
Available online at www.sciencedirect.com
www.elsevier.com/locate/ijcip

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8
1874-5482/$ - see fro
http://dx.doi.org/10.

nCorresponding a
E-mail address: r
Flow whitelisting in SCADA networks
Rafael Ramos Regis Barbosaa,n, Ramin Sadrea, Aiko Prasb

aDesign and Analysis of Communication Systems, Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
bDistributed and Embedded Systems, Department of Computer Science, Aalborg University, Selma Lagerlofs Vey 300,
DK-9220 Aalborg, Denmark
a r t i c l e i n f o

Article history:

Received 15 January 2013

Available online 20 August 2013

Keywords:

SCADA systems

Intrusion detection

Network flow whitelisting
nt matter & 2013 Elsevie
1016/j.ijcip.2013.08.003

uthor.
.barbosa@utwente.nl (R.R
a b s t r a c t

Supervisory control and data acquisition (SCADA) networks are commonly deployed in

large industrial facilities. Modern SCADA networks are becoming more vulnerable to cyber

attacks due to the common use of standard communications protocols and increased

interconnections with corporate networks and the Internet. This paper describes an

approach for improving the security of SCADA networks using flow whitelisting. A flow

whitelist describes legitimate traffic based on four properties of network packets: client

address, server address, server-side port and transport protocol.

The proposed approach incorporates a learning phase in which a flow whitelist is

learned by capturing network traffic over a period of time and aggregating it into flows.

After the learning phase is complete, any non-whitelisted connection observed generates

an alarm. The evaluation of the approach focuses on two important whitelist character-

istics: size and stability. The applicability of the approach is demonstrated using real-world

traffic traces captured at two water treatment plants and at an electric-gas utility.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Supervisory control and data acquisition (SCADA) networks
are commonly deployed to aid the operation of large indus-
trial facilities such as water treatment plants and electric
utilities. In the past, these networks were completely isolated
and relied on purpose-specific hardware and software; but
now they employ commodity hardware and are increasingly
interconnected using standard network protocols such as
TCP/IP. While this new scenario reduces costs and improves
efficiency, the side effect is that the networks are exposed to
a much wider range of attacks.

This paper proposes a flow whitelisting approach that
seeks to reduce the number of attack vectors on SCADA
networks that use TCP and UDP as their primary trans-
port protocols. A “flow” is defined as a bidirectional sequ-
ence of packets with identical client address, server address,
r B.V. All rights reserved

.R. Barbosa).
server-side port and transport protocol. Flow whitelists
represent all the legitimate traffic based entirely on these
four properties of network packets.

Flow whitelisting presents several advantages over deep
packet inspection and host-level intrusion detection [7,8,10].
By not depending on the packet payload, flow whitelisting
can handle proprietary protocols. Furthermore, it can operate
at the network level; thus, it is not necessary to modify a
host. This addresses the reluctance on the part of SCADA
operators to make changes to their computing environments.
Note that, although flow-level whitelists are not commonly
used in traditional IP networks because the number of
legitimate connections is too large to be manageable, they
have been applied to specific problem domains such as
reducing SPAM [5], avoiding phishing [9], guaranteeing access
to important customers during DDoS attacks [15], and pre-
venting various VoIP infrastructure attacks [6].
.

dx.doi.org/10.1016/j.ijcip.2013.08.003
dx.doi.org/10.1016/j.ijcip.2013.08.003
dx.doi.org/10.1016/j.ijcip.2013.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcip.2013.08.003&domain=pdf
mailto:r.barbosa@utwente.nl
dx.doi.org/10.1016/j.ijcip.2013.08.003

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8 151
The main motivation for using whitelists is that most
SCADA network traffic is generated by automated processes,
such as the periodic polling of field devices. Also, SCADA
systems are closed with very limited external access, if any.
Moreover, changes are rare, in other words, SCADA hosts and
services are infrequently added to or removed from the
network.

Whitelisting has been recommended by several entities as
a means for implementing SCADA security. For instance, the
Norwegian Oil and Gas Association [12] suggests that “all
access requests shall be denied unless explicitly granted. The
U.S. National Institute of Standards and Technology (NIST)
[14] recommends the “[blocking of] all communications with
the exception of specifically enabled communications.” How-
ever, to the best of our knowledge, the viability of whitelists
has never been studied in real-world SCADA environments.
In the previous work [2], we have shown that connection
matrices are remarkably stable in SCADA networks, suggest-
ing that whitelists are feasible in these environments.

This paper presents an approach for flow whitelisting in
SCADA networks that assist network administrators in
detecting illegitimate network traffic. In order to be viable, a
whitelist must possess two characteristics. First, its size must
be manageable. A very large list with millions of entries, as
encountered in traditional IP networks, would make the
approach infeasible to implement and manage. Second, the
whitelist must be stable. If the list is unstable (i.e., changes
frequently), it would require continuous updating by the
network administrator or it would generate a large number
of false alerts. The feasibility of the whitelisting approach is
demonstrated using real-world traffic from two water treat-
ment facilities and an electric-gas utility.
2. Flow whitelisting approach

Fig. 1 presents an overview of the flow whitelisting approach.
The traffic in the SCADA network is captured, aggregated to
connections and then aggregated to flows. A “connection” is
defined as all packets with the same source/destination IP
address, source/destination port and IP protocol, regardless of
the direction in which the packets are sent. In the subsequent
learning phase, the flows are observed over a certain period
of time in order to create an initial flow whitelist. A flow
whitelist contains entries of the form: client IP address, server
IP address, server port, IP protocol. After the whitelist is
generated, the connections are analyzed in the detection
Packets Connection
Creation

Connections
C

Fig. 1 – Flow whitel
phase. All network traffic matching a whitelist entry is
considered to be legitimate. Every connection that does not
match a whitelist entry generates an alarm.

2.1. Connection and flow creation

Since the approach relies on IP packet header information,
the packet headers have to be captured in the (sub)networks
that are to be monitored by the whitelist. This paper only
considers TCP and UDP packets. Connection creation involves
the aggregation of the captured packets to connections.
As mentioned before, a connection is defined as all packets
with the same source/destination IP address, source/destina-
tion port and IP protocol, regardless of the direction of the
packets. The end of a connection is determined either by
using a TCP state machine or an inactivity timeout of 300 s.
Our experiments used the argus open source tool to perform
this task.

The flow creation step identifies the client and server sides
of the connections and further aggregates the connections
according to the four-tuple flow definition. Four rules are
applied in sequence to identify the server side:
�

Fl
rea

isti
Rule 1 applies to all TCP connections for which a three-
way handshake is observed. The server is set to be the
host that received the SYN packet or sent the SYN/ACK
packet.
�
 Rule 2 is applied if a well-known port (below 1024) is
observed: the host using such a port is set to be the server.
Note that in the case of an active FTP session, where the
originator of a data connection is the server, the source
port 20 is set as a service port. In the case of protocols that
use the same (well-known) port on both hosts (e.g., NTP),
Rule 1 or Rule 4 is used for classification.
�
 Rule 3 is a heuristic. If the same protocol and port are
reused by a host in multiple connections, then the host is
set as the server and the protocol–port combination is
used to identify the service. The heuristic relies on the fact
that client ports normally vary with each connection and
are less likely to be repeated. Rule 3 makes it necessary to
keep every connection that is not classified by Rules 1
and 2 in memory until a second connection with a
repeated host address, protocol and port is observed; this
can potentially delay the analysis indefinitely. A timeout
could be used in an online implementation, after which
time the connection is classified using Rule 4. The offline
implementation described in this paper employs an infi-
nite timeout.
ow
tion

Learning

Detection

Flows

Alarms

Whitelist

ng approach.

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8152
�
 Rule 4 is applied to flows that do not match one of the
previous three rules. Rule 4 sets the server to be the
destination of the first packet observed in the connection.
Note that the four rules implicitly assume that every
transport port and IP protocol pair used by a server uniquely
identify a service in the SCADA network. This definition is
particularly problematic for network services that use
dynamic port allocation (DPA) such as Microsoft's Active
Directory. In this service, high ports (above 1024) are dyna-
mically allocated for remote procedure calls [11]. We
acknowledge this limitation, and discuss its effects when
presenting our experimental results.
2.2. Learning phase

Ideally, a network administrator would know all the services
deployed in a SCADA network and a flow whitelist could be
constructed based on this knowledge. In practice, however,
complete information is rarely available, partly due to the use
of proprietary SCADA protocols.

The goal of the learning phase is to automatically create
an initial whitelist from traffic collected over a period of time
(learning period). Two assumptions are made: (i) all flows in
the learning period are legitimate; and (ii) most legitimate
flows can be observed during the learning period. The first
assumption is valid because anomalous or malicious events
are much rarer in SCADA networks than in traditional IP
networks. In fact, no attacks were observed during the
capture of the data sets used in our experiments. The second
assumption is based on the expectation that most of the
traffic in a SCADA network is automated, which implies that
flows would be repeated fairly often. The approach used to
set the duration of the learning phase is discussed later in
this paper.

Note that all legitimate flows are not expected to be
encountered during the learning phase. For example, manual
changes to the configuration of programmable logic control-
lers (PLCs) could, depending on the setup, only happen rarely.
Thus, flows related to this activity may not be present in the
whitelist. For this reason, network administrators are pro-
vided with the opportunity to augment the whitelist during
the detection phase.
2.3. Detection phase

The whitelist created during the learning phase is used in the
detection phase to identify illegitimate flows. If a flow is
whitelisted, nothing happens; otherwise an alarm is raised.
In a real-world deployment, an administrator would either
add the flow that raises an alarm to the whitelist (treating the
alarm as a false positive) or block the flow (treating the alarm
as a true positive). Note that, unlike traditional IT networks,
where hosts are commonly put in quarantine in case of
malicious activities, automatic blocking is not advisable for
SCADA environments. This is because blocking legitimate
SCADA traffic could have dire consequences such as an
electricity blackout. This issue is discussed later in the paper.
3. Experimental results

This section presents the results of four experiments used to
evaluate the viability of flow whitelists in SCADA networks.

The first experiment was designed to verify if the whitelist
is manageable by comparing the size of the complete white-
list with the number of hosts and communicating pairs in a
network. The second experiment examined the ideal learning
time. The third experiment focused on the classification of
the alarms produced by the data sets. The fourth experiment
analyzed the distribution of alarms.

In the experiments, it was necessary to simulate admin-
istrator intervention during the detection phase. This was
accomplished by always adding a flow that causes an alarm
to the whitelist, while also storing the alarm for post-proces-
sing. Thus, an alarm is never repeated, and the analysis can
concentrate on the nature of the alarms rather their number.
3.1. Data sets

The experiments used network packet traces collected at
three SCADA environments: two water treatment facilities
(water1 and water2) and one electric-gas utility (electric-gas).
Two data collections were performed simultaneously at one
of the water treatment facilities, one in the field sub-network
(water2-field), consisting of PLCs, remote terminal units (RTUs)
and field devices; and one in the control sub-network (water2-
control), consisting of servers with different functions (e.g.,
polling PLCs, maintaining historical data and performing
access control) and human machine interfaces (HMIs) (i.e.,
operator workstations). A single collection was performed at
the other two facilities, each containing all the data for the
two logical sub-networks. The SCADA data sets comprised
full-packet tcpdump/libpcap traces and each collection was
treated as a separate data set .

Two traditional IT network data sets were used for
comparison purposes. One comprised a publicly available
tcpdump/libpcap trace captured at an educational organiza-
tion (loc6) [4]. Only a portion of the available data was used,
approximately the first 7.5 days of the trace. The other
traditional IT data set comprised fifteen days of NetFlow
records collected at an internal router located at a university
campus (uni). Table 1 presents an overview of the six data
sets.

Note that the flow creation step cannot be applied to the
uni data set. NetFlow records do not contain enough informa-
tion to identify the host that initiates a TCP connection
according to the three-way handshake, which is necessary
to apply Rule 1. Instead, we used the techniques described in
[13] to aggregate NetFlow records to connections. Therefore,
the client side (termed as the originator in [13]) and, as a
consequence, the server side and the service port of a
connection were determined using these techniques.
3.2. Whitelist size

The first experiment sought to verify if the whitelist size is
manageable. Specifically, it evaluated the sparseness of the

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8 153
connection matrix, i.e., if the number of acceptable flows was
small compared with the number of possible flows.

This characteristic was tested by extending the learning
time to the full duration of each trace and counting the
number of flows observed. This allowed the estimation of the
size of the whitelist corresponding to a complete trace,
assuming that no attacks were present in the data set.
Although no attacks were reported during the capture of
the SCADA data sets, malicious activities such as network
scans are so common in traditional IT networks that their
artifacts were almost certainly present in the loc6 and uni data
sets. The bias was minimized by only considering flows for
which traffic was observed in both directions; this reduced
the number of observed flows caused by network scans and
other network anomalies.

Table 2 shows the whitelist size for each of the data sets.
Note that the internal hosts column in the table corresponds
to the number of observed hosts located inside the monitored
networks and the host pairs column corresponds to the
number of communicating host pairs. In order to make the
different traces comparable, the metrics are provided as
absolute values and as ratios based on the numbers of
internal hosts (in parenthesis).

In most cases, the sizes of the whitelists for the SCADA
data sets have the same order of magnitude as the corre-
sponding numbers of internal hosts, suggesting that flow
whitelisting is feasible in these environments. In comparison,
the traditional IT network data sets have whitelists that are
orders of magnitude larger than the corresponding numbers
of internal hosts, illustrating why the approach does not scale
to traditional network environments. Because of the massive
whitelists obtained for the traditional IT data sets, we did not
use these data sets in the remaining experiments.

Another observation is that the differences between the
host pair and whitelist ratios are not very large, implying
that, on the average, there are one or two services per server.
This means that a whitelist without service information,
Table 2 – Whitelist size ratios.

Data set Internal hosts

water1 51
water2�control 22
water2�field 14
electric�gas 388

loc6 93
uni 22,685

Table 1 – Overview of data sets.

Name Hosts Duration (days)

water1 45 13
water2�control 14 10
water2�field 31 10

electric�gas 388 86

loc6 93 7.5
uni 22,685 15
which is less restrictive and, thus, considerably less secure,
would not reduce the whitelist size in a significant manner.

The only exception to the results is that the water2-control
data set has a whitelist that is one order of magnitude larger
than the number of communicating host pairs. However, we
show later in this paper that this difference is mostly caused
by a traffic anomaly.

3.3. Training set size

The second experiment examined the effect of the learning
time on the size of the learned whitelist. Fig. 2 shows the size
of the learned whitelist as a percentage of the total number of
flows versus the learning time for the four SCADA data sets.
In the case of the water1 and water2-field data sets, more than
50% of the flows were observed within the first hour of traffic,
with only a few additions during the first day. This percen-
tage is much lower for the water2-control and electric-gas data
sets, which are around 10% and 15%, respectively. The water2-
control data set shows a significant jump in whitelist size after
around 7 days. The whitelist for the electric-gas data set grows
steadily from day 10 to day 40. The reasons for this behavior
are explained in the next section.

Despite the differences, one characteristic was shared by
all the SCADA data sets: no additions were made to the
whitelist during the second day of traffic. In fact, almost
no additions were made up to the third day in the case of
the two water data sets, and for an even longer period for the
electric-gas data set. As a result of this observation, we set the
learning time to one day in the next two experiments.

3.4. Nature of alarms

This experiment focused on the sources of instability in the
whitelists, specifically, the nature of the flows not observed
during the learning phase. During our analysis we identified
four main alarm classes:
Host pairs Whitelist size

58 (1.1) 81 (1.6)
40 (1.8) 542 (24.6)
20 (1.4) 23 (1.6)

542 (1.4) 1188 (3.1)

23,322 (250.8) 26,759 (287.7)
56,425,836 (2487.4) 141,744,206 (6248.4)

Packets Bytes Connections

591 M 96 GB 76 K
26 M 4 GB 131 K
67 M 24 GB 215 K
2 G 511 GB 179 M

53 M 53 GB 264 K
161 G 126 TB 1 G

Fig. 2 – Number of learned flows over time. (a) Data set water1, (b) Data set water2-control, (c) Data set water2-field, (d) Data set
electric-gas.

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8154
�
 DPA Anomalies: The service definition assumes a one-to-
one mapping with transport ports, which is problematic in
the case of DPA. We did not attempt to uncover all the
services using dynamic ports, but we identified anomalies
that were most likely triggered by DPA. The water2-control
and electric-gas data sets had instances where several TCP
connections were made by the same hosts in a short
sequence, with monotonically increasing transport port
numbers on the client and server sides. Table 3 shows an
excerpt of such an instance.

Table 3 – Dynamic port allocation example.

Start time Protocol Source port Dest. port Packets State

09:26:50.944328 TCP 3714 1178 16 FIN
09:26:50.960961 TCP 3715 1178 2 RST
09:26:50.976884 TCP 3716 1180 16 FIN
09:26:50.990740 TCP 3717 1180 2 RST
09:26:51.007886 TCP 3718 1183 16 FIN
09:26:51.021606 TCP 3719 1183 2 RST

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8 155
�
 Manual Activity: This class consists of human-triggered
flows. All the flows with the following services (identified
by a protocol and port number) fall in this class: telnet
(TCP-22), ssh (TCP-23), http (TCP-80), https (TCP-443),
shell (TCP-514), kshell (TCP-544), rdp (TCP-3389), vnc

(TCP-5800 and TCP-5900) and x11 (TCP-6000 to TCP-6007).
The water1 and water2 data sets had flows involving
operator workstations. If the client side of a flow was an
operator workstation, then the flow was also classified as
manual.
�
 New Host: This class contains all flows for which at least
one host (server or client) did not communicate during
the learning period and, therefore, would not be in the
whitelist.
�
 Other: This catchall class contains all flows that do not fall
in any of the other classes.
Each flow was mapped to a single class and class member-
ship was tested in the same order listed above. For instance,
consider the case of an alarm for a flow where the client is
not present in the whitelist and where the service is ssh.
In this case, the flow is classified as “manual activity” because
this class has precedence over the “new host” class.

When analyzing the electric-gas data set, we observed two
events that deserve special consideration. In SCADA environ-
ments, it is very common for most network functions to be
replicated (e.g., using duplicate servers) in order to increase
reliability. The first event of interest involves a single redun-
dant host taking over the tasks of one of the main servers in
the network, specifically, the SCADA server responsible for
polling field devices.

Just before the change occurred, we observed reboot
commands issued over telnet connections to some of the
PLCs. We did not observe telnet traffic to all the PLCs.
However, because all the changes occurred in a relatively
small time interval, we assumed that they were related.

In addition to the flows involving the PLCs, several other
long-lived flows presented the same behavior, for example,
some ssh flows were also “switched” to the redundant host.
According to the SCADA operators, changes like these are
routinely performed in order to verify if the redundant hosts
work properly.

In our analysis, we adopted the following procedure to
identify flows corresponding to this event. If one of the hosts
in the flow was the SCADA server, we looked for another flow
with a similar key, where only the SCADA server address was
changed to its backup or vice versa.

The second event involved the relocation of many hosts in
the network, mostly PLCs. At times, a continuous range of IP
addresses had their address changed to (logically) separated
sub-networks. For example, all the hosts in the IP address
range X.Y.Z.61 to X.Y.Z.71 had their addresses changed to
the range X.Y.A.61 to X.Y.A.71, respectively. We observed
telnet commands being issued to perform the address
change, but not to all hosts. Again, the small time interval
between the changes suggests that they are related. Accord-
ing to the operators, a large sub-network was split into
several smaller ones. After the change, the logical address
better represented the geographical location of a host.

We identified flows corresponding to this event simply by
verifying if either host in the flow (client or server) was part of
one of the newly created networks. It is important to note that
we did not classify telnet access to these hosts leading to
these events as part of the flows; this is because telnet

connections are always classified as manual activity.
3.5. Frequency of alarms

The final experiment applied the classification method to all
the SCADA data sets to examine the frequency of each type of
alarm. As discussed above, the learning time was set to be the
first day of the data set. Table 4 presents the results of the
classification, including the absolute number of alarms and
approximate percentages for each class. The results for the
electric-gas data set are broken down to show the two events
discussed in the previous section.

In the water1 data set, the “new host” alarms involved a
few short snmp connections, likely due to testing; one ntp

connection that appeared to repeat once a week; and one real
anomaly – several single-packet TCP connections attempts at
port 1010. The one flow in the “other” alarm class appeared to
be caused by DPA; a few moments before it started, a flow
involving the same hosts but a different server port ended.
Finally, the “manual activity” alarm class comprised a few
http(s) and x11 connections, and one connection that
originated from an operator workstation.

The leading cause of alarms in the water2-control data set
was a DPA anomaly, which was responsible for around 91% of
the alarms. This anomaly was also responsible for the
majority of the flows that contributed to the jump seen in
Fig. 2(c). In fact, if the flows generated by this anomaly were
to be removed, more than 60% of the flows would be present
in the whitelist (i.e., be observed during the learning period),
much like the other water data sets. In addition, the ratio of
the whitelist size to the number of internal hosts would have
been considerably smaller, 4.7 instead of 24.6, about the same
order of magnitude as that for the other SCADA data sets.

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8156
Most of alarms in the “new host” and “other” alarm classes
for the water2-control and water2-field data sets involved a
server that, according to the network administrator, was
related to user authentication. Thus, the alarms were likely
generated by manual activity. The unexpected behavior
involved connections made from the authentication server
(located in the control network) directly to PLCs (located in
the field network). According to the network administrator,
such a connection is not allowed – all the connections from
the control network to the field network must go through a
designated server. The remaining alarms involved hosts
foreign to the control and field networks where the data
collection was performed. It is not clear if these connections
should be allowed.

Compared with the other data sets, the electric-gas data set
contained a significantly larger number of alarms: 1037 of the
flows were not observed in the training period. As in the case
of thewater2-control data set, the largest alarm class was “DPA
anomalies,” accounting for 35% of the total number of alarms.
Redundant and relocation events were responsible for more
than half of the alarms in the “new host” and “other” alarm
classes.

Fig. 3 shows the numbers of alarms over time, broken
down by alarm class. Only the most active period is shown.
DPA connection bursts occurred at four distinct times (one is
not shown), accounting for the highest peaks. The redundant
event occurred on day 15, and some of the manual alarms
raised the same day correspond to the telnet connections
that were used to reboot the RTUs. Interestingly, the larger
peak classified as redundant appeared earlier on day 11. All
the flows in this peak correspond to single-packet connec-
tions that were sent by the redundant host to several RTUs.
This was probably the result of a test or a configuration
mistake.
Table 4 – Alarm breakdown.

Data set Dynamic ports Man

water1 0 14 (
water2�control 437 (91%) 16
water2�field 0 5 (
electric�gas 358 (35%) 269 (
Redundant 0 13
Relocation 0 14
Remaining 358 (100%) 242 (

0
20
40
60
80

100
120
140
160
180

10 15 20 25 30 35

N
um

be
r o

f A
la

rm
s

Time since star

Fig. 3 – Alarms observed for
Peaks corresponding to the “manual activity” alarms
occurred on days 20, 25 and 29. On each of these days, a
large portion of the address space was accessed, for a variety
of reasons. For instance, connections were created to config-
ure hosts for the first time, some of these appeared later as
“new host” alarms, around days 35 and 40.

Most of the hosts were relocated around day 55 and 61.
Note that no “manual activity” peak occurred around these
days. The telnet connections that were used to change host
addresses were previously accounted for in the peaks for the
“manual activity” alarm class.

These peaks account for the majority of alarms in the data
set. The remaining alarms consisted mainly of some manual
ssh, x11 and http flows; a few Samba-related ports (e.g., TCP/
UDP 137–139 and 445); and several high port flows that may
have been caused by DPA.
4. Discussion

This section discusses some of the practical issues that
network administrators face when implementing flow white-
lists in real-world SCADA environments.
4.1. Dynamic port allocation

By far, the majority of the alarms identified in our analysis
were due to DPA anomalies, and we only identified a portion
of the port and protocol pairs used by these services. In the
data sets, there were many more connections using DPA than
we considered in the analysis. For a flow-level whitelisting
approach to work with this type of service, it is necessary to
whitelist the entire range of transport ports that might be
ual activity New host Other

47%) 15 (50%) 1 (3%)
(3%) 6 (1%) 19 (4%)
45%) 6 (55%) 0
26%) 274 (26%) 136 (13%)
(5%) 16 (6%) 75 (56%)
(5%) 148 (54%) 1 (0%)
90%) 110 (40%) 60 (44%)

40 45 50 55 60 65
t of dataset (days)

other
new

manual
redundant
relocation

dynamic

the electric-gas data set.

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8 157
used by the service. This is not an ideal solution because it
makes the whitelisting approach more permissive.

One of the main advantages that security experts have
when protecting SCADA environments is that traffic patterns
are rather predictable compared with traditional IT environ-
ments. DPA reduces this predictability. We argue that SCADA
systems should be designed without services that use DPA or,
at least, the services should be restricted to non-critical
segments of the network.

4.2. Real-world attack scenarios

The data sets that were used contained no attack data, so it
was not possible to test the efficacy of whitelisting against
realistic attack scenarios. We use the real-world attack
types specified in [3] to motivate how these attacks could be
observed.

We consider four types of attacks. The first type comprises
information gathering attacks, such as network scans. These
are normally performed by injecting several requests into
a network, with the objective of discovering the available
services and hosts. At the flow level, these attacks are not
much different from the DPA anomalies identified in this
work. Therefore, they would be easily identified by our
approach because non-whitelisted connections are likely to
be made.

The three other attack types are as follows: (i) denial-of-
service attacks, which prevent a legitimate user from acces-
sing a service or degrade network performance; (ii) network
attacks, which manipulate network protocols; and (iii) buffer
overflow attacks, which attempt to gain control over a
process or crash it by overflowing its buffer. These attacks
would only be observed if they were launched from a host
that is not allowed to access a given server or service, or if
they targeted a non-existent server or service.

In general, an attack is undetected in two situations. Either
the whitelist is incorrectly constructed (i.e., it contains entries
representing illegitimate traffic) or the attack misuses white-
listed traffic (e.g., an operator machine that is normally used
to access a PLC and set an invalid parameter). In the latter
case, the connection itself is legitimate, but its contents are
not. Note that our approach does not prevent an attacker
from spoofing an IP address and masquerading as a legit-
imate flow. Interested readers are referred to [1] for a discus-
sion of mechanisms that can protect against such attacks.

4.3. Blocking and flagging

In a traditional IT environment, it is common practice to take
a host offline when it is suspected to be under attack. This is
done to limit the impact of the attack and control its spread.
However, taking a SCADA host offline could have dire
consequences, especially if critical processes depend on its
continued operation.

The same reasoning may be applied to blocking traffic –

the cost of false positives could be too high. Whitelists, like
other systems, can suffer from configuration problems. In our
analysis, we observed a number of alarms caused by rare
activities such as manual access to PLCs and hosts switching
to backup servers (or being accessed by backup clients); these
could be overlooked when constructing a whitelist. Therefore,
we recommend that, when whitelists are first deployed in a
real-world scenario, connections that are not whitelisted
should only be flagged (i.e., raise alarms). The decision to
block traffic or add it to the whitelist is left to network
administrators. Only after they are confident that configura-
tion mistakes are addressed, should they consider using the
whitelist to automatically block traffic.

4.4. Learning limitations

Many of the alarms were the result of limitations of the
technique used to learn the initial whitelist. The alarms
mostly corresponded to connections that did not occur
frequently and it was impractical to extend the learning time
to accommodate them. In general, the longer the learning
time, the greater the chance of including an anomalous flow
in the whitelist.

Some of the alarms were caused by the presence of new
hosts that were not observed during the learning phase.
Although changes in SCADA network topology are uncom-
mon, they should be considered when using the whitelisting
approach. For every change in the network, it is necessary
to update the whitelist accordingly, either manually or by
triggering a new learning step. Note, however, that this
problem is not exclusive to our approach. Most, if not all,
anomaly-based intrusion detection systems require updates
after network changes because the “normal” behavior has
changed.

The learning step limitation implies that input from net-
work administrators and SCADA vendors is necessary to
build a complete flow whitelist. However, relying on this
expertise exclusively may be dangerous, as mistakes can
occur. For example, the addition of flows representing backup
server connections or infrequent ssh connections could be
overlooked. Presenting a list of flows learned from network
measurements, as proposed in the learning phase, could help
administrators identify acceptable flows that would other-
wise be missed.
5. Conclusions

Flow whitelisting is an appealing and practical solution for
combating SCADA network attacks. Unlike traditional IT
networks, the size of a whitelist for a SCADA network is
manageable, largely due to the number of internal hosts.
Another important property is that a SCADA network white-
list is fairly stable. Experiments reveal that, in most cases,
more than 50% of the acceptable network flows can be
observed within one day of measurement.

Services that use dynamic port allocation are the main
cause of alarms in SCADA networks. These alarms can be
eliminated by adding to the whitelist the complete range of
ports that are allocated by these services, or by removing
them from critical network segments. Most of the remaining
alarms are the result of limitations in the whitelist construc-
tion approach, which, in real-world implementations, can be
overcome by incorporating network administrator and
SCADA vendor input to refine the whitelist.

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 (2 0 1 3) 1 5 0 – 1 5 8158
Our future work will focus on the development of a user
interface that assists in the creation of whitelists and facil-
itates their manipulation by providing more detailed infor-
mation about alarms. In addition, we will attempt to enhance
SCADA network security by identifying intrusion attempts
that (mis)use whitelisted flows.

r e f e r e n c e s

[1] C. Abad, R. Bonilla, An analysis of the schemes for detecting
and preventing ARP cache poisoning attacks, in: Proceedings
of the Twenty-Seventh International Conference on
Distributed Computing Systems Workshops, 2007, pp. 60–68.

[2] R. Barbosa, R. Sadre, A. Pras, Difficulties in modeling SCADA
traffic: A comparative analysis, in: Proceedings of the 13th
International Conference on Passive and Active
Measurement, 2012, pp. 126–135.

[3] R. Barbosa, R. Sadre, A. Pras, Towards periodicity based
anomaly detection in SCADA networks, in: Proceedings of
the 17th IEEE Conference on Emerging Technologies and
Factory Automation, 2012.

[4] R. Barbosa, R. Sadre, A. Pras, R. Meent, Simpleweb/University
of Twente Traffic Traces Data Repository, Technical Report
TR-CTIT-10-19, Center for Telematics and Information
Technology, University of Twente, Enschede, The
Netherlands (doc.utwente.nl/71273), 2010.

[5] Y. Cao, W. Han, Y. Le, Anti-phishing based on automated
individual white-list, in: Proceedings of the 4th ACM
Workshop on Digital Identity Management, 2008, pp. 51–60.

[6] E. Chen, M. Itoh, A whitelist approach to protect SIP
servers from flooding attacks, in: Proceedings of the IEEE
International Workshop on Communications Quality and
Reliability, 2010.

[7] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, A.
Valdes, Using model-based intrusion detection for SCADA
networks, in: Proceedings of the SCADA Security Scientific
Symposium, 2007.

[8] Digital Bond, Quickdraw SCADA IDS, Sunrise, Florida
〈http://www.digitalbond.com/tools/quickdraw〉.

[9] D. Erickson, M. Casado, N. McKeown, The effectiveness of
whitelisting: A user study, in: Proceedings of the 5th
Conference on Email and Anti-Spam, 2008.

[10] D. Hadziosmanovic, D. Bolzoni, P. Hartel, A log mining
approach for process monitoring in SCADA, International
Journal of Information Security 11 (4) (2012) 231–251.

[11] Microsoft Corporation, Service Overview and Network Port
Requirements for Windows, Redmond, Washington (support.
microsoft.com/kb/832017).

[12] Norwegian Oil and Gas Association, 104 – Norwegian Oil and
Gas Recommended Guidelines for Information Security
Baseline Requirements for Process Control, Safety and
Support ICT Systems, Sandnes, Norway, 2009.

[13] R. Sommer, A. Feldmann, NetFlow: Information loss or win?,
in: Proceedings of the 3rd ACM SIGCOMM Workshop on
Internet Measurement, 2012, pp. 173–174.

[14] K. Stouffer, J. Falco, K. Scarfone, Guide to Industrial Control
Systems (ICS) Security, Recommendations of the National
Institute of Standards and Technology, NIST Special
Publication 800-82, National Institute of Standards and
Technology, Gaithersburg, Maryland, 2011.

[15] M. Yoon, Using whitelisting to mitigate DDoS attacks on
critical Internet sites, IEEE Communications 48 (7) (2010)
110–115.

http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0005
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0005
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0005
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0005
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0010
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0010
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0010
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0010
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0015
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0015
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0015
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0015
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0020
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0020
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0020
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0020
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0020
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0025
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0025
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0025
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0030
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0030
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0030
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0030
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0035
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0035
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0035
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0035
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0040
http://www.digitalbond.com/tools/quickdraw
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0045
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0045
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0045
http://refhub.elsevier.com/S1874-5482(13)00043-7/sbref10
http://refhub.elsevier.com/S1874-5482(13)00043-7/sbref10
http://refhub.elsevier.com/S1874-5482(13)00043-7/sbref10
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0050
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0050
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0050
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0055
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0055
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0055
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0055
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0060
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0060
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0060
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0065
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0065
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0065
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0065
http://refhub.elsevier.com/S1874-5482(13)00043-7/othref0065
http://refhub.elsevier.com/S1874-5482(13)00043-7/sbref15
http://refhub.elsevier.com/S1874-5482(13)00043-7/sbref15
http://refhub.elsevier.com/S1874-5482(13)00043-7/sbref15

	Flow whitelisting in SCADA networks
	Introduction
	Flow whitelisting approach
	Connection and flow creation
	Learning phase
	Detection phase

	Experimental results
	Data sets
	Whitelist size
	Training set size
	Nature of alarms
	Frequency of alarms

	Discussion
	Dynamic port allocation
	Real-world attack scenarios
	Blocking and flagging
	Learning limitations

	Conclusions
	References

	bm_112_bib1
	bm_112_bib2
	bm_112_bib3
	bm_112_bib4
	bm_112_bib5
	bm_112_bib6
	bm_112_bib7
	bm_112_bib8
	bm_112_bib9
	bm_112_bib10
	bm_112_bib11
	bm_112_bib12
	bm_112_bib13
	bm_112_bib14
	bm_112_bib15

