

A Framework and Computer System for

Knowledge-level Acquisition, Representation,

and Reasoning with Process Knowledge

José Manuel Gómez-Perez1, Michael Erdmann2, Mark

Greaves3, Oscar Corcho4, and Richard Benjamins5

1Intelligent Software Components (iSOCO) S.A.
2Ontoprise GmbH

3Vulcan Inc.
4Universidad Politécnica de Madrid

5Telefónica I+D

ABSTRACT
The development of knowledge-based systems is usually approached through the
combined skills of software and knowledge engineers (SEs and KEs, respectively) and
of subject matter experts (SMEs). One of the most critical steps in this task aims at
transferring knowledge from SMEs’ expertise to formal, machine-readable
representations, which allow systems to reason with such knowledge. However, this
process is costly and error prone. Alleviating such knowledge acquisition bottleneck
requires enabling SMEs with the means to produce the target knowledge
representations, minimizing the intervention of KEs. This is especially difficult in the
case of complex knowledge types like processes. The analysis of scientific domains like
Biology, Chemistry, and Physics uncovers: i) that process knowledge is the single most
frequent type of knowledge occurring in such domains and ii) specific solutions need to
be devised in order to allow SMEs to represent it in a computational form. We present a
framework and computer system for the acquisition and representation of process
knowledge in scientific domains by SMEs. We propose methods and techniques to
enable SMEs to acquire process knowledge from the domains, to formally represent it,
and to reason about it. We have developed an abstract process metamodel and a library
of Problem Solving Methods (PSMs), which support these tasks, respectively providing
the terminology for SME-tailored process diagrams and an abstract formalization of the
strategies needed for reasoning about processes. We have implemented this approach as
part of the DarkMatter system and formally evaluated it in the context of the
intermediate evaluation of Project Halo, an initiative aiming at the creation of question
answering systems by SMEs.

1. INTRODUCTION

Building knowledge-based systems is an activity that has been traditionally carried out
by a combination of software and knowledge engineers and of subject matter experts
(SMEs), also known as domain experts. Software engineers (SEs) are focused on
architectural and user interface issues related to the development of software.
Knowledge engineers (KEs) are focused on knowledge acquisition and representation
tasks, with the aim of building the required knowledge bases. For these tasks, they
normally work in collaboration with SMEs, who act as repositories of domain
knowledge to a large extent. The combination of KEs and SMEs is feasible for a
number of domains. However, it has two main drawbacks, first characterized as the
knowledge acquisition bottleneck by Feigenbaum in 1977: i) it is costly and ii) it can be
error prone, especially in complex domains.

A large amount of work in knowledge-based systems in the past three decades has
concentrated on providing frameworks and tools that support the collaboration of KEs
and SMEs with the goal of alleviating the knowledge acquisition bottleneck. Despite
such work, existing knowledge acquisition tools are still not effective and intuitive
enough to allow SMEs to capture the knowledge from a domain by themselves.

Among the different types of knowledge that can be used in knowledge-based systems,
in our work we focus on the particular case of process knowledge. Process knowledge is
one of the most widely used but also complex types of knowledge across domains,
posing important challenges for knowledge acquisition. A process can be considered as
a special concept which encapsulates such things as preconditions, results, contents,
actors, or causes and can be defined as “a naturally occurring or designed sequence of
changes of properties of a system or object”.1 For example, consider a complex
chemical reaction comprising several steps, with different inputs and outputs, where
reasoning about what would happen at a certain stage if a previous one was suppressed
is required. Processes also relate to the sequence of operations and involved events,
taking up time, space, expertise or other resources, which lead to the production of some
outcome.

Our motivation to focus on process knowledge stems from the fact that current
approaches to knowledge representation do not suffice at representing this kind of
information. Several approaches have been proposed from different areas and
perspectives, including the following: i) knowledge acquisition and representation
languages, e.g., OWL2, OCML (Motta, 1998), F-Logic (Kifer et al., 1995), and KARL
(Fensel et al., 1998); ii) process-specific representation and reasoning languages, e.g.,
PSL (Bock and Grüninger, 2005) and SPARK-L (Morley and Myers, 2004); iii)
semantic web service ontologies, e.g., WSMO3 and OWL-S4; and iv) process

1 http://en.wikipedia.org/wiki/Glossary_of_systems_theory

2 http://www.w3.org/TR/owl-features

3 http://www.wsmo.org

4 http://www.w3.org/Submission/OWL-S

specification and execution languages, e.g., BPEL5. However, while expressive in terms
of workflow constructions and reasoning capabilities, such approaches either suffer
from high complexity or low abstraction capabilities that hinder their use, especially by
SMEs. Thus, while fundamental for the construction of knowledge-based and workflow
systems, further solutions are required that can be used to address the problem for the
process knowledge case.

Furthermore, we aim at enabling SMEs themselves to model and reason with process
knowledge without intervention of KEs. In this context, not only is it necessary to deal
with the intricacy of process knowledge but also with the lack of knowledge
engineering skills by SMEs. Given all this complexity, the mechanisms required for
acquiring and reasoning with process knowledge must be flexible and reusable,
enabling their exploitation across several scientific and non-scientific domains (ecology,
engineering, business, etc.) with as little effort as possible.

Thus, our main objective is to produce the means required to enable SMEs to acquire,
formally represent, and reason about processes without the intervention of KEs. In order
to describe our work towards achieving such objective, this article is structured around
three main conceptual blocks: i) the creation of knowledge artifacts that support the
acquisition of process knowledge, ii) the development of usable tools allowing SMEs to
exploit such artifacts, and iii) the formal evaluation of the whole approach with real
SMEs from scientific domains. The accomplishment of the tasks comprised by these
blocks has resulted in the following models, methods and tools, which will be presented
in the article:

1. A process metamodel, which provides the terminology necessary to express
process entities in scientific domains and the relations between them.

2. A library of Problem Solving Methods (McDermott, 1988), which provides
high-level, reusable abstractions for process representation, and the method used

for its development, which facilitates filtering and producing such abstractions
from amongst all the other knowledge types in the available documental sources.

3. A graphical process modeling and reasoning environment, which applies the
process metamodel and the PSM library in order to enable the creation and
editing of user-tailored process diagrams, without intervention of KEs.

4. A method for the automatic synthesis of executable process models from SME-

authored process diagrams, supported by an underlying representation and
reasoning formalism.

Problem Solving Methods (PSMs) are central to this work. They were conceived as
domain-independent, reusable knowledge strategies that can be applied in different
application domains to solve conceptually similar problems in terms of the goals to be
achieved and the type of knowledge required (Fensel and Benjamins, 1998). PSMs have
been traditionally used in knowledge engineering in three main ways: i) for knowledge
acquisition, as guidelines to acquire knowledge that allows solving problems, ii) for
reasoning, and iii) analytically, for describing the main rationale behind a reasoning
process. In this work, we report on the first use of PSMs for the specific case of
acquiring process knowledge.

5 http://www.oasis-open.org/committees/wsbpel

Through the application of these models, methods, and tools to the problem of acquiring
process knowledge by SMEs, we pursue four main outcomes, which can be
preliminarily introduced here as follows:

1. Higher quality and less costly process knowledge bases, through empowering
SMEs and taking KEs out of the process knowledge acquisition loop.

2. Reduced complexity of acquiring process knowledge by SMEs through the use
of PSMs as domain-independent, reusable abstractions of domain-specific
processes.

3. Keeping acquisition of process knowledge at the knowledge level (Newell,
1982), through an underlying process knowledge representation formalism
transparent to SMEs.

4. Flexible and reusable mechanisms for acquisition and reasoning with process
knowledge by SMEs, maximizing the application of the approach across several
domains with little effort.

The remainder of the article is structured as follows. Sections 2 to 4 focus on the first of
the abovementioned conceptual blocks (knowledge artifacts), presenting the knowledge
structures proposed in order to support SMEs in the acquisition of process knowledge.
In particular, section 2 describes the analysis of the different knowledge types appearing
in the target domains and explains why process knowledge is one of the most relevant
types. Section 3 focuses on the process metamodel. To finalize this block, section 4
focuses on the PSM library for the acquisition of process knowledge, including the
method used for its development.

The second block (usable tools) is treated in section 5, where we describe how the
previous knowledge structures can be articulated in a real system, a process editor
integrated in the DarkMatter (Deep Authoring, Answering and Representation of
Knowledge by Subject Matter Experts) system of Project Halo, 6 which allows SMEs to
model processes at the knowledge level. In this section, we also introduce briefly the
underlying formalism for process knowledge representation, which is described in more
detail in (Gómez-Pérez, 2009). Section 6 deals with the third block (formal evaluation),
and presents the evaluation of the approach in the context of Project Halo and its value
for actual SMEs. Finally, section 7 provides conclusions based on the analysis of the
evaluation results and section 8 discusses the contributions of this work and proposes
directions for future work.

2. MOTIVATION: THE PROCESS KNOWLEDGE TYPE

In (Friedland et al., 2004), KEs directly encoded parts of a Chemistry textbook into
formal knowledge representation languages, proving the practicality of representing
sufficient knowledge for a computer to solve scientific problems at a level comparable
to AP7 students. However, this effort confirmed the problems derived from the
knowledge acquisition bottleneck. The cost of encoding one textbook page proved
impractically high (approximately $10,000 per textbook page) and the evaluation of the
system showed evidence that an important part of the system failures reflected
insufficient expertise of domain knowledge by KEs.

6 www.projecthalo.com

7 Advanced Placement (apcentral.collegeboard.com)

The outcome of such initiative concluded that addressing the knowledge acquisition
bottleneck requires enabling SMEs themselves to represent knowledge from the target
domains. This objective implies three major challenges. First, the system needs to
possess sufficient problem solving power to solve scientific problems. Second, it must
be able to explain its answers in a human-understandable and domain-grounded way.
Third, the interface must be user-friendly, yet allow SMEs to formulate and exploit the
large, complex body of scientific knowledge, after adequate training.

In order to estimate the effectiveness of existing technologies in addressing these
challenges in terms of knowledge representation, knowledge formulation and question
formulation, joint teams of SMEs and KEs worked with a representative corpus of 755
AP questions from the target domains of Chemistry, Biology, and Physics (Valente et
al., 2004). As a result, and after two main phases comprising a platform independent
domain analysis and a platform specific knowledge engineering analysis, the following
knowledge types were identified: classification (CLS), comparison (CMP), factual
knowledge (FACT), inference rules (RULE), mathematics (MAT), process knowledge
(PCS), causality (CAUS), procedural (PROC), basic data structures (DAT), tables
(TAB), part-whole (PWR), spatial (SPACE), temporal (TIME), representational
(TRANS), experimental (EXP), non functional (NF), graphic (GRA), and under-
specified knowledge (US).

Most of these knowledge types occur across the three domains with varying fractions.
Figure 1 shows the number and percentage of questions from the three domains dealing
with each knowledge type, as well as the average across all domains. Additionally,
Figure 2 shows the overall average ranking of the different knowledge types. It can be
appreciated in the figures that a same question may deal with different knowledge types
simultaneously. Consequently, the summation of the different knowledge types across
the corpus of AP questions exceeds 100%.

Figure 1: Per-domain distribution of knowledge types

Overall, process knowledge is the most frequently used type of knowledge for
answering AP questions, with 37% average across the three domains. This is even
clearer if we go through the individual domains. In Chemistry, process knowledge is the
most important knowledge type, occurring in 53% of all the Chemistry questions. It also
scores second in Biology, with 35%, only after classification knowledge. Finally,

process knowledge is the fourth knowledge type in Physics, with 22%, after
mathematical, experimental, and spatial knowledge.

Figure 2: Average distribution of knowledge types

As shown above, one of the outcomes of this analysis is the preeminence of process
knowledge against the remaining knowledge types identified. The second outcome of
the analysis in with respect to process knowledge was platform-specific. The platform-
specific analysis resulted into a characterization of how the available technologies
would address the challenges posed by such domains in terms of knowledge
engineering tasks. In the case of process knowledge, the analysis concluded that such
technologies would not support the acquisition of process knowledge from the domains
by SMEs, hence requiring new solutions for the process knowledge case. The analysis
especially advised i) the development of a high-level process ontology or core theory
for representing reoccurring models in the domains and ii) to investigate new methods
and tools to simplify formulation and access to process knowledge by SMEs.

In the following sections, we detail our approach towards designing and implementing
specific solutions for acquisition and reasoning with process knowledge by SMEs. The
remaining types of knowledge fall out of the scope of this article.

3. THE PROCESS METAMODEL

The objective of the process metamodel is to provide SMEs with the minimal building
blocks, in the form of a process-specific vocabulary, to formulate processes. The
process metamodel reuses parts of pre-existing process ontologies and builds on them in
order to provide the terminology necessary to express process entities like agents,
actions, resources, etc. and the relations between them.

3.1 Reused Process Ontologies

Following ontology engineering methodological guidelines (Fernández-López et al.,
1997), we reused several process ontologies, among which some of the most relevant
ones are the Enterprise Ontology (Uschold et al., 1998), the Toronto Virtual Enterprise

project (TOVE)8 ontologies, and the GuideLine Interchange Format Ontology (Ohno-
Machado et al., 1998) (GLIF).

The Enterprise Ontology and its extension TOVE define collections of terms and
definitions relevant to business processes. These ontologies deal with the following
main areas:

• Activity captures the notion of anything that involves some action. The concept
of activity is closely connected to the notion of doer, i.e., the agent that performs
or participates in the action. Another entity closely related to activity is resource,
which can be consumed by the action or just required, e.g., as a lookup resource.
Activities can have certain duration and scheduled time of application, and also
show effects on other entities. Additionally, activities can be aggregated to form
more complex activities composed of a series of subactivities. If activities have
an intended purpose its specification is called a plan.

• Organization contains candidate doers, i.e., potential actors or agents. They can
be classified as either legal entities or organizational units.

• Strategy is defined as a plan to achieve a high-level purpose.

• Marketing includes concepts like sale. A sale is an agreement between two
legal entities for the exchange of a product for a sale-price.

Among these, both the activity and the organization parts have provided valuable
contributions to the process metamodel, specifically to concepts representing agents and
resources in the process resource section, to the process action section, and to action,
agent, and resource relations in the process relation section (Figure 3). The rest of these
ontologies are too specific to the business domain, and therefore inconsistent with our
aim to maximize domain-independence and reusability of the process metamodel.

GLIF is a framework for modeling biological processes partially based on the workflow
model of the Workflow Management Coalition (WfMC9). In this case, we extracted a
number of simple workflow primitives and incorporated them in the process
metamodel, namely different types of iterative actions and forks.

3.2 Conceptual Model

Figure 3 shows the taxonomy of the process entities contained in the process
metamodel. The main entities contained in this model and their connections are
described next.

8 http://www.eil.utoronto.ca/enterprise-modelling/tove

9 http://www.wfmc.org

Figure 3: Conceptual diagram of the process metamodel entities

Process resources

This category contains all the entities that can be used as resources within a process:
tools, used by a given agent to perform an action, bags used to group other entities,
implicitly representing partonomic hierarchies, and, in general, resources, used by
agents participating in activities, as well as agents themselves. An agent can be
classified as an individual agent, e.g., bee, or a collective agent, e.g., swarm. A resource
can be classified as a consumable resource, if it can be spent during a process or as a
lookup resource if it is used as a recipient of information. In this case, a resource can be
quantitative, whenever it is numerable, or qualitative in other case. Resources can be
termed as output when resulting from the execution of a process.

Process resources are also called roles (Wielinga et al., 1992) according to the PSM
nomenclature. Roles serve two purposes, first they act as a container for domain
concepts and, second, as a pointer to the types of domain concepts that can play this
role. Domain concepts may play different roles during reasoning either in the same or
across different processes. For example, water can take the role of a consumable
resource during the process of a precipitation reaction, but on the other hand another
SME might consider it as the agent performing the reaction. Figure 4 shows the graphic
representation of the main process resources in the process metamodel.

Figure 4: Main types of process resources

Roles can be divided into static and dynamic roles (Wielinga et al., 1992). Static roles
contain concepts that are persistent across the reasoning process. Dynamic roles contain
concepts that change during the reasoning process. Dynamic roles characterize the
process because they are constantly manipulated by the process in which they are used.
In DarkMatter both static and dynamic roles are supported. Finally, in actual, working
systems, users need to contextualize the different roles in terms of the domain. In
DarkMatter, this is done by mapping from domain concepts into the roles of an
instantiated process.

Process relations

This category contains process-level relations which can take place in a given process
between the different actors participating in it. These relations can happen both between
resources and actions, actions and resources, and between actions and other actions. A
resource can be used, required, consumed, and accumulated by an action. Actions can
succeed a previous action if a given condition is true or false. Actions can create,

provide or accumulate a resource as a consequence of its execution. Additionally,
actions can be inhibited or activated by an agent, and agents can participate in or
perform actions.

Process decisions

A decision (Figure 5) is a workflow construct resembling forks depending on a
conditional expression. These forks are used to explicitly create conditional precedence
relations between pairs of actions. Depending on the results of evaluating such
condition, the precedence relation will be enabled (true) or not (false).

Figure 5: Conditional fork

Process actions

Process actions are classified as atomic, iterative, continuous, or periodic. Atomic
actions consist of the transactional execution of activities, e.g., binding two amino acids
in Biology, while iterative actions are executed repeatedly while or until a certain
condition holds, e.g., the iterative process of RNA synthesis from DNA templates where
an enzyme follows a DNA template until a termination sequence is detected. On the
other hand, continuous actions are simple actions that have a prolonged duration in
time, e.g., “A piece of solid calcium is heated in oxygen gas…”. Finally, periodic
actions refer to actions which happen repeatedly, provided a given amount of time or
events, e.g., the oscillation of a pendulum. The definition of actions has been inspired
by that of activities as defined in the Enterprise Ontology. On the other hand, workflow
constructs used to represent iterative, continuous, and periodic actions have been
adapted from GLIF. Figure 6 shows the graphic representation of the main types of
actions.

Figure 6: Main types of process actions4.

4. PROBLEM SOLVING METHODS FOR THE

ACQUISITION OF PROCESS KNOWLEDGE

We approach processes as special types of problems and PSMs as the way to represent
and reason with them. To this purpose, we have produced a PSM library which i)
provides SMEs with modeling guidelines that simplify the representation of domain-
specific processes and ii) provides the means to reason about and solve process-related
problems. Next, we provide an extension of existing modeling frameworks based on
PSMs in order to support the process knowledge case and describe the method followed

to build our PSM library in the resulting framework. Finally, we extensively describe
the domain-independent library of PSMs produced as a result of applying such method.

4.1. A PSM Modeling Framework for Processes

There is a considerable number of existing PSM libraries that have been previously used
in knowledge-based systems (Chandrasekaran, 1986; Eriksson et al., 1995; McDermott,
1988; Breuker et al., 1987; Benjamins, 1995). For example, the work described by the
latter provides a model of the diagnostic problem solving process, using approaches for
modeling problem-solving behavior such as those described in (Breuker et al., 1987;
Chandrasekaran, 1986; Steels, 1990). As a result, KEs receive support and guidance in
constructing models of diagnostic reasoning and it is possible for KEs to combine
different approaches in a single diagnostic system, with alternatives for realizing the
same tasks.

Modeling frameworks like TMDA (Motta, 1999) and CommonKADS (Schreiber et al.,
2000) support the development of such PSM libraries by separating problem-solving
behavior from domain-specific knowledge. According to such frameworks, application
models need to identify different but interfaced layers of knowledge. CommonKADS
proposes three generic types of components: domain, task, and inference while TMDA
distinguishes between four, with an additional layer on application-specific knowledge.
As a consequence, the resulting knowledge bases only contain factual, domain-specific
knowledge, much easier to evolve, while problem-solving knowledge can be kept
independently from the domain in order to abstract and favor reusability of the
procedural and inference knowledge across different domains and tasks.

Using PSMs for acquiring process knowledge also benefits from this kind of
approaches. PSMs provide a thorough analysis of domain-specific tasks and problems
as well as well-formed strategies on how to solve these problems by means of
abstracting the reasoning processes involved. These modeling frameworks assume that
the tasks to be accomplished reside at the meta-level as strategies to solve domain-
related problems, like, e.g., in (Marcus et al, 1998). However, they do not contemplate
the representation of actual processes. In order to overcome this, we propose a
specialization of the TMDA component-based modeling framework (Figure 7) that
utilizes PSMs as domain-independent components for the specific case of process
knowledge.

Such specialization explicitly represents the different knowledge types detected in the
analysis of the domains described in section 2 and, in particular, processes. This allows
treating process knowledge as higher-level abstractions, decoupled from all other
knowledge types in the domain but interfacing with them in order to consume domain-
specific rule and factual knowledge. We exploit the relation between ontologies and
PSMs as in (Crubézy and Musen, 2003) to describe domain knowledge bases and PSMs
as independent components that can be reused and to mediate knowledge between these
two components. Our PSM library can thus be kept reusable for acquiring process
knowledge across different purposes and domains.

Figure 7: Adapted TMDA modeling framework for the process knowledge type (PCS)

Supporting such approach requires four different types of ontologies: i) a PSM-
description ontology, which models the competence of a PSM library, ii) a method
ontology specifying input and output roles of the PSMs, iii) a mapping ontology relating
domain and PSM ontologies, and iv) a domain ontology containing factual knowledge.
In our case, (i) and (ii) reflect into the PSM library for the process knowledge type and
the process metamodel and iv) are SME-authored ontologies in the domains of
Chemistry, Biology, and Physics. Mappings relating domain and PSM roles are 1:1
relations graphically described by SMEs (see Figure 17 in section 5). The semantics of
these mappings is a subsumption of the PSM role by the domain concept or instances
against which it is mapped.

4.2. A Method to Build a PSM Library of Process

Knowledge

Existing PSM ontologies like the above mentioned focus on problem-solving reasoning
process in tasks like, e.g., diagnosis and classification, but do not properly address
domain-level processes. Thus, it is necessary to build a PSM library that informs the
extended process modeling framework depicted in Figure 7. The construction of such
PSM library for representing and reasoning with processes comprises two major steps:
1. Identification of domain-specific processes in the syllabi of Biology, Chemistry,

and Physics

2. Decomposition and abstraction of the previously identified domain-specific
processes into primitive, domain-independent, reusable PSMs.

This top-down and bottom-up process is grounded in the domains but also maximizes
domain-independence, reusability, and composition properties.

Identification of domain-specific processes

The first step consists of detecting domain-specific processes and their definitions from
amidst the domain analysis documents. From the 755 AP questions for the three
domains studied in the analysis phase, we retrieved, for each process occurring in the
portion of the syllabi associated to each question, its actual definition according to the
textbooks10. This process resulted into approximately 100 different domain-specific
processes. The analysis of the characteristics and the affinities between these processes
showed that they could be clustered in 4 main categories: Join, Split, Modify, and

Locate. Figure 8 shows how the processes detected in the syllabus are distributed across
these categories.

Figure 8: Distribution of process occurrences

Since the goal of this process is to detect all the occurrences of process knowledge in
the selected AP questions, we took an incremental approach starting with Chemistry, a
priori, according to the analysis (Figure 1), the domain with a larger amount of process
knowledge, and then continued with Biology, and finally Physics. The method applied
(first part of Figure 9) consisted of the following steps: i) identify the topics related to
each question, ii) for each topic, find the specific chapter of the textbook on the target
domain dealing with it, and iii) browse the chapter for occurrences of processes,
attending to several indicators about their structure, namely preconditions,
postconditions, states, actors, inputs, and outputs.

An additional result of this process is the identification of the most frequent verbs used
to specify processes and their synonyms. In the next step of this method, decomposition

and abstraction, this knowledge was used to group the detected domain-specific
processes into categories defined by the semantics of these verbs, across the three
domains, facilitating the task of creating process abstractions for each of these
categories. Such process abstractions eventually led to our PSM library for the process
knowledge type (Figure 10).

10 (Brown et al., 2002; Campbell and Reece, 2001; Serway and Faughn, 2003) were selected as reference
textbooks for the Chemistry, Biology, and Physics domain, respectively.

Questions Topics
Related book

chapters
Domain
process

Brown & Lemay 4.2

Atomic
processes

Dissolve Crystallize

Domain-independent
processes

Precipitation

decompose
form by

combination

Figure 9: Sample process identification and abstraction

Decomposition and abstraction

To obtain generic, primitive PSMs from such domain-specific processes, we followed a
divide and conquer approach, recursively splitting them into their sub-processes until
atomic, domain-specific processes were obtained. This is the case of, e.g., the process
of a precipitation reaction and its two subprocesses dissolve and crystallize. Atomic

processes constitute the basic building-blocks, which can be aggregated to build
complex processes.

Atomic processes need to be decontextualized from their original domains in order to
guarantee reusability across different domains. We applied the domain-independent
terminology of the process metamodel to this collection of domain-specific atomic
processes, producing a set of generic, domain-independent process abstractions. The
PSM library, containing 15 primitive PSMs, stems from these abstract processes. It
establishes and controls the actions required in each of them and defines the necessary
knowledge for each process step. The second part of Figure 9 shows two of these PSM
(Decompose and Combine) in the context of a Chemistry precipitation process.

4.3. A PSM Library for the Acquisition of Process

Knowledge

The two-phased (identification and abstraction) construction of the PSM library
produced the domain-independent problem solving methods sketched in Figure 10. The
methods contained in the PSM library are primitive methods, i.e., PSMs which cannot
be further decomposed into more specific, lower level PSMs. By doing so, PSMs appear
to SMEs as simple, self-contained, comprehensible templates for formulating process
knowledge, which can be easily aggregated in order to formulate complex processes and
edited by SMEs to their convenience while maximizing PSM reusability across the
different domains.

Figure 10: PSM library for process modeling

The PSM library is structured into four main categories (Figure 10), each addressing a
different family of processes. Join contains PSMs which describe the different ways in
which a set of input resources can interact with each other, be combined, aggregated,
and, in occasions, neutralize their respective properties, in order to produce a given
outcome as a result of such interaction. Other PSMs of this category aim at comparing
two different resources by putting them together and study their mutual reaction. Split,

opposite to Join, contains methods that describe several ways of producing a new result
by means of consuming or dividing a set of resources into its constituents. Locate aims
at the spatial arrangement of resources. Finally, Modify contains a set of methods that
describe different ways of altering either the properties of such resources or the
resources themselves, producing a different outcome in the process.

These primitive PSMs define methods to achieve domain-independent, atomic
processes. They establish and control the sequence of actions required in each process,
but their main goal is to define the necessary knowledge in each process step. The
abstractions of these methods allows capturing, in a high-level and generic way, the
occurrences of processes in our target domains, formalizing process knowledge by
means of mapping their roles against domain entities and aggregating primitive methods
for the composition of complex processes.

Next, we describe our PSM library in terms of the process categories identified during
our analysis of the syllabus of our target domains and introduce the PSMs11 that we
have designed in order to represent such processes. In the following figures, we show
how we have decomposed the main process categories into subcategories and provide a
set of PSMs that can be used to support the acquisition of such process types.
Graphically speaking, processes are represented as ellipses, while methods are shown as
rectangles in a way analogous to the classical task-method notation.

The Join category

The Join category comprises three different types of processes: Contrast, Form, and
Neutralize (Figure 11). Contrast stands for processes where the intended goal is to
identify the properties of a given resource by making it interact with another resource
whose properties are well known, e.g., a chemical titration. This kind of processes can
be achieved by comparing & interpreting. Form comprises processes where different

11 A detailed description of all the PSMs contained in the PSM library can be found in APPENDIX A: A
PSM Library for Process Knowledge.

resources are put together in order to create a new one. We have produced two different
methods that can be applied alternatively in this case (form by aggregation and form by

combination). Finally, while Neutralize also stands for processes aiming for a
combination of elements, their outcome neutralizes their original properties.

Figure 11: PCS category Join

The Split category

This category of processes comprises four different process types: Consume,

Decompose, Recombine, and Replicate (Figure 12). Consume stands for processes, e.g.,
a combustion, whose input is spent, providing some byproduct upon termination.
Decompose, e.g., hydrolysis, divides its inputs into their constituent elements.
Recombine comprises processes where first decomposition takes place and then, the
resulting pieces are combined in order to produce a different output. Examples of
recombine include sexual reproduction. Finally, Replicate appeals to processes where
two identical items are produced from a single one, e.g., clonation.

Figure 12: PCS category Split

The Modify category

This category groups three different types of processes: Transform, Implement, and
Balance (Figure 13). Transform stands for processes, e.g., a chemical ionization, whose
input is derived into an item of a different type. Implement, e.g., implantation, installs
an item in a given environment which evolves into something different. Finally,
Balance appeals to processes where input elements are put together to equilibrate their
properties, e.g., osmosis, autoionization of water.

Modify

situate &

combine

Transform Implement Balance

transform balance

Figure 13: PCS category Modify

The Locate category

Finally, this process category comprises four different types of processes: Situate,

Oscillate, Rearrange, and Release (Figure 14). Situate stands for processes, whose goal
is to place their input in a different situation from the original one, understanding
situation as a property of such input. Oscillate takes this spatial notion into a periodical
event, e.g., harmonic motion in Physics. Rearrange comprises processes where input
items are fetched and arranged in a different disposition, e.g., changes in protein
conformation. Finally, Release appeals to processes where an agent consumes, upon a
given precondition, some items, e.g., hormone secretion.

Figure 14: PCS category Locate

Many processes in the syllabus are simple processes that occur in the context of larger
processes, like, e.g., mitosis, meiosis, and their respective phases. In such cases,
primitive PSMs from the PSM library, which can describe the simpler processes (in
terms of the succession of steps necessary to accomplish them and the type of
knowledge required at each step), can be aggregated to describe the larger processes. On
the other hand, the level of refinement to which a process can be represented depends
largely on the design approach taken by the SME. For instance, a mitosis process could
be represented by applying the PSM decompose & recombine from the Split category,
but that alone would not provide much information on the phases of mitosis (prophase,

prometaphase, metaphase, anaphase, and telophase), each of them a (sub)process itself.

If we look at the syllabus selected for the target domains, the most relevant PSM in
terms of appearances in processes described in such syllabus is transform, followed by
replicate and decompose. In a nutshell, these three PSM alone from the fifteen available
in the PSM library suffice to model 46% of all the processes in the syllabus. The

distribution of all the methods of the PSM library in terms of their suitability to
formulate and reason with the processes present in the syllabus can be seen in Figure
15.

Figure 15: Distribution of the process syllabus across PSM library methods

5. ENABLING SMEs TO FORMULATE PROCESS

KNOWLEDGE

One of the main difficulties in knowledge formulation is the gap between domain
knowledge and the expertise required in order to formalize and exploit such knowledge.
Based on the process metamodel and the PSM library described in this article, it is
possible to provide SMEs with a knowledge-level (Newell, 1982) strategy for
formalization and reasoning with processes, which enables the creation of process
models.

To this purpose, SMEs need usable graphic tools and editors that simplify the
manipulation of process knowledge, allowing them to approach the knowledge
representation problem exclusively at the domain level. On the other hand, reasoning
needs to be supported by means of the automatic synthesis, from user-tailored process
diagrams, of executable process models that can be seamlessly integrated with the
remaining knowledge types, aiming for a single entry point for question answering.

The DarkMatter process perspective (Figure 16) implements this approach, allowing
SMEs to formulate domain-specific processes. The process perspective leverages the
process metamodel, which provides the required semantics in the form of process
terminology, and the PSM library. The PSM library provides SMEs with guidance to
model, without the intervention of KEs, well-formed meaningful process diagrams with
respect to the underlying process representation and reasoning formalism.12 The
methods of the PSM library can be used by SMEs as knowledge templates, which
facilitate building complex processes and alleviate the blank page syndrome. The

12 The underlying formalism for process knowledge representation and reasoning is described in detail in
(Gómez-Pérez, 2009), chapter 5: Representing and Reasoning with SME-authored Process Knowledge.

resulting diagrams are automatically encoded, following the formalism, and eventually
executed.

The process perspective allows graphically formulating process knowledge either from
existing diagrams or from scratch. It provides SMEs with a palette containing all the
process entities described in the process metamodel and the methods of the PSM
library, allowing Drag & Drop of these elements into the drawing area. Figure 16 shows
an example process diagram corresponding to a chemical precipitation as described in
(Brown et al., 2002). The precipitation process comprises two different steps: first, the
different ionic compounds of a solution are dissolved, then, some of their anions and
cations crystallize as a new ionic compound whenever the necessary conditions in terms
of temperature and solubility of the ions hold.

Figure 16: Process Modeling in DarkMatter

Modeling processes in the process perspective is an iterative task that typically involves
the following three main stages:

1. Including the basic process components and structure, starting with
subprocesses. In the example, the precipitation process comprises two
subprocesses: Dissolve and Crystallize. The basic structure of the process model
has been provided by the PSM decompose & combine, especially suited to
model recombination-intensive processes, as defined by the process category
Split (see Figure 12). PSMs are available from the palette, following the
categorization described in section 4, with the twofold goal of simplifying reuse
by SMEs and of providing process templates from which to start the modeling
task. Though the process perspective supports modeling processes from scratch,
using PSMs as templates simplifies the task. The process perspective allows
adapting the template, removing and adding process components as required.

2. Grounding process components in the domain. During process formulation,
generic roles coming either from PSM templates or from the palette as
individual components need to be mapped against domain entities in order to
contextualize the process in the application domain. Such mappings use the
domain-level knowledge base as a bridge between the process knowledge type
and the other knowledge types, fundamentally rules, ensuring their convergence
in terms of the domain and allowing seamless knowledge representation and
reasoning between the knowledge modules.

The components of a process diagram are mapped
against concrete domain entities by means of the
interface shown in Figure 17. The figure shows
how the domain-level entity Ionic Compound is
modeled as the process metamodel entity resource.
In Figure 16, the input to Dissolve comprises a
Solution of Ionic Compounds, modeled as a bag

and resources from the process metamodel,
respectively. Solution is also part of the output of
Dissolve and of the input of Crystallize, together
with the Cations and Anions resulting from the
previous subprocess, both modeled as resources.
The overall output of the process, modeled as a
process output from the metamodel, is mapped
against the domain entity class Ionic Compound.

3. Mapping process components against domain entities. Finally, the different
process components are connected with each other by means of process relations
provided by the process metamodel. The process metamodel allows constraining
the relations between whatever pair of entities from the metamodel, preventing
SMEs from establishing meaningless and confusing links between them. Table 1
shows the allowed relations between the main process entities. When the SME
establishes a relation between two process entities, the process perspective
automatically retrieves this information from the metamodel and generates a
menu that only contains the valid ones.

The process perspective provides an answer to two important challenges in order to
enable SMEs to author correct process models

• Ensuring that the resulting process models are compliant with the underlying
formalism for process representation and reasoning.

• Guaranteeing that the resulting process models satisfy the modeling expectations
of the SME under a functional point of view, i.e., the resulting model must
describe the process addressed by the SME and no other.

With respect to the first challenge, the existence of a formalism for process knowledge
representation and reasoning explicitly describing the operationalization of knowledge-
level process models into a concrete formal language allows dealing with possible
inconsistencies introduced by SMEs upon process modeling and facilitates the creation
of semi-automatic supervision mechanisms that notify SMEs on modeling mistakes.
Such mechanisms contribute to the creation of consistent process models that can be
automatically translated into correct code in the reference formal language.

Figure 17: Mapping between

role and domain entity

 resource output bag action Repeat while Decision

agent

participates

performs

inhibits

activates

participates

performs

inhibits

activates

participates

performs

inhibits

activates

resource

required

consumed

accumulated

required

consumed

accumulated

required

consumed

accumulated

output

tool used Used used

bag

required

consumed

accumulated

required

consumed

accumulated

required

consumed

accumulated

action

creates

provides

creates
byproduct

creates

provides

creates
byproduct

creates

provides

 process
decision

repeat

creates

provides

creates
byproduct

creates

provides

creates
byproduct

creates

provides

while

creates

provides

creates
byproduct

creates

provides

creates
byproduct

creates

provides

decision
true

false

true

false

true

false

Table 1: Allowed relations between process entities

Additionally, stemming from the above mentioned process representation formalism,
the process perspective performs consistency checks of the process diagrams at
modeling time, observing a twofold goal: i) to ensure consistency of the process model
with respect to the knowledge base and ii) to ensure data flow consistency of the
resulting process model.

Process knowledge lies at a higher level of abstraction than other knowledge types like,
e.g., classes, instances, and rules. Therefore, a critical point for an effective use of
process models is the grounding of the process-level constructs provided by the process
metamodel and the PSM library into specific elements of the knowledge base whose
process knowledge is being described by such models. Maintaining the consistency of
process models in the context of their corresponding domains and knowledge bases
contributes to support seamless reasoning at the domain level. In this regard, with
respect to the first goal (to ensure consistency of the process model with respect to the
knowledge base), the following assumptions are verified:

• Process diagrams must be bound to concrete occurrences of processes from
the knowledge base. In the example shown in Figure 16, the process diagram

is bound to precipitation, an instance of class Chemical Reaction in the
Chemistry knowledge base.

• The resources used in the process diagrams must be mapped against specific
knowledge base entities, either classes or specific instances. In the example,
the generic process metamodel entities bag and resource are thus ground as
domain-specific classes Solution and Ionic Compound, respectively.

• All the relations between process entities must be specified in the process
diagram, forming a connected graph, with meaningful nodes and edges.

The assumptions concerning the second goal (to ensure data flow consistency of the
resulting process model) are the following:

• Process actions must have inputs and outputs, e.g., Solution, Cation, and
Anion (inputs of action Crystallize in the example of Figure 16) and Ionic

Compund (output of the same action).

• Process diagrams must have inputs and outputs, i.e., all processes must be
triggered by the occurrence of some entity and produce new knowledge as a
result. In the example, a Solution of Ionic Compounds is the input of the
precipitation process, which, given the right conditions holds, produces a
new Ionic Compound as a result.

• Process diagrams must be structured as directed and fully connected graphs,
ensuring a consistent data flow.

• The inputs and outputs of process actions must be explicitly represented,
ensuring the visual consistency of the action with respect to its semantics. As
a consequence, elements occurring both as inputs and outputs of an action
are represented as graph nodes before and after the action node. In the
example, Solution, modeled as a process resource of type bag, illustrates this
in the process action Dissolve.

As a consequence of automatically checking these assumptions, code is produced, in the
underlying process representation language, exclusively for well-formed process
models. Our modeling-time verification approach supports the detection of data and
control flow errors in the process model that fail to fulfill the assumptions, preventing
the generation of incorrect code. This method is extremely cheaper, in computational
terms, than auditing the code once this is actually generated and hence makes it
unnecessary to perform additional checks at the level of the underlying knowledge
representation language. When any of these assumptions is violated, the process editor
issues an error message explaining the rationale behind it and indicates the SME how to
address it.

The actual code corresponding to the process model is actually stored in the knowledge
base only when all the assumptions are satisfied. In addition to formulating correct
process models, by providing SMEs with this kind of feedback at modeling time we
ensure that the resulting process models fulfill the constraints necessary to optimize the
generated code as shown in (Gómez-Pérez, 2009).

The second challenge in terms of process correctness (guaranteeing that the resulting
process model satisfies the expectations of the authoring SME under a functional point
of view) requires enabling SMEs to test the process models. SMEs validate that their
process models actually behave as they expect by means of the test & debug
perspective.

This perspective enables SMEs to create unitary tests that ensure the quality of their
knowledge bases remains in good conditions as they modify them. Such tests are
especially useful for process modeling, since their inference capabilities can have a
substantial effect on the knowledge base. SMEs are therefore encouraged to include a
battery of tests (a test set) associated to each process model. A test set consists of a
number of queries and optionally a facts file, which contains temporary facts that only
live within the scope of the test, i.e., a number of instances for use exclusively within
the test set queries. When a test set is created and validated, the results of its execution
are saved as a snapshot of the knowledge base. Subsequent executions of the test are
regarded as valid if their results match the saved results.

Figure 18 shows a test for the precipitation process. Two solutions, lead nitrate
(Pb(NO3)2) and potassium iodide (KI), inform the temporary facts of the fact file for a
query that aims at retrieving the final output of the process, i.e., which ionic compounds
are produced as a result of a precipitation process. The results returned (lower, right part
of the figure) are the combination of the anions and cat-ions that observe the necessary
insolubility conditions, i.e., lead iodide (PbI2) in this case.

Our approach also supports answering meta-level questions on processes, about, e.g.,
their structure and intermediate states and products. The following illustrates such type
of questions:

Figure 18: Process Validation

Which part of the animal cell is required only in the first
stage of mitosis and what is the name of such stage?

a. chromatin and prophase
b. chromatid and prometaphase
c. centromere and anaphase

d. plasma membrane and telophase

6. EVALUATION

The process editor and the whole approach towards process knowledge acquisition by
SMEs were evaluated by an independent team13 in the context of the evaluation of the
DarkMatter system in Project Halo. A total of six knowledge formulation (KF) SMEs
participated, who formulated knowledge on the selected evaluation syllabi for the
domains of Chemistry, Biology, and Physics, and tested reasoning with it. These
knowledge bases were later used by five Question Formulation (QF) SMEs, with the
support of QF KEs, who formulated selected AP-level questions that were intended to
be answered by the system. After receiving a limited amount of training on the
principles of the system, SMEs used DarkMatter to formulate the knowledge contained
in the syllabi. During KF, SMEs were kept isolated from developers, evaluators, and
other SMEs to ensure the validity of the evaluation process. In case assistance was
necessary, SMEs could ask for support via a chat mechanism.

The overall goal of this evaluation was i) to measure the coverage provided by the
solutions proposed to the issues detected in the analysis and design phases and ii) to
provide feedback to the development team for tuning and improving the system.
Therefore, the scope of this evaluation goes beyond usability aspects in a formative
sense, and provides an empirical assessment of the system’s coverage and performance
in a setting that is representative in terms of the profile of the recruited SMEs and their
assigned tasks. In the particular case of process knowledge, since our approach is
focused on enabling SMEs to model executable processes at the knowledge level
without intervention of KEs, the evaluation paid special attention to direct feedback
from SMEs on process knowledge formulation.

In addition to the knowledge bases produced by SMEs, we collected their impressions
on the process component according to two main dimensions: usability and utility. The
process knowledge bases produced by SMEs during evaluation were checked using the
Test & Debug perspective through test sets developed by SMEs themselves.

6.1. Evaluation Syllabus

Selecting a syllabus helps specifying any pre-requisite knowledge that must be present
in the system before the SME starts to do knowledge formulation. With this syllabus,
we aimed to pick material that would definitely pose a challenge for our knowledge
formulation systems. Next we describe and justify the selected syllabi for the three
target domains.

Chemistry

The following syllabus was selected from the Chemistry reference textbook (Brown et
al., 2002), which is representative of the kind of material found in a Chemistry textbook
and gives a natural baseline for comparison to the knowledge formation undertaken by
KEs.

• Sections 3 3.1-3.2, Pages 75-83 Stoichiometry: Calculations with Chemical
Formulae.

• Sections 4 4.1-4.4, pages 113-133, Aqueous Reactions and Solution
Stoichiometry .

• Sections 16.1-16.11, pages 613-653 Chemical Equilibrium.

13 The evaluation team was led by Ergosign GmbH (http://www.ergosign.de).

Additionally, some background knowledge needed to be pump-primed to enable SMEs
to formulate the selected syllabus. Sections 3, 4, and 16 require associating chemical
names with formulae. Section 16 also required knowing the definition of moles,
molarity, equilibrium, and buffer solutions.

Biology

From the reference textbook (Campbell and Reece, 2001), we selected the following
syllabus, focused on two main aspects of Biology: the cell and DNA structure and their
internal processes. These two main content areas form the basis of much of modern
biology and physiology, and are representative of the type of content found throughout
the biology domain. From the representation point of view, these subjects deal with
central problems in representation of objects and processes. Therefore, they make a
good subject matter for evaluation.

• Cell structure and cell processes, including mitosis and meiosis. Pages 112-124,
217-223, and 239-245.

• DNA structure and DNA structure processes, including DNA replication, repair,
transcription, and translation. Pages 293-301, 304-311, and 317-319.

Since Biology is a priori one of the most relevant domains for the process knowledge
type, before the actual evaluation we had an additional senior Biology SME to analyse
the syllabus selected for this particular domain. This biologist used the process
metamodel as a framework to formulate process knowledge and produce a Biology
ontology on the issues covered by the syllabus. She used the lexicon provided in the
metamodel to describe process entities occurring in Biology and, especially, the
methods contained in the PSM library as a flexible and reusable mechanism to acquire
processes during knowledge formulation.

Physics

The following parts of (Serway and Faughn, 2003) were selected for the Physics
domain. This syllabus contains basic knowledge of Kinematics and Dynamics, where,
as anticipated by the domain analysis, the expected amount of process knowledge is
very scarce.

• Chapter 2: Kinematics - Describing motion in one dimension.

• Chapter 3: Kinematics in two dimensions, except sections 3.1 to 3.4.

• Chapter 4: Dynamics - Newton’s laws of motion.

6.2. Distribution of the Formulated Processes across

the Evaluation Syllabus

Table 2 shows the distribution of the processes formulated by the SMEs across the
different target domains. The overall number of resulting processes (eleven) is relatively
small. The table also shows how processes are usually densely populated with a large
number of entities from other knowledge types, like, e.g., rules, for reasoning
throughout process steps. The considerably high number of rules used in each process
indicates that SMEs succeeded in connecting rule and process knowledge during
evaluation.

 # of processes
modeled

of rules
imported per

process

total number of
rules for all the

processes

average number
of rules per

process

SME1 (Physics) 0 0 0 0

SME2 (Biology) 2 26 / 2 28 9.33

SME3 (Biology) 6 11 / 7 / 0 / 4 / 8 / 3 33 5.5

SME4 (Chemistry) 0 0 0 0

SME5 (Chemistry) 3 3 / 1 / 1 5 1.66

SME6 (Physics) 0 0 0 0

Total 11 - 66 6

Table 2: Summary of the process knowledge type

Preliminary analyses on Physics anticipated that this domain had a small amount of
process knowledge. This has been confirmed by SMEs during evaluation, under the
light of the selected syllabus. On the contrary, Biology has the largest knowledge bases
and the topics selected for Biology contain large amounts of factual and rule-based
knowledge, which is generally true for the domain of Biology.

As expected, we find in Biology the largest population of processes amongst the three
domains. SME2 formulated two processes while SME3 formulated six different
processes. Both SMEs created tests for their processes with the test & debug facilities in
order to validate them and to enable reasoning with them in the context of their
respective knowledge bases. Most of the PSMs used during the formulation tasks of
these Biology processes belong to the categories Join and Split. Modify methods were
also used, but to a lower extent.

Finally, Chemistry is at an intermediate point between Physics and Biology in terms of
the size of the overall knowledge bases and the number of processes formulated.
Chemistry SMEs (specifically SME5) built and validated three different processes using
methods from the Split and Join categories.

6.3. Utilization of the PSM Library and the Process

Metamodel

If we describe the different processes modeled by SMEs in terms of the main categories
of the process metamodel used upon their formulation (fourth to seventh columns of
Table 3), we can draw further conclusions from a different point of view. Process
resources and relations are by large the main categories used by our SMEs, with 43%
and 42% of the overall process entities, respectively. On the other hand, actions are the
third more used category, with 11%. Finally, the use of forks has been merely
testimonial (0, 25%).

 Processes PSMs # of
resources # of relations # of forks # of

actions

Total
number

of
process
entities

SME2
(Biology)

Transition from
G2 phase to

mitosis

-
12 21 1 3 37

Mitosis - 34 37 0 5 76

SME3
(Biology)

Mitosis decompose
& combine

29 11 0 5 45

Carbohydrate
metabolism

consume,
transform 5 6 0 2 13

Cellular
respiration

decompose,
consume

5 7 0 2 14

Detoxification transform 4 4 0 1 9

Photosynthesis form by
combination 6 6 0 1 13

Ribosome protein
synthesis

situate &
combine 2 2 0 1 5

SME5
(Chemistry)

Complete ionic
equation

form by
combination 7 7 0 1 15

Molecular
equation

decompose
& combine

4 4 0 1 9

Net ionic equation form by
combination 3 3 0 1 7

Total 111 108 1 23 243

Table 3: Occurrences of process metamodel entities

The utilization of the methods contained in the PSM library available in the process
editor by SMEs responds to the following pattern. The degree of utilization of the PSMs
by SMEs is inversely proportional to the size and complexity of the processes to be
modeled. In general, when dealing with particularly complex processes, SMEs need
several attempts in order to recognize the advantages of using the available PSMs as
knowledge templates that can simplify the process formulation task. On the contrary,
SMEs clearly identify relevant PSMs when the processes to be modeled are simpler,
probably because it is easier for them to establish a correlation between the process and
one single suitable PSM.

This observation is due to two main factors: i) more effort should have been allocated
during the training phase to make SMEs more familiar with the PSM library, enabling
them to recognize PSMs as a commodity for process formulation and ii) usually SMEs
discard PSMs that are suitable for their modeling purposes but need some editing or
aggregation work to adapt them to their particular case. That is, though SMEs perceive
the value, in terms of reusability and domain independence, of the methods contained in
the PSM library, they have problems in perceiving their flexibility.

The third column of Table 3 summarizes the methods from the PSM library that were
actually used by SMEs. It is interesting that SME2 did not use any of the available
PSMs in order to model either of her two processes, especially if we consider that the
overall quality of this SME’s knowledge base was substantially lower than the other
two. The measure of the quality of each knowledge base was provided by the execution

of the test sets created by each SME, using the test & debug perspective for the process
component. The process knowledge base of SME2 did not successfully pass the
corresponding tests. This shows evidence that the generalized use of PSMs for process
formulation has provided SME3 and SME5 with means that support building well-
formed processes, eventually contributing to higher quality knowledge bases.

Figure 19 shows the distribution of the methods of the PSM library across the modeled
processes. This figure, corresponding to the portion of the syllabus addressed by SMEs
during evaluation, slightly diverges from Figure 15 (distribution of the process syllabus
across the methods of the PSM library), which a priori showed a more relevant role of
PSM transform, followed by replicate, and decompose. The characteristics of the subset
of the syllabus used for evaluation and the design choices made by SMEs have shifted
such relevance towards PSMs like form by combination. Additionally, the distribution
of the PSMs used is almost uniform across three of the main process categories (Join,
Split and Modify).

Figure 19: Overall distribution of the PSM library

6.4. Usage Experience of the SMEs with the Process

Editor

In general, SMEs only needed some training to get used to the basics of process
modeling. However, at the beginning of the evaluation, SMEs did not clearly
distinguish the boundaries between the rule and process editors, i.e., what diagram type
can be used to represent what kind of knowledge. Additionally, some SMEs tried to use
the process editor to assert concepts, instances, or rules, into the corresponding
ontology. Table 4 summarizes the issues raised by SMEs during the evaluation,
showing the number of questions about the behavior of the different components of
DarkMatter.

 Knowledge
Navigator

Rule
Editor Mathematica Processes Test &

Debug Explanation WYSIWYM Help

SME 1 7 13 21 0 6 3 3 0

SME 6 0 0 7 0 2 1 0 0

SME 2 0 3 0 4 7 7 2 0

SME 3 1 12 1 13 5 0 6 0

SME 4 0 10 1 2 6 0 1 0

SME 5 0 1 1 0 2 0 1 0

Total 8 39 31 19 28 11 13 0
Table 4: Issues raised by SMEs about processes in the different domains

After evaluation, we polled SMEs for direct feedback on how much the system helped
them to achieve their goals. This is a relevant indicator in a system aimed at knowledge-
level process formulation and reasoning like this, which intends to support SMEs to
achieve these tasks without intervention of KEs. In this direction, two dimensions have
been explored (usability and utility) whose results are detailed next.

Usability

Since DarkMatter components are perceived as a whole, integrated system by the users,
usability was measured in an integrated manner for the whole system. In this regard, the
System Usability Scale (Brooke, 1996) was adopted and the following questions were
posed to SMEs:

• I would recommend DarkMatter to be used by others.

• I found DarkMatter unnecessarily complex.

• I think DarkMatter was easy to use.

• I think that I would need the support of a technical person to be able to use

DarkMatter.

• I found that the various functions in DarkMatter were well integrated.

• I think there was too much inconsistency within DarkMatter.

• I would expect that most people would learn to use DarkMatter very quickly.

• I found DarkMatter very cumbersome to use.

• I felt very confident using DarkMatter.

• I had to learn a lot of things before I could get going with the DarkMatter.

SMEs were asked to answer each question with a qualitative value ranging from
strongly agree to strongly disagree, which were then transformed into a quantitative
value between 1 and 100. Generally, scores around 65 (60-69) reflect average or
acceptable satisfaction. Scores below 60 suggest poor satisfaction, and those over 70
suggest good satisfaction.

Table 5 shows the actual usability score as rated by the different SMEs for DarkMatter,
including the process component. The average score is 64.5, reflecting an intermediate
satisfaction level, acceptable but still improvable. The fact that SMEs using the process
component (SME2, SME3, and SME5) provided low scores suggests that the process
component needs improvement in terms of usability. This is comprehensible since the
process knowledge type is considerably more complex than the remaining knowledge

types, and so is the tool itself. However, more intensive training could have probably
leveraged this measure.

SME1 (Physics) 62

SME2 (Biology) 50

SME3 (Biology) 62.5

SME4 (Chemistry) 87.5

SME5 (Chemistry) 50

SME6 (Physics) 75

Table 5: SUS scores per SME and domain
Utility

In addition to the previous questionnaire, during the final interviews, SMEs were asked
about their impression concerning the utility of the different components for achieving
the specified goals by indicating their compliance to the following statement: “I found
this component useful in helping me to achieve my goals”. SMEs rated their compliance
on a scale from 0 - 4 (strongly disagree - strongly agree). In order to elicit more
detailed information about their attitude to the tool under consideration, the interviewee
was also asked about potential improvements that would increase the utility of the
component.

Figure 20 shows the utility ratings on the process component. Since the process
component was not used for Physics, ratings concentrate on Biology and Chemistry.
Chemistry SMEs (SME4 and SME5) did not perceive process as very useful. This can
be due to more training being needed in this domain, especially for using the test &

debug component in order to validate the formulated processes and the resulting overall
knowledge bases. On the contrary, in Biology, where the process knowledge type is
more evident (and the concentration of process knowledge for the selected syllabus is
more representative of the domain than in the Chemistry syllabus), SMEs rated
processes as very useful.

Personal interviews with SMEs, especially SME3, who used the process component
more intensively, show a high degree of satisfaction with respect to the tool. Specific
comments from SMEs are as follows:

• SME1 (Physics): “I didn’t use it... Had no reason to use it”.

• SME6 (Physics): “I didn’t use it at all”.

• SME2 (Biology): “It makes the representation of biological models easier”.

• SME3 (Biology): “The modeling of processes is very useful. It must be possible

to ask questions about the various states of a process. And asking questions with

T&D worked okay”.

• SME4 (Chemistry): “In Chemistry, possible to set by without it; only in one

case necessary: dissolution; with a better reliability, it would be useful”.

• SME5 (Chemistry): “I had some trouble coming along, how to use processes

for Chemistry... maybe it isn’t that important for Chemistry”.

Figure 20: SME-rated utility of processes

7. EVALUATION: SUMMING UP

In the previous section we have described the evaluation of our approach towards the
acquisition of process knowledge by SMEs in the context of Project Halo. Now, we
connect and contrast the results of the evaluation against each of the expected outcomes
presented in the introduction of this article. Since the evaluation was constrained to six
SMEs, these results must be analyzed from a qualitative rather than a statistical point of
view, as follows:

1. Higher quality and less costly knowledge bases of processes, by empowering
SMEs and taking KEs out of the process knowledge acquisition loop.

Providing SMEs with the tools and methods needed to enable them to formulate
knowledge can significantly reduce costs of acquiring complex knowledge types like
processes by taking KEs out of the KA loop. In order to accomplish this vision, it is
necessary to abstract SMEs from the difficulties of the underlying representation
languages, simplifying their modeling tasks for the process knowledge type.

In the evaluation, the PSM library clearly helped SMEs in their modeling tasks.
Furthermore, the SMEs using the methods from the PSM library to acquire process
knowledge (SME3 and SME5) produced more and significantly better quality process
models than those who did not use them (SME2). The quality of the resulting
knowledge bases was determined by the tests created by the SMEs themselves in order
to check that their process models actually behaved as expected. 82% of the process
models (in general, those whose authors used the methods of the PSM library in a
regular basis) were correct. In all cases, the process models were formulated by SMEs
without intervention of KEs, who only required initial training and sporadic support in
the utilization of the tools.

Therefore, it is possible for SMEs to acquire and formalize process knowledge without
the intervention of KEs through the utilization of the methods and tools provided by our
approach. As a consequence, this reduces the costs of generating the resulting
knowledge bases. Additionally, the evaluation indicates, but does not provide empirical
proof, that the resulting SME-authored knowledge bases are at least of such a good

quality as those produced by KEs since i) they have been checked by test batteries
produced by SMEs themselves and ii) being produced by the SMEs, they reflect directly
their expertise of the domain.

2. Reduced complexity of acquiring process knowledge by SMEs through the

use of PSMs as domain-independent, reusable abstractions of domain-specific
processes.

The fact that the rate of correct process models produced by the SMEs who made a
more intensive use of the PSM library during knowledge acquisition was by far higher
than those who did not use the PSM library indicates that PSMs succeeded in providing
SMEs with the required level of abstraction to formulate process knowledge. The
utilization of PSMs as domain-independent process templates contributed to reduce the
complexity of the modeling task by SMEs, alleviating the blank page syndrome and
providing SMEs with modeling guidelines about how to build process models and the
type of knowledge required at each process step. Additionally, the approach was
welcomed by the SMEs, as shown by their answers to our usability and utility studies.

3. Keeping acquisition of process knowledge at the knowledge level through an
underlying process knowledge representation formalism transparent from SMEs.

The process component provides SMEs with means to model processes without
worrying about the encoding of such process models in a particular language, thus
keeping acquisition of processes at the knowledge level. The synthesis of executable
code for actual reasoning with the formulated process models is completely transparent
from SMEs, who can therefore focus on modeling. As a consequence, SMEs interact
with the system in terms of their own domains, avoiding the knowledge acquisition
bottleneck.

4. Flexible and reusable mechanisms for acquisition and reasoning with

process knowledge by SMEs, maximizing the application of the approach
across several domains with little effort.

Both the process metamodel and the PSM library have been used in the context of two
of the three target domains (Chemistry and Biology), showing evidence of their
reusability in this context. As to the graphical process modeling and reasoning
environment, it is domain-independent and can be directly applied in any domain.
Reusing the whole approach in other domains would however require updating the PSM
library as necessary for such domains. The positive experience with the support
currently provided for this task encourages the application of our approach to other
domains, such as Business or Ecology.

8. DISCUSSION AND FUTURE WORK

Building executable systems from conceptual descriptions is not something new. Some
of the most important issues discussed in this article have been already addressed in the
literature, including modeling at the knowledge-level, allowing developers to build
knowledge systems focusing on logical rather than operational aspects, and the
development of structured libraries of reusable PSMs. However, the main difference
between these approaches and the work described herein concerns the target users.

While earlier systems aimed to support KEs in building knowledge intensive
applications, we focus on creating tools that allow SMEs themselves, without the
intervention of KEs, to author scientific knowledge of a particular type: processes.

Process knowledge is one of the most widely used and complex types of knowledge,
even beyond the target domains treated herein. Domains like business, healthcare,
climate prediction and ecology in general are rich in process knowledge. In order to
enable SMEs to model and reason with processes, tools must abstract SMEs from the
formal representation and enactment of process-oriented reasoning, based on knowledge
entities that can be reused across different domains with a reduced cost. Unfortunately,
it is not sufficient to have a process metamodel describing individual process entities,
e.g., actions, resources, etc, which must be connected like Lego blocks in order to build
potentially large and complex processes, since SMEs lack the required knowledge about
how to combine those pieces.

Thus, SMEs need guidance that allows them to build well-formed, consistent process
models. Ideally, this guidance could be provided by a process ontology that described
the most frequent process types and could be reused across different domains. However,
complex, domain-specific processes are difficult to generalize into abstract and reusable
process classes, and therefore any process ontology is very unlikely to provide enough
coverage to support each of the processes of one or several domains. On the other hand,
processes can be decomposed into subprocesses, producing atomic processes that, quite
on the contrary, are indeed amenable to be abstracted into (primitive) PSMs as high-
level but still easy to manipulate building blocks. This provides SMEs with the required
modeling guidance, enabling SMEs to build complex processes by aggregating such
domain-independent PSMs as process knowledge templates and instantiating them in
their own domains.

Final interviews with SMEs showed that the process component could be improved in
terms of usability and also that the training received was not enough in order to
completely master its functionalities. Nevertheless, the combined use of the process
metamodel and the PSM library allowed SMEs to model all the process knowledge
occurrences identified in the evaluation syllabus. In any case, though the use of PSMs
provides SMEs with extended modeling capabilities for representing processes, it is still
hard for SMEs to realize how to combine these process knowledge templates in order to
build complex processes. This problem, derived from the bottom-up nature of our
approach, could be addressed by means of an ontology that describes the multiple
combination patterns of the different PSMs, taking into account the context provided by
the domain of the process being modeled.

Additionally, the evaluation showed that increasing the expressiveness of the process
metamodel will be necessary in order to allow representing more complex process
constructions from different domains and enabling more sophisticated reasoning that
supports answering questions addressing extensive flow characteristics of process
knowledge. For example, scientists designing a complex biotechnology experiment will
need to reason on the different stages comprised in the process, e.g., regarding certain
process steps as optional or context-specific, that need to be expressed by our
metamodel. This will help SMEs to understand the consequences of adding a new stage
to their processes or what process steps would be necessary and how they should be
arranged in order to achieve a certain outcome of the overall process.

Though large part of the PSMs from the PSM library are abstract enough to be reused in
domains different from the scientific ones discussed here, a detailed analysis of those
domains would probably reveal new abstract processes that would lead to the inclusion
of new methods in the PSM library. Furthermore, the same process abstractions can be
named differently in different domains. For an appropriate reuse in other domains,
SMEs need to be provided with the required lexical resources. An interesting line of
work that can simplify the modeling task for SMEs is the use of NLP techniques for the
detection of process instances in textual sources and the identification, from amidst the
PSM library, of the PSMs suitable for modeling them. We have preliminarily explored
this path but, since processes can be described in such various ways using free text,
even implicitly, as, e.g., in textbooks, their identification is extremely complicated
beyond detection of the most frequently used verbs in processes and the process
metamodel entities and their synonyms.

In summary, we have shown that it is possible to engage SMEs in formulating complex
knowledge like processes. However, the solutions that we have proposed live on the
ground of the Semantic Web in the Small. We have adopted relevant Semantic Web
principles like ontologies and PSMs and applied them to the formulation of processes
by SMEs in a well-defined scenario, with a limited number of SMEs, and well-known,
complete, and reliable sources of information. The application of the methods presented
in this article to the open and unregulated scenario proposed by the WWW anticipate
exciting research challenges related with the acquisition, sharing, and reuse of process
knowledge by communities of online users. Such challenges include technical issues,
such as nonmonotonicity, dealing with possible inconsistencies of distributed but
interacting knowledge bases, as well as trust issues, performance, and scalability.

ACKNOWLEDGMENTS

This work has been funded by Vulcan Inc. as part of the DarkMatter project led by
Ontoprise within the Halo program (www.projecthalo.com). This work is also partially
supported by the IST-2005-027595 EU project NeOn. We also acknowledge André
Valente, for his contribution to the analysis phase of this work, and the ISI team.

REFERENCES

Benjamins, V.R.: Problem Solving Methods for Diagnosis And Their Role in Knowledge
Acquisition, International Journal of Expert Systems: Research and Application, 8(2):93—
120, 1995.

Bock, C. and Grüninger, M. PSL: A Semantic Domain for Flow Models. Software and Systems
Modeling Journal, vol. 4, pages 209--231, 2005.

Brooke, J. (1996) SUS: a "quick and dirty" usability scale. In P. W. Jordan, B. Thomas, B. A.
Weerdmeester & A. L. McClelland (eds.) Usability Evaluation in Industry. London: Taylor
and Francis.

Brown, T., Lemay, H., Bursten, B., Burdge, J. “Chemistry: The Central Science”, Prentice Hall,
9th edition, 2002. ISBN: 0130669970.

Campbell, N., Reece, J. “Biology”, Pearson Higher Education, 6th edition, 2001. ISBN:
0805366245.

Crubézy, M. and Musen, M.A. (2003) Ontologies in Support of Problem Solving. In Staab, S.
and Studer, R., editor, Handbook on Ontologies in Information Systems, International
Handbooks on Information Systems. Springer.

Feigenbaum, E. (1977). The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering. Proceedings of the Fifth International Joint Conference on

Artificial Intelligence, Cambridge, MA.
Fensel, D., Benjamins, V.R., Motta, E. and Wielinga, B.J. UPML: A Framework for Knowledge

System Reuse. IJCAI 1999.
Fensel, D., Angele, J., Studer, R. The Knowledge Acquisition and Representation Language

KARL. In IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 4, 1998.
Fernández-López M., Gómez-Pérez A., Juristo N. (1997) METHONTOLOGY: From

Ontological Art Towards Ontological Engineering. Spring Symposium on Ontological
Engineering of AAAI. Stanford University, California, pp 33–40.

Friedland, N., Allen, P., Matthews, G., Witbrock, M., Baxter, D., Curtis, J., Shepard, B.,
Miraglia, P., Angele, J., Staab, S., Moench, E., Oppermann, H., Wenke, D., Israel, D.,
Chaudhri, V., Porter, B., Barker, K., Fan, J., Chaw, S., Yeh, P., Tecuci, D., & Clark, P.
(2004). Project Halo: Towards a digital Aristotle. AI Magazine, 25(4), 29−48.

Gómez-Pérez, J.M., Erdmann, M., Greaves, M. Applying Problem Solving Methods for Process

Knowledge Acquisition, Representation, and Reasoning. 4th International Conference on
Knowledge Capture (KCAP), 2007, Whistler, Canada.

Gómez-Pérez, J.M. Acquisition and Understanding of Process Knowledge Using Problem

Solving Methods. PhD thesis, Universidad Politécnica de Madrid, Madrid, 2009.
Kifer, M., Lausen, G., Wu, J. Logical foundations of object-oriented and frame-based

languages. Journal of the ACM, 42, 1995.
Marcus, S., Stout, J., McDermott, J. VT: An Expert Elevator Designer that Uses Knowledge-

Directed Backtracking. AI Magazine, 9(1):95-112, 1998.
McDermott, J. Preliminary steps towards a taxonomy of problem-solving methods. In Marcus,

S., editor, Automating Knowledge Acquisition for Expert Systems, pages 225-255. Boston,
Kluwer.

Morley, D. and Myers, K. The SPARK Agent Framework, in Proc. of the Third Int. Joint Conf.
on Autonomous Agents and Multi Agent Systems (AAMAS-04), New York. NY, pp. 712-
719, July 2004.

Motta, E. (1999). Reusable Components for Knowledge Modeling. IOS Press, Amsterdam.
November 1999.

Motta, E. (1998). An Overview of the OCML Modeling Language, The 8th Workshop on
Knowledge Engineering Methods and Languages (KMEL’ 98).

Newell, A. “The Knowledge Level”. Artificial Intelligence, 18(1):87-127, 1982.
Ohno-Machado, L., Gennari, J., Murphy, S., Jain, N., Tu, S., Oliver, D., Pattison-Gordon, E.

“The GuideLine Interchange Format: A Model for Representing Guidelines”, Journal of the

American Medical Informatics Association, 5(4):357-372, 1998.
Preece, J., Rogers, Y., Sharp, H. Interaction Design: Beyond Human-Computer Interaction.

John Wiley and Sons, New York, 2002.
Punch, W. (1989). A diagnosis system using a task integrated problem solver architecture

(TIPS), including causal reasoning. PhD Thesis, Ohio State University.
Pylyshyn, Z.W. The Robot’s Dilemma: The Frame Problem in Artificial Intelligence. Norwood,

1987.
Schreiber, A.Th., Akkermans, J., Anjewierden, A., De Hoog, R., Shadbolt, N., Van De Velde,

W., and Wielinga, B.J. Knowledge Engineering and Management: The CommonKADS

Methodology (2000). MIT Press. ISBN 0-262-19300-0.
Serway, R., Faughn, J. “College Physics”, Brooks Cole, 6th edition, 2003. ISBN: 0534492592.
Uschold, M., King, M., Morales, S., Zorgios, Y. “The enterprise ontology”, Knowledge

Engineering Review, 13(1):31—89, 1998.
Valente, A. and Team Omniscience. Project Halo Analysis Report, May 2004.
Wielinga, B.J., Schreiber, A. T., Breuker, J. A. “KADS: A modeling approach to knowledge

engineering” Knowledge Acquisiton, 4(1):5-53. Special issue ‘The KADS approach to
knowledge engineering’. Reprinted in: Buchanan, B., Wilkins, D. editors (1992), Readings
in Knowledge Acquisition and Learning, San Mateo, California, Morgan Kauffmann, pp. 92-
116.

APPENDIX A: A PSM Library for Process

Knowledge
This appendix contains an extensive description of the PSMs contained in our PSM
library. The graphic representation chosen to describe the methods is the PSM
knowledge flow view. This perspective supports SMEs during knowledge acquisition,
bridging the gap between the particular, domain-specific process being formulated by
SMEs and the generic, domain-independent PSMs, whose roles are grounded into the
corresponding domain for that particular process.

For each particular PSM, occurrences of the higher-level definition of resources (roles),
decisions, and actions, as in Figure 4, Figure 5, and Figure 6, respectively, are extended
with more specific terms from our process metamodel, which refine them. Additionally,
the description of each PSM is accompanied by a table that summarizes its properties14.

Category Join

Form processes

The PSM library contains two different methods which can be applied to achieve a
process of the Form type: form by combination (Figure 21) and form by aggregation
(Figure 22). The output of a combination method is a completely different element from
the input, while in the case of an aggregation the input does not lose its properties.
Method form by combination can be applied to processes like, e.g., a chemical
precipitation or an ionic binding. In Biology, this method can be applied to processes
like, e.g., fusion (a firm association between two cellular components). On the other
hand, form by aggregation can achieve processes like, e.g., chemical mixes or
biological attachment processes. In comparison to fusion, in these processes a loose and
temporally restricted association between substances occurs (e.g., an attachment of a
tRNA molecule to an mRNA codon).

name form by combination
Goal ∃ ep, cp

member(combination set, element) and
property(element, ep) and
property(combination, cp) and
ep ≠ cp

input roles combination set, combinatory
output roles combination, byproduct

14 For a more simple notation, we assume variables (representing method roles) to be universally
quantified in the goal expression. Additionally, predicates member/2, property/2, interpretation_of/3,
is_byproduct_of/2, part_of/2, interact/2, and layout/2 contribute to simplify the goal expression.

Figure 21: PSM form by combination

Name form by aggregation
Goal member(aggregation set, element) and

member(aggregation, element)
input roles aggregation set, aggregator
output roles Aggregation

Figure 22: PSM form by aggregation

Contrast processes

Process of putting together an item with well-known property/ies and another one
whose property/ies is/are totally or partially ignored, and draw a series of conclusions
from the results of such interaction. PSM compare & interpret can be applied to this
process category by dividing the original process in two subprocesses: compare and
interpret. During the first subprocesses, the reference element is compared against the
element whose properties are unknown. Then, the observations obtained are interpreted
and a conclusion, i.e., the contrast, is produced.

name compare & interpret
goal interpretation_of(pattern element, element, contrast)
subactions compare, interpret
input action Compare
output action Interpret
input roles pattern element, element
output roles Contrast

Figure 23: PSM compare & interpret

Titration, in Chemistry, is an example of a contrast process where a solution of
unknown concentration (role element in PSM compare & interpret) reacts with one of
known concentration (pattern element). The point at which stoichiometrically
equivalent quantities are brought together is known as the equivalence point of the
titration and determines the concentration of the unknown solution (contrast). Titrations
can be conducted using acid-base, precipitation, or redox reactions.

Neutralize processes

PSM neutralize specializes form by combination to describe processes whose output is
the result of combining its input in a way that the relevant properties of those element
are no longer present in the output.

name neutralize
goal member(neutralization set, element) and

property(element, ep) and
property(neutralization, cp) and
ep ∩ cp = ∅

input roles neutralization set, neutralizer
output roles neutralization, byproduct

Figure 24: PSM neutralize

An example of neutralization are chemical reactions between the neutralization set

formed by an acid (element) and a base (element) in order to produce a salt
(neutralization) and water (byproduct).

Category Split

Consume processes

Items undergoing this process do not exist anymore. Upon termination, neither any so
called product has been created, only byproducts.

name consume
goal member(consumable set, element) and

is_byproduct_of (waste, element)
input roles consumable set, consumer
output roles byproduct

Figure 25: PSM consume

Combustion is an example of consumption where the combustible (element) is burnt by
fire (consumer) to produce byproducts like CO2 and H2O (waste)

Decompose processes

PSM decompose is the reverse from form by aggregation. Processes achieved by this
PSM take an element and produce two or more other items upon termination.

name decompose
goal member(constituent set, piece) and

part_of(piece, element)
input roles element, decomposer
output roles constituent set

Figure 26: PSM decompose

Examples of decomposition processes are distillation, filtration, and photodissociation.
Other examples are hydrolysis, a chemical process where a substance is split in parts by
the addition of water molecules, and the formation of the cleavage furrow. The cleavage
furrow is a structure developing during mitosis. The middle of the dividing cell grows
inward until the two new cells are separated.

Recombine processes

PSM decompose & combine can be applied to this process category by dividing the
original process in two subprocesses: decompose and combine. During the first
subprocesses, the input is divided into its constituent elements, which are then put
together to produce te overall output. It is a specialization of PSM form by combination.

name decompose & combine
goal member(recombination set, element) and

member(constituents set, piece) and
part_of(piece, element) and
part_of(piece, combination) and
∃ ep, cp
property(element, ep) and
property(combination, cp) and
ep ≠ cp

subactions decompose, combine
input action decompose
output action combine
input roles recombination set, decomposer, combinatory
output roles combination, byproduct

Figure 27: PSM decompose & combine

Examples of application of this PSM include reformation, where cellular components
which have been destroyed (in part) during some process can afterwards be restored to
build new structures, and digestion. Digestion splits nutrients into its finest components,
which can then be used to build new cellular tissues. This PSM has also been used to
formulate the precipitation process in Figure 16.

Replicate processes

PSM replicate, achieving this category of processes, copies its input and produces an
exact replica.

name replicate
goal element = replica
input roles element
output roles element, replica

Figure 28: PSM replicate

Biology seems to be the domain where a large number of replicative processes occur,
e.g., those related to the cell cycle, DNA replication, sexual reproduction, transcription,
translation, and binary fission.

Category Modify

Transform processes

name transform
goal transformed element ≠ element
input roles element, adapter
output roles transformed element

Figure 29: PSM transform

Examples of transformation processes are cell growth (a change in size and structure of
a cell), changes in chemical structures, e.g., posttranslational modification, RNA-
processing, and metabolic reactions, synthesis processes during which some cellular
component or substance is produced, e.g., protein, DNA, RNA, membrane, or
organelles, detoxifications, when accompanied by a change in the chemical structure
and function, and energy transformations, e.g., cellular respiration and photosynthesis,
where the energy of sunlight is transformed into chemical energy.

Implement processes

PSM situate & combine can be applied to this process category by dividing the original
process in two subprocesses: situate and combine. During the first subprocess, the new
element is settled in its new environment. Then, both combine in order to produce an
evolution of the later.

name situate & combine
goal ∃ ep, cp, vp

property(element, ep) and
property(environment, vp) and
property(combination, cp) and
ep ≠ cp and
vp ≠ cp

subactions situate, combine
input action situate
output action combine
input roles element, environment, driver, combinator
output roles combination

Embryogenesis is an example of process that can be achieved by this PSM. It is the
process of cell division and cellular differentiation which leads to the development of an
embryo, occurring in both animal and plant development. Mitosis happens all through
the process, generating more and more cells, making the embryo grow. The blastocyt
grows and invades the uterus where it stays until the end of its development.

Figure 30: PSM situate & combine

Balance processes

In Nature, items put together tend to equilibrate each other’s properties. The result of
this kind of processes is an adjustment in the properties of the interacting elements until
they reach an equilibrium point where changes stop

name balance
goal member(balanced set, e1) and

member(balanced set, e2) and
¬ interact(e1, e2)

input roles unbalanced set, stabilizer
output roles balanced set

Figure 31: PSM balance

Examples of balance processes achievable by this PSM are osmosis and the
autoionization of water.

Category Locate

Situate processes

This process category and its associated PSM refer to spatial notions. Though expressed
in the Physics domain, using the MATH knowledge type, other domains, fundamentally
Biology, express movement basically in terms of the PCS knowledge type, describing
the cause and the agents inducing motions and their effects on the matter.

name Situate
goal original situation ≠ final situation and

property(element, ep) and
property(situated element, sp) and
ep = sp

input roles element, driver, original situation
output roles situated element, final situation

Figure 32: PSM situate

Examples of processes achievable by PSM situate are cell export/import, where
substances are transported in and out of the cell, and cell movement, where it is the
whole cell that moves from one location to another.

Oscillate processes

PSM oscillate specializes situate. Figure 33 adds a visual notion of control flow to the
extended data flow view. Oscillation is periodic and needs specifying a loop condition
in that regard by means of the specific construct of the process metamodel periodic

action.
name oscillate
goal original situation = periodic situation

property(element, ep) and
property(situated element, sp) and
ep = sp

input roles element, driver, original situation
output roles situated element, periodic situation

6
Figure 33: PSM oscillate

Wave propagation, particle oscillation, vibration and applications like echolocation in
the Physics domain can be classified into this category and represented using PSM
oscillate.

Rearrange processes

In general, it appeals to processes where elements are recombined but their internal
structure remains. It can also be regarded as a specialization of transformation
processes.

name rearrange
goal layout(rearrangement set, initial_layout) and

layout (rearranged set, final_layout) and
initial_layout ≠ final_layout

input roles rearrangement set, driver
output roles rearranged set

Figure 34: PSM rearrange

Examples of rearrangement include changes in conformation, i.e., processes leading not
to a change of the chemical structure, but to a change in the (3-dimensional)
conformation of a substance, e.g., a change in protein conformation, chromosome
condensation, and contraction.

Release processes

In general, an agent acting upon a store for a set of items gives them out upon fulfilment
of a precondition. PSM accumulate & consume can be applied to this process category
by dividing the original process in two subprocesses: accumulate and consume. During
the first subprocesses, elements of a given type are accumulated. Then, upon a certain

condition, the accumulated elements are consumed. Examples of this process category
include hormone secretion after accumulation in the corresponding gonads.

name accumulate & consume
goal member(storage, element) and

is_byproduct_of (waste, element)
subactions accumulate, consume
input action accumulate
output action consume
input roles element, storage, accumulator, consumer
output roles waste

Figure 35: PSM accumulate & consume

