ūij).

16



Example 10 (Example 5 continued). Each path in Optweak is an efficient s-t356

path in the graph in Figure 5. Optweak consists of paths s-t and s-a-t (s-b-t is357

dominated by s-a-t).358

Remark 3. It should be noted that any generalized Hurwicz optimal solution359

with 0 < α < 1 is also a solution of Optweak. As a result, determining such solu-360

tions for various α values can provide an inner approximation of Optweak. This361

stems from bi-objective optimization theory, where these solutions are known as362

supported efficient solutions: they are the solutions of minx∈X λ1f1(x)+λ2f2(x)363

for some λ1, λ2 > 0.364

5.4. Maximality and E-admissibility criteria365

Contrary to the other criteria, identifying characterizations for maximality366

and E-admissibility relies on the nature of Problem LOP. As will be seen, solu-367

tions in Optmax and Optadm are closely related to the notion of possibly optimal368

solution in robust optimization, where a solution x is referred to as possibly369

optimal if it is an optimal solution to a problem P for at least one scenario370

in the set of all possible scenarios Γ. This notion appears in various works in371

the realm of minimax regret optimization with interval data, such as in [16]372

for linear programming problems, in [29] for the minimum spanning tree prob-373

lem (where the authors called a possibly optimal spanning tree a weak tree),374

and in [17] for other combinatorial optimization problems. To emphasize the375

importance of the notion, we frame it in the following definition.376

Definition 2. A solution x is a possibly optimal solution of Problem LOP with377

respect to the set C := ×n
i=1[l̄i, ūi] if x is an optimal solution for at least one378

vector c in C. The set of these possibly optimal solutions is denoted by OptCpos.379

5.4.1. The general case380

In the general case, i.e., the Problem LOP with evidential coefficients, we381

are not able to provide similar characterizations for solutions in Optmax and382

Optadm as for previous criteria. Instead, we offer partial answers by providing383

a sufficient condition for solutions of Optmax (Proposition 7) and a necessary384

condition for solutions of Optadm(Proposition 8).385

Proposition 7. If x ∈ OptCpos then x ∈ Optmax.386

Proof. If x is optimal under co where coi ∈ [l̄i, ūi], for all i ∈ {1, . . . , n} then,

∀y ∈ X , 0 ≥
n∑

i=1

coi (yi − xi) =

n∑
i:yi≥xi

coi (yi − xi) +

n∑
i:yi<xi

coi (yi − xi) (40)

⇒ 0 ≥
∑

i:yi≥xi

l̄i(yi − xi) +
∑

i:yi<xi

ūi(yi − xi) (41)
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On the other hand,

E(y − x) =

K∑
r=1

m(Fr) min
c∈Fr

n∑
i=1

ci(yi − xi) (42)

=

K∑
r=1

m(Fr)(
∑

i:yi≥xi

lri (yi − xi) +
∑

i:yi<xi

ur
i (yi − xi)) (43)

=
∑

i:yi≥xi

l̄i(yi − xi) +
∑

i:yi<xi

ūi(yi − xi) (44)

From (41) and (44), we have that ∀y ∈ X , E(y− x) ≤ 0, and thus x ∈ Optmax.387

388

Proposition 8. If x ∈ Optadm then x ∈ OptCpos.389

Proof. Recall that an act x is a map from Ω to R such that x(c) =
∑n

i=1 xici.
Note that x(c) =

∑n
i=1 xiπi(c). Let P ∈ P(m). By linearity of integration, we

have

EP (x) =

∫
Ω

x(c)dP (c) =

n∑
i=1

xi

∫
Ω

πi(c)dP (c) =

n∑
i=1

xiEP (πi). (45)

Since P ∈ P(m), we have E(πi) ≤ EP (πi) ≤ E(πi), i.e.,

l̄i ≤ EP (πi) ≤ ūi. (46)

If x ∈ Optadm then ∃P ∈ P(m) such that EP (x) ≥ EP (y) ∀y. From Equa-390

tion (45),
∑n

i=1 EP (πi)xi ≥
∑n

i=1 EP (πi)yi, and thus x is optimal under co391

where coi := EP (πi). By Equation (46), we have coi ∈ [l̄i, ūi].392

A direct consequence of Propositions 7 and 8 is the following result.393

Corollary 1. Optadm ⊆ OptCpos ⊆ Optmax.394

In the important case of Problem CV the sets OptCpos, Optadm, and Optmax395

coincide:396

Proposition 9. For Problem CV, Optadm = OptCpos = Optmax.397

Proof. As the set of acts X is convex, by the result in [26, Section 3.9.5],398

Optadm = Optmax. The result follows from Corollary 1.399

In the following two sections, we study these inclusions in Corollary 1 with400

respect to two other wide class of optimization problems besides Problem CV,401

namely Problems MIP and 01COP. As will be shown, the three sets also coincide402

for 01COP, whereas only the sets OptCpos and Optadm coincide for MIP. There-403

fore, overall, our findings are that the inclusion between OptCpos and Optmax in404

Corollary 1 can be strict, whereas the inclusion between Optadm and OptCpos is405

actually an equality for three important particular LOPs, i.e., Problems CV,406

MIP and 01COP; it remains an open, non-trivial, question whether there exists407

an instance of Problem LOP for which the inclusion between Optadm and OptCpos408

in Corollary 1 is strict.409
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5.4.2. Problem MIP410

Let S be the feasible set of Problem MIP, consider the following optimization411

problem:412

max /min cTx

s.t. x ∈ conv(S)
(CMIP)

where conv(S) is the convex hull of S.413

A fundamental result in integer programming states that Problem CMIP414

is a linear programming problem and we can solve Problem MIP by solving415

Problem CMIP. To make the paper self-contained, we will state the result here416

without providing a proof. Further information and a detailed proof can be417

found in standard textbooks such as [28, Theorems 6.2 and 6.3].418

Proposition 10. Assume that Problem MIP is a maximization problem. For419

any c ∈ Rn, if x∗ is an optimal solution of Problem MIP, then x∗ is an optimal420

solution of Problem CMIP.421

We can now provide a characterization of E-admissibility for Problem MIP422

by proving that the converse of Proposition 8 also holds.423

Proposition 11. For Problem MIP, x ∈ Optadm iff x ∈ OptCpos .424

Proof. If x is an optimal solution of Problem MIP under some co ∈ C then425

by Proposition 10, x is also an optimal solution of Problem CMIP under co.426

As Problem CMIP is convex, by Proposition 9, x is an E-admissible act of427

Problem CMIP. Moreover, since S ⊆ conv(S), then x is also an E-admissible428

act of Problem MIP.429

Corollary 1 states that if x ∈ OptCpos then x ∈ Optmax for Problem LOP and430

thus also for Problem MIP. The next example shows that for Problem MIP, we431

can have x ∈ Optmax but x ̸∈ OptCpos (even when the mass function has a single432

focal set), i.e., the inclusion between OptCpos and Optmax in Corollary 1 can be433

strict.434

Example 11. Consider the following optimization problem where each coeffi-
cient c1, c2, c3 and c4 in the objective is known to lie in an interval: c1 ∈ [1, 3],
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c2 ∈ [1, 3], c3 = 0 and c4 = 0.

max c1x1 + c2x2 + c3x3 + c4x4

−2x1 − x2 ≤ −6

x1 + x2 ≤ 5

−x1 − 2x2 ≤ −6

x1 − 10x3 ≤ 2

−x1 + 10x3 ≤ 6

x2 − 10x4 ≤ 2

−x2 + 10x4 ≤ 6

x1, x2 ∈{1, 2, 3, 4}
x3, x4 ∈{0, 1}

It can easily be checked that the set of feasible solutions X is X = {x :=
(2, 2, 0, 0), y := (1, 4, 0, 1), z := (4, 1, 1, 0)}. An easy computation gives E(y −
x) = −1 and E(z − x) = −1, thus x ∈ Optmax. Assume x ∈ Optpos, which
means that there exists c ∈ [1, 3] × [1, 3] × {0} × {0} such that cTx ≥ cT y and
cTx ≥ cT z. It implies that

2c1 + 2c2 ≥ c1 + 4c2 and 2c1 + 2c2 ≥ 4c1 + c2 (47)

⇔ c1 ≥ 2c2 and c2 ≥ 2c1. (48)

Since (48) cannot be true, we get a contradiction and thus x /∈ Optpos.435

5.4.3. Problem 01COP436

We give the characterizations for non-dominated solutions with respect to437

the maximality and E-admissibility criteria for Problem 01COP. In this case438

the set of feasible acts X is not convex. Somewhat surprisingly, as we are going439

to show, the two sets of non-dominated solutions still coincide.440

For any x ∈ X , let c̄xr be the scenario associated to x in focal set Fr, such
that

c̄xri = ur
i if xi = 1, c̄xri = lri if xi = 0. (49)

Lemma 1 is simple but it is the key element to uncover the characterization441

of the maximality criterion.442

Lemma 1. For any x, y ∈ X ,

min
c∈Fr

cT y − cTx = (c̄xr)T y − (c̄xr)Tx.
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Proof. For any c ∈ Fr,

cT y − cTx =

n∑
i=1

ci(yi − xi) =

n∑
i:xi=0

ci(yi − xi) +

n∑
i:xi=1

ci(yi − xi) (50)

≥
n∑

i:xi=0

lri (yi − xi) +

n∑
i:xi=1

ur
i (yi − xi) (51)

= (c̄xr)T y − (c̄xr)Tx (52)

where the inequality (51) holds because if xi = 0 then yi − xi ≥ 0 and if xi = 1443

then yi − xi ≤ 0.444

Denote by c̄x the set of coefficients in which c̄xi =
∑K

r=1 m(Fr)c̄
xr
i . Hence,

we have:

c̄xi = ūi if xi = 1, c̄xi = l̄i if xi = 0. (53)

A characterization of solutions in Optmax is given as follows.445

Proposition 12. For Problem 01COP, a solution x ∈ Optmax iff x is an446

optimal solution under c̄x.447

Proof. By definition,

x ∈ Optmax ⇔ ∄y such that y ≻max x ⇔ ∄y such that E(y − x) > 0 (54)

⇔ ∀y ∈ X ,

K∑
r=1

m(Fr) min
c∈Fr

(cT y − cTx) ≤ 0 (55)

⇔ ∀y ∈ X ,

K∑
r=1

m(Fr)((c̄
xr)T y − (c̄xr)Tx) ≤ 0 (Lemma 1) (56)

⇔ ∀y ∈ X ,

K∑
r=1

m(Fr)

n∑
i=1

c̄xri yi ≤
K∑
r=1

m(Fr)

n∑
i=1

c̄xri xi (57)

⇔ ∀y ∈ X ,

n∑
i=1

c̄xi yi ≤
n∑

i=1

c̄xi xi (58)

Hence, x ∈ Optmax iff x is an optimal solution under c̄x.448

Proposition 12 offers a method to check if a given feasible solution x be-449

longs to Optmax. To do so, one first calculates the optimal value, zx, of Prob-450

lem 01COP with ci = c̄xi and then compares
∑n

i=1 c̄
x
i xi with zx. Moreover, the451

following characterization provides a way to identify a solution in Optmax by452

solving Problem 01COP under some co ∈ C.453

Proposition 13. For Problem 01COP, a solution x ∈ OptCpos iff x is optimal454

under c̄x.455
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Proof. One direction is obvious. We only need to show the other direction.
Assume that x is optimal under co ∈ C. Then for any y, we have

n∑
i=1

coixi ≥
n∑

i=1

coi yi (59)

⇔
∑

i:xi=1,yi=0

coi ≥
∑

i:yi=1,xi=0

coi (60)

⇒
∑

i:xi=1,yi=0

ūi ≥
∑

i:yi=1,xi=0

l̄i (61)

⇔
∑

i:xi=1,yi=0

ūi +
∑

i:xi=yi=1

ūi ≥
∑

i:yi=1,xi=0

l̄i +
∑

i:xi=yi=1

ūi (62)

⇔
n∑

i=1

c̄xi xi ≥
n∑

i=1

c̄xi yi. (63)

Hence, x is optimal under c̄x.456

Remark 4. The proof of Proposition 13 is essentially the same as the proof457

of [29, Theorem 2.1] where the authors characterize weak trees.458

We are now in the position to provide a characterization for E-admissibility.459

We remark here that although the feasible acts X of Problem 01COP may not460

be in the form Mx ≤ b, the convex hull conv(X ) is still a bounded polyhedron461

as X is a finite set. Hence, it still follows from Propositions 10 and 11 that462

x is E-admissible iff x ∈ OptCpos. However, the nature of Problem 01COP463

makes it possible to derive a proof for this fact, without relying on the powerful464

Proposition 10. We feel that it is useful to present a simpler proof here.465

Proposition 14. For Problem 01COP, a solution x is in Optadm iff x is an466

optimal solution under c̄x.467

Proof. If x ∈ Optadm then x ∈ Optmax, by Proposition 12 x is a optimal solution468

under c̄x. Assume that x is an optimal solution with ci = c̄xi . We construct an469

allocation map a of m as:470

a(c̄xr, Fr) = m(Fr), ∀r ∈ {1, . . . ,K}. (64)

We define a discrete probability measure P such that

P ({c}) =
∑
c̄xr=c

a(c̄xr, Fr). (65)

Thanks to [27, Theorem 1], we have P ∈ P(m). It is easy to see that EP (πi) = ūi471

if xi = 1 and EP (πi) = l̄i if xi = 0. Since x is optimal and by Equation (45),472

EP (x) ≥ EP (y) for any y. Therefore, x is E-admissible.473

474
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Consequently, we arrive to the main result.475

Proposition 15. If Problem 01COP is a maximization problem then the fol-476

lowing are equivalent:477

(i) x ∈ Optmax.478

(ii) x ∈ Optadm.479

(iii) x is an optimal solution under c̄x.480

(iv) x ∈ OptCpos.481

Let cx be the set of coefficients, defined as follows:

cxi = l̄i if xi = 1, cxi = ūi if xi = 0. (66)

Likewise, we have the next result.482

Proposition 16. If Problem 01COP is a minimization problem then the fol-483

lowing are equivalent:484

(i) x ∈ Optmax.485

(ii) x ∈ Optadm.486

(iii) x is an optimal solution under cx.487

(iv) x ∈ OptCpos.488
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Figure 6: The graph associated with Optmax and Optadm in which weights of arc (i, j) are in
the interval [l̄ij , ūij ].

Example 12 (Example 5 continued). The graph in Figure 6 contains informa-489

tion about Optmax (or, equivalently, Optadm). For instance, s-a-t ∈ Optmax490

since it is optimal under the set of arc weights csa=2.5, cat=1.5, cst=5.5,491

csb=3.5, and cbt=4.5. By setting the arc weights to csa=3, cat=2.5, cst=5,492

csb=3, and cbt=4, the optimal path is s-t, which also belongs to Optmax. The493

set Optmax consists of s-a-t, s-b-t, and s-t.494

The characterization we provided is particularly valuable for E-admissibility.495

As noted in [2], verifying whether an act is E-admissible typically involves solv-496

ing a large linear programming problem. However, Propositions 15 and 16 imply497

that if Problem 01COP can be solved efficiently (e.g., Problem SPP), checking498

E-admissibility is also efficient.499
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Remark 5. Since ⪰max is a partial relation, Optmax may need to be enumer-500

ated. For some problems, such as the SPP, the size of Optweak (and therefore,501

the size of Optmax) grows exponentially with |V | [14], making the enumeration a502

very time-consuming process. Preprocessing can be applied to speed up the pro-503

cess by eliminating the elements xi which are never in any solution of Optmax.504

We note that determining whether xi = 1 is part of a possibly optimal solution505

(i.e., solution in Optmax) is NP-hard for many polynomially solvable problems506

such as the SPP or the assignment problem [17]. Nonetheless, for an important507

class of combinatorial optimization problems, i.e., the matroidal problem (which508

includes the minimum spanning tree problem), Kasperski et al. [18] showed that509

this determination can be done efficiently.510

6. Conclusion511

In this paper, we have considered a very general optimization problem with512

a linear objective function (LOP). When coefficients of the objective are ev-513

idential, the notion of optimal solution is ill-defined. Therefore, we propose514

extensions of the notion of optimal solutions to this context, as the sets of non-515

dominated solutions according to the generalized Hurwicz, strong dominance,516

weak dominance, maximality and E-admissibility criteria. By considering the517

particular case where focal sets are Cartesian products of compact sets, we are518

able to characterize the non-dominated solutions in terms of various concepts in519

optimization. This makes it possible to find non-dominated solutions by solv-520

ing known variants of the deterministic version of the LOP or even, in some521

cases, simply by solving the deterministic version. Specifically, non-dominated522

acts with respect to generalized Hurwicz are solutions of the deterministic LOP.523

Non-dominated acts with respect to generalized Hurwicz under unknown opti-524

mism/pessimism degree are solutions of the parametric LOP. Non-dominated525

acts with respect to strong dominance are solutions of a lower-bound feasibil-526

ity problem. Non-dominated acts with respect to weak dominance correspond527

exactly to the efficient solutions of the bi-objective LOP problem. Lastly, non-528

dominated acts with respect to maximality and E-admissibility are linked to the529

robust optimization framework via the concept of possibly optimal solutions of530

the LOP.531

Topics of future research include i) finding a characterization of the maxi-532

mality criterion for linear mixed integer programming problems; ii) providing a533

polynomial representation of all non-dominated solutions with respect to max-534

imality and E-admissibility for combinatorial optimization problems or at least535

for matroidal problems. Since these latter solutions are also possibly optimal,536

one possible direction is to expand the works of [9], in which a compact repre-537

sentation of possibly optimal solutions is given for the item selection problem538

(a special case of matroidal problems).539
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[12] Guillaume, R., Kasperski, A., Zieliński, P.: Robust optimization with sce-576

narios using random fuzzy sets. In: Proc. of FUZZ-IEEE 2021. pp. 1–6.577

IEEE (2021)578

25



[13] Gusfield, D.M.: Sensitivity analysis for combinatorial optimization. Tech.579

rep., EECS Department, University of California, Berkeley (May 1980)580

[14] Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Mul-581

tiple criteria decision making theory and application. pp. 109–127. Springer582

(1980)583

[15] Helal, N., Pichon, F., Porumbel, D., Mercier, D., Lefèvre, E.: The capac-584
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