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Abstract

Statisticians are largely focused on developing methods that perform well in a
frequentist sense—even the Bayesians. But the widely-publicized replication crisis
suggests that these performance guarantees alone are not enough to instill confi-
dence in scientific discoveries. In addition to reliably detecting hypotheses that are
(in)compatible with data, investigators require methods that can probe for hypothe-
ses that are actually supported by the data. In this paper, we demonstrate that
valid inferential models (IMs) achieve both performance and probativeness proper-
ties and we offer a powerful new result that ensures the IM’s probing is reliable. We
also compare and contrast the IM’s dual performance and probativeness abilities
with that of Deborah Mayo’s severe testing framework.

Keywords and phrases: Bayesian; frequentist; imprecise probability; inferential
model; p-value; severity; validity.

1 Introduction

Important decisions affecting our everyday experiences are becoming increasingly data-
driven. But is data helping us make better decisions? In many ways, the answer is
obviously yes; but in other ways the answer is less clear. The widely-publicized replica-
tion crisis in science is one issue that raises serious concerns, so much so that, in 2019,
the American Statistical Association’s president commissioned a formal Statement on
Statistical Significance and Replicability that appeared in 2021.1 As with most official
statements, in almost any context, this one says very little, e.g.,

Different measures of uncertainty can complement one another; no single mea-
sure serves all purposes.

While this assertion is politically (and perhaps technically) correct, it offers nothing to
help improve the state of affairs. The lack of any clear guidance in this official statement
reveals that there are important and fundamental questions concerning the foundations
of statistics and inductive inference that remain unanswered:

∗This is an extended version of the conference paper (Cella and Martin 2022b)
†Department of Statistical Sciences, Wake Forest University, cellal@wfu.edu
‡Department of Statistics, North Carolina State University, rgmarti3@ncsu.edu
1https://magazine.amstat.org/blog/2021/08/01/task-force-statement-p-value/
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Should probability enter to capture degrees of belief about claims? ... Or to
ensure we won’t reach mistaken interpretations of data too often in the long
run of experience? (Mayo 2018, p. xi)

The two distinct roles of probability highlighted in the quote above correspond to the
classical frequentist and Bayesian schools of statistical inference, which have two funda-
mentally different priorities, referred to here as performance and probativeness, respec-
tively. Over the last 50+ years, however, the lines between the two perspectives and
their distinct priorities have been blurred. Indeed, both Bayesians and frequentists now
focus almost exclusively on performance. These performance considerations are genuinely
important for the logic of statistical inference:

even if an empirical frequency-based view of probability is not used directly
as a basis for inference, it is unacceptable if a procedure. . . of representing
uncertain knowledge would, if used repeatedly, give systematically misleading
conclusions (Reid and Cox 2015, p. 295).

As the replication crisis has taught us, however, there is more to statistical inference
than achieving, say, Type I and II error probability control. Beyond performance, we are
also concerned with probativeness, i.e., methods’ ability to probe for hypotheses that are
genuinely supported by the observed data. Modern statistical methods cannot achieve
both performance and probativeness objectives, so a fully satisfactory framework for
scientific inferences requires new perspectives.

Section 2.1 gives the problem setup and briefly describes the Bayesian versus fre-
quentist two-theory problem. There we justify our above claim that modern statistical
methods fail to meet both the performance and probativeness objectives. This includes
the default-prior Bayes solution that aims to strike a balance between the two theories.
What holds the default-prior Bayes solution back from meeting the performance and pro-
bativeness objectives is its lack of calibration, which is directly related to the constraint
that the posterior distribution be a precise probability. Fortunately, the relatively new,
possibility-theoretic inferential model (IM) framework, reviewed in Section 2.2 below, is
able to achieve greater flexibility by embracing a certain type and degree of imprecision
in its construction. We present here a key result, namely, Theorem 1, that drives the
IM’s reliability, even into the new probativeness territory considered here.

Our main contribution here, in Section 3, is a demonstration of the IM’s ability to
simultaneously achieve both performance and probabitiveness. On the performance side,
we show in Section 3.1 that procedures, e.g., hypothesis tests and confidence sets, derived
from the IM’s necessity and possibility measure output control the frequentist error rates
at the nominal level. Of particular interest is that there are no restrictions on the kinds
of questions that the IM can address, so it is at least conceptually straightforward to
eliminate nuisance parameters and obtain provably reliable marginal inference.

We enter new territory in Section 3.2, where we consider the question of probativeness.
First: what is probing? In classical hypothesis testing, typically a null hypothesis is offered
and a decision is made to either reject that hypothesis or not. Often this null hypothesis
represents a scientific status quo, e.g., that a new mental health treatment program has
no effect on patients’ well-being. Those who follow the mechanical NHST (null hypothesis
significance test) guidelines would believe that all the statistical analysis offers is a reject-
or-not decision; in that case, if the investigator’s data leads to a reject conclusion, then
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apparently he/she has made a psychological discovery. Of course, that logic is flawed
because all the statistical test has determined is that the data are incompatible with the
status quo. More specifically, the test does not imply that the data actually support
the complementary hypothesis that there is an appreciable benefit to the new treatment,
which is the bar for claiming a scientific discovery. Probing aims to dig deeper than
(in)compatibility and look for genuine support. None of the standard statistical tools
offer this probing, so something new is needed.

Fortunately, possibility measures and imprecise probabilities more generally contain
lots of relevant information and, in particular, to each relevant hypothesis it returns a
pair of numbers. As discussed in Section 3.1, only one of those numbers is used for the
usual performance-focused developments. That is, we reject a hypothesis if its degree of
possibility or plausibility is small, since that is an indication of incompatibility. The other
number is commonly understood as measuring a degree of necessity, belief, or support,
so a natural question is if this feature of the IM output can be used for probing. In
Section 3.2 we give an affirmative answer to this question and, furthermore, offer some
strong theoretical support for the claim that the IM’s probing is provably reliable.

The probativeness conclusion is a direct consequence of the IM output’s imprecision.
That the additional flexibility of imprecision creates opportunities for more nuanced judg-
ments is one of the motivations for accounting for imprecision, so this is no big surprise.
But our contribution here is valuable for several reasons. First, the statistical community
is aware of this need to see beyond basic performance criteria, but general and easy-
to-follow guidance is still lacking. In Section 4 below we summarize a relatively recent
proposal in Mayo (2018) and compare it to what the IM framework offers. There we
argue that a difficulty with supplementing the standard testing machinery with a prob-
ing add-on, as Mayo and others have proposed, is that frequentism lacks an appropriate
language to describe anything beyond (in)compatibility. To clearly articulate what prob-
ing or support means, we need a richer language than what frequentist statistics offers.
The possibility-theoretic IM formulation allows for this, but without sacrificing on the
frequentist-like performance guarantees. That is, IMs offer a simpler interpretation based
on possibilistic reasoning, where the necessary but complicated frequentist considerations
are hidden under the hood in a calibration engine (Theorem 1) that powers the IM. Sec-
ond, our contribution showcases the important role played by imprecise probability, by
reinforcing the key point that imprecision is not due to an inadequacy of the approach,
but, rather, is an essential part of a complete and fully satisfactory solution to the sta-
tistical inference problem.

Following our comparison of IMs and Mayo’s theory of severe testing, we provide
several illustrations of the IM solution in Section 5, focusing primarily on its probing
abilities. This is followed by some concluding remarks in Section 6 and a few relevant
details concerning hypothesis testing and connections to the IM theory in Appendix A.

2 Background

2.1 Two-theory problem

To set the scene, denote the observable data by Y . The statistical model for Y will
be denoted by {Pθ : θ ∈ T} and the unknown true value of the model parameter will
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be denoted by Θ. Note that the setup here is quite general: Y , Θ, or both can be
scalars, vectors, or something else. We focus here on the typical case where no genuine
prior information is available/assumed. So, given only the model {Pθ : θ ∈ T} and
the observed data Y = y, the goal is to quantify uncertainty about Θ for the purpose
of making inference. For concreteness, we will interpret “making inference” as making
(data-driven) judgments about hypotheses concerning Θ. In particular, we seek to assign
numerical values—could be p-values, posterior probabilities, etc.—to hypotheses H ⊆ T
concerning Θ or some feature thereof.

In a nutshell, the two dominant schools of thought in statistics are as follows.

Bayesian. Uncertainty is quantified directly through specification of a prior probability
distribution for θ, representing the data analyst’s a priori degrees of belief. Bayes’s
theorem is then used to update the prior to a data-dependent posterior distribution for
θ. The posterior probability of a hypothesis H represents the analyst’s degree of belief
in the truthfulness of H, given data, and would be essential for inference concerning H.
That is, the magnitudes of the posterior probabilities naturally drive the data analyst’s
judgments about which hypotheses are supported by the data and which are not.

Frequentist. Uncertainty is quantified indirectly through the use of reliable procedures
that control error rates. Consider, e.g., a p-value for testing a hypothesis H. What makes
such a p-value meaningful is that, by construction, it tends to be not-small when H is
true. Therefore, observing a small p-value gives the data analyst reason to doubt the
truthfulness of H:

The force with which such a conclusion is supported is logically that of the
simple disjunction: Either an exceptionally rare chance has occurred, or [the
hypothesis] is not true (Fisher 1973, p. 42).

The p-value does not represent the “probability of H” in any sense. So, a not-small
(resp. small) p-value cannot be interpreted as direct support for H (resp. Hc) or any
sub-hypothesis thereof.

So, at least in principle, the Bayesian framework focuses on probativeness whereas
the frequentist framework focuses on performance. But the line between frequentist and
modern Bayesian practice is not especially clear. Even Bayesians typically assume little
or no prior information, as we have assumed here, so default priors are the norm (e.g.,
Berger 2006; Jeffreys 1946). With an artificial or default prior, however, the “degree of
belief” interpretation of the posterior probabilities is lost,

[Bayes’s theorem] does not create real probabilities from hypothetical probabil-
ities (Fraser 2014, p. 249)

and, along with it, the probative nature of inferences based on them,

...any serious mathematician would surely ask how you could use [Bayes’s
theorem] with one premise missing by making up an ingredient and thinking
that the conclusions of the [theorem] were still available (Fraser 2011, p. 329).

The default-prior Bayes posterior probabilities could still have performance assurances
if they were suitably calibrated. But the false confidence theorem (Balch et al. 2019)
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shows that this is not the case: there exists false hypotheses to which the posterior tends
to assign large probabilities. In particular, let Qy denote a data-dependent probability
distribution for Θ, e.g., default-prior Bayes, fiducial, etc. Then the false confidence
theorem states that, for any (ρ, τ) ∈ (0, 1)2, there exists hypotheses H ⊆ T such that

H ̸∋ Θ and PΘ{QY (H) > τ} > ρ.

This implies that inferences based on the magnitudes of these probabilities—i.e., if Qy(H)
is small, then infer Hc—are at risk of being “systematically misleading” (cf. Reid and
Cox). This explains why modern Bayesian analysis focuses less on probabilistic reasoning
based on the posterior probabilities themselves and more on the performance of proce-
dures (tests and credible sets) derived from the posterior distribution. Hence modern
Bayesians and frequentists are not so different.

The key take-away message is as follows. Pure frequentist methods focus on detecting
incompatibility between data and hypotheses (performance), so they do not offer any
guidance on how to identify hypotheses actually supported by the data (probativeness).
Default-prior Bayesian methods are effectively no different, so this critique applies to them
too. More specifically, the default-prior Bayes posterior probabilities lack the calibration
necessary to reliably check for either incompatibility or support. Therefore, at least when
prior information is vacuous, neither of the mainstream schools of thought in statistics
can simultaneously achieve both the performance and probativeness objectives.

2.2 Inferential models overview

The inferential models (IM) framework was first developed in Martin and Liu (2013,
2015) as a fresh perspective on Fisher’s fiducial argument (Fisher 1935; Zabell 1992) and
on the Dempster–Shafer theory of belief functions (Dempster 1968, 2008, 2014; Shafer
1976) in the context of statistical inference. It aimed to balance the Bayesians’ desire for
belief assignments and the frequentists’ desire for error rate control. A key distinction
between IMs and the familiar Bayesian and frequentist frameworks is that the output is
an imprecise probability or, more specifically, a necessity–possibility measure pair.

Possibility is an entirely different idea from probability, and it is sometimes,
we maintain, a more efficient and powerful uncertainty variable, able to per-
form semantic tasks which the other cannot (Shackle 1961, p. 103).

Unlike in other applications of imprecise probability, the imprecision that enters into the
picture here is not the result of the data analyst’s inability or unwillingness to precisely
specify a statistical model, etc., although partially identified models (e.g., Manski 2003)
could be a source of additional imprecision. Instead, it has been shown that a certain
degree of imprecision is necessary for inference to be valid in a specific statistically-
relevant sense that we explain below. Moreover, it has also been shown that a possibility
measure is the “right” imprecise probability model for quantifying this unique form of
imprecision, as opposed to more general belief functions, lower previsions, etc. that are
designed for modeling ignorance-driven imprecision, or Knightian uncertainty. Below is
a quick summary of the IM construction and explanation of the claims just made.

The IM construction summarized here is the likelihood-driven construction, recently
advanced in Martin (2022), which is based on a holistic view of the statistical inference
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problem, i.e., it aims to answer the question what does the data have to say about Θ?
This is our preferred construction, but it is worth pointing out here that this is not the
only available option. Appendix A outlines an alternative construction, following Martin
(2021), that starts with a specific hypothesis testing problem to be solved; since this
starts with a specific rather than general question about Θ to answer, we consider this
test-based construction “less holistic” than the likelihood-based construction mentioned
above and described in more detail below. The two different constructions have their
advantages and, in particular, the test-based construction helps us make connections to
earlier attempts to achieve probativeness.

The likelihood-based construction here is motivated by the probability-to-possibility
transform in, e.g., Dubois et al. (2004), Dubois (2006), Hose and Hanss (2021), and Hose
(2022), and is driven by the likelihood function of the posited model. Let θ 7→ Ly(θ)
denote the likelihood function for Θ based on data y, and define the relative likelihood

R(y, θ) =
Ly(θ)

Ly(θ̂y)
, θ ∈ T,

where θ̂y is a maximum likelihood estimator. This relative likelihood has been used
by several authors (e.g., Denœux 2014; Shafer 1982; Wasserman 1990) to construct a
plausibility function for Θ. To achieve the desired performance guarantees, however, we
need to go one step further. Next, define the function

πy(θ) = Pθ{R(Y, θ) ≤ R(y, θ)}, θ ∈ T. (1)

This is the p-value function for a likelihood ratio test, but it is also a possibility contour,
since it attains a maximum value of 1 at θ̂y. Then the corresponding IM for Θ is the
possibility and necessity measure pair determined by the contour in (1), i.e.,

Πy(H) = sup
θ∈H

πy(θ) and Πy(H) = 1− Πy(H
c), H ⊆ Θ. (2)

It is easy to verify from the above definition that

Πy(H) ≤ Πy(H), for all H ⊆ T and all y ∈ Y, (3)

which explains the lower- and upper-bar notation and why, in some cases, these are
referred to as lower and upper probabilities.

A feature of the IM’s output (Πy,Πy), or necessity-possibility measure pairs more
generally, is that there are some inherent constraints on the values that Πy(H) and

Πy(H) can take for a given H. In particular,

Πy(H) < 1 =⇒ Πy(H) = 0 and Πy(H) > 0 =⇒ Πy(H) = 1. (4)

The intuition (cf. Shackle 1961) behind this is as follows: if there is any doubt about H,
so that Πy(H) < 1, then there cannot be even a shred of support for H and, similarly,
if there is a shred of support for H, so that Πy(H) > 0, then there can be no doubt

that H is possible. These constraints arise from the definition (2) that determines Πy by
optimizing πy. To some these constraints might be a restriction and, indeed, there are
some non-statistical applications in which this structure, what Shafer calls consonance,
would not be appropriate. However, our views align with those of Shafer:
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... specific items of evidence can often be treated as consonant, and there is at
least one general type of evidence that seems well adapted to such treatment.
This is inferential evidence—the evidence for a cause that is provided by an
effect (Shafer 1976, p. 226).

Statistical inference problems, like those in consideration here, are of the form Shafer is
referring to, so the adoption of a consonant belief structure for quantifying uncertainty is
quite natural. In addition, the particular property (Theorem 1) that we need to ensure
both performance and probativeness can only be satisfied if the IM has this consonant
structure, i.e., if its output is a necessity-possibility measure pair.

Suppose interest is in some feature Φ = f(Θ), where f is a function defined on T. We
can easily obtain a marginal IM for Φ from that for Θ using possibility calculus. Indeed,
the extension principle of Zadeh (1975) gives the possibility contour function for Φ:

πf
y (ϕ) = sup

θ:f(θ)=ϕ

πy(θ), ϕ ∈ f(T). (5)

Using this contour, just as before, we can obtain the possibility and necessity measure
pair that determines the marginal IM for Φ:

Π
f

y(K) = sup
ϕ∈K

πf
y (ϕ) and Πf

y(K) = 1− Π
f

y(K
c), K ⊆ f(T).

In Section 3 below, we demonstrate that this marginal IM inherits the desirable proper-
ties of the original IM construction for Θ. This characteristic is crucial as it safeguards
data analysts from unintentional errors in downstream or subsequent inferences. But this
is not the only marginalization strategy. The one above is consistent with our holistic
approach to/perspective on statistical inference, but the price paid for its broad flexibility
is efficiency. If it were known that only the feature Φ = f(Θ) is of interest, then a dif-
ferent and more efficient marginalization strategy can be carried out, one that is tailored
specifically to that feature; see, e.g., Martin (2022).

A relevant question is: how to interpret the IM output? Since the IM output corre-
sponds to an imprecise probability, all the standard interpretations of imprecise probabil-
ities can be taken, e.g., degrees of belief, bounds on prices for gambles, etc. In particular,
for fixed y, the IM output (Πy,Πy) defines a coherent lower and upper probability for
Θ. While IMs are compatible with the theory developed in Walley (1991), that is not
the perspective we take here. We should also emphasize that there does not exist an
underlying “true conditional probability distribution of Θ, given Y = y,” so it would not
make sense to think of these imprecise probabilities as bounds on probabilities on some
“true” probabilities, or that this “true” probability distribution is contained in the IM
output’s credal set. Instead, we see the IM output as facilitating what we call possibilistic
reasoning—a sort of unidirectional version of the more familiar, bidirectional probabilistic
reasoning. That is, in the latter case, both small and large probability values carry infer-
ential weight whereas, in the former case, only small possibility values and large necessity
values carry inferential weight. To conclude that data y supports a hypothesis H, it is
not enough that Πy(H) is large; we need Πy(H) to be large, which implies that Πy(H)
is also large, by (3). In fact, Shafer (1976, Ch. 11) refers to H 7→ Πy(H) as a support
function, which is how we propose to use it here. This is just a mathematization of the
commonsense notion that a lack of support for H does not imply support for Hc.
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A certain mathematical structure is not enough to give the IM output the afore-
mentioned “inferential weight.” Following Cournot’s principle (e.g., Shafer 2007), this
requires establishing that true hypotheses tend not to be assigned small possibility val-
ues; equivalently, false hypotheses tend not to be assigned large necessity values. The
following basic but important result establishes a key connection between the IM and the
“real world” (relative to the posited model), through the magnitudes of its possibility
assignments to true hypotheses. This will serve as the jumping off point for both the
performance- and probativeness-specific properties in the coming section.

Theorem 1. An IM for Θ whose output takes the form of a necessity-possibility measure
pair as described above, determined by a contour function πy(θ) as in (1), is strongly
valid in the sense that

sup
Θ∈T

PΘ{πY (Θ) ≤ α} ≤ α, α ∈ [0, 1]. (6)

If one is thinking in terms of p-values, then the result in Theorem 1 will look familiar.
It also closely resembles what Walley (2002) calls the fundamental frequentist principle,
so, despite its familiarity, this result must be important. We will discuss below, in
Section 3, the striking implications this has when it comes to the IM’s performance and
probativeness properties.

3 Two P’s in a possibility-theoretic pod

3.1 Performance

As discussed above, what modern statisticians value most is performance, i.e., that the
procedures developed for the purpose of making inference-related decisions (e.g., accept
or reject a hypothesis) have frequentist error rate control guarantees. These error control
properties are genuinely important: if statistical methods are not even reliable, then it
is difficult to imagine how they could help advance science. This explains why even the
Bayesians are concerned with frequentist properties.

Most of the previous IM developments have focused primarily on the performance
aspect, so the results presented below are not new. For completeness, however, we give a
quick summary of the available results and offer some new perspectives. The two standard
procedures found in the statistics literature are hypothesis testing and confidence set
procedures. Corollary 1 below describes the corresponding procedures derived from the
IM output and the error rate control guarantees they enjoy.

Corollary 1. Consider an IM for Θ that, for Y = y, returns the necessity-possibility
measure pair (Πy,Πy) determined by a possibility contour function πy as described in
Section 2.2. Then the following properties hold for all α ∈ [0, 1].

(a) For any given H, the test “reject H if and only if ΠY (H) ≤ α” has frequentist
Type I error probability no more than α, i.e.,

sup
Θ∈H

PΘ{ΠY (H) ≤ α} ≤ α.

8



(b) The set Cα(Y ) = {θ : πY (θ) > α} has frequentist coverage probability at least 1−α,
making it a 100(1− α)% confidence set. That is,

sup
Θ∈T

PΘ{Cα(Y ) ̸∋ Θ} ≤ α.

Proof. Both of these results are immediate consequences of (6). For Part (a), note that
monotonicity of the possibility measure implies that ΠY (H) ≥ πY (Θ) for any Θ ∈ H.
Therefore, combined with (6), we get

PΘ{ΠY (H) ≤ α} ≤ PΘ{πY (Θ) ≤ α} ≤ α. (7)

For Part (b), observed that Cα(Y ) ̸∋ Θ if and only if πY (Θ) ≤ α. And since the latter
event has probability ≤ α by (6), so too does the former.

We are not aware of Fisher ever making such a statement, but we can imagine that
Fisher’s disdain for the Neyman-style behavioral approach to statistical inference at least
partially stemmed from the fact that the frequentist error rate control properties would be
immediate consequences of the kind of calibration needed to make his “logical disjunction”
argument sound. That is, if Fisher’s necessary calibration (6) is satisfied, then Neyman’s
error rate control is a corollary. This is effectively what Corollary 1 shows and, it is in
this sense that a strongly valid IM offers performance guarantees.

Recall that we explained in Section 2.2 how uncertainty about a relevant feature
Φ = f(Θ) could be quantified based solely on the IM for Θ. An immediate consequence
of Corollary 1 and the possibility calculus—the extension principle specifically—is that
the corresponding test and confidence set procedures for making decisions pertaining to
Φ inherit the performance guarantees that the IM for Θ enjoys.

The kind of performance properties that the IM achieves might remind some readers
of confidence distributions (e.g., Nadarajah et al. 2015; Schweder and Hjort 2002; Xie
and Singh 2013). For a scalar parameter Θ, a confidence distribution is a data-dependent
cumulative distribution function θ 7→ Gy(θ) such that

sup
Θ∈T

PΘ{GY (Θ) ≤ α} ≤ α, α ∈ [0, 1].

From here, one can construct hypothesis tests and confidence sets similar to how we did
with the IM output above in Corollary 1; see the above references for details. However,
the testing error rate control can only be achieved for hypotheses H that take the form of
half-lines, e.g., (−∞, θ] or [θ,∞). For other kinds of hypotheses, e.g., bounded intervals,
the frequentist error rates might not be controlled. Corollary 1 shows that the IM controls
error rates for any hypotheses H, and not just for scalar Θ. For a certain class of
models, Fisher’s fiducial distribution and the default-prior Bayes posterior distribution
are confidence distributions, and Martin (2023) characterizes these as members of the
IM output’s credal set. This characterization explains why a confidence distribution’s
probability assignments are calibrated only in the tails, i.e., for half-line hypotheses.

3.2 Probativeness

The current literature on IMs has focused largely on the performance-related questions
as in the previous subsection. This is understandable given that performance is the
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top priority for modern statisticians and that other performance-related features (e.g.,
Theorem 1) are crucial to Fisher’s brand of inductive inference. But we claim that the
IMs described above have even more to offer, so the goal of this section is to unearth
those previously underappreciated features of the IM framework.

That the IM output offers more than what has been discussed in the extant literature is
obvious: the focus has been on the performance of derived statistical methods, which only
involves certain features, such as the contour function, its level sets, and the possibility
measure evaluated at pre-determined hypotheses. This is just a small fraction of what
a full-blown imprecise probability distribution—or even a necessity-possibility measure
pair—can do. What we are particularly interested in here is the use of the IM output to
probe, that is, to naturally proceed with the analysis, to dig deeper, after an answer to
the first (often trivial) question has been given. On the performance side, one thinks of
the test in Corollary 1(a) as a one-and-done prospect: if H is rejected, then infer Hc and
pack up to go home. In reality, such a test is just the first step in the analysis, so we ought
to consider the follow-up questions and analyses too. This is especially true in the IM
case because there is an opportunity to tap into those aspects of the necessity-possibility
measure pair that are currently being ignored.

Consider the common situation where the data y is incompatible with the hypothesis
H in the sense that Πy(H) is small; the other case of probing when Πy(H) is not small is
more challenging and will be discussed in detail in Section 4. We emphasized “common”
because the initial H, or null hypothesis, is often an overly simplistic scientific default that
isn’t expected to be true—otherwise, the resources needed to collect the data y probably
would not have been invested. If Πy(H) is small, then we know by the discussion in
Section 2.2 that Πy(H

c) = 1 and, consequently, there is ample room for certain sub-
hypotheses in Hc to have non-trivial necessity values, i.e., Πy(A) > 0 for some A ⊆ Hc.
We follow Shafer and interpret Πy as a measure of support, so this probing exercise is
about finding sub-hypotheses whose truthfulness is directly supported by data y. To fix
ideas, consider the case where Πy(H) is small and A is a fixed sub-hypothesis contained
in Hc. There are roughly two cases worth exploring:

• if Πy(A) is large, then we can conclude that A is supported by data y, and

• if Πy(A) is small, then data y is mostly uninformative about A and no conclusion
about A is warranted; that is, both A and Ac are compatible with y or, equivalently,
the “don’t know probability” (Dempster 2008), Πy(A)− Πy(A), is large.

This process can be repeated, in principle, for all sub-hypotheses A of H. The data
analyst will find some As that are supported by data and others about which the data
are mostly uninformative. Stitching all of these A-specific analyses together creates a
complete IM tapestry that details what the data can reliably say about Θ.

Mayo (2018, p. 13 and elsewhere) argues at a high level that “probabilism” does
not imply probativeness. But the shortcoming of probability as a tool for probing also
becomes clear here in the mathematical details. Take, for example, a confidence dis-
tribution as discussed briefly above. Since the probabilities assigned by the confidence
distribution to H and Hc, respectively, must sum to 1, we find that a lack of support for
one implies support for the other, which we know is logically incorrect—this is exactly
why the probing task is challenging. Therefore, imprecision seems necessary to achieve
the probing goal, and below we will argue why the IM framework suggested here is the
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appropriate formulation. Although Mayo does not specifically mention imprecise proba-
bilities,2 we will show below that the measure she proposes is, in fact, non-additive and
has connections with our proposed IM solution in the contexts where she described it;
see Section 4.

That the IM framework facilitates probing as described above does not directly imply
that the probing process we described is reliable. We do get some comfort from (7), i.e.,
the possibilities assigned to true hypotheses do not tend to be small. Thanks to the
duality Πy(H) = 1− Πy(H

c) between the two measures, this also implies

sup
Θ̸∈H

PΘ{ΠY (H) ≥ 1− α} ≤ α, all α ∈ [0, 1], all H ⊆ T. (8)

That is, the necessities (or support) assigned to false hypotheses do not tend to be large.
It is problematic, however, that probing is dynamic and there is no way to predict what
kind of follow-up questions the data analyst might want to ask. In fact, those questions
might be determined by the data itself, so the aforementioned comfort—derived from
hypothesis-wise error rate control—is not all that comforting. Mayo and Cox (2006,
Sec. 4.2) discuss these and related issues concerning selection. Fortunately, there are
stronger consequences of Theorem 1 that are not captured by (7) and have not been
elucidated in the previous works on IMs and their performance properties.

Corollary 2. An IM for Θ whose output (Πy,Πy) is determined by a possibility contour
πy via (2) has the following uniform validity property:

sup
Θ∈T

PΘ{ΠY (H) ≤ α for some true H, i.e., H ∋ Θ} ≤ α, α ∈ [0, 1]. (9)

Equivalently, in terms of necessity/support:

sup
Θ∈T

PΘ{ΠY (H) ≥ 1− α for some false H, i.e., H ̸∋ Θ} ≤ α, α ∈ [0, 1].

The proof is almost immediate so we get it out of the way now. But the reader might
want to first skip ahead to the discussion below to better understand the result.

Proof of Corollary 2. The claim (9) follows from (6) and the fact that there exists an H
such that H ∋ Θ and ΠY (H) := supθ∈H πY (θ) ≤ α if and only if πY (Θ) ≤ α.

The “for some true H” statement in (9) is potentially confusing so here is a more
detailed explanation. The reader is surely accustomed to interpreting “for some” in
terms of a union operation, and that is precisely the interpretation we have in mind here.
That is, the event in (9) can be written as⋃

H⊆T:H∋Θ

{ΠY (H) ≤ α}.

This is clearly a much larger event than {ΠY (H) ≤ α} for a fixed H and, therefore,
the probability bound in (9) is significantly stronger than the analogous bound in (7).

2In the footnote on page 67, Mayo presents Popper’s argument for how there can be logical contra-
dictions if Carnap’s “degree of confirmation” is measured by something additive like a probability.
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Aside from being mathematically stronger, there are key practical implications of this.
The result implies that no matter how the data analyst proceeds with his/her probing,
the probability that even one of the IM’s suggestions is misleading—small ΠY to a true
hypothesis or large ΠY to a false hypothesis—is controlled at the specified level. To put
the result more in line with the explanation of probing given above, consider the special
case of a fixed H and then a collection of sub-hypotheses {Ar : r ≥ 1} of Hc. So, if
Θ ∈ H, then Θ ∈ Ac

r for r ≥ 1. Then Corollary 2 implies that

sup
Θ∈H

PΘ{ΠY (H) ≤ α or ΠY (A1) ≥ 1− α or ΠY (A2) ≥ 1− α or...} ≤ α,

i.e., the probability that the IM points the data analyst in the wrong direction concerning
even one of these hypotheses is no more than α. Moreover, that union perspective reveals
that the result remains true even if the hypotheses chosen in the probing step happen to
be data-dependent in some way that would be too complicated for those of us here on
the data analysis sidelines to specify in advance. So, the uniformity baked into the result
of Corollary 2 is exactly what is needed to ensure that the commonsense probing that
the IM framework suggests can indeed be carried out reliably.

4 Comparison with Mayo’s severity

4.1 Background

In Section 1, we mentioned recent efforts by statisticians to supplement the standard
significance tests, etc. with measures designed to probe for hypotheses that are supported
by the data. In particular, what Mayo (2018) refers to as severe testing aims to capture
this notion of probing. We do not assume that the reader is familiar with Mayo’s work,
so here we give a relatively brief introduction. Modulo some minor changes in notation
and terminology, here is how Mayo (2018, p. 23) explains her notion of severity:

Severity (weak): If data y agree with a claimH but the method was practically
incapable of finding flaws with H even if they exist, then y is poor evidence
of H.

Severity (strong): If H passes a test that was highly capable of finding flaws
or discrepancies from H, and yet none or a few are found, then the passing
result, y, is an indication of, or evidence for, H.

At least conceptually, we think most readers would find these basic severity principles un-
controversial. The idea goes back to Popper’s falsificationist program which says science
progresses by subjecting the status quo to severe tests, tests that are capable of detecting
departures from the status quo. Hypotheses that are able to withstand a series of severe
tests have “proved their mettle” (Popper 1959, p. 10). The challenge in the context of
statistical hypothesis testing is that Popper’s very strict standard for falsification cannot
be met based on a (necessarily limited) set of empirical data y. This is where the work
of Fisher, Neyman–Pearson, Mayo–Cox, and others comes in.

As we attempt to dig deeper, to get beyond just a high-level conceptual understanding
of these ideas in hopes of putting them into practice, things become less clear. Mayo
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(2018, p. 148–150) presents her two-part Principle of Frequentist Evidence (FEV), whose
starting point is a particular null hypothesis H0 and a given procedure for testing that
hypothesis based on data y. We present here an inconsequentially modified version of
FEV from Mayo and Cox (2006, p. 82–84):

FEV 1. y is (strong) evidence against H0, i.e., (strong) evidence of a discrep-
ancy from H0, if and only if, where H0 a correct description of the mechanism
generating y, then, with (very) high probability, this would have resulted in
a less discordant result than is exemplified in y.

FEV 2. A moderate p-value is evidence of the absence of a discrepancy δ
from H0, only if there is high probability the test would have given a worse
fit with H0 (i.e., smaller p-value) were a discrepancy δ to exist.

As Mayo (2018, p. 149) admits, “this sounds wordy and complicated.” The complication,
we claim, stems from trying to justify fixed-data conclusions based on frequentist-style
performance probabilities. On the one hand, FEV1 is familiar even if it is not easy to
follow: this is just a different way to say that a small p-value is interpreted as evidence
in y against H0. In this case, the data analyst is in a situation like that described in
Section 3.2 and the probing question concerns support for subsets of Hc

0. On the other
hand, FEV2 goes in an unfamiliar—but important, challenging, and exciting—direction,
towards something far beyond what one finds in the cookbook-style NHST literature. For
both parts of FEV, something more than just the p-value associated with the pair (y,H0)
is needed, something that can probe for genuine support. What this “something more”
might look like is discussed below.

Note that FEV1 and FEV2 are “if and only if” and “only if” claims, respectively.
The point is that effectively the only way we can interpret incompatibility or discordance
between y and H0 is as evidence against H0, but compatibility alone between y and
H0 need not be evidence supporting H0. There are many reasons why a p-value might
be large, reasons that do not indicate genuine support in the data for the hypothesis.
This aligns with our aforementioned commonsense understanding, which draws a first
connection between what Mayo aims to achieve and what our proposed IM offers.

After a preview in Chapter 3, Chapter 5 of Mayo (2018) lays out some details of her
proposal for what the aforementioned “something else” ought to look like. She explains
that the origins of her idea are in the early works on power analysis, in particular,
Neyman (1955) and insights sprinkled throughout Cox (2006). Like p-values can be
interpreted as an attained significance level—we used this interpretation in the procedure-
driven IM construction, in particular, Equation (14) in Appendix A.1—one can consider
a corresponding attained power. Mayo’s presentation focuses solely on simple, albeit
important/common testing scenarios, so we will do the same here, both for concreteness
and to avoid potentially misrepresenting Mayo’s proposal.

Suppose Θ is a scalar parameter and, without loss of generality, consider the null
hypothesis H0 : Θ ≤ θ0, for a fixed θ0; the opposite one-sided hypothesis H0 : Θ ≥ θ0
can be handled similarly. Let S(Y, θ0) be a test statistic such that large values indicate
incompatibility between Y and H0 and suggest rejection. More specifically, a test that
controls the Type I error at a specified significance level α ∈ (0, 1) rejects H0 if and only
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if S(Y, θ0) ≥ sα, where the critical value sα is defined to satisfy the condition

sup
θ≤θ0

Pθ{S(Y, θ0) ≥ sα} = α.

It will often be the case that the probability in the above display is increasing in θ, which
implies the supremum is attained at the boundary θ0. We will assume that this is the
case here, so sα satisfies Pθ0{S(Y, θ0) ≥ sα} = α. Note that the Type I error probability
is a property of the test procedure and, therefore, does not depend on the observed data
Y = y. The p-value, or attained significance level, replaces the fixed critical value sα
with the value of the test statistic computed at the observed data y:

pval≤y (θ0) = Pθ0{S(Y, θ0) ≥ S(y, θ0)}}. (10)

The superscript “≤” is to emphasize that this p-value is associated with the left-sided
null hypothesis H0 : Θ ≤ θ0. Note that the p-value in (10) can be extended to a function
pval≤y (θ) = Pθ{S(Y, θ) ≥ S(y, θ)} that takes any value θ as its argument, not just θ0.

4.2 Severity measure

Consider a claim or hypothesis H about the relevant unknowns, and the goal is to assess
the extent to which this hypothesis is supported by the observed data. Mayo proposes a
measure that she calls severity which is a data-dependent function that maps H to values
in [0, 1]. In words, Mayo’s severity measure at the hypothesis H is defined as

the probability of a worse fit between data and H if H is false. (11)

A high severity value indicates that H has been severely tested, meaning that the data
strongly support the truthfulness of H.

In practice, the decision to assess a particular claim may arise through various means.
Mayo considers a very common scenario where the starting point is a null hypothesis that
is tested, and rejection or non-rejection of this null hypothesis determines what follow-up
claims might be considered. Throughout this section we focus on an initial null hypothesis
of the form H0 : Θ ≤ θ0. On the one hand, if H0 is rejected, the data analyst is in a
situation like that described in Section 3.2 and the probing question concerns support for
subsets of Hc

0, i.e., claims of the form “Θ > θ” for some θ > θ0. On the other hand, if H0

is not rejected, then probing questions would concern supersets of H0, i.e., claims of the
form “Θ ≤ θ” for θ > θ0. We consider these two cases separately below.

Case 1: Small p-value, probing for support in (subsets of) the alternative.

If the p-value for H0 : Θ ≤ θ0 is small, then we might be inclined to reject H0.
But does the data genuinely support any subsets of the alternative? To answer this
question, we probe by considering various subsets of the alternative, e.g., “Θ > θ”
for θ > θ0. In this case, Mayo’s severity measure (11) specializes to

sevy({Θ > θ}) = inf
ϑ≤θ

Pϑ{S(Y, θ) < S(y, θ)}

= 1− sup
ϑ≤θ

Pϑ{S(Y, θ) ≥ S(y, θ)}

= 1− pval≤y (θ), θ > θ0.

14



Large values of sevy(H) are to be interpreted as stronger support in y for the claim
H. Since the right-hand side of the above display is a decreasing function of θ, we
get the intuitive property that bolder claims are given less support from the data.

Case 2: Not-small p-value, probing for support in (supersets of) the null.

If the p-value for H0 : Θ ≤ θ0 is not small, then we would be inclined to tentatively
accept the null. But despite the null or non-significant conclusion, there is still
information available in the data about Θ—“no evidence of risk is not evidence of
no risk” (Mayo 2018, p. 3). In particular, there are claims more inclusive of the
null, i.e., H that are implied by H0, that the data might support, e.g., “Θ ≤ θ” for
θ > θ0. Following (11), severity specializes in this case to

sevy({Θ ≤ θ}) = inf
ϑ>θ

Pϑ{S(Y, θ) > S(y, θ)}

= 1− sup
ϑ>θ

Pϑ{S(Y, θ) ≤ S(y, θ)}

= 1− pval≥y (θ), θ > θ0.

In this case, severity is associated with the p-value for a right-sided null hypothesis,
that is, a hypothesis of the form Θ ≥ θ. Again, large values of sevy(H) are to be
interpreted as stronger support in y for H ⊇ H0. The right-hand side above is
increasing in θ, so less-bold claims are more strongly supported by the data.

To summarize, Mayo’s severity measure is derived from p-value functions determined
by the direction of the claims of interest. A practical way to see it is by treating the
complement of the claim of interest, Hc, as a null hypothesis, so the severity of H is 1
minus the associated p-value:

The severity computation [...] could be arrived at through other means, in-
cluding varying the null hypothesis. (Mayo 2018, p. 346)

One can plot the severity function to visualize the details explained above (see Section 5),
and Mayo refers to these as severity curves.

4.3 IMs versus severity

Having introduced Mayo’s severity proposal, the goal now is to compare it to the IM
proposal presented above. Starting with the same setup as in the previous subsection,
the aforementioned test-based IM construction is tailored to a specific form of hypothesis
the data analyst is interested in evaluating. Therefore, for the special class of problems
involving half-line hypotheses, like Mayo exclusively considers, we can mimic her severity
construction above and construct an IM based on the most powerful test of a particular
null hypothesis. For example, for a left-sided null hypothesis, it can be shown (see
Appendix A.3) that this construction determines a possibility contour for Θ,

πy(θ) = pval≤y (θ), (12)

that corresponds to the p-value function in (10). In this context, the p-value function
above is monotone increasing, hence the corresponding possibility measure Πy satisfies

Πy({Θ ≤ θ}) = pval≤y (θ) and Πy({Θ > θ}) = 1, θ ∈ R.
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By conjugacy, the corresponding necessity measure Πy satisfies

Πy({Θ ≤ θ}) = 0 and Πy({Θ > θ}) = 1− pval≤y (θ), θ ∈ R.

To compare ours and Mayo’s solutions, we consider the two cases as above separately.

Case 1. Small p-value, probing for support in (subsets of) the alternative.

In this case, pvaly(θ0) is small, so probing entails considering hypotheses of the form
{Θ > θ} for θ > θ0. As shown above,

sevy({Θ > θ}) = 1− pval≤y (θ) = Πy({Θ > θ}), θ > θ0.

Therefore, ours and Mayo’s probing solutions exactly agree.

Case 2. Not-small p-value, probing for support in (supersets of) the null.

In this case, pvaly(θ0) is not small, so probing entails considering hypotheses of the
form {Θ ≤ θ} for θ > θ0. As shown above,

sevy({Θ ≤ θ}) = 1− pval≥y (θ) > 0 = Πy({Θ ≤ θ}), θ > θ0.

Therefore, ours and Mayo’s probing solutions disagree, and her severity measure
dominates the IM’s support measure.

The take-away message is that Mayo’s severity solution agrees with the IM solution in
Case 1 but not in Case 2. This difference, of course, deserves some explanation.

At least at first glance, Mayo’s approach is appealing: both the initial assessment
and the follow-up probing assessments are based on use of a most powerful test. Under
ordinary circumstances, few statisticians would find issues concerning the use of a most
powerful test—but these are not “ordinary circumstances.” Ours and Mayo’s goal here
is beyond what the classical theory was designed for, i.e., to probe for support in certain
follow-up hypotheses depending on the outcome of the initial test, so further consideration
is needed. Indeed, that we are even entertaining the idea of probing implies that we aim
to do more than test a hypothesis, so it is not obvious that a standard hypothesis test is
the correct starting point. If one chooses to start with classical hypothesis testing, and
if error rate control in the entire probing procedure is desired (see below), then it must
be treated more-or-less like a multiple testing problem. We say “more-or-less” because
typical multiple testing has a fixed collection of hypotheses being tested simultaneously,
whereas probing ought to allow the investigator to peek at the data before deciding on
what other hypotheses besides H0 to consider. The only probing scheme that

(a) rejects H0 if the p-value in (10) no more than α, and

(b) controls the overall probing error rate at α over any user probing policy

is one that, when pval≤y (θ0) is not small, assigns support 0 to all hypotheses H that are
supersets of H0. That is precisely what the IM solution does: it is not a “conservative”
solution, it is the only way to achieve the dual objectives (a) and (b) above.

It remains to justify objective (b), the desirability of error rate control of the entire
probing scheme, in the spirit of Corollary 2. Mayo and her error-statistician followers
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adhere to the belief that justification of conclusions about unknowns, drawn through an
application of a statistical method to real-world observed data, is directly tied to existence
of a proof that the statistical method being employed controls error probabilities relative
to the model posited for observable data. If the error-statisticians prioritizes control of
the Type I error of the initial test, then why would overall probing error control for the
entire probing scheme, as in (9), not be an equally high—if not higher—priority?

There is, of course, a partial connection between our proposed IM solution (based on
a given test) and Mayo’s severe testing: they exactly agree in the typical Case 1 where
the data is incompatible with the null hypothesis and the goal is to probe for support
in the alternative. It is only in Case 2 where the solutions diverge, but this is the more
challenging case where the data is not incompatible with the null. In this Case 2, Mayo’s
solution is greedy in the sense that it (implicitly) introduces new hypotheses and the
corresponding hypothesis-specific tests with no adjustments to ensure that the probing
scheme is reliable. It is only after making these adjustments that a direct correspondence
with our proposed IM solution can be made in Case 2. From a higher level perspective,
we think it should also be of general interest to the imprecise probability community
that certain kinds of imprecision are necessary in order to achieve the performance and
probativeness properties that statisticians and scientists want and need.

Finally, we must admit that the IM solution presented above is not fully satisfactory.
Even though assigning support 0 for all probing-relevant hypotheses in the Case 2 is
unavoidable in some sense, the goal of course is to be more efficient. Towards this, we
remind the reader that the comparison just made between the two solutions is one that
takes Mayo’s starting point as our starting point. We are not obligated, however, to
start with given hypothesis testing procedure and, in fact, it is the holistic perspective
described in Section 2.2 above that allows us, among other things, to overcome the trivial
support assignments in Case 2 without sacrificing reliable probing.

Several illustrations of this are provided in Section 5 below and, in particular, a direct
comparison of the holistic and test-based IM solutions, along with Mayo’s severe-testing
solution, is given in Section 5.1.

5 Illustrations

5.1 Normal mean

Mayo (2018, p. 142) describes a hypothetical water plant where the water it discharges
is intended to be roughly 150 degrees Fahrenheit. More specifically, water temperature
measurements are assumed to be normally distributed with mean Θ degrees and standard
deviation 10 degrees and, under ideal conditions, Θ is no more than 150 degrees. To test
the water plant’s settings, a sample Y = (Y1, . . . , Yn) of n = 100 water temperature
measurements are taken. Then the sampling distribution of the sample mean, Ȳ , is
N(Θ, 1). Since water temperatures higher than 150 degrees might harm the ecosystem, of
interest is testing the null hypothesis H0 : Θ ≤ θ0, where θ0 = 150, versus the alternative
H1 : Θ > θ0. After this primary question is addressed, we have the option to probe other
hypotheses of the form (−∞, θ] or (θ,∞), for θ near 150.

A most powerful test is available in this example, and it rejects H0 : Θ ≤ θ0 when
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(a) ȳ = 152, “reject H0”
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(b) ȳ = 151, “do not reject H0”

Figure 1: Results for the normal mean example. Panel (a) shows a case where the null
would be rejected, with θ 7→ Πy({Θ ≤ θ}) in black and θ 7→ Πy({Θ > θ}) ≡ 0 in red; red
dots correspond to the severity values in Table 3.1 of Mayo (2018). Panel (b) shows a case
where the null is not rejected, with θ 7→ Πy({Θ ≤ θ}) in black and θ 7→ Πy({Θ ≤ θ}) ≡ 0
in red; red dots correspond to the severity values in Table 3.3 of Mayo (2018).

Ȳ − θ0 is large. Then it follows easily that the p-value function is

pval≤y (θ) = 1− pnorm(ȳ − θ), Θ ∈ R,

where pnorm denotes the standard normal distribution function. As discussed above, this
p-value function determines both the IM and Mayo’s severity.

Suppose we observe ȳ = 152, which is potentially incompatible with the null hypoth-
esis H0 : Θ ≤ 150. Indeed, a plot of θ 7→ pval≤y (θ) = Πy({Θ ≤ θ}) is shown in Figure 1(a)
and we see that, at θ = θ0 = 150, the possibility is smaller than 0.05, so we would be
inclined to reject the null hypothesis. To probe for support of subsets of the alternative
hypothesis, we also plot the severity/necessity

Πy({Θ > θ}) = pnorm(ȳ − θ), θ ∈ R,

and we see that there is, in fact, non-negligible support in the data for, say, the hypothesis
“Θ > 151.” These results agree exactly with the severity-based analysis presented in
Mayo (2018). The claim is that, for those θ whose value on red curve in Figure 1(a) is
relatively large, e.g., values near θ = 151 and perhaps up to θ = 152, the hypothesis
“Θ > θ” garners non-negligible support from the data.

Next, consider the case where ȳ = 151, which is too small to have grounds for rejecting
H0. In such cases, the goal would be to probe for potential support in hypotheses implied
by the null. Figure 1(b) shows a plot of the possibility measure θ 7→ Πy({Θ ≤ θ}), similar
to that in Panel (a), and necessity measure θ 7→ Πy({Θ ≤ θ}) ≡ 0. Also shown are the
values of sevy({Θ ≤ θ}) for a few choice values of θ taken from Table 3.3 in Mayo (2018,
p. 145), and there are two relevant points to note:
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• First, as expected in Case 2 situations like this one, Mayo’s severity values drasti-
cally differ from the IM’s necessity measure values.

• Second, thanks to the location parameter structure and symmetry of the normal
model, the severity values actually agree with the IM’s possibility measure val-
ues, which highlights the effects of this particular severity measure’s greediness—it
unexpectedly leads to simply treating the p-value as a measure of support!

While the IM’s trivially constant necessity measure is not a satisfactory solution to the
probing problem, at least it does have the desirable error rate control property. Moreover,
the IM’s conclusion agrees with the understanding that even the most powerful test is
incapable of offering support for the null hypothesis.

Finally, we take a step back from the test-based focus, to approach the problem with
a more holistic perspective. This is intended to highlight the differences between the
general IM framework and Mayo’s severe testing approach that is centrally focused on a
given test procedure. The likelihood-based IM has possibility contour

πy(θ) = 1− |2 pnorm(|ȳ − θ|)− 1|, θ ∈ R,

Figure 2 shows plots of this contour function for two data sets: one with ȳ = 152 and the
other with ȳ = 151. These plots also show the possibility measure

θ 7→ Πy({Θ ≤ θ}) = sup
ϑ≤θ

πy(ϑ) =

{
πy(θ) if θ ≤ ȳ

1 if θ > ȳ,

which would be used to initially assess the null hypothesis. As above, these two data sets
correspond to Case 1 and Case 2, respectively, so we proceed differently with probing.
For the first data set, probing involves the necessity measure

θ 7→ Πy({Θ > θ}) = 1− Πy({Θ ≤ θ} =

{
1− πy(θ) if θ ≤ ȳ

0 if θ > ȳ,

and, for the second data set, probing involves the necessity measure

θ 7→ Πy({Θ ≤ θ}) =

{
0 if θ ≤ ȳ

1− πy(θ) if θ > ȳ.

These two functions are plotted in red in Figure 2(a) and Figure 2(b), respectively. In
the former case, there is non-trivial support for the claim “Θ > θ” with θ up to roughly
151 or 151.5, but 0 support with θ more than 152. In the latter case, there is non-trivial
support for the claim “Θ ≤ θ” with θ as small as 152 or perhaps 151.5.

5.2 Binomial proportion

Suppose an individual claims to possess psychic abilities. To test the validity of his claim,
we set up the following experiment. From a collection of five fixed symbols, a computer
will generate one of these at random, and the claimed psychic will be asked to guess
which of the five symbols the computer generated. This will be repeated n = 20 times
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(a) ȳ = 152, “reject H0”
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(b) ȳ = 151, “do not reject H0”

Figure 2: Results of the holistic, likelihood-based IM for the normal mean problem. Both
panels show the possibility contour θ 7→ πy(θ) and the possibility measure θ 7→ Πy({Θ ≤
θ}) as dashed and solid black lines, respectively. Panel (a) corresponds to Case 1 so the
necessity measure θ 7→ Πy({Θ > θ}) is shown in red. Panel (b) corresponds to Case 2 so
the necessity measure θ 7→ Πy({Θ ≤ θ}) is shown in red.

and the result is a number Y of correct guesses. Then Y has a binomial distribution
with parameters n = 20 and Θ ∈ [0, 1] unknown. Of course, given Y = y the likelihood
function for Θ is Ly(θ) ∝ θy(1 − θ)n−y, for θ ∈ [0, 1]. As a first step, we can carry out
the likelihood-based construction in Section 2.2 to get an IM for Θ. Figure 3(a) shows a
plot of the possibility contour function based on an observed y = 8 correct guesses out
of n = 20 trials. The level set determined by the horizontal line at α = 0.05 determines
a 95% confidence interval for Θ.

To test the psychic’s claim, the null hypothesis is H0 : Θ ≤ θ0, with θ0 = 0.2. We can
see from the possibility contour plot that Πy(H0) < 0.05, so we are inclined to reject the
null. But is there any support in the data for the psychic’s claim? For this, we probe
hypotheses “Θ > θ” for θ > θ0. Figure 3(b) plots the necessity θ 7→ Πy({Θ > θ}). In
this case, we find that hypotheses consisting of bold claims like “Θ > θ” for θ near 0.4
or even 0.5 are well supported by the data.

5.3 Bivariate normal correlation

Suppose that Y consists of n independent and identically distributed pairs Yi = (Y1,i, Y2,i)
having a bivariate normal distribution with zero means, unit variances, and correlation
Θ ∈ [−1, 1]. If there were a hypothesis H0 : Θ ≤ θ0, then an asymptotic pivot based on
the maximum likelihood estimator, θ̂, could be constructed and the corresponding Wald
test would look very similar to classical z-test like used in Section 5.1 above. This bivari-
ate normal correlation problem, however, corresponds to a so-called curved exponential
family, so θ̂ is not a sufficient statistic and, consequently, some information/efficiency
is lost in the aforementioned Wald test for finite n. So we consider the more holistic
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Figure 3: IM results for the binomial example in Section 5.2.

approach and the likelihood-based IM construction from Section 2.2. The relative likeli-
hood function has no closed-form expression, but it can be readily evaluated numerically.
Then the corresponding IM output, which requires probability calculations with respect
to the bivariate normal model, can be found numerically using Monte Carlo.

As an illustration of the ideas presented above, consider the law school admissions data
analyzed in Efron (1982), which consists of n = 15 data pairs with Y1 = LSAT scores
and Y2 = undergrad GPA. For our analysis, we standardize these so that the mean
zero–unit variance is appropriate. Of course, this standardization has no effect on the
correlation, which is our object of interest. In this case, the sample correlation is 0.776;
the maximum likelihood estimator, which has no closed-form expression, is θ̂ = 0.789. A
plot of the plausibility contour πy for this data is shown in Figure 4(a). The horizontal
line at α = 0.05 determines the 95% plausibility interval for Θ, which is an exact 95%
confidence interval. Clearly, the data shows virtually no support for Θ = 0, but there
is some marginal support for the hypothesis “Θ > 0.5.” To probe this further, we plot
the necessity measure θ 7→ Πy({Θ > θ}) in Figure 4(b). As expected from Panel (a), the

latter function is decreasing in θ and we clearly see no support for “Θ > θ” with θ ≥ θ̂.
But there is non-negligible support for “Θ > θ” with θ less than, say, 0.65–0.70.

5.4 Contingency tables

Data Y = (Y00, Y01, Y10, Y11) represents the observed frequencies for each of the four com-
binations of two binary categorical variables W and X, as shown in the 2×2 contingency
table below. W and X are the response and explanatory variables, respectively.

The goal is to quantify uncertainty regarding the association between W and X. In
other words, to what extent does knowledge of the value of X help us predict the value
of W? Let Θ = (Θ0,Θ1), Θ ∈ [0, 1]2, denote the conditional probabilities of Y = 1 given
X = 0 and X = 1, respectively; that is,

Θx = P(W = 1 | X = x), x ∈ {0, 1}.
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Figure 4: Summary of the IM analysis of Efron’s law school admissions data.

W
0 1 Total

X
0 y00 y01 y0·
1 y10 y11 y1·

Total y·0 y·1 n

The association between W and X can be stated in terms of the difference Θ0 − Θ1.
A difference of zero implies no association, and the bigger the difference, positive or
negative, the stronger the association.

To construct an IM for Θ0 − Θ1, we can leverage the marginalization properties of
the IM. Our approach involves first constructing an IM for Θ, and then mapping it to
a marginal IM for Φ = f(Θ) = Θ0 − Θ1. It is important to note that the method for
collecting data is fundamental to the specification of the likelihood function Ly(θ) and,
consequently, to the holistic IM construction from Section 2.2. Here, we will consider the
scenario where the row totals are fixed. This means that random samples of size y0· and
y1· observations are drawn from the populations corresponding to X = 0 and X = 1,
respectively, and then each observation is classified as either W = 0 or W = 1. This
experiment produces two independent sequences of Bernoulli trials, therefore, a product
of binomial likelihoods:

Ly(θ) ∝ θy010 (1− θ0)
y0·−y01 × θy111 (1− θ1)

y1·−y11 , θ = (θ0, θ1) ∈ [0, 1]2.

Consider a hypothetical clinical trial in which n = 50 participants are randomly and
equally divided into two groups. One group receives a drug, the other a placebo. After
a year, the participants undergo an evaluation to determine whether a specific aspect of
their health has improved. Table 1 shows the data and Figure 5(a) shows a contour plot of
the possibility contour for Θ. The dotted lines correspond to θ̂y, the maximum likelihood
estimator. Recall that a marginal possibility contour for Φ can be obtained from the
possibility contour for Θ through (5). Figure 5(b) shows the corresponding necessity and
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Disease
Group No Yes Total
Placebo 11 14 25
Drug 17 8 25

Table 1: Hypothetical clinical trial data.

possibility measures for hypotheses Hϕ = (−1, ϕ] and Hc
ϕ = (ϕ, 1), respectively. Note that

Π
f

y(H0) is small, which would make us inclined to reject the hypothesis “Φ ≤ 0.” Non-
negligible necessity measures for Hc

ϕ with ϕ < 0.1 can be observed. The public-health
importance of raw differences like this may be hard to grasp in some applications. In such
cases, data analysts often prefer to use the concept of relative risk Φ = g(Θ) = Θ0/Θ1.
Once again, it is straightforward to obtain a possibility contour for Φ from that for Θ.
Figure 5(c) shows this possibility contour. Agresti (2007) points out the difficulties in
deriving confidence intervals for the relative risk because of the highly skewed distribution
of the plug-in estimator. An advantage of our marginal IM is that a 95% confidence
interval for Φ is readily available from the possibility contour in Figure 5(c), being the
level set determined by the horizontal line at α = 0.05. As expected, this interval does
not contain ϕ = 1, so the null hypothesis of no association can be rejected. Figure 5(d)
shows the marginal IM necessity measures for hypotheses Hϕ = (ϕ,∞). Evidently there
is reasonably strong support for the alternative sub-hypothesis that the risk of disease is
at least 20% higher in the placebo group.

6 Conclusion

Here we showed that there is more to the IM framework than what has been presented in
the existing literature. Specifically, the validity property, together with its inherent im-
precision implies not only performance, but also probativeness assurances. These insights
position IMs as a compelling solution to the long-standing Bayesian versus frequentist
two-theory problem, which will undoubtedly benefit the statistical community. They are
also of special interest to the belief function/possibility theory community, as it showcases
the fundamental importance of their specific brand of imprecision.

We also compared IMs and Mayo’s severe testing framework, and found important
points of convergence and divergence. Specifically, in what we referred to here as “Case 1”
situations, where the null hypothesis being tested is rejected, and the goal is to probe
for support in hypotheses that imply the alternative, Mayo’s proposal agrees with (a
particular version of) our proposal. In the “Case 2” situations, however, where the null
hypothesis is not rejected and the goal is to probe for support in hypotheses implied by
the null, the two proposals are very different. We argue that the proposed IM approach,
and its solution to the probing problem, is more appropriate in these Case 2 scenarios by
appealing to both common sense and the IM’s inherent strong reliability properties. More
generally, Mayo’s idea to treat probing as an embellishment on the existing statistical
hypothesis testing framework actually hinders ones ability to probe reliably, while what
we called the “holistic” IM solution is both flexible and provably reliable. A number
of illustrations are presented in Section 5; application of these methods in cases beyond

23



these simple, low-dimensional problems will be reported elsewhere. In particular, in light
of recent developments in Cella and Martin (2022a) we are hopeful that a notion of
probativeness to model-agnostic statistical learning problems is within reach.
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A Hypothesis testing details

A.1 Test-based IM construction

As an alternative to the likelihood-based IM construction in Section 2.2, Martin (2021)
first showed how to construct an IM driven by a given statistical procedure, i.e., a hy-
pothesis test of a confidence region. Since that statistical procedure is often tailored to
a specific task or question, e.g., testing a particular (form of) hypothesis, this construc-
tion would tend to be “less holistic” than the likelihood-based construction mentioned
above. It can happen, however, that the two constructions agree, as we will demonstrate
below. To us, the “more holistic” likelihood-driven construction is preferred, but the
procedure-driven strategy has its own advantages.

Here we focus the procedure-based construction on cases where a family of hypothesis
testing problems are given. Start with a class of hypotheses {Hθ : θ ∈ T} about Θ indexed
by the parameter space T. These could be singleton/point-null hypotheses, Hθ = {θ},
half-line hypotheses, Hθ = (−∞, θ], in the case of scalar Θ, or other things. Next,
consider a collection {δθα : α ∈ [0, 1], θ ∈ T} of decision rules, where δθα : Y → {0, 1},
with the interpretation that δθα(y) = 1 means reject Hθ and δθα(y) = 0 means do not
reject. For example, in a simple scalar location parameter setting, where Hθ = (−∞, θ],
then the testing rule might take the form δθα(y) = 1(y − θ > cα), where cα is a specified
threshold and 1(·) is the indicator function. The index α controls the size or Type I error
probability of the test:

sup
Θ∈Hθ

PΘ{δθα(Y ) = 1} ≤ α, for all α ∈ [0, 1], θ ∈ T. (13)

The reader might be asking him/herself why a family of tests indexed by θ ∈ T would
be needed. Keep in mind that the IM returns a full-blown imprecise probability defined
over T, so it would be unrealistic to expect that anything meaningful could be obtained
based on a test of, say, a single hypothesis. Often the problem structure suggests a form
of hypothesis, e.g., H : Θ ≤ θ0, and that the same testing procedure would have been
used if θ0 was changed to θ0 + η. So even if one has just one specific hypothesis/test
procedure in mind, often that one belongs to a family like described above, so specifying
a family imposes no additional burden on the data analyst.

In any case, from here, define the function

πy(θ) = inf{α ∈ [0, 1] : δθα(y) = 1}, θ ∈ T. (14)
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This is just the p-value function corresponding to the collection of tests (Lehmann and
Romano 2005, Eq. 3.11). Under certain conditions on the test (see below), θ 7→ πy(θ) is
a genuine possibility contour function on T, i.e., supθ πθ(y) = 1 for each y. In that case,
the IM’s possibility and necessity measures are defined via optimization exactly like in
(2) and will enjoy all the same properties, e.g., (3).

What conditions are required of the collection of tests to ensure that the function
defined in (14) is a possibility contour? Basically, the collection of tests needs to satisfy
a certain “nestedness” condition. The concept itself is pretty simple—for each data
set y, there is a hypothesis Hθ that cannot be rejected at any level α—but a precise
mathematical statement is complicated. In the simplest case, suppose that for each y,
there exists θ such that δθα(y) = 0 for all α ∈ [0, 1], i.e., that there is a hypothesis Hθ that
cannot be rejected based on data y. For example, if Y denotes a sample of size n from a
normal distribution with mean Θ and known variance σ2, and if the hypotheses Hθ = {θ}
are singletons, then the usual z-test cannot reject Hθ with θ = ȳ at any significance level
α. In general, suppose that for each y, there exists a net α 7→ θy(α), for α ∈ [0, 1], such

that δ
θy(α)
α (y) = 0 for all α sufficiently close to 1. In the previous normal illustration, for

any data y, the half-line hypothesis Hθ = (−∞, θ], with

θ = θy(α) = ȳ − c z1−α σ n−1/2, any c ∈ (0, 1],

would not be rejected for any α ∈ [0, 1].

A.2 When do the two IM constructions agree?

The two IM constructions above will agree when the procedure-driven construction is
based on the likelihood ratio test for the class Hθ = {θ} of singleton hypotheses. In this
case, the test procedure could be described by the rule

δθα(y) = 1{R(y, θ) ≤ cα(θ)}, y ∈ Y, θ ∈ T, α ∈ [0, 1],

where 1(·) is the indicator function and cα(θ) is chosen to ensure that (13) holds. As is
well known, thanks to the definition of cα(θ) through the sampling distribution of R(Y, θ)
under Pθ, it follows that the testing rule can be equivalently expressed as

δθα(y) = 1{πy(θ) ≤ α}, y ∈ Y, θ ∈ T, α ∈ [0, 1],

where πy(θ) is the p-value/contour in (1). It is now clear that

inf{α : δθα(y) = 1} = inf{α : πy(θ) ≤ α} = πy(θ),

so the contour function defined in (14) agrees with that in (1).

A.3 Simplification in Mayo’s context

To our knowledge, Mayo’s developments focus on a special class of problems involving a
scalar location parameter Θ and one-sided null hypotheses like H0 : Θ ≤ θ0. There are
lots of problems that fit this setting, at least asymptotically, so she has grounds to make
these cases her focus. The relevant structure below also holds more generally—but still
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scalar parameter—where the model admits a monotone likelihood ratio property (e.g.,
Casella and Berger 1990; Karlin and Rubin 1956).

Recall the setup described in Section 4.1, where the test procedure rejects the null
hypothesis H0 : Θ ≤ θ0 based on data y if and only if S(y, θ0) exceeds some specified
threshold sα, indexed by α ∈ [0, 1]. What the location structure implies is that the test
statistic can be written as S(y, θ0) = S(y, 0) − θ0. The point is that there is nothing
special about the value θ0, i.e., the test has exactly the same form if θ0 is replaced by,
say, θ0 + η. So the single test δθ0α (y) = 1{S(y, 0) > θ0 + sα} determines a family of tests,

δθα(y) = 1{S(y, 0) > θ0 + sα}, θ ∈ R, α ∈ [0, 1],

one for each hypothesis Hθ = (−∞, θ], for θ ∈ R. Then we follow the general strategy in
Appendix A.1 above—in particular, the definition in (14)—to get that

πy(θ) = inf{α ∈ [0, 1] : δθα(y) = 1} = pval≤y (θ), θ ∈ R.

This proves the claim in (12).
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Figure 5: Results of the valid IM applied to the hypothetical data in Table 1.
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