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Abstract

We study the incidence (rate of occurrence), persistence (rate of reoccurrence immediately after
occurrence), and impact (effect on behavior) of students’ cognitive-affective states during their
use of three different computer-based learning environments. Students’ cognitive-affective states
are studied using different populations (Philippines, USA), different methods (quantitative field
observation, self-report), and different types of learning environments (dialogue tutor, problem-
solving game, and problem-solving based Intelligent Tutoring System). By varying the studies
along these multiple factors, we can have greater confidence that findings which generalize
across studies are robust. The incidence, persistence, and impact of boredom, frustration,
confusion, engaged concentration, delight, and surprise were compared. We found that boredom
was very persistent across learning environments and was associated with poorer learning and
problem behaviors, such as gaming the system. Despite prior hypothesis to the contrary,
frustration was less persistent, less associated with poorer learning, and did not appear to be an
antecedent to gaming the system. Confusion and engaged concentration were the most common
states within all three learning environments. Experiences of delight and surprise were rare.
These findings suggest that significant effort should be put into detecting and responding to
boredom and confusion, with a particular emphasis on developing pedagogical interventions to
disrupt the “vicious cycles” which occur when a student becomes bored and remains bored for
long periods of time.

Keywords: Affect, cognitive-affective states, affective computing, affective persistence,
intelligent tutoring systems, educational games



1. Introduction

1. Introduction

The field of interface development was radically transformed when design decisions began to be
informed by users’ physical limitations and cognitive constraints in addition to the technical
concerns that initially dominated issues in system development (Carroll, 1997). Stemming from
the human factors movement in the early fifties and the cognitive revolution of the sixties and
seventies, the impetus of human-computer interaction began to gradually shift away from the
computer and more towards the human.

A second key shift occurred with the change in emphasis from focusing primarily on the
cognitive constraints of the user (e.g. working memory load, information overload, split
attention, etc), to focusing on users’ affective experiences (emotions, moods, feelings) and how
affect influences other aspects of the broader human-computer interaction. Since Picard’s
influential 1997 book Affective Computing, there has been a burst of research that focuses on
creating technologies that can monitor and appropriately respond to the affective states of the
user. Such systems attempt to bridge the communicative gap between emotionally expressive
humans and generally socially deficient computers. Even five years ago, it could be argued that
affect was being consistently de-emphasized within HCI research (McNeese, 2003; Picard et al,
2004). However, in the last few years, there has been considerable research aspiring to
incorporate the affective states of a user into the decision cycle of the interface in an attempt to
develop more effective, user-friendly applications (Hudlicka & McNeese, 2002; Klein, Moon, &
Picard, 2002; Mandryk & Atkins, 2007; Marinier & Laird, 2006; 2007; Norman, 2004;
Prendinger & Ishizuka, 2005; Whang, Lim, & Boucsein, 2003).

The inclusion of emotions into the decision cycle of computer interfaces is motivated by the
hypothesis that there is a complex interplay between cognition and emotion (Mandler, 1984).
Simply put, emotions are systematically affected by the knowledge and goals of the user, and
vice versa (Mandler, 1984; 1999; Stein & Levine, 1991). Cognitive activities such as causal
reasoning, deliberation, goal appraisal, and planning processes operate continually throughout
the experience of emotion. Given the complex relationships between affect and cognition, some
key user states that are highly relevant to students’ experiences, such as confusion and engaged
concentration, can be considered a blend of affect and cognition. Within this paper, we refer to
these states as cognitive-affective states. Due to the interrelationships between affect and
cognition, an interface that is sensitive to a user’s affective states as well as their cognitive states
is likely to be more usable, useful, socially appropriate, enjoyable — all factors that may lead to
wider use and acceptance.

1.1 Affect in Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITSs) are hypothesized to be a particularly good candidate for
improvement by addressing the connections between affect, cognition, motivation, and learning
(e.g. Arnold, 1999; Bower, 1992; Sylwester, 1994). ITSs are a type of educational software that
offer guided learning support to students engaged in problem-solving. Existing intelligent tutors
tailor their support of students’ needs in a variety of ways, including identifying and correcting
student errors (Anderson, Corbett, Koedinger, & Pelletier, 1995; VanLehn, 1990) and promoting
mastery learning through assessments of the probability that the student knows each skill
relevant to the system (Corbett & Anderson, 1995). ITSs have emerged as valuable systems to



promote active learning, with learning gains associated with sophisticated ITSs at around a 1.0
SD improvement (about a letter grade) when compared to controls (Dodds & Fletcher, 2004;
Koedinger & Corbett, 2006; VanLehn et al 2005). These learning gains are higher than those
achieved by inexperienced human tutors (~0.4 SD, see Cohen, Kulik, & Kulik, 1982) but are not
quite as good as learning gains achieved by expert human tutors (~2.0 SD, see Bloom, 1984).

Over the last few years there has been work towards incorporating assessments of the
learner’s affect into intelligent tutoring systems. Kort, Reilly, and Picard (2001) proposed a
comprehensive four-quadrant model that explicitly links learning and affective states. This model
was used in the MIT group’s work on their Affective Learning Companion, a fully automated
computer program that recognizes a learner’s affect by monitoring facial features, posture
patterns, and onscreen keyboard/mouse behaviors (Burleson, 2006). de Vicente and Pain (2002)
developed a system that could track several motivational and emotional states during a learning
session with an ITS. The system was trained on judgments by expert coders. Conati (2002)
developed a probabilistic system that can reliably track multiple affective states (including joy
and distress) of the learner during interactions with an educational game, and use these
assessments to drive the behavior of an intelligent pedagogical agent (Conati & Zhou, 2004).
Litman and Silliman’s work with the ITSPOKE (2004) conceptual physics ITS has used a
combination of discourse markers and acoustic-prosodic cues to detect and respond to a learner’s
affective states.

Though there have already been multiple attempts to detect affect in learning environments,
there is still relatively little understanding of the impact of affect on students’ behavior and
learning during tutorial sessions (Graesser, D’Mello, & Person, 2009). Our knowledge on the
natural dynamics of affect during learning with software is similarly impoverished. For instance,
some research has focused on reducing users’ frustration (Hone, 2006; Klein, Moon, & Picard,
2002; McQuiggan, Lee, & Lester, 2007), but it is not even clear that frustration is always a
negative experience in all types of human-computer interaction. In particular, Gee (2004) has
proposed that frustration to a certain degree may actually enhance the enjoyability of computer
games. In general, it is not yet clear how harmful or persistent the affective states currently
thought to be negative actually are. For example, confusion, a cognitive-affective state that is
often perceived as being negative, has been shown to be positively correlated with learning
(Craig, Graesser, Sullins, & Gholson, 2004; Graesser et al., 2007).

This paper investigates the cognitive-affective states that occur during interactions with
learning environments, the persistence of these states over time, and the extent to which these
states correlate with student behaviors associated with poorer learning. Since differences among
learning contexts play an important role in students’ affective and cognitive experiences, these
issues are studied using different populations (Philippines, USA), different methods (quantitative
field observation, self-report), and different types of learning environment (dialogue tutor,
problem-solving game, and problem-solving based ITS). By varying the studies along multiple
factors, we can have greater confidence that findings which replicate across studies are general
(though our ability to draw conclusions about differences among systems is correspondingly
reduced).

1.2 Gender, age, and cultural differences in experiences and expressions of affect

One challenge to the field of affective computing has been determining the generalizability of the
results. There is considerable diversity in potential users and characteristics of interactive
systems, and the display of emotion differs in striking ways between cultures. It is possible for



people to recognize some emotions of individuals in other cultures when given appropriate cues
(Elfenbein & Ambady, 2002a; 2002b; Ekman & Friesen, 1971; 1978; Hess, Scherer, & Kappas,
1988), but there is also evidence that it is easier to recognize the emotions of people from the
same culture (Russell, 1994). Differences among cultures and individuals present a challenge for
affect recognition systems that are initially designed using data from a small number of users in a
single culture.

Differences in the age, gender, and personality of users are also a matter of some concern. For
example, young children are generally more expressive than teens and adults. They are less
likely to suppress and disguise their emotions due to societal pressures (Ekman & Friesen, 1969).
Therefore, systems that recognize affect may have problems generalizing across different age
groups. Furthermore, systems may need to invoke different responses in order to appropriately
manage the emotions of the full diversity of users. Boys and girls often show different patterns of
engagement to the same classroom activity; similarly, boys and girls who are disengaged within
learning software may require different responses by the system (Peterson & Fennema, 1985).

Individual differences are also a critical factor when designing affect-sensitive interfaces. For
example, learners have different preferences that must be taken into account. Within the context
of learning environments, some results suggest that “adventuresome” learners prefer to be
challenged with difficult tasks, worrying little about negative emotion if they fail, while other
“cautious” learners prefer easier tasks and try to avoid failure and its resulting negative emotions
(Clifford, 1988; 1991; Meyer & Turner, 2006). The literature on performance goals and learning
goals (Dweck, 2000) also suggests that learners’ goals may alter their affective responses to
successes and failures in learning tasks. Achievement oriented students focus most on being
perceived to have performed well, whereas mastery oriented students focus more on
understanding the subject matter (Dweck, 2000).

Different types of learning environments and content domains may also result in very
different affective profiles. For example, an immersive game-like learning environment may
evoke a different profile of affective experiences than a classical computer assisted instruction
(CAI) system (Lepper & Cordova, 1992). It is reasonable to expect higher engagement in a game
environment than a traditional CAI system (Gee, 2004; Prensky, 2007). Students’ engagement
undoubtedly varies across subject matter, with some students more interested in history and
others more interested in algebra. The context of use presumably also alters students’ motivation
and emotions. For example, a mathematics tutoring system which prepares students for high
stakes testing may evoke different affective experiences, depending on whether it is being used
6 months or 2 days before the test.

1.3 Measurement issues in affective computing

There are several ways that affect within computerized systems could be measured for study.
One possibility is automatic detection of cognitive-affective states by computers (D’Mello
Picard, & Graesser, 2007; Kapoor, Burleson, & Picard, 2007; Prendinger & Ishizuka, 2005).
Pantic and Rothkrantz (2003) have surveyed the considerable recent progress in real time affect
detection. Paiva, Prada, and Picard (2007) discuss progress on affect detection through body
movement and gestures (Castellano, et al, 2007), acoustic-prosodic cues (Grimm, et al, 2007),
lexical features (Wagner, et al, 2007), and physiological features ( Komatsu, et al, 2007).
Despite these inroads, accuracy rates in real-world environments are not yet sufficient to use as
dependent measures in some research applications, particularly within in-vivo classroom
learning settings. There is also the practical challenge of deploying some of the affective sensors
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in sufficient quantities, as in the cases of physiological measurement equipment, pressure
sensitive chairs, and eye-trackers.

Thus, the majority of affect research still relies on humans to measure cognitive-affective
states, an approach we have adopted within the studies presented in this paper. However, the
selection of human judgment for measuring these states still leaves open a number of
methodological possibilities. There are open questions about the use of self-reports versus
external observers, about whether observations should occur concurrently with the interaction or
later, and about where the judgments should be conducted (i.e., in the same room as the
participant or elsewhere, perhaps from a room equipped with a one-way mirror or remote
laboratory). As with every design decision, these alternatives have tradeoffs that need to be
carefully evaluated and tested. However, any effect that is obtained only in a very specific
research setting may be contingent on the method of measurement rather than being truly
generalizable. In order to understand how generalizable our findings are, we have chosen to
apply different methods to address the same research questions (described below), both within
this paper and in our prior research. Within the studies presented here, our goal is to determine
which aspects of the affective experience generalize above and beyond differences in the user,
the system, and the methodology of study. An interactive system designed in accordance with
consistent findings permits a system designer to have higher confidence about the
generalizability of the system. What are the cognitive-affective factors that are general across
populations, contexts, and methods? Which of these factors are important to the overall
interaction experience? These questions are explored in this paper.

1.4 Research questions

This paper focuses on three research questions related to students’ cognitive-affective states
during interactions with learning software:

1. What cognitive-affective states do students experience more often during learning
sessions with computerized learning environments?

2. Are there differences in how these states persist over time? That is, are some states
persistent and others ephemeral?

3. What is the impact of cognitive-affective states on students’ choices of how to interact
with an interactive learning environment?

1.4.1 Cognitive-affective states during learning

Much of affect research in psychology has focused on Ekman and Friesen’s (1978) six basic
emotions, which are hypothesized to be ubiquitous in everyday experience: fear, anger,
happiness, sadness, disgust, and surprise. However, researchers have increasingly called into
question the relevance of these basic emotions to the learning process (D’Mello, Picard, &
Graesser, 2007; Graesser et al., 2007; Lehman, Matthews, Person, & Graesser, 2008; Lehman,
D’Mello, & Person, 2008; Kort, Reilly, & Picard, 2001). For example, it is fairly unlikely that a
student consistently experiences sadness or fear while interacting with a tutoring system.
Although it is conceivable that these emotions may play a role when the learning task occurs
over a larger temporal bandwidth (e.g., completing a dissertation), it is highly unlikely that they
routinely occur in a typical learning session of 30 minutes to 2 hours.



As an alternative to the basic emotions, we focus on a set of cognitive-affective states that
several researchers have hypothesized to influence cognition and deep learning. These include
boredom (Csikszentmihalyi, 1990; Miserandino, 1996), confusion (Craig et al., 2004; Graesser et
al., 2008; Kort, Reilly, & Picard, 2001), delight (Fredrickson & Branigan, 2005; Silvia & Abele,
2002), engaged concentration (cf. Csikszentmihalyi, 1990), frustration (Kort, Reilly, & Picard,
2001; Patrick et al, 1993), and surprise (Schutzwohl & Borgstedt, 2005). The definition of most
of these terms is well-known and needs no further explication here. “Engaged concentration”
needs some clarification, however. Engaged concentration is a cognitive-affective state that
sometimes has a short time span, but at other times forms part of Csikszentmihalyi’s conception
of flow. Engaged concentration is a state of engagement with a task such that concentration is
intense, attention is focused, and involvement is complete. However, it need not involve some of
the task-related aspects which Csikszentmihalyi associates with flow, such as clear goals,
balanced challenge, or direct and immediate feedback. It also may not involve some of the
aspects of Csikszentmihalyi’s conceptualization which refer to extreme intensity, such as time
distortion or loss of self-consciousness.

It should be noted that some researchers may view some of these states as pure cognitive
states, whereas most researchers would classify them as either emotions, affect states, or blends
of cognition and affect (see Barrett, 2006; Stein et al., 2008; Meyer & Turner, 2006). We adopt
the position of identifying them as cognitive-affective states because they have significant
cognitive and affective components in the context of learning.

Our set of learning-centered cognitive-affective states can be situated within a broader
perspective of emotion, in particular Russell’s (2003) Core Affect framework. This perspective
holds that an affective state is composed of two integrated components: valence (pleasure to
displeasure) and arousal (activation to deactivation). These components can be depicted
graphically with valence represented on the X-axis and arousal on the Y-axis (see Figure 1).
Moving from left to right along the X-axis (valence) would correspond to increasing feelings of
pleasure. Moving upward along the Y-axis (arousal) would correspond to increasing feelings of
activation and energy.

Figure 1 depicts the mapping of the learning-centered cognitive-affective states on Russell’s
core-affect framework (2003). Boredom has a negative valence and low level of arousal.
Confusion has a negative valence and a moderate level of arousal. Frustration has a high
negative valence and a high level of arousal. Delight has a positive valence and a high level of
arousal, whereas surprise has high arousal but can have either positive or negative valence.
Engaged concentration has a positive valence. In terms of arousal, there is not yet consensus
about engaged concentration — hence, we have tentatively listed it as neutral in the circumplex.
When engaged concentration is stimulated by novel input, we can infer a slight increase in
arousal, whereas there is a decrease in arousal to the extent that the person experiences
uninterrupted, organized cognition or action (Mandler, 1984).

<Place Figure 1 approximately here>

1.4.2 Are there differences in how these states persist over time? Are some states persistent and
others ephemeral?

This question pertains to the manner in which a student’s cognitive-affective state persists
over time in learning environments that do not explicitly attempt to monitor and alter affect.



Understanding the persistence of cognitive-affective states in these learning environments will be
useful to researchers in many fashions. In particular, a better understanding of the persistence of
cognitive-affective states will help us set goals for the design of affect-sensitive learning
environments, i.e., systems that incorporate assessments of learners’ cognitive-affective states
into their decision cycles. In deciding which cognitive-affective states a learning system should
respond to, it is important to know if a student’s state is likely to shift naturally, and how it may
shift. Some cognitive-affective states, once entered, may be quite persistent, and therefore may
merit a response by the learning environment, particularly when those states have negative
valence. Other states may be more transitory and therefore may not warrant a response. Of
course, even transitory states may be problematic if they commonly transition to other negative
states, and especially so if two or more negative cognitive-affective states form a “vicious cycle”
(cf. D’Mello et al, 2007).

Past work has not produced conclusive evidence on which cognitive-affective states persist,
relative to other cognitive-affective states. D’Mello et al (2007) propose that vicious cycles
exist, but do not concretely provide evidence as to which cycles pre-dominate, or which states
persist over time. Csikszentmihalyi (1990) indicates that flow (which, as previously mentioned,
is a more complex construct that incorporates, but is not limited to, engaged concentration) can
be quite persistent, but it is not clear whether either flow or engaged concentration is more
persistent than other states such as boredom. It seems reasonable to hypothesize that surprise will
be fairly transitory (how long can one stay surprised?), and that engaged concentration, boredom,
confusion, and frustration will be more persistent. It is not clear, however, from prior empirical
research, which states will be more and less persistent within each of these broader categories.

There is similarly a lack of evidence on which affective transitions occur naturally. Kort,
Reilly, and Picard (2001) propose a model of affect over time during learning, that hypothesizes
that it will be common to see transitions from confusion to frustration, and confusion to boredom
(but that the reverse order will be less likely). However, Kort et al did not provide empirical
evidence for this model. Perkins and Hill (1985), proposed that frustration leads to boredom, but
this hypothesis was based on data showing that the two states were associated rather than
evidence that they are causally or temporally related (boredom preceded by frustration).

Understanding and modeling affective persistence can provide a baseline for analyses that
explore the impact of systems designed to influence affect. If a persistent cognitive-affective
state becomes less persistent, for example, one might infer that the environment has influenced
students’ affect or cognition. Yet another virtue of a model of affective persistence is that it
enables better estimation of the base rate of cognitive-affective states. For instance, boredom
may be more common after boredom than its overall frequency might suggest. Understanding
affective persistence may therefore make it possible to develop more successful and accurate
detectors of affect by integrating better baseline information with sensor and/or keystroke data.

1.4.3 What is the impact of cognitive-affective states on students’ choices of how to interact with
an interactive learning environment?

The third research question investigated in this paper is the impact of affect on students’ choices
of how to interact with an interactive learning environment. That is, how often does a given
cognitive-affective state precede usage choices which are known to be associated with reduced
or enhanced learning? In particular, consider the phenomenon of gaming the system, which
consists of attempting to succeed in an interactive learning environment by exploiting properties



of the system rather than by learning the material. Gaming the system is associated with poorer
learning (Baker et al, 2004; Baker, 2005; Walonoski & Heffernan, 2006). Walonoski and
Heffernan reported that the same students who game the system also experience frustration.
Given this evidence, it is reasonable to hypothesize that frustration leads a student to game the
system. Baker et al. (2009) reported that user interface features designed to increase interest also
decrease gaming. Hence, it may also be reasonable to hypothesize that boredom may lead a
student to game the system.

1.5 Research plan

This paper investigates, across three studies, the affective profiles and persistence of
cognitive-affective states during learners’ use of educational software. In order to study the
generalizability of our findings, we study learning situations and learners that vary
simultaneously on several dimensions. Hence, findings that replicate across studies are more
likely to be generalizable. By contrast, a more conservative strategy would vary only one
contextual variable at a time; this approach would take more time in effort to the extent there are
a large number of potential contextual variables to consider, with many potentially being
inconsequential. To this end, we conducted studies with learners from different cultures, at
different ages, and both genders. We examined affect within learning environments in different
domains (Computer Literacy, Algebra, Concrete Logic Puzzles) and with different underlying
pedagogical strategies (dialogue tutor, traditional workbook-style tutor, and a simulation game).

As with every design decision, allowing method to vary has both positive and negative
consequences. On the positive side, varying methodology allows us to ascertain whether any
patterns observed in the data generalize across studies. This can be accomplished by analyzing
each study independently, identifying the reliable patterns, and assessing whether these patterns
replicate across studies. However, the fact that more than one factor was varied across studies
considerably reduces our ability to make causal inferences on the impact of any given difference
among studies. In our viewpoint, this limitation is acceptable because the primary goal of this
paper is to investigate generalizability of affective patterns, and not to make claims about the
causes of differences among studies. Any differences observed among studies can instead
become testable hypotheses for further research.

The paper is organized as follows. We begin by describing the three learning environments
studied, and the protocol for the three studies that attempted to measure affect during learning
sessions. The results section investigates the occurrence of cognitive-affective states that
occurred within each system, the temporal persistence of the states, and how the states influence
students’ behavior with the learning environments (e.g. whether the student games the system).
We conclude by indicating how our findings can be used to scaffold the development of affect-
sensitive learning environments.

2. Descriptions of Learning Environments

Cognitive-affective state data was gathered from participants who used three different interactive
learning environments: AutoTutor, the Incredible Machine, and Aplusix. These learning
environments differ not only in subject matter domain and interface issues, but also in the
underlying pedagogical principles they embody.

2.1 AutoTutor



AutoTutor is a fully automated computer tutor that simulates human tutors and holds
conversations with students in natural language (Graesser, Chipman, Haynes, & Olney, 2005;
Graesser, Person, et al., 2001). AutoTutor attempts to comprehend students’ natural language
contributions and then responds to the students’ typed input with adaptive dialogue moves
similar to human tutors. AutoTutor helps students learn by presenting challenging problems (or
questions) and engaging in a mixed-initiative dialogue while the learner constructs an answer.
Figure 2 presents a screen shot of the AutoTutor interface.

<Figure 2 goes here>

AutoTutor has different classes of dialogue moves that manage the interaction systematically.
AutoTutor provides feedback on what the student types in (positive, neutral, or negative
feedback), pumps the student for more information (“What else?”’), prompts the student to fill in
missing words, gives hints, fills in missing information with assertions, identifies and corrects
misconceptions and erroneous ideas, answers the student’s questions, and summarizes topics. A
full answer to a question is eventually constructed during this dialogue, which normally takes
between 30 and 100 turns between the student and tutor for one particular problem or main
question.

The efficacy of AutoTutor in imparting conceptual knowledge has been validated in six
experiments in the domain of physics in which learning gains were evaluated on approximately
500 college students (VanLehn, Graesser, et al., 2007). The subject matter in these experiments
was introductory qualitative Newtonian physics. Tests of AutoTutor have produced gains of .4
to 1.5 sigma (a mean of .8, about a letter grade), depending on the learning measure, the
comparison condition, the subject matter, and version of AutoTutor. Similar results were
reported in a version of AutoTutor on the subject matter of computer literacy (Graesser, Lu et al.,
2004).

2.2 The Incredible Machine (T1M)

The Incredible Machine: Even More Contraptions (Sierra Online Inc., 2001) is a simulation
environment where students complete a series of logical “Rube Goldberg” puzzles. In each
puzzle, the student is given (a) objects with limited interactivity, including mechanical tools like
gears, pulleys, and scissors, (b) more active objects such as electrical generators and vacuums,
and (c) animals. The student must combine these objects in a creative fashion to accomplish each
puzzle’s goal. Goals range from relatively straightforward goals, such as lighting a candle, to
more complex goals, such as making a mouse run. If a student is stuck, he or she can ask for a
hint; hint messages display where items should be located in a correct solution to the current
problem (without displaying which items should be placed in each location). A screenshot from
The Incredible Machine is shown in Figure 3.

<Figure 3 goes here>

2.3 Aplusix

Aplusix II: Algebra Learning Assistant (Nicaud, Bouhineau, Mezerette, Andre, 2007) is an
intelligent tutoring system for mathematics. Topics are grouped into six categories (numerical
calculation, expansion and simplification, factorization, solving equations, solving inequations,
and solving systems), with four to nine levels of difficulty each. Aplusix presents the student
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with an arithmetic or algebraic problem from a problem set chosen by the student. Students then
solve the problem one step at a time. At each step, Aplusix displays equivalence feedback: two
black parallel bars mean that the current step is equivalent to the previous step, two red parallel
bars with an X mean that the current step is not equivalent to the previous step (see Figure 4).
Aplusix does not indicate which part of the current step requires further editing. A student can
end the exercise when they believe they have completed the problem. Aplusix then tells the
student whether errors still exist along the solution path or whether the solution is not in its
simplest form yet. The student also has the option of looking at the solution at any point.

Since 2002, thousands of students in grades 8, 9, and 10 from several countries, including
France, Brazil, India, Vietnam, and the Philippines, have used Aplusix. Studies have shown
statistically significant improvements in learning on mathematics problem-solving tests (Nicaud,
Bouhineau, & Chaachoua, 2004).

<Figure 4 goes here>

3. Methods

All three environments were studied using human judgments about the same set of six cognitive-
affective states (and a seventh state, the neutral state). However, the three environments were
studied in different contexts, with different populations, and using different methods. By varying
the studies along multiple factors, we can have greater confidence that findings which generalize
across studies are robust. Of course, this approach has the disadvantage of making it difficult to
interpret when two environments have different results. For this reason, differences in the pattern
of cognitive-affective states between learning environments will not be explicitly analyzed
within this paper. A summary of the methods used in the three studies appears in Table 1.

<Table 1 goes here>

3.1 Study 1 — AutoTutor

3.1.1 Participants. The participants were 28 undergraduate students from a university in the mid-
south of the USA, who participated in this study for extra course credit.

3.1.2 Interaction procedure. A standard pre-test—intervention—post-test design was utilized. After
completing the pretest, participants used the AutoTutor system for 32 minutes on one of three
randomly assigned topics in computer literacy (Hardware, Internet, Operating Systems). During
the tutoring session, a video of the participants’ faces, their posture patterns (see D’Mello,
Chipman, & Graesser, 2007), and a video of the content of their computer screen were recorded.
Lastly, after completing the tutoring session, the participants completed a 36-item posttest
assessment on the topics of computer literacy studied.

3.1.3 Cognitive-affective state judgment procedure. The judging of students’ cognitive-affective
states proceeded by synchronizing and displaying video streams of both the computer screen and
the learner’s face, both of which were captured during the AutoTutor session. Posture data was
not utilized during judging. Each participant made judgments on what cognitive-affective states

10



they had been experiencing at every 20-second interval (i.e., at the end of each interval the video
automatically paused), as well as any other states they observed in between these intervals.

A list of the cognitive-affective states and definitions was provided for all participants. The
states were frustration, confusion, engaged concentration, delight, surprise, boredom, and
neutral. Frustration was defined (for participants) as dissatisfaction or annoyance. Confusion was
defined as a noticeable lack of understanding, whereas engaged concentration was a state of
interest that results from involvement in an activity. Delight was defined as a high degree of
satisfaction. Surprise was defined as wonder or amazement, especially from the unexpected.
Boredom was defined as being weary or restless due to lack of interest. Participants were given
the option of making a neutral judgment to indicate a lack of distinguishable affect. Neutral was
defined as no apparent emotion or feeling.

3.2 Study 2 — The Incredible Machine

3.2.1 Participants. The participants for the Incredible Machine study were students in a private
high school in Quezon City, the Philippines. Student ages ranged from 14 to 19, with an average
age of 16. Thirty-six students participated in this study (17 female, 19 male).

3.2.2 Interaction procedure. Students used The Incredible Machine for ten minutes, and each
student was observed several times as they used the system. During the laboratory sessions in
which the data was gathered, it was not possible for the entire class to use the software at the
same time, due to the size of the school computer laboratory. Students therefore used the
software in groups of nine (one student per computer) during their class time.

3.2.3 Cognitive-affective state and behavior judgment procedure. The observations were carried
out by a team of six observers, working in pairs. Each pair was assigned three students per
observation period. The observers were graduate students in Education or Computer Science, and
all but one had prior teaching experience.

Each observation lasted twenty seconds, and was conducted using peripheral vision. That is,
the observers stood diagonally behind or in front of the student being observed and avoided
looking at the student directly (cf. Baker et al, 2004), in order to make it less clear when an
observation was occurring. This method of observing using peripheral vision was previously
found to be highly successful for assessing student behavior, achieving good inter-rater
reliability (Baker, Corbett, & Wagner, 2006), and forming the basis for the construction of highly
accurate automated detectors of student behavior (Baker, 2007; Baker et al, 2008), which
captured the relevant constructs sufficiently well to be able to drive automated interventions
which significantly improved student learning (Baker et al, 2006).

If two distinct cognitive-affective states were seen during an observation, only the first state
observed was coded; similarly, if two distinct behaviors were seen during an observation, only
the first behavior observed was coded. Any behavior or (evidence of a cognitive-affective state)
by a student other than the student currently being observed was not coded. Each pair of
observers was assigned to three students and alternated among them. Since each observation
lasted twenty seconds, each student was observed once per minute.

The observers based their judgment of a student’s state or behavior on the student’s work
context, actions, utterances, facial expressions, body language, and interactions with teachers or
fellow students. These are, broadly, the same types of information used in previous methods for
coding affect (e.g. Bartel & Saavedra, 2000), and in line with Planalp et al’s (1996) descriptive
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research on how humans generally identify affect, using multiple cues in concert for maximum
accuracy rather than attempting to select individual cues. The judgments of behavior were based
on a coding scheme developed by Baker et al (2004). The judgments of cognitive-affective state
were based on a coding guide developed by the third author and her students. Prior to sessions
where qualitative observations were conducted, the observers discussed the coding categories
and how to classify specific student behaviors with reference to these categories. The observers
also practiced coding during a pilot observation period prior to this study. After the pilot
observations, we checked for cases where inter-rater agreement was unacceptably low, with
Cohen’s (1960) k below 0.50. For each of those cases, we examined the confusion matrix to
determine which cognitive-affective states were involved when raters disagreed. Raters were
then debriefed about the different characteristics that they used to distinguish one cognitive-
affective state from the other. The discussion continued until the raters reached a consensus. By
the second observation session, agreement between raters improved dramatically. It is worth
noting, from the behaviors included in the guide, that students were demonstrative about their
affect during system usage. In learning settings where students are less demonstrative (such as in
other cultures), researchers may need to infer affect based on behaviors different from those used
here, and may find it more difficult to assess affect through peripheral vision.

Interrater reliability from coding conducted with the guide was acceptably high. 706
observations were collected, for an average of 19.6 observations per student. Inter-rater
reliability was acceptably high across all observations: Cohen’s (1960) k=0.71 for usage
observations, k=0.63 for observations of cognitive-affective states. This is in line with past
reports of high agreement in affect coding between raters (Bartel & Saavedra, 2000). Although
the kappa score for the states was lower than the kappa for usage observations, it is on par with
kappas reported by other researchers who have assessed the reliability of detecting naturally
occurring emotional expressions (Ang et al., 2002; Grimm et. al., 2006; Litman & Forbes-Riley,
2004; Shafran, Riley, & Mohri, 2003).

Within an observation, each observer coded one of the six cognitive-affective states (and
neutral), as in the AutoTutor study:

1. Boredom — behaviors included in the coding guide included slouching, resting the chin on
his/her palm; statements such as “Can we do something else?”” or “This is boring!”

2. Confusion — behaviors included in the coding guide included scratching his/her head,
repeatedly looking at the same interface elements; consulting with a fellow student or the
teacher; looking at another student’s work to determine what to do next; statements like,
“I’'m confused!” or “Why didn’t it work?”

3. Delight — behaviors included in the coding guide included clapping hands; laughing with
pleasure; statements such as, “Yes!” or “I got it!”

4. Engaged concentration — behaviors included in the coding guide included immersion,
focus, and concentration on the system, with the appearance of positive engagement (as
opposed to frustration); leaning towards the computer; mouthing solutions; pointing to
parts of screen

5. Frustration — behaviors included in the coding guide included banging on the keyboard
or mouse; pulling his/her hair; deep sighing; statements such as, “What’s going on?!”
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6.

Surprise — behaviors included in the coding guide included sudden jerking or gasping;
statement such as “Huh?” or “Oh, no!”

Neutral — behaviors included in the coding guide included coded when the student did not
appear to be displaying any of the other cognitive-affective states or when the student’s
affect could not be determined for certain

Behavior categories were also coded, using the following coding scheme developed by Baker

et al (2004):

1. On-task — working within The Incredible Machine

2. On-task conversation — talking to the teacher or another student about The Incredible
Machine, or its puzzles
Off-task conversation — talking about any other subject

4. Off-task solitary behavior — any behavior that did not involve The Incredible Machine
or another individual (such as reading a magazine or surfing the web)

5. Inactivity — instead of interacting with other students or the software, the student instead
stares into space or puts his/her head down on the desk.

6. Gaming the System — sustained and/or systematic guessing, such as arranging objects

haphazardly or trying an object in every conceivable place. Also, repeated and rapid help
requests used to iterate to a solution, without reflection were coded as gaming.

3.3 Study 3 — Aplusix

3.3.1 Participants. The participants in the Aplusix study were first and second year high school
students from four schools within Metro Manila and one school in Cavite, a province south of
Manila. Students’ age ranged from 12 to 15 with an average age of 13.5. 140 students
completed the study (83 female, 57 male).

3.3.2 Interaction procedure. Students used Aplusix in groups of ten, one student per computer.
Each student used Aplusix for 45 minutes.

3.3.3 Cognitive-affective state and behavior judgment procedure. The observers for Aplusix
were taken from the same pool of observers that collected the data for the Incredible Machine.
They followed a process almost identical to the one detailed in the previous section. The only
differences were as follows: One pair of observers observed each group of 10 students. They
observed each student for 20 seconds before proceeding to the next. There were 180 seconds
between each observation of a single student.

Thirteen pairs of observations were collected per student, totaling 3,640 observations in all.
Inter-rater reliability was acceptably high: Cohen’s k=0.78 for usage observations, k=0.63 for
observations of cognitive-affective states.

4. Results and Discussion

4.1 Incidence of cognitive-affective states
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In this section, we report the incidence of each cognitive-affective state across the three learning
environments. A summary of the results is shown in Figure 5 and Table 2.

4.1.1. Incidence of states within each study. We conducted three separate repeated measures
ANOVAs to investigate the cognitive-affective states that were prominent in each of the three
learning environments (AutoTutor, the Incredible Machine, and Aplusix). We found that each of
the ANOV As were statistically significant: for AutoTutor, F(6, 162) = 10.81, MSe = .023, p <
.001, partial n2 = .286; for the Incredible Machine - F(6, 210) = 63.94, MSe = .025, p <.001,
partial n? = .646; for Aplusix - F(6, 834) = 953.10, MSe = .009, p < .001, partial n° = .873.

Bonferroni posthoc tests yielded the following patterns in the data at the .05 significance
level. For AutoTutor, the pattern was: (Surprise = Delight) < (Boredom = Confusion = Engaged
Concentration = Frustration = Neutral). Therefore, learners interacting with AutoTutor are less
likely to experience delight and surprise than the other states.

The pattern for the Incredible Machine was: (Boredom = Confusion = Delight = Frustration =
Neutral) < Engaged Concentration. Experiences of surprise were on par with boredom, delight,
frustration, and neutral but less than engaged concentration and confusion. Quite clearly,
engaged concentration dominates when learners interact with this game-like learning
environment.

The pattern for Aplusix was: (Boredom = Neutral = Frustration) < Delight < Confusion <
Engaged Concentration. Experiences of surprise were on par with neutral but lower than the
other states. Therefore, in a fashion similar to that observed with the Incredible Machine,
engaged concentration dominates interactions with Aplusix.

4.1.2. Incidence of states, aggregated across studies. To give a better idea of the overall
frequency of each state, we can also look at the average frequency of each state across
environments. In doing so, we weight data from each student equally in order to statistically test
for differences in the proportional occurrence of the cognitive-affective states. It should be noted,
however, that weighting data from each student equally biases estimates in favor of the larger
Aplusix study. So the aggregated analyses are intended to complement, but not replace, the
earlier analysis that investigated patterns within each study.

A repeated measures ANOVA indicated that there was a significant difference in the
proportional distribution of the various states, F(6, 1218) = 448.28, Mse =.020, p <.001, partial
n2 = .688. Bonferroni posthoc tests revealed the following pattern in the data, (Surprise) <
(Boredom = Frustration = Neutral = Delight) < Confusion < Engaged concentration.

Across the three learning environments, engaged concentration was the most common state,
occupying an average of 60% of student time. Engaged concentration is hypothesized to be
associated with positive affect and is also one of the components of flow (Csikszentmihalyi,
1990). Furthermore, engaged concentration is a cognitive-affective state that is positively
correlated with learning (Craig et al., 2004; Graesser et al., 2007), so it is a positive sign that the
experience of engaged concentration dominates across learning environments.

Confusion was the second most common state, with an occurrence of 13%. Confusion occurs
when learners experience impasses that provide opportunities to learn, since students can resolve
their confusion by self-explanation. While episodes of confusion that go unresolved over longer
periods of time have no pedagogical value, shorter-term instances of confusion are associated
with learning (Craig et al., 2004; Graesser et al., 2007) as would be predicted by impasse-driven
theories of learning (e.g. VanLehn et al., 2003). However, unmotivated or low-domain
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knowledge students’ can also alleviate their confusion by avoiding activities that require deep
thought, via (for example) gaming the system (cf. Rodrigo et al, 2007).

Boredom, frustration, neutral, and delight were each observed an average of 4-6% of the time.
Surprise was by far the rarest state, occurring an average of 1% of the time across environments.

It is worth noting that the proportion of engaged concentration and neutral were unstable
across environments. It is not possible to determine whether this was due to methodological
differences (self-judging versus external observers, for instance), population differences, or
differences between the learning environments. For this reason, we do not interpret this result
within this paper, but simply note it as being worthy of further investigation. This type of finding
would be better studied through a different form of research design than the one used here, a
more standard design where every study design element is identical except for the system studied
or judging methodology. Further discussion of these issues is given is section 5.3.

<Figure 5 goes here>

<Table 2 goes here>

4.2 Persistence of Cognitive-Affective States.

In this section, we will focus our analysis on the persistence of cognitive-affective states.
Persistence is operationally defined as the student being in the same state for two successive
observations. In this analysis, we consider how a student’s state at a given time influences their
state in the successive observation. Within the study conducted with The Incredible Machine,
successive observations of a single student were 40 seconds apart: 20 seconds observing, 40
seconds not observing, 20 seconds observing, and so on. Within the study conducted in Aplusix,
successive observations of a single student were 180 seconds apart:20 seconds observing, 180
seconds not observing, 20 seconds observing, and so on. Within the study conducted with
AutoTutor, there was no delay between observations: 20 seconds observing, 20 more seconds
observing, and so on.

We investigate the following question: Do different states have different overall degrees of
persistence? Specifically, do some cognitive-affective states persist substantially longer than
other states, across studies and learning environments? And, conversely, are some states always
short-lived? Understanding the general persistence of each cognitive-affective state will be
useful for focusing future research on affect in learning software.

4.2.1 Metrics. In each of the three studies, we analyze the persistence of a cognitive-affective
state using a transition likelihood metric, L. L provides an indication of the probability of a
transition above and beyond the base rate of each cognitive-affective category. For instance,
engaged concentration was the most common state in The Incredible Machine and Aplusix,
whereas neutral was the most common state in AutoTutor; therefore, these states are likely to be
the most common state that follows any other cognitive-affective state in these environments.

L explicitly accounts for the base rate of each state when assessing how likely a transition is,
giving the probability that a transition between two states occurs, and given the base frequency
of the destination state. L is computed as shown in equation 1:

__ Pr(Next|Prev)—Pr (Next)

L 1-Pr (Next)

Equation 1
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A value of 1 means that the transition will always occur, whereas a value of 0 means that the
transition’s likelihood is exactly what it would be given only the base frequency of the
destination state. Values above 0 signify that the transition is more likely than it could be
expected (i.e. greater than the base frequency of the destination state), and values under 0 signify
that the transition is less likely (i.e. less than the base frequency of the destination state).

For a given transition, we calculate a value for L for each student and then calculate the mean
and standard error across students. We can then determine if a given transition is significantly
more likely than chance (chance=0) using the two-tailed t-test for one sample. The number of
degrees of freedom for the two-tailed t-test is the number of students who were ever in the state
minus one (df =N — 1). Students that never entered the state give no evidence on whether the
state is persistent. As a consequence, the number of degrees of freedom varies among cognitive-
affective states within each learning environment.

4.2.2 Results. The cognitive-affective state of boredom was the most persistent state. Evidence
for this state’s persistence was obtained in all three learning environments. The mean value of
the transition likelihood metric L was significantly or marginally significantly above chance
(chance L = 0) for all three learning environments: for AutoTutor, mean L =0.130, t(27) =4.17,
p <0.001, for The Incredible Machine (marginally), mean L = 0.261, t(7) =2.27, p = 0.06, and
for Aplusix, mean L =0.212, t(38) = 3.69, p < 0.01. Hence, boredom appears to be a persistent
state across all three learning environments.

Four other states appeared to be persistent across at least two of the three learning
environments. Confusion was persistent within AutoTutor, mean L = 0.087, t(27)=2.71,p =
0.01, and within The Incredible Machine (marginally), mean L = 0.097, 1(19) = 1.69, p=0.11.
Confusion’s persistence was not significantly different from chance in Aplusix, mean L =
0.0076, t(119)=0.32,p=0.75.

Engaged concentration was persistent within AutoTutor, mean L = 0.100, t(27) =2.69, p =
0.01, and within The Incredible Machine (marginally), mean L = 0.202, t(33) = 1.75, p = 0.09.
Engaged concentration’s persistence was not significantly different from chance in Aplusix,
mean L =0.062, t(138) = 1.03, p = 0.30.

Frustration was marginally persistent within Aplusix, mean L = 0.071, t(35) = 1.95, p = 0.06,
and within AutoTutor, mean L = 0.059, t(27) = 1.87, p = 0.07. Frustration’s persistence was not
significantly different from chance in The Incredible Machine, mean L = 0.12, t(12) = 1.56, p =
0.14.

Delight was persistent within The Incredible Machine (marginally), mean L = 0.096, t(16) =
1.71, p=0.11, and within Aplusix (marginally), mean L = 0.047, t(68) = 1.82, p = 0.07.
Delight’s persistence was not significantly different from chance in AutoTutor, mean L =-0.002,
t(27)=-0.20, p = 0.39.

A fifth state was considerably less persistent across environments than the other cognitive-
affective states: surprise. Surprise was not persistent within any environment, which is what
could be expected, as it is difficult to image a learner sustaining a state of surprise for more than
a few seconds. Within AutoTutor, the relationship actually pointed in the opposite direction,
towards non-persistence, to a statistically significant degree, mean L = - 0.026, t(27) =-7.33, p <
0.01. Within Aplusix, the relationship also pointed in the opposite direction, but was so rare
across students that it was not possible to calculate statistical significance, mean L= - 0.004.
Within The Incredible Machine, the relationship was in the direction of persistence, but was not
statistically significant, mean L = 0.031, t(7) =0.54, p=0.61.
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The overall pattern of persistence of different cognitive-affective states is shown in graphical
form in Figure 6.

<Figure 6 goes here>

4.2.3 Implications. The pattern of results suggests that, boredom is the most persistent state, and
perhaps the closest to being a “mood”. The probability that a bored learner will stay bored is
significant in all three systems and is much higher than the average for the other cognitive-
affective states. Only in one case across all of the other 15 mean values of L across environments
is there a value as high as the lowest of boredom’s mean L values (see Figure 6).

On the other hand, surprise is the most transitory of the states. If anything, there seems to be
evidence that surprise is non-persistent. Surprise had mean L values below 0 in two of three
cases (with one case statistically significant).

4.3 Cognitive-Affective States and Student Behavior: Evidence from The Incredible Machine and
Aplusix

One important question when studying student affect within interactive learning environments is
how a student’s affect impacts their learning experience. Negative affect is in many ways a
problem in itself — so we would prefer not to develop learning environments in which students
are continually experiencing negative affect, such as boredom or frustration. Nevertheless, the
primary goal of interactive learning environments is learning. Frustration and confusion may be a
natural and unavoidable part of the experience of learning when difficult material is encountered.
Thus, the goal of a system may not be to entirely eliminate negative affect, especially if negative
affect is sometimes a byproduct of positive learning experiences.

However, there is the possibility that negative affect may lead students to use (or fail to use)
learning environments in ways that reduce their learning. For example, Baker and his colleagues
have found that students sometimes engage in gaming the system, systematically guessing or
abusing hint features in order to perform well in an interactive learning environment without
learning the material. (Baker, Corbett, Koedinger, & Wagner, 2004). Baker, Walonoski,
Heffernan, and colleagues (2008) found that students who report frustration on a questionnaire
game significantly more than students who do not report frustration. Gaming the system has been
found in multiple studies to be associated with poorer learning (Baker, Corbett, Koedinger, &
Wagner, 2004; Baker, 2005; Cocea, Hershkovitz, & Baker, 2009; Walonoski & Heffernan,
2006). If negative affect leads to significantly more gaming, as Baker et al (2008) seems to
suggest, negative affect may indirectly reduce students’ learning.

As we have data on gaming behavior only from The Incredible Machine and Aplusix, our
analyses will be restricted to data from these two systems.

4.3.1 Metrics. To determine whether any cognitive-affective state is associated with increased
gaming behavior, we use essentially the same approach as used in the previous section to
determine persistence. We compute the transition likelihood metric L, to determine how likely
gaming the system is to follow a given state. This approach takes into account gaming the
system’s overall relative frequency, compared to other usage behaviors. Once we have computed
the value of L, for each transition and student, we will as before determine if a given transition is
significantly more likely than chance (chance = 0), given the base frequency of gaming, using
the two-tailed t-test for one sample.
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_ Pr(GAMING"™"*' | AFFECT "™") — Pr(GAMING "™ ")

L timeN +1
(1- Pr(GAMING )

Equation 2

Results. Gaming the system occurred in both Aplusix and The Incredible Machine in
sufficient quantity to analyze these behaviors. While there was the appearance of a difference in
frequency between the environments, this comparison is out of the scope of this paper. Boredom
was significantly more likely than chance to lead to gaming the system within Aplusix, mean L =
0.129, t1(38) = 2.38, two-tailed p = 0.02. Boredom was not significantly more likely than chance
to lead to gaming the system within The Incredible Machine, mean L = 0.037, t(7) = 0.67, two-
tailed p = 0.53. However, there appeared to be some evidence that boredom may have impacted
some students differently than others. Students who were bored over a third of the time in the
Incredible Machine gamed the system an average of 26% of the time after being bored, which
was marginally significantly more frequent than chance, despite being an extremely small
sample, mean L = 0.195, t(2)= 3.38, two-tailed p = 0.08. By contrast, the 5 students who were
bored less than a third of the time never gamed the system after being bored. The difference in
gaming frequency between the less frequently bored and more frequently bored students was
statistically significant, t(7) = 5.55, two-tailed p < 0.001.

Delight was not significantly more likely than chance to be followed by gaming within
Aplusix, mean L=0.012, t(68)=0.94, two-tailed p=0.35. Delight was never followed by gaming
among any of the 16 students who were delighted at least once in The Incredible Machine.

Confusion was never followed by gaming among any of the 121 students who were confused
at least once in Aplusix. In addition, confusion was not significantly more likely than chance to
be followed by gaming within The Incredible Machine, mean L=0.032, t(19)=0.63, two-tailed
p=0.54.

Engaged concentration was not significantly more likely than chance to be followed by
gaming within Aplusix, mean L=-0.004, t(138)=-0.90, two-tailed p=0.37. In addition, engaged
concentration was not significantly more likely than chance to be followed by gaming within The
Incredible Machine, mean L= -0.022, t(33)=-0.65, two-tailed p=0.52.

Frustration was never followed by gaming among any of the 39 students who were frustrated
at least once in Aplusix. In addition, frustration was not significantly more likely than chance to
be followed by gaming within The Incredible Machine, mean L=0.000, t(33)=0.01, two-tailed
p=0.99.

Surprise was never followed by gaming among any of the 10 students who were frustrated at
least once in Aplusix. In addition, surprise was not significantly more likely than chance to be
followed by gaming within The Incredible Machine, mean L=0.020, t(8)=0.18, two-tailed
p=0.86.

The overall pattern of how likely each cognitive-affective state is to be followed by gaming
the system is shown in graphical form in Figure 7.

<Figure 7 goes here>
This pattern of results suggests that, of the set of states studied, boredom is the only state that

leads students to game the system (or at least, the only state for which there is evidence for this
conclusion). Gaming the system is known to be associated with poorer learning in some learning

18



environments (Baker et al, 2004). Hence, boredom may reduce learning more than other
cognitive-affective states by leading students to engage in gaming behaviors which are
associated with poorer learning.

5 General Discussion

5.1 Summary of Findings, and Implications

In this paper, we have examined data on students’ cognitive-affective states as they use three
educational environments: AutoTutor, a dialogue based tutor on computer literacy, Aplusix, a
problem-solving based tutor on mathematics, and The Incredible Machine, a game based on
solving logic puzzles.

We analyzed the prevalence of a set of six cognitive-affective states (and neutral) in the three
environments. Engaged concentration was the most common state when the data was aggregated
across the three environments, showing that engagement is the norm in learning with technology
(at least over short periods of study). Confusion was the second most common state across
environments, thereby substantiating the significant role of confusion (also referred to as
perplexity) in complex learning (Craig et al., 2004; Festinger, 1957; Graesser et al., 2005; Guhe,
Gray, Schoelles, & Ji, 2004). When the learner is confused, they are in the state of cognitive
disequilibrium, heightened physiological arousal, and more intense thought. Other states were
considerably less common.

A second set of analyses presented within this paper addressed the persistence of different
cognitive-affective states within the three environments. Within all three environments, the most
persistent state was boredom, whereas the least persistent state was surprise. The other four states
studied (frustration, engaged concentration, confusion, and delight) were less persistent than
boredom in all environments, but were still significantly more persistent than could be expected
by chance in at least some environments. The pattern of results suggests that, of the set of
cognitive-affective states studied, boredom is the closest to being a non-transitory “mood”. Once
a student is bored, it appears to be difficult to transition out of boredom — suggesting that it is
important to prevent boredom before it ever occurs.

Finally, we examined the relationships between the cognitive-affective states and the choice
to game the system, a behavior known to be associated with poorer learning (Baker et al., 2004).
Boredom was found to significantly increase the chance that a student will game the system on
the next observation. In contrast, none of the other five cognitive-affective states were found to
be associated with gaming.

Our findings suggest that boredom is the primary cognitive-affective state which interactive
learning environments should focus on detecting and quickly responding to. In all three systems,
boredom was the most persistent state. Boredom also was uniquely associated with gaming the
system, a behavior known to lead to significantly poorer learning. Furthermore, research with
AutoTutor (Craig et al., 2004; Graesser et al., 2008) has reported that boredom is significantly
negatively correlated with learning.

Our recommendation to focus on boredom is not aligned with past research in the human-
computer interaction community, which has focused on detecting and responding to frustration
more than other cognitive-affective states (cf. Hone, 2006; Klein, Moon, & Picard, 2002). Our
results suggest, by contrast, that boredom should receive greater research attention than
frustration, and that in many cases frustration may not need remediation. Mentis (2007) also
argues that frustration does not always require remediation. In Mentis’s perspective, frustration
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among users of information systems is only of concern if it is associated with events that are
outside of the user’s locus of control, such as a program bug. A frustrating event of this nature
interrupts the user’s cognitive flow, leading to a negative cognitive loop that causes the uses to
keep selecting the same erroneous interface options over and over again. Sometimes frustration
is not attributable to an external event. If frustration is a natural part of a cognitive processing
activity, it might not require external intervention.

5.2 Generalizability of Results to Other Domains and Interfaces

The three studies investigated a set of six cognitive-affective states in learning environments
using human judgments, but differed in many other fashions. The three learning environments
studied had different interface qualities and pedagogical principles (game, dialogue tutor,
problem-solving tutor), different material (concrete manipulation, computer literacy,
mathematics), were used by different age groups (university and high school), in different
settings (laboratory and classroom), and in different countries (the USA and the Philippines) (see
Table 1). Despite these differences, there were many similarities in the profiles of cognitive-
affective states.

The diversity of research contexts makes interpretation of differences among environments
difficult. However, it enables us to have more confidence about the generality of the results that
the environments had in common. Any result that is the same in three different studies, in such
radically different contexts, is reasonably robust. Specifically, the evidence for the persistence of
boredom is strong. Not only is this effect statistically significant in three different studies, it is
consistent across type of learning environment, material, age group, setting, and country. The
evidence for the positive relationship between gaming the system and boredom is also strong,
persisting across the two learning environments where it could be assessed. The low incidence
of surprise across environments is noteworthy, as were the high incidences of confusion and
engaged concentration.

Given the considerable variation between these three studies, the commonalities found are
more interpretable than they might be if the three studies were more similar. While it is clearly
not appropriate to claim that these patterns will apply across all contexts, they do apply in fairly
divergent situations. It will be valuable, in future research, to see under what conditions these
patterns are not seen, or can be disrupted. In particular, research on environments where
boredom is less persistent may support new designs that respond effectively to student boredom.
We discuss this topic further in section 5.4.

5.3 Self-Report Versus Observer Judgments

Although the primary focus of this paper was on similarities across environments, there were
also some differences between the affective profiles in the three environments. These differences
have not been a focus of this paper, because it is difficult to determine whether these differences
emerged from genuine differences between the environments, or from differences in the
populations (i.e. age, culture, and computer exposure). It is also likely that methodological
factors led to some of the differences in the affective profiles across systems.

One methodological difference of particular importance is that self reports were utilized as the
measure of a student’s cognitive-affective state in the AutoTutor study whereas trained judges
provided the judgments for the Incredible Machine and Aplusix studies. It is likely that learner
self-reports are more sensitive to particular certain cognitive-affective states, while a different set
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of states are likely to be particularly salient to trained judges. Although a systematic
investigation of the cognitive-affective profiles obtained from self reports versus other judges is
beyond the scope of this paper, we briefly describe another recent study conducted with
AutoTutor, to inform our readers’ future use of these methods.

In this study (Graesser & D’Mello, in preparation), peers and trained judges provided
judgments of a learner’s cognitive-affective state during use of AutoTutor (Graesser et al, 2006).
By comparing the affective profiles coming from self-report data, peer judges, and trained
judges, it was possible to investigate what impact the coding method has on the findings. The
results of this study indicated that there was no difference in the occurrence of boredom, engaged
concentration, neutral, delight and surprise between the self and other judges. There were
differences in the proportion of confusion (less self-report of confusion than in the external
judges) and frustration (more self-report of frustration). This suggests that the methods are
comparable, except in some confounding of these two specific fairly similar cognitive-affective
states. Trained judges (the type of judgment used in the Aplusix and The Incredible Machine
studies in this paper) had significantly better agreement with self-report than the peer judges did.
However, it is not entirely clear whether trained judges or self-report should be considered the
gold standard for assessment of cognitive-affective states. Importantly, actor-observer biases
may play an important role in the judgment of ill-defined constructs such as the cognitive-
affective states that arise during learning (Jones & Nisbett, 1971). When possible, using both
forms of coding is probably the most defensible approach. In practice, there are many situations
where one approach or the other is not feasible. For example, continual self-report is too
disruptive to use in many educational tasks, but trained observers are not available in all
situations and do not scale well.

5.4 Future Work

Two lines of future work emerge from the three studies presented here. The first potential
direction involves studying how cognitive-affective states vary between environments. We have
reported results that address factors that appear not to vary between environments, but the high-
variation-between-studies method used here sheds little light on the factors that do vary between
environments. Future work will need to explicitly contrast different types of learning
environments, research methods, and populations.

The second line of future work is to develop learning systems that can detect and respond to
boredom and confusion. This work will have two components: detecting these states, and
responding to them in a manner that promotes positive affect, learning, and engagement. We
have already made some substantial advances in automatically detecting these cognitive-
affective states by monitoring facial features, gross body language, and conversational cues
(D’Mello, Picard, & Graesser, 2007). Therefore, the next challenge is to devise pedagogical and
motivational strategies to respond to these negative cognitive-affective states in order to
maximize learning. One method to respond to boredom would be to engage the learner in an
activity that increases interest. These might include options of choice, increased challenge, or
embedded games. The systems need to somehow shift users out of frustration to more positive
affect states (Hone, 2006; Klein, Moon, & Picard, 2002; McQuiggan, Lee, & Lester, 2007).
However, given boredom’s persistence and the low arousal that students become “stuck in”, it
may be more difficult to shift students to more positive cognitive-affective states. Nonetheless,
the integration of these two components into educational software that responds effectively to
differences in boredom seems achievable.
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Since confusion is a cognitive-affective state that accompanies deep learning and is linked to
learning gains, it is important for learning environments to manage the learner’s confusion
productively. Some learners tend to give up when they are confused because they attribute their
confusion to having low ability in general (Dweck, 2002; Meyer & Turner, 2006); these learners
need to be encouraged and also informed that working on the problem will be fruitful and that
confusion is a sign of progress. Other learners become motivated when they are confused
because it is a signal that they are being challenged, and they have confidence in their ability to
conquer the challenge. Although the optimal pedagogical strategy to help learners’ regulate their
confusion is unclear, mechanisms will need to be sensitive to cognitive and motivational
characteristics of the learners in addition to their emotional states.

We eventually hope to create affect-sensitive learning environments that respond
constructively and effectively to boredom and confusion. When we do, we will have made
significant progress towards improving students’ learning experiences, reducing problem
behaviors such as gaming the system, managing students’ frustration and confusion in the face of
impasses, and ultimately improving students’ learning.
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Table 1. Summary of different studies

Dimension Factor Study 1 Study 2 Study 3
User Participants 28 36 140
Characteristics Age College students 14-19 12-15
Gender 23F+5M 17F + 19M 83F + 57M
System AutoTutor Incredible Machine Aplusix
System . . .
Characteristics Domain . Cgmputer Literacy Loglc puzzles Algebra
Pedagogical Strategy  Dialogue based ITS Serious game Computer tutor
Interaction time (mins) 32 10 45
Methodological Affect judgment Offline Online Online
Characteristics ~ Affect judge Self judgments Trained judges Trained judges
Sampling Rate (secs)  Continuous 60 200
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Table 2. Descriptive statistics on proportions of each cognitive-affective state observed in each
learning environment and aggregated across studies. Standard errors given in parentheses.

State AT TIM A6 Averaged
Boredom .16 (.026) .07 (.025) .03 (.006) .05
Confusion 18 (.024) A11(.021) .13 (.009) 13
Delight .03 (.007) .06 (.015) .05 (.006) .05
Engaged concentration | .20 (.030) .62 (.046) 68 (.014) .60
Frustration .11 (.020) .06 (.018) .02 (.004) .04
Surprise .03 (.005) .03 (.020) .003 (.001) 01
Neutral 29 (.248) 05 (.121) .01 (.029) .06

Note. AT — AutoTutor, A6 Aplusix, TIM — Incredible Machine
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Figure Captions

Figure 1. Learning-centered cognitive-affective states mapped onto Russell’s Core Affect
Framework (2003). Recreated and modified from Russell (2003).

Figure 2. The AutoTutor Interface

Figure 3. A screen shot from The Incredible Machine: Even More Contraptions. Using the
objects at the bottom of the screen, the player must build a device that will propel the basketball on
the right side of the screen into the U-shaped area at the center of the screen.

Figure 4. A screen shot from Aplusix: Algebra Learning Assistant
Figure 5. The frequency of each affective state, in each learning environment.

Figure 6. The persistence of affective states (mean L) for each environment and each affective
state. Solid dots signify a p-level of 0.11 or lower; gray dots signify lack of statistical
significance.

Figure 7. The likelihood of observing gaming the system (mean L) after each affective state,
within The Incredible Machine and Aplusix. Solid dots signify a p-level of 0.05 or lower; gray
dots signify lack of statistical significance.
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Figures

ACTIVATION
Tense/Jittery Exciment/Ebullient

Upset/Distressed Elated/Happy

CO
DISPLEASURE NU - EC PLEASURE
Sad/Gloomy . Serene/Contented

Tired/Lethargic Placid/Calm
DEACTIVATION

BO: Boredom, EC: Engaged Concentration, FR: Frustration, DE: Delight, SU: Surprise, NU:Neutral
(Adapted from Russell 2003)

Figure 1.
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IHow does information that you type in get passed from the keyboard to the hard
idisk?

s

Input Device

Hard Orive

[ﬁ

[vigwing data, and for lang-term storage of data.

[ Tutor: Mow for something different

[ Tutor: The figure you see shows that the CPU communicates with a nurmber of devices. There are the input devices, random access memary. storage devices.
fand output devices. So, here's your question. How does information thatyou type in get passed from the keyboard to the hard disk?

Settings..

Figure 2.
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Figure 3.
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Aplusix - Student : r1s01 - Training (CHABRO-1.082)  [2|[E][X]
File Edit Step Calculation Parameters Past activiies Help

Training [list] | | Izi| | | End of the exercize | | 610

F

Expand and simplify

7{2x%+3x+2) -4 (-4x2-2x-5)

14x2421x+14-4 (-4x%-2x-5)

14x%+21x+14+16x%+8x+20

30x%+21x +14+8 [0

4

=

< | DN

State : Ok

Figure 4.
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