N

N

User and developer mediation in an Open Source
Software community: Boundary spanning through cross
participation in online discussions

Flore Barcellini, Francoise Détienne, Jean-Marie Burkhardt

» To cite this version:

Flore Barcellini, Francoise Détienne, Jean-Marie Burkhardt. User and developer mediation in an Open
Source Software community: Boundary spanning through cross participation in online discussions.
International Journal of Human-Computer Studies, 2007, pp.558-570. 10.1016/j.ijhcs.2007.10.008 .
halshs-00860579

HAL Id: halshs-00860579
https://shs.hal.science/halshs-00860579
Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://shs.hal.science/halshs-00860579
https://hal.archives-ouvertes.fr

Barcellini, F., Détienne, F., Burkhardt, J.M. (to appear). User and developer mediation in an Open
Source Software Community: boundary spanning through cross participation in online discussions.
International Journal of Human-Computer Studies.

User and developer mediation in an Open Source
Software Community: boundary spanning through cross
participation in online discussions

Flore Barcellini* ®, Francoise Détienne ¥, Jean-Marie Burkhardt ©

* Corresponding author

(1) INRIA Eiffel2 Group “Cognition et Coopération en Conception”, Domaine de Voluceau
78153 Le Chesnay Cedex France. Phone: 0033139635552 (5522), Fax: 0033139635995

(2) Cnam, Laboratoire d’Ergonomie, Centre de Recherche sur le Travail et le Développement, 41
rue Gay-Lussac 75005 Paris France Phone: 0033144107851

(3) Université Paris 5, Laboratoire Ergonomie-Comportement-Interactions, 45 rue des Saints-
Peres 75270 Paris France. Phone: 0033142862136

Flore.Barcellini@inria.fr, Francoise.Detienne @inria.fr, Jean-Marie Burkhardt @univ-

parisS.fr

Abstract. The aim of this research is to analyse how design and use are mediated in Open
Source Software (OSS) design. Focusing on the Python community, our study examines a
“pushed-by-users” design proposal through the discussions occurring in two mailing lists:
one, user-oriented and the other, developer-oriented. To characterize the links between users
and developers, we investigate the activities and references (knowledge sharing) performed
by the contributors to these two mailing-lists. We found that the participation of users remains
local to their communities. However, several key participants act as boundary spanners
between the user and the developer communities. This emerging role is characterized by
cross-participation in parallel same-topic discussions in both mailing-lists, cohesion between
cross-participants, the occupation of a central position in the social network linking users and
developers, as well as active, distinctive and adapted contributions. The user championing the
proposal acts as a key boundary spanner coordinating the process and using explicit linking
strategies. We argue that OSS design may be considered as a form of “role emerging design”,
i.e. design organised and pushed through emerging roles and through a balance between these
roles. The OSS communities seem to provide a suitable socio-technical environment to enable

such role emergence.

Keywords. Open Source Software Community, Cross-participants, boundary
spanners, distributed design, role emerging design

1. Introduction

Open Source Software (OSS) design is characterized by a communitarian and a
distant, asynchronous and mediated design process. This new way of designing is
becoming increasingly widespread in the computer science world: there are

thousands of OSS, some of which are highly successful, like Mozilla
(www.mozilla.org) or Apache (www.apache.org), and they are supported by
communities of tens to hundreds of developers and millions of users (Gacek and
Arief, 2004).

Mainly mediated by Internet tools (Sack et al., 2006; Mockus et al., 2002), OSS
design is a paradigmatic case of distant and asynchronous collaborative design,
which has thus far been less investigated than distant and synchronous, or co-
located collaborative design (e.g. Détienne et al., 2004; 2005; Stempfle and
Badke-Shaub, 2002; Olson et al., 1992). Studying OSS is also of particular
interest to gain insights into supporting the changing nature of the software
industry, which is increasingly making use of OSS design’s tools and methods as
it becomes more and more distributed and global (Gutwin et al., 2004).

OSS design can also be considered as a continous form of distributed
participatory design: new functionalities can always be proposed and discussed at
any step in the project (Gasser et al., 2003), forms of participation in OSS projects
are supposed to be « open » in time and for different kinds of participants
whatever their stake in the project (developers or users of the OSS). Thus, users of
OSS can potentially be involved in all the phases of the design process (elicitation
of needs and requirements, design and implementation), at least if they have the
skills to do so. This is often the case as, in OSS, users can be highly skilled in
computer science (Ducheneaut, 2005), as well as in particular application domains
(e.g., education, biology, scientific computing, etc..). Moreover, the participation
of users is considered to be the major strength of the OSS design process
compared to proprietary ones: most bugs are detected and fixed because “there are
many eyeballs looking at the problem” (Raymond, 1999).

As far as we know, there has been no research that aims at obtaining a global
understanding of the OSS design process, and of the position actually occupied by
users proposing new functionalities. Mediating design and use in this distant and
asynchronous design setting can be of particular interest given the usability
problems of OSS software, which are mainly due to the lack of Human-Computer
Interaction methods in OSS communities (Twidale and Nichols, 2005).

The aim of this research is thus to understand the ways in which members of
OSS communities, and especially users, participate in the design process and to
identify whether or not some key participants may act as boundary spanners to
link the user and the developer communities. This research is focused on a major
OSS project, Python, which is an object-oriented programming language
(www.python.org).

In the following sections, after a review of our theoretical framework, we set
out our research questions and strategy. Then, we present the results and discuss
the perspectives of this research.

2. Theoretical framework

To build our theoretical framework, we need to refer to OSS studies that establish
which statuses and roles can emerge in OSS communities. We also refer to
organizational science and design studies which point out that some key-
participants, boundary spanners, act as mediators between users and designers.
Finally, we refer to the cognitive ergonomics of collaborative design to
understand what activities participants perform during a design process.

2.1. Roles, statuses and wuser participation in OSS
communities

OSS projects are seen as online epistemic communities (Preece, 2000; Cohendet
et al., 2000). Their members form a group of people connected together on the
Internet with a common goal- to develop software - with the “meta”- objective of
producing and constructing knowledge about the artefact they develop for the
benefit of all the community. Their activities are framed by implicit and explicit
rules: volunteer participation or evaluation of work by a peer-review mechanism
of works for instance (e.g. Raymond, 1999).

Major OSS projects are highly hierarchical and meritocratic communities
(Gacek and Arief, 2004; Mahendran, 2002). Five different statuses are generally
distinguished in these projects, according to the distinctive rights and power of the
participants. Some participants can modify the source code and participate
directly in the design process and in decisions regarding the software:
the project leader (generally the creator of the project such as Guido Van
Rossum for Python, or Linus Torvalds for Linux);
the core team or administrators, who have to maintain the code base, the
documentation,;
the developers or contributors who participate in the evolution of the OSS and
maintain some of its parts.

Others participants are called users. In an OSS context, users may be highly

skilled in computer science, and thus far from the classical notion of “end-users”.
They are called active users if they participate in mailing-list discussions as
informants for newcomers, by reporting or correcting bugs with patches, and
by proposing new modules. These active users in a particular OSS project
may be developers in another project
Other users are called passive users as they only use the software or lurk on
the discussion and documentation spaces of the project (Preece et al., 2004).

It is possible to evolve between these statuses by acquiring and proving one’s

technical skills and ability to engage and maintain online discussions: that is to

say that roles emerge and are actively constructed within the community

(Ducheneaut, 2005; Mahendran, 2002). This notion of role reflects the effective

and emerging behaviour of participants. In some cases, these activities may
correspond to what is expected from a particular status.

The literature on OSS clearly identifies that active users take part in the
evaluation phase of design (bug reporting and patching, e.g. Ripoche and
Sansonnet, 2006) and that the project leader, administrators and developers
participate in the design process itself, i.e. generating and evaluating solutions and
taking decisions (Barcellini et al., 2005). Open issues are still to characterize the
role of users regarding the design process itself and the role of all the active
participants (project leader, administrators, developers and active users) during
the elicitation of the needs and requirements phase. Despite the idealistic picture
that users may intervene freely in the process, we will question whether users who
are neither administrators nor developers in the core Python community can really
have an impact on the design choices and decisions. In particular, we will focus
on the design-use mediation process: how use and design are articulated when
new functionalities are proposed, solutions are generated and evaluated; and what
are the links between users and developers in OSS communities.

2.2. Collaborative design activities in OSS

Studies of face-to-face design meetings, especially in software design meetings
(e.g. d’Astous, et al. 2004; Herbsleb et al. 1995; Olson et al., 1992) or on
mediated, distributed design teams (e.g., Olson and Olson, 2000; Détienne et al.,
2004) highlight three main subsets of collaborative activities:
Generation-evaluation activities related to the process of solving and
evaluating various aspects of design problems.
Clarification-reformulation activities, concerning the construction of common
references, or common ground, within a group of co-designers.
Group management activities related to issues of process. Project management
activities that concern the coordination of people and resources -- e.g., the
allocation and planning of tasks — are of this kind. Meeting management
activities — e.g., the ordering and postponing of topics of discussion — are
another example of this kind of activity.

In previous work (Barcellini et al., 2005), we have studied collaborative design
activity of Python’s developers engaged in a formal design process, the Python
Enhancement Proposal (PEP), used to propose language evolutions. This previous
study focused mainly on the discussion space and on the python-dev mailing-list
in which most of the PEP design activity is expected to occur. Some of the design
choices and alternatives, together with their rationales are set out and discussed in
this space.

We showed that the analysis of quotes and their associated comments - as a link
to reconstruct the argumentation process - is useful to study the design process.
We found that online design discussions are focused and framed by specific

members of the project, especially the project leader, and that the proportion of
the various design activities differs in online interactions from face-to-face
interactions. For instance the clarification activity occurs as in face-to-face design
situations but seems to be framed by the project leader and limited to specific
locations in the discussion space.

The goal of the research presented in this paper is to extend these results by
investigating the users’ forms of participation in the design process. This implies
examining design discussions in another mailing list, that is more open to users
than the one we focused on in the previous part of this research.

2.3. Boundary spanners role as mediator between users and
designers

In Cognitive Ergonomics and Human-Computer Interaction studies it is well
established that users’ and designers’ representations of the artefact being
designed do not match. Designers might never be able to completely satisfy users
needs and requirements and incorporate into the artefact features anticipating
usage constructions. Thus, different kinds of methodologies (user-centered design,
participatory design) have been developed to span the gap between the users’ and
the designers’ worlds. However, both organizational sciences and design studies
point out that some key-participants may act as boundary spanners or mediators
(Sonnenwald, 1996; Bansler and Havn, 2006) or as brokers between user and
developer groups (Wenger, 1998).

Boundary spanners are literally persons who bridge the gap between their
organization and external ones (Sarant, 2004). The role of boundary spanners is
defined as “communication or behaviour between two or more networks or
groups” (Sonnenwald, 1996). They move among different teams transferring
information about the state of the project.

This role has been studied in various situations, for instance in research and
development (e.g. Sarant, 2004), and in design situations (Grinter, 1999; Krasner
et al., 1987). This is not a formal role but rather a role that emerges through
interaction and practices. Becoming boundary spanners implies having developed
skills and competences in the different fields that are spanned. Boundary
spanners are well aware of all practices and have achieved legitimacy and
credibility in the domains they span. Thus, they tend to occupy “high”
hierarchical positions (Sarant 2004; Sonnenwald, 1996).

Boundary spanners appear to be of particular importance in collaborative design
situations as they tend to produce innovative solutions to non-routine problems,
i.e. to design problems (Sonnenwald, 1996). They are also key participants who
can enhance coordination through informal communications (Krasner et al.,
1987). They reduce the amount of information lost or miscommunicated between
different phases of design development and different development teams. In non-

design situations, it has been shown that they can also protect against external
pressure or represent their organization (Sarant, 2004)

As far as we know, in OSS design, and more generally in mediated,
asynchronous and distant design situations, the role of boundary spanners has not
yet been investigated. Our hypothesis is that design-use mediation may be
supported by boundary spanners whose roles emerge from interactions between
the user and developer communities of an OSS project. We plan to investigate this
issue through a cognitive ergonomics approach, by focusing specifically on
participants’ activity, reflecting their “effective role” — as distinct from their
formal roles or statuses- in the design process (Baker et al., to appear). Although
the effective role is partly dependent upon the formal position of the participant in
the community, i.e. the power he/she has on the artefact being designed, it is also
contingent upon the participant’s actions in the design process — his/her activities-
and in the online discussions (Mahendran, 2002; Sonnenwald, 1996).

3. Research questions and strategy

In this section, we present our research questions and describe the research
strategy we adopt to characterize forms of participation and design-use mediation
in one OSS project.

3.1. Research questions

Given the limitations of the various studies outlined in the above section our
objective is to investigate the following research questions:

What forms do the users’ contributions take in the design process?

- Are there key participants acting as boundary spanners between the user and
developer communities?

— What forms do the contributions of these key-participants take in terms of
management and knowledge sharing activities?

Following a cognitive ergonomics approach, these research questions will be
investigated by analysing the activities that participants actually perform during
the design process. We will identify interactions between users and developers
through the activities occurring in the discussion space, in particular in a
developer-oriented list and a user-oriented list.

3.2. Research strategy

A focus on the Python project

The Python project is dedicated to the design and use of the Python object-
oriented programming language, known for its ease of use and the clarity of its
syntax. We chose to focus this research on the Python project for the following
reasons:
This project has a large community of users in various application domains
(web development, scientific computing, gaming, finance etc...) that might
lead to innovation in different ways.
It is a stable project with a core group of around 60 developers. Thus, the
amount of interactions and lines of code remain quite reasonable compared to
the Linux community and its hundreds of developers.
The Python developers used a formal design process, the Python Enhancement
Proposal (PEP), to discuss and specify new evolutions of the language. This
PEP process is similar to other design processes used by distant design
communities, like the Request for Comment used by the Internet Engineering
Task Force, and the XEP process used by the jabber community
(www.jabber.org). This formal process is close to the consensus-based
decision making of Apache.

The Python galaxy and its subcommunities

The Python project can be seen as a “galaxy” in which users and developers
participate (Figure 1) (Barcellini et al., 2006).

o Application Domains .
Imaging
Pil . —
Modules Space . <
_ Web o
. Toto.py “ope

~ Standard library :
P o core Lansiose SR
- (€ Python) - testpy

Financial
Sigefi

3
n .

Ga

POF o = Pyga
Reportlab _ Biology Y)
T Bio-python
Python Galaxy

3
)

Figure 1. The Python galaxy

The Python core language and its standard library occupy the core of this
galaxy. This space is the world of Python’s developers (administrators and
developers) that are responsible for the design of the Python programming
language itself and its standard library. On the basis of this core language, active
users of the Python programming language can develop modules based on Python
(modules space). Active users can also ask for language evolutions, using the
Python Enhancement Proposal for major ones. This is this kind of process that we
are going to follow.

Around this first core, sub-communities related to different application domains
in which users can be involved are identified. Some of them are well-structured
projects with their own project website and groupware. In this space we find: (1)
active users of the Python programming language who are developers of
application software based on Python, (2) active users of the application software,
(3) end-users of these applications based on Python (web development, scientific
computing, biology, and finance etc...).

This research is focused on the Python core language’s space. We want to
investigate how needs from various application domains are relayed and can
impact the design of the Python programming language. Thus, the participants we
focus on are: Python language developers and active users who may be developers
or active users in other application domain subcommunities.

Cross-participation between user-oriented and developer-oriented
mailing-lists

Most OSS design occurs in a discussion space composed of different mailing-lists
or newsgroups (Sack et al., 2006; Barcellini et al., 2005; Mockus et al., 2002).".
As all discussions are publicly available and archived online, they constitute rich
traces of the OSS design process.

To study the mediation between users and developers, we will analyse the
interactions occurring in two mailing lists, a user-oriented mailing list, the python-
list, and a developer-oriented mailing, the python-dev:

The python-list mailing-list deals with general discussions and questions about
Python. Posting to this usage-dedicated mailing-list is the main way an active
user can participate in the Python project. Most discussions on python-list are
about developing with Python, not about developing the Python interpreter
itself. Python-list can be seen as a cross-community mailing-list bridging the
gap between various users and the developers of Python.

The python-dev mailing-list is for work on developing Python (fixing bugs
and adding new features to Python itself). This is the heart of Python's
development. Anyone may subscribe to python-dev, though his/her
subscription will have to be approved but the list address accepts e-mail from
non-members.
In these mailing lists, we will in particular investigate the activities of cross-
participants. We define cross-participants as persons who take part in same-topic
discussions, occurring in parallel in both mailing-lists. This notion is an extended
notion of cross-posting defined as “the practice of posting the same message to
multiple newsgroups” (Kollock and Smith, 1996) and as “broadcast interactions to
multiple newsgroups” (Whittaker et al., 1998). Our hypothesis is that cross-
participants may be key participants, or boundary spanners between user-oriented
and developer-oriented communities.

4. Method

The first step of our study was to identify and select some successful “pushed-by-
users” design proposals using field interviews, and to collect traces of exchanges
regarding one of these proposals, in python-dev and python-list. The second step

' Members of the Python community can interact in these different “online” spaces, but also in physical
interaction spaces where they meet face-to-face, such as at annual international conferences (EuroPython,
RMLL, PyCon...)

was to identify the participants and cross-participants involved and their statuses.
The final step was to analyze interactions, design and boundary spanning
activities, in particular those of users and cross-participants.

4.1. Identification and collection of data

Field interviews to identify “pushed-by-users” design proposal

We interviewed 13 participants in the Python project: 11 active users of the
Python language, the project leader and one developer. These people were
selected according to two criteria: their involvement in the Python community and
/ or their participation in Python’s mailing-lists. Six of these 11 active users were
working in different application domains: two in computer science, two in
biology, and two in chemistry/nuclear institutions. Five were working in firms
providing web services or scientific computing around Python.

As the Python community uses the Python Enhancement Proposal (PEP)
process to formalize a new design proposal, interviewees were asked which PEPs
had been most significant for them, or for some other users in the community
according to them.

The interviews were then transcribed and two “pushed-by-users” design
proposals transformed in PEP (PEP 327 and PEP 308), i.e. successful design
proposals, were outlined among the 161 PEPs of the Python project.

Data Collection

We selected the design proposal formalized in PEP 327 on the basis of several
criteria. The champion of this PEP, i.e the person who originally proposed it, was
a user. The PEP is related to one end-user application domain of Python
(financial), whereas PEP 308 deals with programming in Python®. Finally, we
were able to collect most (as far as we know) of the traces related to this PEP on
the two mailing-lists.

As all discussions are publicly available and archived online, the data was
gathered by searching manually from the python-list and the python-dev mailing-
lists, for the keywords: decimal, money, currency, PEP 327 and the name of the
user-champion (the user who was actually proposing the PEP and championing
it). The search was performed from the first message posted by the user champion
in October 2003 to May 2006. Each message, which was returned was read by the
first author of this paper in order to ensure that it was indeed a message dealing
with the design issue we are interested in, as in O’Shea and Exton (2005).

? Adding conditional expressions to Python as in other programming languages

In the user-champion’s weblog, we also found five articles referring to Python
conferences where issues about the design proposal were discussed.

The PEP 327 corpus is composed of 52 discussions in python-list and python-
dev from the 17th October 2003 to the 23th May 2006, enriched by these five
weblog articles.

Participation and identification of cross-participants in the PEP 327
design process

To select relevant discussions, we need to have an overview of the temporal
organization of the 52 discussions in the two mailing-lists. To characterize the
temporal organization we ordered the discussions according to their beginning
and ending date in parallel in the two mailing-lists (Figure 2). The python-dev and
the python-list discussions are represented in parallel. Each discussion is
represented by a symbol. Conferences in which there were some interactions
relating to the design process are represented by a grey vertical line. Cross-
participation between parallel same-topic discussions in python-list and python-
dev is labelled using dotted vertical lines.

This representation helps us to identify five parallel same-topic discussions
(Table 1; in black in Figure 2) between the two mailing-lists, in which cross-
participants are present. For a more global description of this design process see
Barcellini et al. (2006).

These discussions dealt with the reformulation of the initial proposal of the
future user-champion, i.e. the introduction of a Money Data Type in Python: it
appears that creating a money data type requires work on the decimal type of
Python first of all and the proposal evolved to PEP 327 on decimal data type.’

* We excluded some messages (PEP 327 news and Money Module) when there was only one message posted
on python-list not followed by any answer, i.e. no discussion emerged.

Barcellini, F., Détienne, F., Burkhardt, J.M. (to appear). User and developer mediation in an Open Source Software Community: boundary spanning through cross
participation in online discussions. International Journal of Human-Computer Studies.

T
Python-list (users) @ Parrallel same-topic discussion ———— - Cross-participation
2003 2004 2005 2006
Debug &
. - Money Module 2
Pre PEP Decimal module Valorisation Evolutions
Maney DT Maney & Decimal PEP 327 PEP 327 News B
O /.I * f\ * e o o seee e ° ® ° . ?
| 1 1 1 !
\ 1 1 1 — !
| 1 1 1 !
| 1 1 1 !
| 1 I 1 !
1 T 1 T
| 1 1 1 !
\ [I 1 !
\ I I 1 !
\ I 1 1 !
P! 1 1 !
P! 1 1 :
1 1 1) . .
1 -
" | h | PEP Refinements - issues on decimal lssues on FAQ & Tutorial :
! 1 1
1
! 1 1 I
! 1 1 :
\: . |] .- [° °
Python-dev Time
- - s
0803 10.03 11.03 12.03 01.04 0204 0304 04.04 0504 06.04 07.04 08.04 09.04 10.04 1.04 1204 0105 02.05 03.05 04.08 05.08 06.08 07.08 12.05 J5.08

Figure 2. Temporal organization of discussions related to PEP 327 design process

Barcellini, F., Détienne, F., Burkhardt, J.M. (to appear). User and developer mediation in an Open
Source Software Community: boundary spanning through cross participation in online discussions.
International Journal of Human-Computer Studies.

Table 1. Date, number of messages and participants in our corpus of five parallel discussions on the
python-dev and the python-list.

Discussions Date Messages Participants
Py-list Py-dev Py-list | Py-dev | Py-list | Py-dev
PrePEPMoney 17 to 22 oct. 03 17 to 22 oct. 03 51 23 7 8
PrePEPDecimal 31 oct. to 9 nov 03 31 oct. 03 77 2 14 2
PrePEPDecimal V0.2 5to 6 jan. 04 5 jan. 04 4 2 3 2
PEP327 31 jan. to 10 feb. 04 | 31 jan. to 5 feb. 04 | 34 16 14 7
Decimal-Expo 19 to 23 may 06 19 to 23 may 06 7 3 4 2
Total 173 46 42 21

As some participants post messages in several discussions, there are only 28
different participants in python-list and 13 different participants in python-dev.

In this corpus, five people were identified as cross participating in parallel
same-topic discussions: the user-champion (he was not formally defined as a
developer at the beginning of the process and was the project leader of a financial
project), one administrator (CP-A1) who is a recognized expert in the decimal
domain; two developers (CP-D1 and CP-D2), one of whom had already worked
on a decimal module; and one user4 (CP-U1).

4.2. Analysis of a ‘“pushed by users” PEP design process

A quotation analysis to highlight participants’ interactions

Quotation, i.e. integrating parts of previous messages in another one, is a
compensatory linking strategy used by participants to maintain the context in
online discussions (Herring, 1999). In a previous paper (Barcellini et al., 2005),
we showed that the organization of messages according to the quoting link is
useful to reconstruct the thematic coherence of online discussions and to
understand the interactions between participants in terms of verbal turns. In the
following, we outline interactions between participants using this quotation
analysis. Blocks of quotation are identified in each message by the “greater than”
symbol “>”. Then, we search manually in the corpus which message and which
author this quote comes from to obtain a table of “who is quoting whom”.

* We employ the term “users” for those who are not clearly identified as administrators or developers on the
project webpage.

Analysis of activities and references in mailing-lists

The coding of activities is inspired by previous studies on collaborative software
design activities (d’Astous et al., 2004; Détienne et al., 2004; Olson et al., 1992;
Stempfle and Badke-Schaub, 2002) and by the coding scheme developed in our
previous paper (Barcellini et al., 2005), which we have extended. We code
collaborative design activities, reflecting the functions of the turns in the design
discussion (e.g. making a proposal, a reformulation, an argumentation...), the
reference categories reflecting the knowledge that is shared in the discussion (e.g.
knowledge about use).

The corpus obtained is segmented into units, corresponding to comments or
sub-units of comments. All messages contain sequences of quotes and comments.
On the basis of our previous study (Barcellini et al., 2005), we consider that a
comment corresponds to an individual turn in an online discussion. Each unit is
categorized using the coding scheme composed of two types of categories:
activities and references. In this paper, we will only describe and use: group
management (coordination, synthesis, decision), social relationship activities
(Table 2), and referencing activities (Table 3) to highlight the roles of boundary
spanners.

Table 2. Definition and examples of boundary spanners related activities used in our coding scheme

Categories of o o
Activities Description Examples
activity
Tasks l'nanagernent7 announce 1 suggest that you register with the
Coordination of “To do” work PEP editor right away to get a PEP
number
L Recapitulation of what has been | Okay, here's what we have so far :
Coordination Synthesis discussed, often followed by an | Emm (-
enumeration
. Explicit decision (only by the | Not observed in the corpus
Decision .
Project Leader)
.) acknowledgement, recognition The code of the Money class is
Social Social £ . K K d based in large part on the code of
. .)) Y p.re:v1ous work, wor one, yy' FixedPoint: thank you for your
Relationship relationship explicit Help Proposal (very) valuable ideas.

Table 3. Definition and examples of references used by participants

Category of
References Description Examples
reference
) .| Information related to the | 17¢ Decimal data type {...) must
Decimal Domain . comply the decimal arithmetic
decimal standard ANSI standard X3.274-1996.

Application] Found it -- article 5 of the
domain Information related to 1aw | council Regulation which

Financial Domain

and rules of the financial
domain

established the Euro” a few
years ago is titled "Rounding"
and specifies (...)

Computer science

) You can control something
Programming Evocation of rules and|based on the type of a
Rules knowledge about coding destination only via augmented
assignment.
Reference to the specificities .
Python and the rules of the Also,. making mutable. numbers
X . (...) is not very Pythonic.
rules/project programming language OT | 44 e Zen of Python puts it (....)
the project
Other Comparison to other) o
P . . 1 For example, for multiplication
rogramming programming anguages Java's BigDecimal class (...)
languages (Java, C++, Cobol...)

Examples and

Examples and

Reference to an application
example for proposals or

because for example with a
precision of 9, Decimal(35) +

code code requirements; proposals of | 1.2 is OK but Decimal(35) + 1.1

code raises an error)
Reference to a personal |Having had to deal with
Personal experience at work, in the |"onetary calculations ., laws

. X . K R and accountant. (...).
Experience flnan01al . domain, in|7ue 10y Decimal I'm playing
implementation with

it IS what accountants *DO* --
. and if one writes accountin
End-User Evocation of end-users ¥ ' ceauning

Usage-Experience

software one should really play
by their rules

Programming-user

Evocation of programming-
users

1 think that expert programmers
will have little difficulty
parameterizing their operations.

Generic users

Evocation of users without
any precision on the types of
these wusers (end-users,
programming-users)

Naive wusers will always
believe that they're getting
"good" precision

Usage-usability

Usability issues

The resulting decimal type,
however, may not be highly
usable for some kinds of
monetary computations.

Simulation in “real world”

Would it be acceptable to carry
around the "exact" amount and
then say (..) to a customer who

Scenario conditions/constraints owns 1000 units of the stock,
that he must pay a charge of
6.168209 dollars or euros
Explicit references to the This wouldn't have “been
Person possible without the help from
name of stakeholders. ,
y, xx (...)
EXplicit linking Referepce tq a post In the I've followed up to xx's similar
Same/Others same discussion or to a post | post on Python-dev
discussions in a previous discussion or | This subject has been already

in another mailing-list

discussed in c.l.p (python-list)

This content analysis was completed by an interview with the user-champion of
this PEP.

5. Results

5.1. Global participation distribution

Table 4 sums up the distribution of references in the two lists according to the
status of the participants and their cross participation role.

Concerning the referencing activities, CPs are the greatest contributors as they
are responsible for 54% (297/551) of references in python-list and more than 80%
(104/130) in python-dev.

There is a strong relationship between the level of references and the list (V?
Cramer=0.29): the UC, AD and the PL tend to participate by more references in
python-dev than in python-list, whereas users tend to participate by more
references in python-list (they represent only 2% (3/130) of references in python-
dev). The project leader (PL) does not participate at all in python-list and
participates less (4.3%) in python-dev than in other discussions studied in our
previous paper (Barcellini et al., 2005). Indeed, the PL declared in a post that he
was not an expert in this area. On the other hand, the administrator who cross-
participates is a well-known expert in decimal. This result confirms the findings
of our previous paper in which we observed that the effective roles of
administrators and the PL tend to be complementary.

Table 4. Distribution of references used by participants in python-dev and python-list

Status Distribution of References
Python-list Python-dev
PL 0 T (5%)
AD 3 (1%) 16 (12%)
Users 251 (45%) 3 2%)
ucC 67 (12%) 59 (46%)
CP (without UC) 230 (42%) 45 (35%)
Total 551(39%) 130 (40%)

5.2. Social network of users and developers communities

The attraction graph’ below (Figure 3) represents the interactions between
participants, showing who tends to quote whom in the two mailing-lists. There is
an intermediary relationship (V> Cramer=0.07) between the status of the
participant who is quoting and the status of the participant who is being quoted.

Figure 3 displays a kind of social network in which the links are based on
quoting rather than reply-to links. Firstly, it shows that the cross-participants as a
whole tend to quote each other: the UC tends to quote and be quoted by the CPs.
This result is coherent with the interview with the user-champion who stated that
he received technical, social and discursive help or support from other CPs, in
particular from three of them: CP-D1, CP-D2 and CP-Al. Secondly, this figure
outlines the fact that all the cross-participants (both CPs and the UC) are the relay
between the user community (U) and the developer community (PL and AD).
They are central in the social network linking these two communities. On the user
side, the cross-participants (CPs only) tend to quote and be quoted by the users
(U) in the two mailing-lists. On the developer side, the UC who is a specific
cross-participant tends to quote and be quoted by the PL and the AD in the
Python-dev list.

=N
PL h_’i‘l U-C Py-list & py-dev Py-ist & py-dev
L ——

» CP «— U

Figure 3. Attraction graph highlighting quoting between participants

5.3. Global activities and references distribution

Group management and social relationship activities are more important in
python-dev (resp. 55/ 324, 17% of activities; 20/324, 6.2% of activities) than in
python-list (resp. 76/1415, 5.4%; 32/1415, 2.3%). As analysed discussions took
place at the beginning of the PEP process, participants in python-list are mostly
evaluating and debating the requirements proposed by the PrePEPs and PEP;
whereas python-dev is dedicated to the coordination of the project and the

> This graph is based on the relative deviation (RD) analysis. By convention, we represent only the attractions
between variables (here the participants) > 0.2.

recognition by the user-champion of both previous work and work in python-list
(social relationship).

Table 5 sums up the distribution of types of references in python-list and
python-dev. Globally, computer science references (190/681, 28%) and usage /
personal experience (151/681, 22%) are the most important references used by
participants. Although the relationship between the type of references and the list
is low (V* Cramer=0.01), the analysis of local RD® reveals that usage/personal
experience and computer science references tend to occur in python-list and that
explicit linking strategies tend to occur in python-dev.

Table 5. Distribution of references used by participants in python-dev and python-list

References Python-list Python-dev Total
Computer science 162 (29%) 28 21%) 190 (28%)
Usage / personal experience 128 (23%) 23 (18%) 151 22%)
Example and code 113 22%) 32 (25%) 145 21%)
Explicit linking strategies 74 (13%) 28 21%) 102 (15%)
Financial and decimal domains 74 (13%) 19 (15%) 93 (14%)
Total 551 (81%) 130 (19%) 681

Table 6 gives the distribution of references inside the usage / personal
experience category. The most frequent references in this category are scenario
(40/109, 37%) followed by programming-users (20/109, 18%) and end-users
(20/109, 18%). Analysis of RD (V* Cramer=0.06 meaning an intermediary
relationship) reveals that reference to programming users and usage/usability
issues tend to occur more in python-dev and that reference to end-users, generic
users and scenario tend to occur in python-list.

Table 6. Distribution of usage/personal experience references by participants in python-dev and python-list

References Python-list Python-dev Total
Scenario 36 (39%) 4 (24%) 40 (37%)
Programming users 15 (16%) 5 (29%) 20 (18%)
End-users 19 21%) 1 (6%) 20 (18%)
Usability/usage 12 (13%) 6 (35%) 18 (17%)
Personal experience 29 (24%) 5 (23%) 34 (14%)

¢ RDs measure the association between two nominal variables. They are calculated on the basis of a
comparison between observed and expected frequencies (i.e. those that would have been obtained if there
had been no association between the two variables). There is attraction when the RD is positive, and
repulsion — when it is negative. By convention, we reported only attractions with values >.20.

Generic users 10 (11%) 1 (6%) 11 (10%)

Total 92 (85%) 17 (15%) 109

54. Emerging roles through effective coordination and
referencing activities

We investigate whether there is a link between cross participation, status and
effective activities/references of the participants. First, we make a quantitative
analysis of referencing activity according to cross participation and status. Then
we analyse the attraction between types of participants and activities.

As concerns cross-participants, we clarify the nature of the references they
provide in both lists:

In python-list, CPs provide 54% (40/74) of decimal-financial references, 46%
(74/162) of computer science references, 42% (31/74) of explicit linking
references and 40% (52/128) of usage and personal experience references.
The user-champion alone (UC) provides 26% (29/113) of code and examples,
and 22% (16/74) of explicit linking.

In python-dev, CPs provide 68% (13/19) of decimal-financial references and
64% (18/28) of computer science references. The UC alone provides 78%
(25/32) of code and examples and 61% (17/28) of explicit linking.

Concerning the users, they mainly provide references in the user-oriented list,
the python-list (only 2% of references in python-dev): 52% (67/128) of usage and
personal experience references, 49% (80/162) of computer science references,
and 43% (49/113) of code and examples.

Figure 4 and Figure 5 complete this global description. They display attraction
graphs between the participants and the activities/references that the participants
tend to perform the most. Figure 4 represents the attraction graph between
participants, coordination activities and references in the two mailing-lists. There
is an intermediate relationship between participants and the types of references
and activities they perform in python-dev (V> Cramer=0.12 for references and
0.05 for activities) and a low relationship (V* Cramer=0.03 for references and
0.02 for activities) in python-list.

Cross-participants (CPs) tend to provide more references about the application
domain of the PEP (financial and decimal domains) than other participants in both
mailing-lists. In python-dev, they also tend to provide knowledge about the
computer science domain, especially about programming and Python community
rules. These referencing activities are one way to link user-oriented and
developer-oriented communities.

Python-list

—= Explicit linking

PL«— Group management — UC

CP «——— Application domains —— CP

AD «—— Usage-Experience —— U

— Computer Science

U «—————— Code-example <:: ﬂg

Figure 4. Attractions graph of the relationship between participants, activities and references

Regarding the user-champion (UC) alone, he tends to manage the group more
than other participants in both lists. He also tends to enhance social relationship
by explicit linking strategies to other people’s work, and to participation in other
discussions. In this way, he applies the social rules of OSS communities: the
recognition of other works. He does so by crossing the boundaries between the
two communities. In the activities of both management and explicit linking, the
UC is supported by the project leader (PL) in the developer-oriented list.

Interestingly, we note asymmetry between users and Administrators-
Developers (AD): ADs tend to refer to usage in python-dev, whereas users (U)
tend to talk more about usage in python-list.

Figure 5 focuses on usage/personal experience references: it displays the
attraction graph between participants and the usage/personal experience
references subcategories they tend to use the most. There is a strong relationship
between the participants and the types of usage references in python-dev (V*
Cramer=0.22) and an intermediate relationship in python-list (V> Cramer=0.05).

Figure 5 shows that the cross-participants tend to refer to the end-users in the
Python-dev list and to the programming users in the python-list. They tend to
adapt their referencing activity according to the target community they are
addressing: transferring referencing about end-users to the developer community,
transferring references about programming users to the user community.

The UC and the PL tend to provide usage-usability references in a
complementary way, respectively in python-dev and the python-list.

The users tend to provide more personal experience references and end-user
references than others in python-list.

P ython-dev | Python-list

AD «—— Scenario
CP «—— End-users U
f. AD «—— Programming. users CP
CP
CP «———— Generic users <
=~ UC
PL «——— Usage-usability uc
PL Y~ Personal Experience —— U
uc «

Figure 5. Attractions graph of the relationship between participants usage/personal experience references

6. Discussion and further work

6.1. Users’ contribution

We found that users mostly tend to participate in the user-oriented list, python-list.
Here, they provide references mostly on usage and personal experience, computer
science, and code and examples. They also tend to provide more personal
experience and end-user references than others in python-list. Even if the users’
contribution seems important in order to specify usage needs, their participation
remains local to the user-oriented community and does not guarantee that these
needs will be taken into account in the actual design.

6.2. Cross-participation and boundary spanning role

We found that cross-participants perform an emerging role of boundary spanners,
which guarantees that usage is linked to design and that the boundary between the
user community and the developer community is crossed. This emerging role is
characterised as follows:

Cross-participation in both communities: the cross-participants post messages
in same topic discussions occurring in parallel, in mailing lists directed toward
users or developers.

Cohesion between cross-participants: the cross-participants tend to quote each
other as is shown in a social network analysis, based on quotation links. They
tend to support each other: in our study, the user-champion received some
technical, social and discursive support from other cross-participants.

Central position of cross-participants: the cross-participants are central in the
social network linking the user community and the developer community. On
the user side, the cross-participants tend to quote and be quoted by the users.
On the developers side, the user-champion, a specific cross-participant, tends
to quote and be quoted by the administrators (including the project leader) and
the developers of Python.

Active contribution: the cross-participants are the main contributors and the
main providers of references in both lists. Moreover, for the whole corpus (the
52 discussions), we found that the cross-participants are active throughout the
design process.

Distinctive contribution: the cross-participants provide and share knowledge
about both the user-oriented application domain and the developer-oriented
programming domain. In this way they cross the boundaries between the two
communities. In our analysis, we found that they provide about half of the
references to the application domain (financial and decimal) and to the
computer science domain.

Adapted contribution: the cross-participants tend to adapt their referencing
activity according to the target community they address: transferring
references about end-users to the developer community; transferring
references about programming-users to the user community. Furthermore they
are complementary to users as they are the main providers of usage and
personal experience references in the developer-oriented list whereas users are
the main providers of this type of knowledge in the user-oriented list. Thus,
they also maintain a strong focus on usage in the developer community.

6.3. Key roles of the user-champion and the project leader

The user-champion tends to enhance social relationships by explicit linking
strategies, to other people’s work, and by participating in other discussions. He
refers to the previous work of other or other discussions through explicit linking
strategies (Herring, 1999), and thus enhances harmonious social relationships,
respecting the rules of the community, such as recognition of work. By doing so,
he may prevent conflicts by crossing the boundary between the two communities.
He is also a coordination agent, managing the group more than other participants
in both lists, summarizing and posting news about the state of the PEP design

process in the user-oriented list. At the end of the process, he becomes an official
developer and is responsible for presenting the new module at the Python
Conference. In both activities of management and explicit linking, the user-
champion is supported by the project leader in the developer-oriented list.

6.4. Role emerging design

Our study provides insights into how design and use are articulated in OSS
design, a distant and asynchronous community-based design process. According
to our results, OSS design does not seem to be participatory in the strict sense of
the definition, i.e. user involvement in “design” activities. Even if users of OSS
may potentially be involved in all the phases of the OSS design process
(elicitation of needs and requirements, design and implementation), we found that
their participation remains mostly local to the user community in the PEP process
we analysed.

We found that the design-use mediation is supported rather by a number of key
participants who act as boundary spanners and who are not necessarily users
themselves: two of them were users but the three others were administrators and
developers.

In the literature, it is highlighted that these roles emerge in collective activities
based on the technical, discursive skills and interest of the participants. In OSS
communities, the participants are highly skilled, often in a different field of
expertise. The status of user or developer becomes completely relative to the
context in which their skills can be expressed. Our position is that the context of
OSS design can enable these skills to be expressed as needed, and in this way,
enables “role emerging design”, i.e. design organised and pushed through
emerging roles and through a balance between these roles. The Open Source
communities, and more general online communities, seem to provide a socio-
technical environment enabling role emergence and role complementarity, thereby
constituting “enabling environments” (Falzon, 2005) for the participants.

6.5. Further work

To complement this research, we plan to carry out in-depth interviews with cross-
participants and some users to gain a better understanding of their positions in this
design process, and to make a deeper analysis of boundary spanning roles in
distributed design communities.

Moreover, the user-champion received some technical, social and discursive (he
was a non native English speaker) support by cross-participants to get his idea
accepted; he evolved and enhanced his competences during this design process.
We plan to investigate a PEP on the same theme, that was proposed and rejected
several months before in order to highlight both the necessary conditions and the

barriers to get a “pushed-by-users” PEP accepted, and more generally to enhance
role emergence in this kind of distributed design community.

We found that using a formal criterion such as cross-participation is a powerful
means to identify boundary spanners in parallel mailing-lists. In order to further
investigate the notion of “role emerging design”, the identification of cross-
participants, as well as social network based on quoting, could be automated and
applied to other online communities.

7. Acknowledgments

The authors wish to thank the reviewers for their helpful comments and
suggestions, and all the members of the Python community. This research is
funded by the French National Research Department, via the Cnam and INRIA.

8. References

d’Astous, P., Détienne, F., Visser, W., and Robillard, P. N. (2004). Changing our view on
design evaluation meetings methodology: a study of software technical evaluation
meetings. Design Studies, 25, 625-655.

Barcellini, F, Détienne, F., Burkhardt, J.M., and Sack, W. (2005). Thematic coherence
and quotation practices in OSS design-oriented online discussions. In K. Schmidt,
M. Pendergast, M. Ackerman, et G. Mark (Eds.) Proceedings of the 2005
International ACM SIGGROUP (pp 177-186). New York, USA: ACM Press.

Barcellini, F., Détienne, F., Burkhardt, J.M. (2006). Users’ participation to the design
process in a Free Open Source Software Online Community ». In P.Romero, J.Good,
S.A Bryant & E. Chapparo (Eds.) Proceedings of the 18th workshop Psychology of
Programming PPIG’06, pp-99-114.

Baker, M., Détienne, F., Lund, K., and Séjourné, A. (to appear). Analyse épistémique et
argumentative de la conception collective en architecture: étude des profils
interactifs. In F. Détienne et V. Traverso (Eds) Méthodologies d’analyse de
situations coopératives de conception: corpus MOSAIC. Nancy: PUN.

Bansler, J.P. and Havn, E. (2006). Sensemaking in Technology-Use Mediation: Adapting
Groupware Technology in Organizations. Journal of Computer Supported
Cooperative Work, 15 (1), 55-91.

Cohendet, P., Creplet, F. and Dupouét, O (2000). Organizational innovation, communities

of practice and epistemic communities: the case of Linux. In A Kirman & JB

Zimmermann (Eds) Economics with Heterogeneous Interacting agents. The
Netherlands: Springer.

Détienne, F., Boujut, J-F., & Hohmann, B. (2004) Characterization of Collaborative
Design and Interaction Management Activities in a Distant Engineering Design
Situation. In F. Darses, R.. Dieng, C. Simone, M. Zaklad (Eds) Cooperative Systems
design. 10S Press, 83-98.

Détienne, F., Martin, G., and Lavigne, E. (2005). Viewpoints in co-design: A field study
in concurrent engineering. Design Studies, 26 (3), 215-241.

Ducheneaut, N. (2005). Socialization in an Open Source Software Community: A Socio-
Technical Analysis. Journal of Computer Supported Collaborative Work, 14, 323-
368.

Falzon, P. (2005). Ergonomics, knowledge developpement and the design of enabling
environments. In Conference on Humanizing Work and Work Environment,
Guwabhati, Inde.

Gacek, C., and Arief, B. (2004). The Many Meanings of Open Source. I[EEE Software,
21, 34-40.

Gasser, L., Scacchi, W., Ripoche, G., and Penne, B. (2003). Understanding Continuous
Design in F/OSS project. Communication at ICSSEA-03, Paris, France, December
2003.

Grinter, R., 1999. Systems Architecture: Product Designing and Social Engineering, San
Francisco, CA, USA

Gutwin, C., Penner, R., and Schneider, K. Group Awareness in Distributed Software
Development. In Proceedings of CSCW 2004 (pp72-81). New York, USA : ACM
press.

Herbsleb, J., Klein, H., Olson, G. M., Brunner, H., Olson, J. S., and Harding, J. (1995).
Object-oriented analysis and design in software project teams. Human-Computer
Interaction, 10, 249-292.

Herring, S. (1999). Interactional Coherence in CMC. In Proceedings of the 32" Hawaii
Conference on system sciences (13 p.). Maui Island, Hawai, USA, 5-8 January 1999.

Kollock, P., and Smith, M. (1996). Managing the Virtual Commons. In S.Herring (Ed.)
Computer-Mediated Communication: Linguistic, Social, and Cross-Cultural
Perspectives (Pp. 109-128), Amsterdam, The Netherlands: John Benjamins.

Krasner, H., Curtis, B., Iscoe, N. (1987). Communication breakdowns and boundary

spanning activities on large programming projects. In G. Olson, S. Sheppard, and E.

Soloway, E. (Eds.) Empirical Studies of programmers:Second Workshop, Ablex, pp.
47-64.

Mahendran, D. (2002). Serpents and Primitives: An ethnographic excursion into an Open
Source community. Master’s Thesis, School of Information Management and
Systems, University of California at Berkeley.

Mockus, A., Fielding, R. T., and Herbsleb, J. (2002). Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3), 309-346.

Olson, G.M., Olson, J.S., Carter, M. R., and Storrosten, M. (1992). Small Group Design
Meetings: An Analysis of Collaboration. Human-Computer Interaction, 7, 347-374.

Olson, G. M., and Olson, J. S. (2000). Distance Matters. Human-Computer Interaction,
15, 139-178.

Preece, J. (2000) Online Communities: Designing Usability and Supporting Socialbilty.
New York, USA : John Wiley and sons.

Preece, J., Nonnecke, B., Andrews, D. (2004). The top five reasons for lurking:
improving community experience for everyone. Computer in Human behavior,20,
201-223.

Raymond, E. S. (1999) The cathedral and the bazaar [web page]
http://www.tuxedo.org/esr/writings/cathedral-bazaar/ [June 20 2005].

Ripoche, G. and Sansonnet, J.-P. (2006). Experiences in Automating the Analysis of
Linguistic Interactions for the Study of Distributed Collectives. JCSCW, 15(2-3),
149-183.

Sack, W, Détienne F, Burkhardt, J.M., Barcellini F, Ducheneaut, N, and Mahendran D.
(2006). A Methodological Framework for Socio-Cognitive Analyses of
Collaborative Design of Open Source Software. Journal of Computer Supported
Collaborative Work, 15 (2-3), 229-250

Sarant, S.A. (2004). The role of organizational boundary spanners in industry/university
collaborative relationship. Doctor of Philosophy in Psychology Dissertation Thesis.
North Carolina State University, 2004.

o’Shea, P., Exton, P. (2005). The Role of source code within program summaries
describing maintenance activities. In P. Romero, J. Good, E. Acosta Chaparro and S.
Bryant (Eds) Proceedings of PPIG 17, pp160-172.

Sonnenwald, D.H. (1996). Communication role that support collaboration during the

design process. In Design Studies, 17, 277-301.

Stempfle, J., and Badke-Schaub, P. (2002). Thinking in design teams - an analysis of
team communication. Design Studies, 23, 473-496.

Twidale, M.B., Nichols, D.M. (2005). Exploring usability discussions in Open Source
development. In Proceedings of HICSS '05, pp198c- 198c.

Wenger, E. (1998). Communities of practice : learning, meaning and identity. New York,
USA : Cambridge University Press.

Whittaker, S., Terveen, L., Hill,W., and Cherny L. (1998). The dynamics of mass
interaction. In Proceedings of the 1998 ACM conference on Computer supported

cooperative work, p257-264.

