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Abstract

It is well known that profiling the attacker behavior is an effective way to obtain

insights on network vulnerabilities and to identify locations that need to be

protected. In this paper we present a novel Integer Linear Programming (ILP)

formulation to model strategy of an attacker who targets a set of nodes (e.g.,

destroying or compromising them). To this end, we model attackers aiming

to both deal the largest possible damage and minimize the attacker’s effort.

Specifically, we assume that the attacker is guided by three conflicting objectives:

minimize the attack cost, maximize the number of disconnected components

and minimize the size of the largest connected component. With respect to the

state of the art, the proposed formulation is remarkably more descriptive, while

keeping lower complexity; thus, it represents a valuable tool to predict attacks

and to identify locations that need to be protected. However, since the exact

solution of the formulation turns can be computationally expensive for large

instances, we complement the paper by providing an heuristic algorithm to find

an approximated solution. A simulation campaign, whose goal is to show the

potential of the proposed approach, concludes the paper.
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1. Introduction

Since the seminal works of Albert et al. [1] and Holme et al. [2] early in 2000s,

it has become evident that those attacks taking into account the topological

structure of a network (e.g., telecommunication networks, road infrastructures,

or other systems) may have dramatic consequences. Indeed, by knowing the5

topology of the network, an attacker can select the target sites more effectively,

increasing the damages (e.g., in terms of disconnection of large portions of the

network) while keeping the cost of the attack at a minimum (see [3, 4, 5, 6, 7]

for recent works on the topic).

In this paper, we characterize the behavior of an attacker that targets some10

of the nodes in a network, by corrupting or disrupting them. We assume that the

attacker objective is to cause the maximum damage with the minimum attack

cost.

We formalize the problem in terms of Integer Linear Programming (ILP),

by introducing suitable constraints that will be discussed later. Moreover, we15

provide an heuristic algorithm to find a sub-optimal solution in a cost-effective

way. The main contribution of this paper is to provide a methodology to identify

critical sites to be protected by considering the preferences of the attacker with

respect to the different clashing objectives (i.e., maximize damage dealt and

minimize the cost of the attack).20

We point out that such an attacker profiling represents an effective way to

identify and manage Critical Infrastructures’ vulnerabilities and a first step in

the implementation of possible risk mitigation strategies. This task is extremely

important, as highlighted for instance by the NIS EU Directive [8], which re-

quires to Critical Infrastructure operators, and specifically to IT providers, to25

take adequate measures in order to manage risk, report security incidents to the

national competent authorities and provide early threat warnings.

1.1. Related Work

In recent years, techniques based on operational research and graph theory

have been extensively applied in the context of the critical infrastructure protec-30
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tion. Among other approaches, it is worth mentioning methods to estimate and

analyze the resilience in infrastructure networks that are based on (constrained)

optimization problems [12, 13, 14, 15, 16, 18, 19, 20], bi-level optimization frame-

works [23, 24] and network spectral analysis [22, 25, 26, 27, 28]. In particular,

we point out that several of such approaches model the infrastructures in terms35

of a graph and evaluate its robustness by identifying critical nodes.

Other solutions in the literature encompass solutions based on the concept of

critical links [10, 11, 15], i.e., links that once removed may cause a relevant degra-

dation of some connection-related index such as the average inverse geodesic

length (i.e., the sum of the inverse of the shortest paths among any pair of40

nodes) or the total pairwise connectivity [9].

Due to the intrinsic high computational complexity associated to such ap-

proaches, critical nodes are often detected via graph spectral analysis (see, for

instance [25] where percolation theory is used to assess network robustness). In

this case, metrics such as the degree of the nodes or the eigenvalues of the ad-45

jacency matrix are studied in order to evaluate the network robustness. In [22],

the problem to estimate the network vulnerability is addressed by evaluating

the structural controllability of the network after iteratively removing the nodes

in order of degree, eigenvector centrality, and betweenness. We point out that

such metrics have been often adopted in the context of Critical Infrastructures50

Protection (see [27, 28] and references therein), in order to assess node criticality

and to provide risk mitigation strategies.

We point out that these latter approaches are generally developed and adopted

in the context of electric networks. These approaches take into account the ca-

pabilities of a network to remain connected without considering specific source-55

destination links or specific paths. This aspect is handled also in the framework

of Critical Node Disruptor problem (CND) [12, 13, 15]. Within CND, an at-

tacker removes some of the nodes in the network with the aim to minimize the

total pairwise connectivity [9], that is, the amount of pairs of nodes that are

connected by a path after the removal of the attacked nodes. However, such60

a formalism, assumes that the attacker has either a priori knowledge on the
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maximum number k of nodes that have to be disconnected or the ability to

disconnect up to a fixed number k of nodes; an incorrect choice of k may re-

sult in infeasible or inefficient solutions. Such approaches appears suitable to

estimate the effectiveness of an attack on communication and transportation65

network where it is relevant to consider the capability of a source to reach a

specific destination. In [17], a dual problem is addressed, namely Cardinality

Constrained Critical Node Detection Problem, where a maximum allowed con-

nected graph component size is specified and the objective is to minimize the

number of attacked nodes required to fulfill this constraint. In [18], it is argued70

that the CND problem is intrinsically a multi-objective problem, and an im-

provement is suggested where not only the pairwise connectivity is minimized,

but also the variance in cardinality among the connected components, i.e., the

dimension of the “islands” obtained after the removal of the k nodes; anyhow

such an approach suffers the same drawbacks of the standard CND problem.75

The approach in [19] is structured on a similar line, indeed, the size of each

obtained connected component is constrained to be below a given bound. In

[20], we provide a formulation in which the attacker is not constrained to attack

a fixed number of nodes. Indeed, he/she aims at dividing the network in a fixed

number of components while having two conflicting objectives: minimizing the80

number of attacked nodes and the size of the largest component.

1.2. Contribution

In this paper we propose an optimization formulation to solve the CND

problem that overcomes some of the limitations of previous approaches. In our

formulation, the attacker tries to obtain a large impact with limited resources.85

To this end he/she aims at finding nodes, which, if removed, disconnect the

network into a large number of small partitions; in this way, each node is able

to communicate only with a small subset of nodes. In particular, we do not

require the user to specify a fixed number of partitions; the maximization of the

number of disconnected components becomes an additional objective that has90

to be mediated with the minimization of the attack cost and the minimization of
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the size of the largest component. Indeed, the proposed formulation represents

a relevant improvement with respect to previous CND approaches. In fact,

by removing the constraint concerning fixed parameters such as the number of

partitions [20] the attack cost [12] or the size of the largest partition [14], we95

are able to better reproduce the behavior of an attacker by shifting the focus to

his/her preferences, without making assumption about the features of the final

solution. However we point out that, similarly to previous literature [15], the

proposed approach requires O(n2) Boolean decision variables, where n is the

number of nodes in the network. Therefore, finding the exact solution of the100

proposed formulation might still be quite computationally expensive. To tackle

this issue, we develop an heuristic algorithm able to provide good approximated

solutions in reasonable time. The effectiveness of the proposed approach is

verified with respect to a real-world network.

1.3. Paper Outline105

The outline of the paper is as follows: we introduce some preliminary no-

tations and definitions in Section 2; in Section 3 we develop the proposed ILP

formulation while in Section 4 we describe the proposed heuristic algorithm; we

report the results of a simulation campaign aimed at highlighting the poten-

tial of the proposed approach in Section 5; finally, we discuss some conclusive110

remarks and we discuss future work directions in Section 6.

2. Preliminaries

2.1. General Preliminaries

In the following we denote by |X| the cardinality of a set X; vectors are

represented via boldface letters, and we use km to indicate a vector in Rm115

whose components are all equal to k. We denote by 0n,m an n × m matrix

whose entries are all 0, and by In the n× n identity matrix.
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Let an n ×m matrix A and a p × q matrix B; the Kronecker product of A

and B is the np×mq matrix

A⊗B =


A11B . . . A1mB

...
. . .

...

An1B . . . AnmB

 .

Given a matrix Q we denote by Q+ and Q− its non-negative and non-positive

parts. These two matrices have the same dimensions as Q, but contain just the

non-negative and non-positive entries of Q, respectively, while the other entries120

are replaced by zeros. Therefore, it follows that Q = Q+ +Q−.

2.2. Graph-related Preliminaries

Let G = {V,E} be a graph with n nodes V = {v1, v2, . . . , vn} and e edges

E ⊆ V ×V , where (vi, vj) ∈ E captures the existence of a relation between node

vi and node vj . A partition Vi ⊆ V is a subset of the nodes in V .125

A graph is said to be undirected if (vi, vj) ∈ E whenever (vj , vi) ∈ E, and

it is said to be directed otherwise. In the remainder of this paper we will only

consider undirected graphs.

A path over a graph G = {V,E}, starting at a node vi ∈ V and ending at

a node vj ∈ V , is a subset of links in E that connects vi and vj , respecting130

the edge orientation and without creating loops. The length of a path is the

number of links that compose it, while a minimum path is a path of minimum

cardinality. An undirected graph is connected if for each pair of nodes vi, vj

there is a path over G that connects them. The neighborhood N (vi) of a node

vi ∈ V is the set of vertices connected to vi by an edge in E.135

The adjacency matrix of a graph G is an n×n matrix A such that Aij = 1 if

(vj , vi) ∈ E and Aij = 0 otherwise. The incidence matrix of a graph G is an e×n

matrix M such that each row represents a link and for a link x = (vi, vj) ∈ E
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(a) PWC% = 26.6% (b) PWC% = 40%

Figure 1: Node deletion in central and peripherals area.

and a node y it holds

Mxy =


1 if y = i;

−1 if y = j;

0 otherwise.

Note that in an undirected graph with n nodes at most n(n−1)
2 distinct pairs

of nodes are connected via a path, the Pairwise Connectivity (PWC) [9] of a

graph G is defined as

PWC(G) =
1

n(n− 1)

∑
vi,vj∈V,vi 6=vj

p(vi, vj), (1)

where p(vi, vj) is 1 if the pair (vi, vj) is connected via a path over G, and 0

otherwise. The PWC is a measure of connectivity that takes into account the

existence of a path among any pair of nodes; the maximum PWC(G) = 1 is

attained whenever the graph is connected. In the following we express the PWC

in percentage, i.e., we consider PWC%(G) = 100PWC(G).140

Note that, for undirected graphs, the PWC is a function of the size |Vi| of

each connected component Gi = {Vi, Ei} of the graph after the attacked nodes

have been removed, along with their incident edges. In fact, for each connected

component Gi of G, there are exactly |Vi|(|Vi|−1)/2 distinct pairs of connected

nodes. Assuming thatG containsm connected components, we can alternatively
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express Equation (1) as

PWC(G) =
1

n(n− 1)

m∑
i=1

|Vi|(|Vi| − 1) (2)

In Figure 1 we show that the deletion of different nodes may have remarkably

different effects in terms of PWC. In Figure 1a, by removing the central node,

the graph is disconnected in two components and only four pairs of nodes are

connected by a path; as a result, PWC% = 26.6%. In Figure 1b the graph145

is decomposed in two components again, but in this case six pairs of nodes

are connected by a path and PWC% = 40%. The above figure suggests that

disconnected graphs whose connected components have balanced sizes result in

a smaller PWC% with respect to those that are not balanced.

3. Problem Formulation150

We are interested in finding the minimum number of nodes (called critical),

such that, their removal causes a performance degradation in the network in

terms of PWC%. It is easy to note the intrinsic multi-objective nature of the

problem: the two conflicting objectives are the minimization of the network

connectivity and the minimization of the attack cost.155

With the aim to provide an ILP formulation, we assume that the attacker is

interested in finding a solution by:

1. maximizing the number of partitions;

2. minimizing the maximum partition cardinality;

3. minimizing the cost of the attack.160

With reference to the Equation (2) and Figure 1, the maximization of partitions

number (1), and, at the same time, the minimization of the largest partition

size (2), correspond to the minimization of the PWC.

Let a connected undirected graph G = {V,E}; we assume that the attacker

selects some nodes vj ∈ VC ⊆ V . Moreover, noting that, as a result of the165
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attack, at most n − 1 connected components can be obtained1, in this regard

we consider a set of n − 1 pairwise disjoint partitions V1, . . . , Vn−1 such that

V = VC ∪i=1,...,n−1 Vi.

We consider the Boolean variables x
(i)
j for all j = 1, . . . , n and for all

i = 1, . . . , n− 1, such that x
(i)
j = 1 when node vj is assigned to the partition Vi,170

while we define cj as a Boolean variable such that cj = 1 if vj ∈ VC and cj = 0

otherwise.

With the aim to describe real scenarios, we introduce a vector k with n

entries2 ki ∈ [0, 1]. Each entry ki represents the cost associated to the removal

of the i-th node.175

The partitions V1, . . . , Vn−1, as clarified later, reflect the way in which the

nodes in the graph are separated after the attack. Specifically, in the following

we prescribe that those nodes labelled as belonging to different partitions should

not be connected by a path after the attacked nodes in VC have been removed3

in order to effectively characterize the attack.180

In the proposed formulation, we allow some partition to be empty; the max-

imization of the number of non-empty partitions is one of the objectives of the

attacker.

To model the ability of the attacker to select a given number of non-empty

partitions, we introduce a Boolean variable ti associated to each partition Vi. If185

Vi is empty then ti = 0, otherwise ti = 1.

Let us define the three objectives as follows.

1. Maximize the number of disjoint and non-empty partitions:

max

n−1∑
t=1

ti. (3)

1For instance, in a star graph if the central node is attacked, the network is disconnected
in n− 1 components, i.e., each isolated node.

2We reiterate that n is the number of nodes in the network.
3Notice that there is no guarantee that a partition contains a single connected component,

i.e., each partition might be further decomposed in connected components.
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2. Minimize the maximum partition cardinality:

min max
V1,...,Vn−1

|Vi|. (4)

3. Minimize the attack cost:

min

n∑
i=1

kici. (5)

3.1. Problem Constraints

In order to provide an ILP formulation of the problem we introduce the

following constraints.190

In the first set of constraints (CS-I), we impose that each node has to be as-

signed4 to only one set among VC , V1, . . . , Vn−1:

c +

n−1∑
i=1

x(i) = 1n (CS-I)

In order to select decision variables that correspond to an attack that suc-

cessfully disconnects the network in connected components, we impose that the

nodes assigned to Vi must not be directly connected to the nodes in Vj for all

i, j = 1, . . . , n− 1, i 6= j. In other words, in the second set of constraints (CS-II),

which will be formally introduced later, we enforce that the following condition

must hold:

(va, vb) 6∈ E, for va ∈ Vi, vb ∈ Vj ,∀i, j = 1, . . . , n− 1. (6)

Note that, any pair of partitions Vi and Vj (not considering VC) and any pair of

nodes va and vb, must satisfy Equation (6). We can express the above-mentioned

constraint as

Aab

(
x(i)a + x

(j)
b

)
≤ 2− ε (7)

4Recall that c and x(i) are respectively the stack vectors of the variables ci and x
(i)
j .
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where 0 < ε < 1 is a coefficient required to avoid the use of a strict inequalities;

the constraint is trivially verified when the coefficient Aab of the adjacency195

matrix is zero (i.e., when (va, vb) 6∈ E); conversely, in the case of (va, vb) ∈ E,

the constraint is violated when va ∈ Vi and vb ∈ Vj .

Let M be the incidence matrix of G and let M+ and M− be its non-negative

and non-positive parts. We can write the aforementioned class of constraints

(which we denote as separation constraints) in a compact form for a given pair

of sets Vi and Vj and for all the edges as

M+x
(i) −M−x(j) ≤ (2− ε)1e;

M+x
(j) −M−x(i) ≤ (2− ε)1e.

(CS-II)

Note that, in the proposed formulation, we consider two specular constraints

for each edge, indeed we take into account undirected graphs and we have to200

explicitly handle (vi, vj) and (vj , vi) for all pairs of nodes connected by a link.

In order to maximize the number of non-empty partitions, it is necessary

to introduce another set of constrains (CS-III). This set describes the relation

between the variables x
(i)
j and ti, i.e.:

x
(i)
1 + . . .+ x(i)n ≥ ti i = 1 . . . n− 1. (CS-III)

205

According to the above constraint, a partition is not empty if it has at least one

node assigned to itself.

We further simplify our problem, getting rid of the min and max in Equa-

tion (4) by introducing a new free variable q ∈ N and the additional constrains

(CS-IV):

1Tnx
(i) ≤ q, ∀i = 1, . . . , n− 1, (CS-IV)
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so that Equation (4) can be replaced by

min
q∈N

q.

As a result, the constraints in CS-IV enforce that

q ≥ max
i=1,...,n−1

(
1Tnx

(i)
)

(8)

and since q is minimized, the relation in Equation (8) is always satisfied as an

equality.

The aim of the last set of constraints (CS-V), is to guarantee the presence

of at least one critical node:

n−1∑
i=1

1Tnx
(i) ≤ n− 1. (CS-V)

In fact, this inequality is satisfied if at least one node is not assigned to any of210

the n− 1 partitions V1, . . . , Vn−1. As a consequence, due to the presence of the

constraints in CS-I, the “missing” node belongs to the critical set.

3.2. Objective Function

Let us now discuss the structure of the objective function; note that there

are several alternative ways to define an objective function that considers the

three objectives. In this paper, we choose to consider a convex combination of

the three objectives, by introducing α1, α2, α3 such that

αi ∈ [0, 1], i ∈ {1, 2, 3},
3∑
i=1

αi = 1. (9)

in this way we are able to capture a large set of attackers’ behaviors, represented

by different tradeoffs among the sub-objectives described in equations (3), (4),215

and (5).
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As a result, the overall objective function becomes:

min
{ n∑n

i=1 ki
α1k

T c︸ ︷︷ ︸
Attack Cost

+α2q − α3

n−1∑
i=1

ti

}
︸ ︷︷ ︸

P̂WC

. (10)

The first term of Equation (10) consists of the attack cost and it depends on

the number of critical nodes assigned in c and the associated costs ki. In

addition to the parameter α1, introduced to highlight the attacker preferences,

we normalize the attack cost in order to avoid three unbalanced sub-objectives220

in Equation (10). The other terms aim to minimize an approximation of the

PWC which is considerably easier to calculate than the standard PWC. We will

provide more details about the relation between the PWC and the proposed

approximation in Section 5.

In other words, in the proposed approach, we are replacing the PWC by the

following approximation:

P̂WC = γq − (1− γ)

n−1∑
i=1

ti (11)

such that γ ∈ [0, 1].225

Let us now provide a compact form that synthesizes the proposed ILP for-

mulation; to this end, let

x =
[
(x(1))T · · · (x(n−1))T

]T
, t =

[
t1 · · · tn−1

]T
.

Moreover, we define the vector of independent variables as:

y =
[
cT ,xT , q, tT

]T
. (12)

With the purpose of presenting the optimization problem by adopting the

standard ILP form, we slightly modify constraints CS-I and CS-II.

Specifically, since the constraint CS-I is in equality form, in order to be
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represented in the standard ILP form we need to replace it by two inequality

constraints:

−c−
∑n−1
i=1 x(i) ≤ −1n,

c +
∑n−1
i=1 x(i) ≤ 1n.

(13)

As for constraints CS-II, we consider a matrix

D =

 M
(n−1)
+ ⊗M+ +M

(n−1)
− ⊗M−

−M (n−1)
+ ⊗M− −M (n−1)

− ⊗M+

 , (14)

where M (n−1) is the incidence matrix of a complete graph with n− 1 nodes.

Note that D has ξ = (n − 1)(n − 2)e rows; in fact M
(n−1)
+ represents a

complete graph with n − 1 nodes and 1
2 (n − 1)(n − 2) edges (hence it has230

1
2 (n− 1)(n− 2) rows), while M+ has e rows. As a consequence, their Kronecker

product M
(n−1)
+ ⊗M+ has 1

2ξ rows.

Therefore, with D, we express constraints CS-II in a compact form as

Dx ≤ (2− ε)1ξ.

At this point each set of constraints is represented in standard form and our

optimization problem5 is given by:

miny r
Ty

Subject toAy ≤ B;

y ∈ {0, 1}n+n2 ∪ N

(15)

where the constraints are collected in the matrix A and vector B:235

5In the following, by y ∈ {0, 1}n+n2 ∪ N we mean that the only natural variable in y is q,
while all other entries of y are Boolean.
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A =



−In −1Tn−1 ⊗ In 0n 0n,n−1

In 1Tn−1 ⊗ In 0n 0n,n−1

0ξ,n D 0ξ 0ξ,n−1

0n−1,n −In−1 ⊗ 1Tn 0n−1 In−1,n−1

0n−1,n In−1 ⊗ 1Tn −1n−1 0n−1,n−1

01,n 1Tn−1 ⊗ 1Tn 0 0Tn−1


B =



−1n
1n

(2− ε)1ξ
−1n−1
0n−1

n− 1



rT =
[
α1nk

T
n

kT
n1n

0Tn(n−1) α2 −α31
T
n−1

]
.

In more details, the constraints in CS-I are collected in the first two rows of

A and B. The constrains described in CS-II are represented by the third row

of the same matrices with reference to the matrix D defined in Equation (14).

Finally, the constraints described in CS-III, CS-IV, and CS-V are represented

by the last three rows of A and B, respectively.240

The entries of vector r represent the costs by which the variables are weighted:

the terms
α1nk

T
n

kT
n1n

, α2, and −α31
T
n−1 characterize the three sub-objectives.

Remark 1. By some algebra, it can be shown that matrix A has a number of

rows

rA = 4n+ (n− 1)(n− 2)e− 1,

where n is the number of nodes and e is the number of edges in G. Therefore,

our ILP formulation (15) has O(n2e) constraints.

As a consequence of the mentioned remark, we note that sparse graphs where245

e� n2 must satisfy a reduced number of constraints, while denser graphs where

e ≈ n2 need to satisfy O(n4) constraints.

4. Heuristic Algorithm

Instead of solving the ILP problem defined in 15 exactly, in this section

we develop an heuristic approach that provides an approximated solution in250
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reasonable time by sampling a large number of solutions and by selecting the

feasible solution in terms of minimum cost, among the sampled ones.

It should be noted that, since problem (15) requires to specify O(n2) Boolean

variables, and such variables have complex relations that must be verified (e.g.,

the separation constraints), it is hard to apply a simple brute-force Monte Carlo255

approach. In fact, there is the risk that a large fraction of the solutions thus

generated are unfeasible.

However, we notice that q and t depend on the node partitioning process,

i.e., we can easily find admissible choices for q and t given an admissible choice

for the entries of x.260

Based on this intuition, the proposed Feasible Solution Generation (FSG)

Algorithm (the pseudocode is reported in Algorithm 1 and, for space reasons,

it continues in Algorithm 2) aims at providing random feasible solutions to be

evaluated within the main heuristic algorithm.

Using the FSG Algorithm, we assign each node to a partition by considering265

its neighborhood. We notice, in fact, that if all already assigned neighbors of

a node vi belong to the same partition, then, a feasible solution is to assign

also vi to the same partition (e.g., see Figure 2a). Moreover, if a node vi has

neighbors assigned to different partitions, the only feasible choice is to set vi as

a critical node in order to preserve the absence of links between partitions (e.g.,270

see Figure 2b).

Within the FSG Algorithm, we assume that only m ≤ n − 1 partitions

can be nonempty, and we evaluate the nodes in V sequentially in random order.

Specifically, we assign each node vi to a partition (or to the set of critical nodes)

as follows.275

If no neighbor of vi is assigned (lines 15 − 26), we have two possible sub-

cases. If there is an empty partition left (lines 16− 21), we randomly assign vi

to one of them (h) and we increase the number φ of the non-empty partitions by

one. Moreover, for each neighbor vj in Ni, the list of assigned neighbors, Mj ,

is updated. Otherwise (lines 23− 24), we reconsider the node again by putting280

it back in the set of not yet considered nodes. We perform this procedure a
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Algorithm 1: Feasible Solution Generator (continues on Algorithm 2)

Data: Graph G = {V,E}, maximum number m of partitions, maximum
number χmax of reconsiderations of selected nodes

Result: Feasible solution y
1 cj ← 0, ∀j = 1, . . . n;

2 x
(i)
j ← 0, ∀i = 1, . . . ,m and ∀j = 1, . . . n;

3 ti ← 0, ∀i = 1, . . . ,m;

4 q ← 0;

5 φ← 0; /* nonempty partitions */

6 χ← 0; /* no node has been reconsidered */

7 for i = 1 . . . n do

8 Mi ← ∅; /* assigned neighbors of vi */

9 p(i)← 0; /* vi is not assigned */

10 end

11 I ← V ;

12 while I 6= ∅ and χ < χmax do

13 select random vi ∈ I;

14 I ← I\{vi};
/* If no neighbor of vi is assigned add vi to a random partition

or reconsider it later */

15 if Mi = ∅ then
/* If there is an empty partition, attempt to assign vi to a

random empty partition */

16 if φ < m then

17 select random h ∈ {1, . . . ,m} such that Vh = ∅;
18 p(i)← h;

19 φ← φ+ 1;

20 Mj ←Mj ∪ {vi} for all vj ∈ Ni;

21 end

/* Reconsider the node vi later to avoid too many critical

nodes */

22 else

23 I ← I ∪ {vi}; /* put back vi in I */

24 χ← χ+ 1; /* increase reconsiderations */

25 end

26 end

27 else

/* If all already assigned neighbors of vi are in the same

partition h, assign vi to partition h */

28 if ∀vj ∈Mi, p(j) = h for some h > 0 then

29 p(i)← h;

30 Mj ←Mj ∪ {vi} for all vj ∈ Ni;

31 end

/* Assign vi to the set of critical nodes */

32 else

/* Do nothing, critical nodes are assigned at the end */

33 end

34 end

35 end

17



Algorithm 2: Feasible Solution Generator (continuation)

/* Choose assignment variables */

36 for i = 1 . . . n do

37 x
(pi)
i ← 1;

38 end
/* Assign Critical Nodes */

39 for j = 1 . . . n do

40 cj ← 1−
∑m

i=1 x
(i)
j ;

41 end
/* select ti */

42 for i = 1 . . .m do

43 if |x(i)| > 0 then
44 ti ← 1;
45 end

46 end

47 q ← max {|x(1)|, . . . , |x(m)|};
48 Return: y = [c1, . . . , cn, x

(1)
1 , . . . , x

(n−1)
n , q, t1, . . . , tn−1]T

maximum of χmax times.

If, conversely, at least a neighbor of vi belongs to a partition (lines 27− 34),

we have two possible sub-cases. If all the already assigned neighbors of vi belong

to the same partition h (lines 28−−31), we assign vi to the same partition h.285

Moreover, for each neighbor vj of vi, the list of assigned neighbors, Mj , is

updated. If none of the above cases is verified (lines 32 − 33), then vi has

neighbors assigned to different partitions and it is labeled as critical.

We let the procedure end when all the nodes have been assigned or when

a maximum χmax of reconsiderations has been done. In the latter case notice290

that each not assigned node is labeled as critical. Note further that we actively

label critical nodes only at the end of the main cycle, using constraint (CS-I)

once all x
(i)
j have been specified.

We point out that, with the aim to avoid feasible solutions with a large

number of critical nodes, an appropriate choice for the parameter χmax is at295

least one order of magnitude greater than n.

We conclude the algorithm by calculating the entries of y and the value

of q based on the partitions assignments. Note that, in addition to ensure

feasible solutions, the algorithm also guarantees the internal connectivity for
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each partition.6300

(a) All the neighbors of vi are as-
signed to the same partition: a fea-
sible solution is to assign also vi to
the same partition.

(b) The neighbors of vi are as-
signed to different partitions: a
feasible solution is to label vi as
critical.

Figure 2: Heuristic assignment criterion adopted within Algorithm 1.

Remark 2. Algorithm 1 always provides a feasible solution. In fact, it should be

noted that, by assigning a node to the set of critical nodes whenever its neighbors

belong to more than one partition ensures that the separation constraints are

enforced.

On the basis of the aforementioned algorithm, the heuristic approach adopted in

this paper is summarized in Algorithm 3, where a large number na of solutions is

created via the FSG Algorithm, with a random integer number mtmp of allowed

partitions. Note that, in some cases (e.g., for large networks), the optimal

solution is unlikely to contain a number of partitions that is O(n); therefore, a

possible choice is to arbitrarily fix a maximum number of partitions mmax � n

within Algorithm 3. In the proposed algorithm, a value mtmp ∈ {2, . . . ,mmax}

is selected at each round with a probability

Pr(mtmp = q) =

1
q∑mmax

h=2
1
h

=

∏mmax

h=2 h

q
∑mmax

h=2

∏mmax

l=2,l 6=h h
, (16)

for all q ∈ {2, . . . ,mmax}. This choice is made so that it is more likely to305

6Recall that, in our formulation there is, in general, no guarantee that the partitions are
internally connected.
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generate instances with a limited number of partitions.

Consequently, the algorithm evaluates the solutions in terms of their objec-

tive function, selecting the best one.

Algorithm 3: Heuristic approach for network vulnerabilities detection.

Data: Graph G = {V,E}
Number of attempts na
Cost vector r
maximum number of partitions mmax ≤ n
Result: Approximated solution ymax

1 ymax ← ∅;
2 zmax ← +∞;
3 for i = 1, . . . , na do
4 select mtmp ∈ {2, . . . ,mmax} with a probability as given in

Equation (16);
5 ytmp ← FSG(G,mtmp);

6 if rT ytmp < zmax then
7 zmax ← rT ytmp;
8 ymax ← ytmp;

9 end

10 end
11 Return: ymax

5. Simulation Results

In this section we start by showing the correlation between the PWC as de-310

fined in Equation (1) and the linear approximation P̂WC introduced in Equa-

tion (11), in order to justify the adoption of the latter metric. Then, we illustrate

the effectiveness of the proposed ILP optimization method on a particular net-

work. Finally, we apply the heuristic approach described in Algorithm 3 on

a real network composed of 332 nodes and 2126 links representing the routes315

among the US airports in 1997.

5.1. PWC Approximation

In this subsection we provide an experimental validation of our approximated

PWC index, namely P̂WC defined in Equation (11). Recall that such an index
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is a linear combination of two of the three terms that constitute the objective320

function of the proposed formulation, i.e., the number of connected components

and the size of the largest connected component.

The proposed validation strategy consists in analyzing the correlation be-

tween PWC and P̂WC over an instance of a graph with n = 40 nodes. Specifi-

cally, we sample 3800 admissible solutions for a specific value of the P̂WC, each325

one corresponding to a PWC value depending on the choice of the parameter

α, which represents the trade-off between the two sub-objectives.

Figure 3: Correlation between PWC and P̂WC for three different values of the parameter
α, considering 3800 feasible instances. The correlation values shown in red are related only
to the subset of red points (i.e., those corresponding to solutions where at most 6 nodes are
attacked), while the correlation values shown in blue are related to all the sets of points (i.e.,
the red and the blue points).

In each of the three panels in Figure 3 we select a specific value for α and

we calculate the PWC and the P̂WC associated to each sampled solution.

Specifically, in order to consider realistic situations where just few nodes are330

attacked, we show in red the subset of solutions corresponding to those attacks

targeting up to 6 nodes (e.g., 15% of all nodes); moreover, we consider the whole

set of sampled solutions, which includes both the red and the blue dots (i.e.,

those featuring more than 6 attacked nodes).

As shown by Figure 3, PWC and P̂WC appear tightly correlated (the cor-335

relation is always larger than or equal to ρ = 0.82). Particularly, the correlation

is larger in the case of a limited number of attacked nodes (e.g., the red cloud of

points in the figure). This is highly beneficial, since we are interested in finding
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cheap solution in terms of cost of attack, as these solutions tend to be more

representative of real attack strategies.340

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

0.5

0.6

0.7

0.8

0.9

1

ρ

All solutions
Attacking at most 6 nodes (15%)

Figure 4: Correlation between PWC and P̂WC for 21 different values of the parameter α.

To further corroborate the ability of the proposed index P̂WC to closely

approximate the PWC, we show, in Figure 4, the relation between the pa-

rameter α, which determines the trade-off between the two sub-objectives that

constitute the P̂WC, and the correlation coefficient ρ between the PWC and

the P̂WC. For each considered choice of α, we generate 2000 feasible solutions345

over the same graph with n = 40 nodes. Also in this case we report in blue

the correlations based on all the solutions while, in order to consider realistic

situations where just few nodes are attacked, we show in red the correlation

associated to the subset of solutions corresponding to the attacks targeting up

to 15% of all nodes. By analysing the set of solutions, the results show that the350

correlation, already high for small α values, tends to grow with α, by reaching

a plateau of 0.98 (red line) and 0.90 (blue line) for α ≥ 0.5.

5.2. ILP Formulation

This subsection purpose is to show the potential of the proposed ILP for-

mulation; specifically, we analyze the optimal solution to our formulation over355

a sample instance, for different trade-offs among the three objectives that con-

stitute the objective function of our formulation.

Let us consider the graph in Figure 5 with n = 25 nodes and let us calculate
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PWC:26 #Critical Nodes:2 PWC:16.3333 #Critical Nodes:4PWC:20 #Critical Nodes:3

Figure 5: Three optimal solutions (for particular choices of the parameters within the objective
function of our ILP formulation) associated to a low number of removed nodes (green) and
a low rate of PWC. In the left panel, the network has been partitioned in three partitions
by removing two nodes (PWC : 26%); in the central panel the network is broken down into
4 partitions attacking three nodes (PWC : 20%); on the right panel, four nodes are attacked
and the network is decomposed in five partitions (PWC : 16.3%).

the optimal solution to our formulation for 66 different combinations of the

parameters α1, α2, and α3 considering an attack cost ki = 1 for each node.360

Figure 6: PWC% and number of critical nodes found within the optimal solutions of our ILP
formulation, considering the graph in Figure 5. The solutions are computed for 66 different
combinations of α1, α2, and α3.

In Figure 6 we show the PWC% (with a red line) and the number of critical

nodes (in blue) for each triple of parameters, while the corresponding combina-

tion of the parameters is shown via stacked plot on the x-axis. According to
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Figure 6, as long as the value of α1 (i.e., the weight of the objective term related

to minimize the attack cost that in the example matches with the number of365

attacked nodes) is less than 0.4, the optimal solution involves an high number of

critical nodes and, as a result, a value of PWC% near zero is obtained. There-

fore, these solutions hardly describe the behavior of a real attacker. Starting

from the solutions associated to α1 ≥ 0.4, the number of attacked nodes slowly

decreases, while the PWC% increases. Among other combinations, Figure 5370

shows the results of three particular choices of weights, which correspond to the

best solutions associated to the removal of 2, 3, and 4 nodes, respectively (in

Figure 5, for each of the three above cases, we show in green the attacked nodes).

The results in terms of PWC% and attacked nodes are shown in Table 1. It is

worth noting that the resulting PWC% in the three cases is quite similar (26%,375

20%, and 16, 3%, respectively), although the parameters that yield this result in

the three cases are considerably different. Conversely, the proposed framework

seems to be much more descriptive of the subtle trade-offs among the different

clashing objectives for the attacker.

Table 1: Optimal solutions details.

α1 α2 α3 PWC |Vc|
0.9 0.1 0 26% 2

0.6 0.4 0 20% 3

0.7 0 0.3 16.3% 4

5.3. Case Study: US Flight Tracks380

In this subsection we use the heuristic approach described in Section 4, with

the aim to find good solutions to our ILP formulation in reasonable time, and

we will compare these results with another attack strategy already known in

literature.

To do this we analyze the American airport network USAir97 [21] as it was385

in 1997; as show in Figure 7 this network is composed of 332 nodes and 2126

edges, as shown in Figure. Each node represents an airport, while each edge is

associated to a direct flight from an airport to another. For the sake of clarity,
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in Figure 8, we show the degrees distribution of USAir97, i.e., the number of

flight routes for each airport. Most of the nodes are weakly connected to the390

others but there is a small subset of nodes with an high degree (the hubs).

Figure 7: The USAir97 network [21] (for space reasons, a portion of the network is shown in
the box in the lower-right corner). The node size is proportional to its degree.

Clearly, in a real scenario, major airports are more protected than small

airports. To model this fact, we assume that the attack cost is proportional to

the relevance of the airport. In other words, we assume that the cost ki of an

attack against the i-th node is equal to its degree. This means that the attack395

cost of the Chicago Airport (the largest hub) is 139 while the cost associated to

the Abilene Regional Airport is 1 because it is only connected to the airport of

Dallas. With reference to Algorithm 3, we consider na = 8000 attempts and we

set the attack costs ki equal to the node; moreover, the maximum number of

partitions is set to 4, and we choose χmax = 3000. The objective function has400

been evaluated for na solutions, considering 10 different combinations of values
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for the weights α1, α2, and α3. In this way, we reproduce ten different patterns

of attack.

With the aim to analyze the effectiveness of the proposed attack strategy,

we compare our solutions with another attack strategy which is often adopted405

in literature. Specifically, we consider the strategy of iteratively disconnecting

the nodes of the network by descending order of degree, since this approach has

been shown to be highly disruptive for the network connectivity (see, among

others [2, 22]).

In Table 2 and Figure 9 we show the results of the heuristic approach and we410

compare them with the degree-based strategy. The left side of Table 2 collects

the results of the heuristic approach in terms of cost (i.e. spent budget), objec-

tive function weights (α1, α2, α3), number of attacked nodes and their IDs, and

PWC% value. Despite they derive from different triple of weights, we observe

that different attack strategies converge to the same targets and so to the same415

costs. Moreover, we note that, if the value of α1 decreases, the attack cost and

the number of attacked nodes increases, and consequently the PWC% decreases.

On the right side of the table we report the results of the degree-based attack

strategy with the same budgets.

Specifically, we assume that the attacker has a fixed budget, which corre-420

sponds to the cost of the solution found via our heuristic approach, then we

apply the degree-based attack strategy, which iteratively selects the nodes with

the largest degree, until there is budget left. Note that the budget and the

attack cost are normalized in the range [0, . . . , 332], in order to be comparable

with the cost of the attack in Equation (10). It is noteworthy that with a fixed425

budget and by attacking several small nodes rather few hubs, a large degrada-

tion in terms of PWC can be achieved. Moreover, the selection of target nodes

on the base of their relevance (i.e. their degree) produces a limited degradation

in terms of PWC. Conversely, by applying our algorithm we are able to consid-

erably degradate the PWC. This is achieved by focusing the limited resources430

of the attacker on a set of small airports, rather than targeting huge hubs. The

results in terms of PWC% (5th and 8th columns) highlight the effectiveness of
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Figure 8: USAir97 degree distribution. The markers represent the frequency distribution of
degree and the blue line denotes the fitting curve.
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Figure 9: Results in terms of PWC% and budgets of the application of the heuristic approach
(blue cross) and the degree strategy (red circle).

the proposed approach; specifically, the particular strategy identified by our

algorithm causes the disconnection of the network into several partitions; this

may potentially cause a large damage to the connectivity of the network.435

6. Conclusion

In this paper we formulate an optimization problem in order to find critical

nodes, i.e., nodes whose removal has severe effects on the connectivity of the

network. In particular, we adopt an attacker perspective and we assume that

he/she has the conflicting objectives of minimizing the ability of the nodes to440
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Table 2: Analysis of the heuristic approach for 10 combinations of parameter α1, α2, α3, and
comparison in terms of PWC% with the degree strategy.

Heuristic Approach Degree-Based Attack Strategy

Budget Alpha Values
# Attacked

Nodes
IDs PWC

# Attacked
Nodes

IDs PWC

0.3123
α1=0.8 α2=0.1 α3=0.1

1 117 97.01 1 330 99.39
α1=0.9 α2=0.1 α3=0
α1=0.9 α2=0 α3=0.1 1 44 98.79 1 4 99.39

3.279 α1=0.7 α2=0.1 α3=0.2 8
13 75 150 153

217 237 248 268
84.55 1 290 99.39

4.7629

α1=0.8 α2=0.2 α3=0

15
2 13 58 75 81 117 150
153 217 237 248 268

284 305 328
80.71 1 232 97.60

α1=0.7 α2=0.2 α3=0.1
α1=0.6 α2=0.2 α3=0.2
α1=0.6 α2=0.1 α3=0.3

9.1355
α1=0.6 α2=0.3 α3=0.1

16
2 13 58 75 81 117 150
153 217 237 248 268

273 284 305 322

74.97 2 18 36 97.60
α1=0.6 α2=0.4 α3=0

communicate with each other while keeping the cost of the attack at a mini-

mum. Unlike previous literature, we do not make any assumption about the

number of partitions that are obtained after the attack or about the number of

attacked nodes. In the proposed formulation we consider the trade-offs among

the clashing objectives of the attacker, each mediated by specific weights that445

model the preferences of the attackers.

Modeling the attacker behavior and identifying critical sites is the first step

in order to raise network protection. Future work will be mainly devoted to

consider situations in which the attacker pays different, possibly dynamically

changing costs for attacking different sites, and to provide decision support sys-450

tems to help the decision makers identify sites to be protected. We will also

consider to complement the framework by introducing an optimization problem

for the defendant and we will inspect the possibility to cast these coupled opti-

mization problems in the framework of the game theory, seeking those solutions

that may lead to an equilibrium.455
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