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ABSTRACT 
The development of knowledge-based systems is usually approached through the 
combined skills of software and knowledge engineers (SEs and KEs, respectively) and 
of subject matter experts (SMEs). One of the most critical steps in this task aims at 
transferring knowledge from SMEs’ expertise to formal, machine-readable 
representations, which allow systems to reason with such knowledge. However, this 
process is costly and error prone. Alleviating such knowledge acquisition bottleneck 
requires enabling SMEs with the means to produce the target knowledge 
representations, minimizing the intervention of KEs. This is especially difficult in the 
case of complex knowledge types like processes. The analysis of scientific domains like 
Biology, Chemistry, and Physics uncovers: i) that process knowledge is the single most 
frequent type of knowledge occurring in such domains and ii) specific solutions need to 
be devised in order to allow SMEs to represent it in a computational form. We present a 
framework and computer system for the acquisition and representation of process 
knowledge in scientific domains by SMEs. We propose methods and techniques to 
enable SMEs to acquire process knowledge from the domains, to formally represent it, 
and to reason about it. We have developed an abstract process metamodel and a library 
of Problem Solving Methods (PSMs), which support these tasks, respectively providing 
the terminology for SME-tailored process diagrams and an abstract formalization of the 
strategies needed for reasoning about processes. We have implemented this approach as 
part of the DarkMatter system and formally evaluated it in the context of the 
intermediate evaluation of Project Halo, an initiative aiming at the creation of question 
answering systems by SMEs.



 
 

 

1. INTRODUCTION 

Building knowledge-based systems is an activity that has been traditionally carried out 
by a combination of software and knowledge engineers and of subject matter experts 
(SMEs), also known as domain experts. Software engineers (SEs) are focused on 
architectural and user interface issues related to the development of software. 
Knowledge engineers (KEs) are focused on knowledge acquisition and representation 
tasks, with the aim of building the required knowledge bases. For these tasks, they 
normally work in collaboration with SMEs, who act as repositories of domain 
knowledge to a large extent. The combination of KEs and SMEs is feasible for a 
number of domains. However, it has two main drawbacks, first characterized as the 
knowledge acquisition bottleneck by Feigenbaum in 1977: i) it is costly and ii) it can be 
error prone, especially in complex domains.  
 
A large amount of work in knowledge-based systems in the past three decades has 
concentrated on providing frameworks and tools that support the collaboration of KEs 
and SMEs with the goal of alleviating the knowledge acquisition bottleneck. Despite 
such work, existing knowledge acquisition tools are still not effective and intuitive 
enough to allow SMEs to capture the knowledge from a domain by themselves.  
 
Among the different types of knowledge that can be used in knowledge-based systems, 
in our work we focus on the particular case of process knowledge. Process knowledge is 
one of the most widely used but also complex types of knowledge across domains, 
posing important challenges for knowledge acquisition. A process can be considered as 
a special concept which encapsulates such things as preconditions, results, contents, 
actors, or causes and can be defined as “a naturally occurring or designed sequence of 
changes of properties of a system or object”.1 For example, consider a complex 
chemical reaction comprising several steps, with different inputs and outputs, where 
reasoning about what would happen at a certain stage if a previous one was suppressed 
is required. Processes also relate to the sequence of operations and involved events, 
taking up time, space, expertise or other resources, which lead to the production of some 
outcome.  
 
Our motivation to focus on process knowledge stems from the fact that current 
approaches to knowledge representation do not suffice at representing this kind of 
information. Several approaches have been proposed from different areas and 
perspectives, including the following: i) knowledge acquisition and representation 
languages, e.g., OWL2, OCML (Motta, 1998), F-Logic (Kifer et al., 1995), and KARL 
(Fensel et al., 1998); ii) process-specific representation and reasoning languages, e.g., 
PSL (Bock and Grüninger, 2005) and SPARK-L (Morley and Myers, 2004); iii) 
semantic web service ontologies, e.g., WSMO3 and OWL-S4; and iv) process 
                                                 
1 http://en.wikipedia.org/wiki/Glossary_of_systems_theory 

2 http://www.w3.org/TR/owl-features 

3 http://www.wsmo.org 

4 http://www.w3.org/Submission/OWL-S 



 
 

 

specification and execution languages, e.g., BPEL5. However, while expressive in terms 
of workflow constructions and reasoning capabilities, such approaches either suffer 
from high complexity or low abstraction capabilities that hinder their use, especially by 
SMEs. Thus, while fundamental for the construction of knowledge-based and workflow 
systems, further solutions are required that can be used to address the problem for the 
process knowledge case. 
 
Furthermore, we aim at enabling SMEs themselves to model and reason with process 
knowledge without intervention of KEs. In this context, not only is it necessary to deal 
with the intricacy of process knowledge but also with the lack of knowledge 
engineering skills by SMEs. Given all this complexity, the mechanisms required for 
acquiring and reasoning with process knowledge must be flexible and reusable, 
enabling their exploitation across several scientific and non-scientific domains (ecology, 
engineering, business, etc.) with as little effort as possible.  
 
Thus, our main objective is to produce the means required to enable SMEs to acquire, 
formally represent, and reason about processes without the intervention of KEs. In order 
to describe our work towards achieving such objective, this article is structured around 
three main conceptual blocks: i) the creation of knowledge artifacts that support the 
acquisition of process knowledge, ii) the development of usable tools allowing SMEs to 
exploit such artifacts, and iii) the formal evaluation of the whole approach with real 
SMEs from scientific domains. The accomplishment of the tasks comprised by these 
blocks has resulted in the following models, methods and tools, which will be presented 
in the article: 
 

1. A process metamodel, which provides the terminology necessary to express 
process entities in scientific domains and the relations between them. 

2. A library of Problem Solving Methods (McDermott, 1988), which provides 
high-level, reusable abstractions for process representation, and the method used 

for its development, which facilitates filtering and producing such abstractions 
from amongst all the other knowledge types in the available documental sources. 

3. A graphical process modeling and reasoning environment, which applies the 
process metamodel and the PSM library in order to enable the creation and 
editing of user-tailored process diagrams, without intervention of KEs.  

4. A method for the automatic synthesis of executable process models from SME-

authored process diagrams, supported by an underlying representation and 
reasoning formalism.  

 
Problem Solving Methods (PSMs) are central to this work. They were conceived as 
domain-independent, reusable knowledge strategies that can be applied in different 
application domains to solve conceptually similar problems in terms of the goals to be 
achieved and the type of knowledge required (Fensel and Benjamins, 1998). PSMs have 
been traditionally used in knowledge engineering in three main ways: i) for knowledge 
acquisition, as guidelines to acquire knowledge that allows solving problems, ii) for 
reasoning, and iii) analytically, for describing the main rationale behind a reasoning 
process. In this work, we report on the first use of PSMs for the specific case of 
acquiring process knowledge.  
                                                 
5 http://www.oasis-open.org/committees/wsbpel 



 
 

 

 
Through the application of these models, methods, and tools to the problem of acquiring 
process knowledge by SMEs, we pursue four main outcomes, which can be 
preliminarily introduced here as follows: 

1. Higher quality and less costly process knowledge bases, through empowering 
SMEs and taking KEs out of the process knowledge acquisition loop. 

2. Reduced complexity of acquiring process knowledge by SMEs through the use 
of PSMs as domain-independent, reusable abstractions of domain-specific 
processes. 

3. Keeping acquisition of process knowledge at the knowledge level (Newell, 
1982), through an underlying process knowledge representation formalism 
transparent to SMEs. 

4. Flexible and reusable mechanisms for acquisition and reasoning with process 
knowledge by SMEs, maximizing the application of the approach across several 
domains with little effort. 

 
The remainder of the article is structured as follows. Sections 2 to 4 focus on the first of 
the abovementioned conceptual blocks (knowledge artifacts), presenting the knowledge 
structures proposed in order to support SMEs in the acquisition of process knowledge. 
In particular, section 2 describes the analysis of the different knowledge types appearing 
in the target domains and explains why process knowledge is one of the most relevant 
types. Section 3 focuses on the process metamodel. To finalize this block, section 4 
focuses on the PSM library for the acquisition of process knowledge, including the 
method used for its development. 
 
The second block (usable tools) is treated in section 5, where we describe how the 
previous knowledge structures can be articulated in a real system, a process editor 
integrated in the DarkMatter (Deep Authoring, Answering and Representation of 
Knowledge by Subject Matter Experts) system of Project Halo, 6 which allows SMEs to 
model processes at the knowledge level. In this section, we also introduce briefly the 
underlying formalism for process knowledge representation, which is described in more 
detail in (Gómez-Pérez, 2009). Section 6 deals with the third block (formal evaluation), 
and presents the evaluation of the approach in the context of Project Halo and its value 
for actual SMEs. Finally, section 7 provides conclusions based on the analysis of the 
evaluation results and section 8 discusses the contributions of this work and proposes 
directions for future work. 

2. MOTIVATION: THE PROCESS KNOWLEDGE TYPE 

In (Friedland et al., 2004), KEs directly encoded parts of a Chemistry textbook into 
formal knowledge representation languages, proving the practicality of representing 
sufficient knowledge for a computer to solve scientific problems at a level comparable 
to AP7 students. However, this effort confirmed the problems derived from the 
knowledge acquisition bottleneck. The cost of encoding one textbook page proved 
impractically high (approximately $10,000 per textbook page) and the evaluation of the 
system showed evidence that an important part of the system failures reflected 
insufficient expertise of domain knowledge by KEs.  
                                                 
6 www.projecthalo.com 

7 Advanced Placement (apcentral.collegeboard.com) 



 
 

 

 
The outcome of such initiative concluded that addressing the knowledge acquisition 
bottleneck requires enabling SMEs themselves to represent knowledge from the target 
domains. This objective implies three major challenges. First, the system needs to 
possess sufficient problem solving power to solve scientific problems. Second, it must 
be able to explain its answers in a human-understandable and domain-grounded way. 
Third, the interface must be user-friendly, yet allow SMEs to formulate and exploit the 
large, complex body of scientific knowledge, after adequate training.  
 
In order to estimate the effectiveness of existing technologies in addressing these 
challenges in terms of knowledge representation, knowledge formulation and question 
formulation, joint teams of SMEs and KEs worked with a representative corpus of 755 
AP questions from the target domains of Chemistry, Biology, and Physics (Valente et 
al., 2004). As a result, and after two main phases comprising a platform independent 
domain analysis and a platform specific knowledge engineering analysis, the following 
knowledge types were identified: classification (CLS), comparison (CMP), factual 
knowledge (FACT), inference rules (RULE), mathematics (MAT), process knowledge 
(PCS), causality (CAUS), procedural (PROC), basic data structures (DAT), tables 
(TAB), part-whole (PWR), spatial (SPACE), temporal (TIME), representational 
(TRANS), experimental (EXP), non functional (NF), graphic (GRA), and under-
specified knowledge (US).  
 
Most of these knowledge types occur across the three domains with varying fractions. 
Figure 1 shows the number and percentage of questions from the three domains dealing 
with each knowledge type, as well as the average across all domains. Additionally, 
Figure 2 shows the overall average ranking of the different knowledge types. It can be 
appreciated in the figures that a same question may deal with different knowledge types 
simultaneously. Consequently, the summation of the different knowledge types across 
the corpus of AP questions exceeds 100%. 
 

 
Figure 1: Per-domain distribution of knowledge types 

 
Overall, process knowledge is the most frequently used type of knowledge for 
answering AP questions, with 37% average across the three domains. This is even 
clearer if we go through the individual domains. In Chemistry, process knowledge is the 
most important knowledge type, occurring in 53% of all the Chemistry questions. It also 
scores second in Biology, with 35%, only after classification knowledge. Finally, 



 
 

 

process knowledge is the fourth knowledge type in Physics, with 22%, after 
mathematical, experimental, and spatial knowledge.  
 

 
Figure 2: Average distribution of knowledge types 

 
As shown above, one of the outcomes of this analysis is the preeminence of process 
knowledge against the remaining knowledge types identified. The second outcome of 
the analysis in with respect to process knowledge was platform-specific. The platform-
specific analysis resulted into a characterization of how the available technologies 
would address the challenges posed by such domains in terms of knowledge 
engineering tasks. In the case of process knowledge, the analysis concluded that such 
technologies would not support the acquisition of process knowledge from the domains 
by SMEs, hence requiring new solutions for the process knowledge case. The analysis 
especially advised i) the development of a high-level process ontology or core theory 
for representing reoccurring models in the domains and ii) to investigate new methods 
and tools to simplify formulation and access to process knowledge by SMEs. 
 
In the following sections, we detail our approach towards designing and implementing 
specific solutions for acquisition and reasoning with process knowledge by SMEs. The 
remaining types of knowledge fall out of the scope of this article. 

3. THE PROCESS METAMODEL 

The objective of the process metamodel is to provide SMEs with the minimal building 
blocks, in the form of a process-specific vocabulary, to formulate processes. The 
process metamodel reuses parts of pre-existing process ontologies and builds on them in 
order to provide the terminology necessary to express process entities like agents, 
actions, resources, etc. and the relations between them. 

3.1 Reused Process Ontologies 

Following ontology engineering methodological guidelines (Fernández-López et al., 
1997), we reused several process ontologies, among which some of the most relevant 
ones are the Enterprise Ontology (Uschold et al., 1998), the Toronto Virtual Enterprise 



 
 

 

project (TOVE)8 ontologies, and the GuideLine Interchange Format Ontology (Ohno-
Machado et al., 1998) (GLIF).  
 
The Enterprise Ontology and its extension TOVE define collections of terms and 
definitions relevant to business processes. These ontologies deal with the following 
main areas: 
 

• Activity captures the notion of anything that involves some action. The concept 
of activity is closely connected to the notion of doer, i.e., the agent that performs 
or participates in the action. Another entity closely related to activity is resource, 
which can be consumed by the action or just required, e.g., as a lookup resource. 
Activities can have certain duration and scheduled time of application, and also 
show effects on other entities. Additionally, activities can be aggregated to form 
more complex activities composed of a series of subactivities. If activities have 
an intended purpose its specification is called a plan.  

• Organization contains candidate doers, i.e., potential actors or agents. They can 
be classified as either legal entities or organizational units.  

• Strategy is defined as a plan to achieve a high-level purpose.  

• Marketing includes concepts like sale. A sale is an agreement between two 
legal entities for the exchange of a product for a sale-price. 

 
Among these, both the activity and the organization parts have provided valuable 
contributions to the process metamodel, specifically to concepts representing agents and 
resources in the process resource section, to the process action section, and to action, 
agent, and resource relations in the process relation section (Figure 3). The rest of these 
ontologies are too specific to the business domain, and therefore inconsistent with our 
aim to maximize domain-independence and reusability of the process metamodel. 
 
GLIF is a framework for modeling biological processes partially based on the workflow 
model of the Workflow Management Coalition (WfMC9). In this case, we extracted a 
number of simple workflow primitives and incorporated them in the process 
metamodel, namely different types of iterative actions and forks. 

3.2 Conceptual Model 

Figure 3 shows the taxonomy of the process entities contained in the process 
metamodel. The main entities contained in this model and their connections are 
described next. 
 
                                                 
8 http://www.eil.utoronto.ca/enterprise-modelling/tove 

9 http://www.wfmc.org 



 
 

 

 

Figure 3: Conceptual diagram of the process metamodel entities 

Process resources 

This category contains all the entities that can be used as resources within a process: 
tools, used by a given agent to perform an action, bags used to group other entities, 
implicitly representing partonomic hierarchies, and, in general, resources, used by 
agents participating in activities, as well as agents themselves. An agent can be 
classified as an individual agent, e.g., bee, or a collective agent, e.g., swarm. A resource 
can be classified as a consumable resource, if it can be spent during a process or as a 
lookup resource if it is used as a recipient of information. In this case, a resource can be 
quantitative, whenever it is numerable, or qualitative in other case. Resources can be 
termed as output when resulting from the execution of a process. 
 
Process resources are also called roles (Wielinga et al., 1992) according to the PSM 
nomenclature. Roles serve two purposes, first they act as a container for domain 
concepts and, second, as a pointer to the types of domain concepts that can play this 
role. Domain concepts may play different roles during reasoning either in the same or 
across different processes. For example, water can take the role of a consumable 
resource during the process of a precipitation reaction, but on the other hand another 
SME might consider it as the agent performing the reaction. Figure 4 shows the graphic 
representation of the main process resources in the process metamodel. 

    

 
Figure 4: Main types of process resources 

 
Roles can be divided into static and dynamic roles (Wielinga et al., 1992). Static roles 
contain concepts that are persistent across the reasoning process. Dynamic roles contain 
concepts that change during the reasoning process. Dynamic roles characterize the 
process because they are constantly manipulated by the process in which they are used. 
In DarkMatter both static and dynamic roles are supported. Finally, in actual, working 
systems, users need to contextualize the different roles in terms of the domain. In 
DarkMatter, this is done by mapping from domain concepts into the roles of an 
instantiated process. 



 
 

 

Process relations 

This category contains process-level relations which can take place in a given process 
between the different actors participating in it. These relations can happen both between 
resources and actions, actions and resources, and between actions and other actions. A 
resource can be used, required, consumed, and accumulated by an action. Actions can 
succeed a previous action if a given condition is true or false. Actions can create, 

provide or accumulate a resource as a consequence of its execution. Additionally, 
actions can be inhibited or activated by an agent, and agents can participate in or 
perform actions. 

Process decisions 

A decision (Figure 5) is a workflow construct resembling forks depending on a 
conditional expression. These forks are used to explicitly create conditional precedence 
relations between pairs of actions. Depending on the results of evaluating such 
condition, the precedence relation will be enabled (true) or not (false). 

 
Figure 5: Conditional fork 

Process actions 

Process actions are classified as atomic, iterative, continuous, or periodic. Atomic 
actions consist of the transactional execution of activities, e.g., binding two amino acids 
in Biology, while iterative actions are executed repeatedly while or until a certain 
condition holds, e.g., the iterative process of RNA synthesis from DNA templates where 
an enzyme follows a DNA template until a termination sequence is detected. On the 
other hand, continuous actions are simple actions that have a prolonged duration in 
time, e.g., “A piece of solid calcium is heated in oxygen gas…”. Finally, periodic 
actions refer to actions which happen repeatedly, provided a given amount of time or 
events, e.g., the oscillation of a pendulum. The definition of actions has been inspired 
by that of activities as defined in the Enterprise Ontology. On the other hand, workflow 
constructs used to represent iterative, continuous, and periodic actions have been 
adapted from GLIF. Figure 6 shows the graphic representation of the main types of 
actions. 
 

   
Figure 6: Main types of process actions4. 

4. PROBLEM SOLVING METHODS FOR THE 

ACQUISITION OF PROCESS KNOWLEDGE 

We approach processes as special types of problems and PSMs as the way to represent 
and reason with them. To this purpose, we have produced a PSM library which i)  
provides SMEs with modeling guidelines that simplify the representation of domain-
specific processes and ii) provides the means to reason about and solve process-related 
problems. Next, we provide an extension of existing modeling frameworks based on 
PSMs in order to support the process knowledge case and describe the method followed 



 
 

 

to build our PSM library in the resulting framework. Finally, we extensively describe 
the domain-independent library of PSMs produced as a result of applying such method. 

4.1. A PSM Modeling Framework for Processes  

There is a considerable number of existing PSM libraries that have been previously used 
in knowledge-based systems (Chandrasekaran, 1986; Eriksson et al., 1995; McDermott, 
1988; Breuker et al., 1987; Benjamins, 1995). For example, the work described by the 
latter provides a model of the diagnostic problem solving process, using approaches for 
modeling problem-solving behavior such as those described in (Breuker et al., 1987; 
Chandrasekaran, 1986; Steels, 1990). As a result, KEs receive support and guidance in 
constructing models of diagnostic reasoning and it is possible for KEs to combine 
different approaches in a single diagnostic system, with alternatives for realizing the 
same tasks.  
 
Modeling frameworks like TMDA (Motta, 1999) and CommonKADS (Schreiber et al., 
2000) support the development of such PSM libraries by separating problem-solving 
behavior from domain-specific knowledge. According to such frameworks, application 
models need to identify different but interfaced layers of knowledge. CommonKADS 
proposes three generic types of components: domain, task, and inference while TMDA 
distinguishes between four, with an additional layer on application-specific knowledge. 
As a consequence, the resulting knowledge bases only contain factual, domain-specific 
knowledge, much easier to evolve, while problem-solving knowledge can be kept 
independently from the domain in order to abstract and favor reusability of the 
procedural and inference knowledge across different domains and tasks. 

 
Using PSMs for acquiring process knowledge also benefits from this kind of 
approaches. PSMs provide a thorough analysis of domain-specific tasks and problems 
as well as well-formed strategies on how to solve these problems by means of 
abstracting the reasoning processes involved. These modeling frameworks assume that 
the tasks to be accomplished reside at the meta-level as strategies to solve domain-
related problems, like, e.g., in (Marcus et al, 1998). However, they do not contemplate 
the representation of actual processes. In order to overcome this, we propose a 
specialization of the TMDA component-based modeling framework (Figure 7) that 
utilizes PSMs as domain-independent components for the specific case of process 
knowledge. 
 
Such specialization explicitly represents the different knowledge types detected in the 
analysis of the domains described in section 2 and, in particular, processes. This allows 
treating process knowledge as higher-level abstractions, decoupled from all other 
knowledge types in the domain but interfacing with them in order to consume domain-
specific rule and factual knowledge. We exploit the relation between ontologies and 
PSMs as in (Crubézy and Musen, 2003) to describe domain knowledge bases and PSMs 
as independent components that can be reused and to mediate knowledge between these 
two components. Our PSM library can thus be kept reusable for acquiring process 
knowledge across different purposes and domains. 
 



 
 

 

Figure 7: Adapted TMDA modeling framework for the process knowledge type (PCS)  
 
Supporting such approach requires four different types of ontologies: i) a PSM-
description ontology, which models the competence of a PSM library, ii) a method 
ontology specifying input and output roles of the PSMs, iii) a mapping ontology relating 
domain and PSM ontologies, and iv) a domain ontology containing factual knowledge. 
In our case, (i) and (ii) reflect into the PSM library for the process knowledge type and 
the process metamodel and iv) are SME-authored ontologies in the domains of 
Chemistry, Biology, and Physics. Mappings relating domain and PSM roles are 1:1 
relations graphically described by SMEs (see Figure 17 in section 5). The semantics of 
these mappings is a subsumption of the PSM role by the domain concept or instances 
against which it is mapped. 

4.2. A Method to Build a PSM Library of Process 

Knowledge  

Existing PSM ontologies like the above mentioned focus on problem-solving reasoning 
process in tasks like, e.g., diagnosis and classification, but do not properly address 
domain-level processes. Thus, it is necessary to build a PSM library that informs the 
extended process modeling framework depicted in Figure 7. The construction of such 
PSM library for representing and reasoning with processes comprises two major steps: 
1. Identification of domain-specific processes in the syllabi of Biology, Chemistry,  

and Physics 

2. Decomposition and abstraction of the previously identified domain-specific 
processes into primitive, domain-independent, reusable PSMs. 



 
 

 

This top-down and bottom-up process is grounded in the domains but also maximizes 
domain-independence, reusability, and composition properties. 

Identification of domain-specific processes 

The first step consists of detecting domain-specific processes and their definitions from 
amidst the domain analysis documents. From the 755 AP questions for the three 
domains studied in the analysis phase, we retrieved, for each process occurring in the 
portion of the syllabi associated to each question, its actual definition according to the 
textbooks10. This process resulted into approximately 100 different domain-specific 
processes. The analysis of the characteristics and the affinities between these processes 
showed that they could be clustered in 4 main categories: Join, Split, Modify, and 

Locate. Figure 8 shows how the processes detected in the syllabus are distributed across 
these categories. 
 

 
Figure 8: Distribution of process occurrences 

 
Since the goal of this process is to detect all the occurrences of process knowledge in 
the selected AP questions, we took an incremental approach starting with Chemistry, a 
priori, according to the analysis (Figure 1), the domain with a larger amount of process 
knowledge, and then continued with Biology, and finally Physics. The method applied 
(first part of Figure 9) consisted of the following steps: i) identify the topics related to 
each question, ii) for each topic, find the specific chapter of the textbook on the target 
domain dealing with it, and iii) browse the chapter for occurrences of processes, 
attending to several indicators about their structure, namely preconditions, 
postconditions, states, actors, inputs, and outputs.  
 
An additional result of this process is the identification of the most frequent verbs used 
to specify processes and their synonyms. In the next step of this method, decomposition 

and abstraction, this knowledge was used to group the detected domain-specific 
processes into categories defined by the semantics of these verbs, across the three 
domains, facilitating the task of creating process abstractions for each of these 
categories. Such process abstractions eventually led to our PSM library for the process 
knowledge type (Figure 10). 
                                                 
10 (Brown et al., 2002; Campbell and Reece, 2001; Serway and Faughn, 2003) were selected as reference 
textbooks for the Chemistry, Biology, and Physics domain, respectively. 



 
 

 

 

Questions Topics
Related book 

chapters
Domain 
process

Brown & Lemay 4.2

Atomic
processes

Dissolve Crystallize

Domain-independent
processes

Precipitation

decompose
form by 

combination

 
Figure 9: Sample process identification and abstraction 

Decomposition and abstraction 

To obtain generic, primitive PSMs from such domain-specific processes, we followed a 
divide and conquer approach, recursively splitting them into their sub-processes until 
atomic, domain-specific processes were obtained.  This is the case of, e.g., the process 
of a precipitation reaction and its two subprocesses dissolve and crystallize. Atomic 

processes constitute the basic building-blocks, which can be aggregated to build 
complex processes.  
 
Atomic processes need to be decontextualized from their original domains in order to 
guarantee reusability across different domains. We applied the domain-independent 
terminology of the process metamodel to this collection of domain-specific atomic 
processes, producing a set of generic, domain-independent process abstractions. The 
PSM library, containing 15 primitive PSMs, stems from these abstract processes. It 
establishes and controls the actions required in each of them and defines the necessary 
knowledge for each process step. The second part of Figure 9 shows two of these PSM 
(Decompose and Combine) in the context of a Chemistry precipitation process. 

4.3. A PSM Library for the Acquisition of Process 

Knowledge 

The two-phased (identification and abstraction) construction of the PSM library 
produced the domain-independent problem solving methods sketched in Figure 10. The 
methods contained in the PSM library are primitive methods, i.e., PSMs which cannot 
be further decomposed into more specific, lower level PSMs. By doing so, PSMs appear 
to SMEs as simple, self-contained, comprehensible templates for formulating process 
knowledge, which can be easily aggregated in order to formulate complex processes and 
edited by SMEs to their convenience while maximizing PSM reusability across the 
different domains.  



 
 

 

 

 
Figure 10: PSM library for process modeling 

 
The PSM library is structured into four main categories (Figure 10), each addressing a 
different family of processes. Join contains PSMs which describe the different ways in 
which a set of input resources can interact with each other, be combined, aggregated, 
and, in occasions, neutralize their respective properties, in order to produce a given 
outcome as a result of such interaction. Other PSMs of this category aim at comparing 
two different resources by putting them together and study their mutual reaction. Split, 

opposite to Join, contains methods that describe several ways of producing a new result 
by means of consuming or dividing a set of resources into its constituents. Locate aims 
at the spatial arrangement of resources. Finally, Modify contains a set of methods that 
describe different ways of altering either the properties of such resources or the 
resources themselves, producing a different outcome in the process.  
 
These primitive PSMs define methods to achieve domain-independent, atomic 
processes. They establish and control the sequence of actions required in each process, 
but their main goal is to define the necessary knowledge in each process step. The 
abstractions of these methods allows capturing, in a high-level and generic way, the 
occurrences of processes in our target domains, formalizing process knowledge by 
means of mapping their roles against domain entities and aggregating primitive methods 
for the composition of complex processes.  
 
Next, we describe our PSM library in terms of the process categories identified during 
our analysis of the syllabus of our target domains and introduce the PSMs11 that we 
have designed in order to represent such processes. In the following figures, we show 
how we have decomposed the main process categories into subcategories and provide a 
set of PSMs that can be used to support the acquisition of such process types. 
Graphically speaking, processes are represented as ellipses, while methods are shown as 
rectangles in a way analogous to the classical task-method notation. 

The Join category  

The Join category comprises three different types of processes: Contrast, Form, and 
Neutralize (Figure 11). Contrast stands for processes where the intended goal is to 
identify the properties of a given resource by making it interact with another resource 
whose properties are well known, e.g., a chemical titration. This kind of processes can 
be achieved by comparing & interpreting. Form comprises processes where different 
                                                 
11 A detailed description of all the PSMs contained in the PSM library can be found in APPENDIX A: A 
PSM Library for Process Knowledge. 



 
 

 

resources are put together in order to create a new one. We have produced two different 
methods that can be applied alternatively in this case (form by aggregation and form by 

combination). Finally, while Neutralize also stands for processes aiming for a 
combination of elements, their outcome neutralizes their original properties. 
 

  
Figure 11: PCS category Join 

The Split category  

This category of processes comprises four different process types: Consume, 

Decompose, Recombine, and Replicate (Figure 12). Consume stands for processes, e.g., 
a combustion, whose input is spent, providing some byproduct upon termination. 
Decompose, e.g., hydrolysis, divides its inputs into their constituent elements. 
Recombine comprises processes where first decomposition takes place and then, the 
resulting pieces are combined in order to produce a different output. Examples of 
recombine include sexual reproduction. Finally, Replicate appeals to processes where 
two identical items are produced from a single one, e.g., clonation. 
 

 
Figure 12: PCS category Split 

The Modify category  

This category groups three different types of processes: Transform, Implement, and 
Balance (Figure 13). Transform stands for processes, e.g., a chemical ionization, whose 
input is derived into an item of a different type. Implement, e.g., implantation, installs 
an item in a given environment which evolves into something different. Finally, 
Balance appeals to processes where input elements are put together to equilibrate their 
properties, e.g., osmosis, autoionization of water. 
 



 
 

 

Modify

situate & 

combine

Transform Implement Balance

transform balance

 
Figure 13: PCS category Modify 

The Locate category  

Finally, this process category comprises four different types of processes: Situate, 

Oscillate, Rearrange, and Release (Figure 14). Situate stands for processes, whose goal 
is to place their input in a different situation from the original one, understanding 
situation as a property of such input. Oscillate takes this spatial notion into a periodical 
event, e.g., harmonic motion in Physics. Rearrange comprises processes where input 
items are fetched and arranged in a different disposition, e.g., changes in protein 
conformation. Finally, Release appeals to processes where an agent consumes, upon a 
given precondition, some items, e.g., hormone secretion. 
 

 
Figure 14: PCS category Locate 

 
Many processes in the syllabus are simple processes that occur in the context of larger 
processes, like, e.g., mitosis, meiosis, and their respective phases. In such cases, 
primitive PSMs from the PSM library, which can describe the simpler processes (in 
terms of the succession of steps necessary to accomplish them and the type of 
knowledge required at each step), can be aggregated to describe the larger processes. On 
the other hand, the level of refinement to which a process can be represented depends 
largely on the design approach taken by the SME. For instance, a mitosis process could 
be represented by applying the PSM decompose & recombine from the Split category, 
but that alone would not provide much information on the phases of mitosis (prophase, 

prometaphase, metaphase, anaphase, and telophase), each of them a (sub)process itself. 
 
If we look at the syllabus selected for the target domains, the most relevant PSM in 
terms of appearances in processes described in such syllabus is transform, followed by 
replicate and decompose. In a nutshell, these three PSM alone from the fifteen available 
in the PSM library suffice to model 46% of all the processes in the syllabus. The 



 
 

 

distribution of all the methods of the PSM library in terms of their suitability to 
formulate and reason with the processes present in the syllabus can be seen in Figure 
15. 
 

 
Figure 15: Distribution of the process syllabus across PSM library methods 

5. ENABLING SMEs TO FORMULATE PROCESS 

KNOWLEDGE 

One of the main difficulties in knowledge formulation is the gap between domain 
knowledge and the expertise required in order to formalize and exploit such knowledge. 
Based on the process metamodel and the PSM library described in this article, it is 
possible to provide SMEs with a knowledge-level (Newell, 1982) strategy for 
formalization and reasoning with processes, which enables the creation of process 
models.  
 
To this purpose, SMEs need usable graphic tools and editors that simplify the 
manipulation of process knowledge, allowing them to approach the knowledge 
representation problem exclusively at the domain level. On the other hand, reasoning 
needs to be supported by means of the automatic synthesis, from user-tailored process 
diagrams, of executable process models that can be seamlessly integrated with the 
remaining knowledge types, aiming for a single entry point for question answering.  
 
The DarkMatter process perspective (Figure 16) implements this approach, allowing 
SMEs to formulate domain-specific processes. The process perspective leverages the 
process metamodel, which provides the required semantics in the form of process 
terminology, and the PSM library. The PSM library provides SMEs with guidance to 
model, without the intervention of KEs, well-formed meaningful process diagrams with 
respect to the underlying process representation and reasoning formalism.12 The 
methods of the PSM library can be used by SMEs as knowledge templates, which 
facilitate building complex processes and alleviate the blank page syndrome. The 
                                                 
12 The underlying formalism for process knowledge representation and reasoning is described in detail in 
(Gómez-Pérez, 2009), chapter 5: Representing and Reasoning with SME-authored Process Knowledge. 



 
 

 

resulting diagrams are automatically encoded, following the formalism, and eventually 
executed. 
 
The process perspective allows graphically formulating process knowledge either from 
existing diagrams or from scratch. It provides SMEs with a palette containing all the 
process entities described in the process metamodel and the methods of the PSM 
library, allowing Drag & Drop of these elements into the drawing area. Figure 16 shows 
an example process diagram corresponding to a chemical precipitation as described in 
(Brown et al., 2002). The precipitation process comprises two different steps: first, the 
different ionic compounds of a solution are dissolved, then, some of their anions and 
cations crystallize as a new ionic compound whenever the necessary conditions in terms 
of temperature and solubility of the ions hold.  
 

 

Figure 16: Process Modeling in DarkMatter 

 
Modeling processes in the process perspective is an iterative task that typically involves 
the following three main stages: 

1. Including the basic process components and structure, starting with 
subprocesses. In the example, the precipitation process comprises two 
subprocesses: Dissolve and Crystallize. The basic structure of the process model 
has been provided by the PSM decompose & combine, especially suited to 
model recombination-intensive processes, as defined by the process category 
Split (see Figure 12). PSMs are available from the palette, following the 
categorization described in section 4, with the twofold goal of simplifying reuse 
by SMEs and of providing process templates from which to start the modeling 
task. Though the process perspective supports modeling processes from scratch, 
using PSMs as templates simplifies the task. The process perspective allows 
adapting the template, removing and adding process components as required. 



 
 

 

2. Grounding process components in the domain. During process formulation, 
generic roles coming either from PSM templates or from the palette as 
individual components need to be mapped against domain entities in order to 
contextualize the process in the application domain. Such mappings use the 
domain-level knowledge base as a bridge between the process knowledge type 
and the other knowledge types, fundamentally rules, ensuring their convergence 
in terms of the domain and allowing seamless knowledge representation and 
reasoning between the knowledge modules.  
 
The components of a process diagram are mapped 
against concrete domain entities by means of the 
interface shown in Figure 17. The figure shows 
how the domain-level entity Ionic Compound is 
modeled as the process metamodel entity resource. 
In Figure 16, the input to Dissolve comprises a 
Solution of Ionic Compounds, modeled as a bag 

and resources from the process metamodel, 
respectively. Solution is also part of the output of 
Dissolve and of the input of Crystallize, together 
with the Cations and Anions resulting from the 
previous subprocess, both modeled as resources. 
The overall output of the process, modeled as a 
process output from the metamodel, is mapped 
against the domain entity class Ionic Compound. 

3. Mapping process components against domain entities. Finally, the different 
process components are connected with each other by means of process relations 
provided by the process metamodel. The process metamodel allows constraining 
the relations between whatever pair of entities from the metamodel, preventing 
SMEs from establishing meaningless and confusing links between them. Table 1 
shows the allowed relations between the main process entities. When the SME 
establishes a relation between two process entities, the process perspective 
automatically retrieves this information from the metamodel and generates a 
menu that only contains the valid ones. 

 
The process perspective provides an answer to two important challenges in order to 
enable SMEs to author correct process models 

• Ensuring that the resulting process models are compliant with the underlying 
formalism for process representation and reasoning.  

• Guaranteeing that the resulting process models satisfy the modeling expectations 
of the SME under a functional point of view, i.e., the resulting model must 
describe the process addressed by the SME and no other. 

 
With respect to the first challenge, the existence of a formalism for process knowledge 
representation and reasoning explicitly describing the operationalization of knowledge-
level process models into a concrete formal language allows dealing with possible 
inconsistencies introduced by SMEs upon process modeling and facilitates the creation 
of semi-automatic supervision mechanisms that notify SMEs on modeling mistakes. 
Such mechanisms contribute to the creation of consistent process models that can be 
automatically translated into correct code in the reference formal language. 
 

Figure 17: Mapping between 

role and domain entity 
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false 

true 

false 

 

Table 1: Allowed relations between process entities 

 
Additionally, stemming from the above mentioned process representation formalism, 
the process perspective performs consistency checks of the process diagrams at 
modeling time, observing a twofold goal: i) to ensure consistency of the process model 
with respect to the knowledge base and ii) to ensure data flow consistency of the 
resulting process model.  
 
Process knowledge lies at a higher level of abstraction than other knowledge types like, 
e.g., classes, instances, and rules. Therefore, a critical point for an effective use of 
process models is the grounding of the process-level constructs provided by the process 
metamodel and the PSM library into specific elements of the knowledge base whose 
process knowledge is being described by such models. Maintaining the consistency of 
process models in the context of their corresponding domains and knowledge bases 
contributes to support seamless reasoning at the domain level. In this regard, with 
respect to the first goal (to ensure consistency of the process model with respect to the 
knowledge base), the following assumptions are verified:  

• Process diagrams must be bound to concrete occurrences of processes from 
the knowledge base. In the example shown in Figure 16, the process diagram 



 
 

 

is bound to precipitation, an instance of class Chemical Reaction in the 
Chemistry knowledge base. 

• The resources used in the process diagrams must be mapped against specific 
knowledge base entities, either classes or specific instances. In the example, 
the generic process metamodel entities bag and resource are thus ground as 
domain-specific classes Solution and Ionic Compound, respectively. 

• All the relations between process entities must be specified in the process 
diagram, forming a connected graph, with meaningful nodes and edges. 

 
The assumptions concerning the second goal (to ensure data flow consistency of the 
resulting process model) are the following: 

• Process actions must have inputs and outputs, e.g., Solution, Cation, and 
Anion (inputs of action Crystallize in the example of Figure 16) and Ionic 

Compund (output of the same action). 

• Process diagrams must have inputs and outputs, i.e., all processes must be 
triggered by the occurrence of some entity and produce new knowledge as a 
result. In the example, a Solution of Ionic Compounds is the input of the 
precipitation process, which, given the right conditions holds, produces a 
new Ionic Compound as a result. 

• Process diagrams must be structured as directed and fully connected graphs, 
ensuring a consistent data flow. 

• The inputs and outputs of process actions must be explicitly represented, 
ensuring the visual consistency of the action with respect to its semantics. As 
a consequence, elements occurring both as inputs and outputs of an action 
are represented as graph nodes before and after the action node. In the 
example, Solution, modeled as a process resource of type bag, illustrates this 
in the process action Dissolve. 
 

As a consequence of automatically checking these assumptions, code is produced, in the 
underlying process representation language, exclusively for well-formed process 
models. Our modeling-time verification approach supports the detection of data and 
control flow errors in the process model that fail to fulfill the assumptions, preventing 
the generation of incorrect code. This method is extremely cheaper, in computational 
terms, than auditing the code once this is actually generated and hence makes it 
unnecessary to perform additional checks at the level of the underlying knowledge 
representation language. When any of these assumptions is violated, the process editor 
issues an error message explaining the rationale behind it and indicates the SME how to 
address it.  
 
The actual code corresponding to the process model is actually stored in the knowledge 
base only when all the assumptions are satisfied. In addition to formulating correct 
process models, by providing SMEs with this kind of feedback at modeling time we 
ensure that the resulting process models fulfill the constraints necessary to optimize the 
generated code as shown in (Gómez-Pérez, 2009). 
 
The second challenge in terms of process correctness (guaranteeing that the resulting 
process model satisfies the expectations of the authoring SME under a functional point 
of view) requires enabling SMEs to test the process models. SMEs validate that their 
process models actually behave as they expect by means of the test & debug 
perspective.  



 
 

 

 
This perspective enables SMEs to create unitary tests that ensure the quality of their 
knowledge bases remains in good conditions as they modify them. Such tests are 
especially useful for process modeling, since their inference capabilities can have a 
substantial effect on the knowledge base. SMEs are therefore encouraged to include a 
battery of tests (a test set) associated to each process model. A test set consists of a 
number of queries and optionally a facts file, which contains temporary facts that only 
live within the scope of the test, i.e., a number of instances for use exclusively within 
the test set queries. When a test set is created and validated, the results of its execution 
are saved as a snapshot of the knowledge base. Subsequent executions of the test are 
regarded as valid if their results match the saved results. 
 
Figure 18 shows a test for the precipitation process. Two solutions, lead nitrate 
(Pb(NO3)2) and potassium iodide (KI), inform the temporary facts of the fact file for a 
query that aims at retrieving the final output of the process, i.e., which ionic compounds 
are produced as a result of a precipitation process. The results returned (lower, right part 
of the figure) are the combination of the anions and cat-ions that observe the necessary 
insolubility conditions, i.e., lead iodide (PbI2) in this case. 
 
Our approach also supports answering meta-level questions on processes, about, e.g., 
their structure and intermediate states and products. The following illustrates such type 
of questions: 

 
 

 

Figure 18: Process Validation 

Which part of the animal cell is required only in the first 
stage of mitosis and what is the name of such stage? 

a. chromatin and prophase 
b. chromatid and prometaphase 
c. centromere and anaphase 

d. plasma membrane and telophase 



 
 

 

6. EVALUATION 

The process editor and the whole approach towards process knowledge acquisition by 
SMEs were evaluated by an independent team13 in the context of the evaluation of the 
DarkMatter system in Project Halo. A total of six knowledge formulation (KF) SMEs 
participated, who formulated knowledge on the selected evaluation syllabi for the 
domains of Chemistry, Biology, and Physics, and tested reasoning with it. These 
knowledge bases were later used by five Question Formulation (QF) SMEs, with the 
support of QF KEs, who formulated selected AP-level questions that were intended to 
be answered by the system. After receiving a limited amount of training on the 
principles of the system, SMEs used DarkMatter to formulate the knowledge contained 
in the syllabi. During KF, SMEs were kept isolated from developers, evaluators, and 
other SMEs to ensure the validity of the evaluation process. In case assistance was 
necessary, SMEs could ask for support via a chat mechanism.  
 
The overall goal of this evaluation was i) to measure the coverage provided by the 
solutions proposed to the issues detected in the analysis and design phases and ii) to 
provide feedback to the development team for tuning and improving the system. 
Therefore, the scope of this evaluation goes beyond usability aspects in a formative 
sense, and provides an empirical assessment of the system’s coverage and performance 
in a setting that is representative in terms of the profile of the recruited SMEs and their 
assigned tasks. In the particular case of process knowledge, since our approach is 
focused on enabling SMEs to model executable processes at the knowledge level 
without intervention of KEs, the evaluation paid special attention to direct feedback 
from SMEs on process knowledge formulation.  
 
In addition to the knowledge bases produced by SMEs, we collected their impressions 
on the process component according to two main dimensions: usability and utility. The 
process knowledge bases produced by SMEs during evaluation were checked using the 
Test & Debug perspective through test sets developed by SMEs themselves. 

6.1. Evaluation Syllabus 

Selecting a syllabus helps specifying any pre-requisite knowledge that must be present 
in the system before the SME starts to do knowledge formulation. With this syllabus, 
we aimed to pick material that would definitely pose a challenge for our knowledge 
formulation systems. Next we describe and justify the selected syllabi for the three 
target domains. 

Chemistry 

The following syllabus was selected from the Chemistry reference textbook (Brown et 
al., 2002), which is representative of the kind of material found in a Chemistry textbook 
and gives a natural baseline for comparison to the knowledge formation undertaken by 
KEs. 

• Sections 3 3.1-3.2, Pages 75-83 Stoichiometry: Calculations with Chemical 
Formulae.  

• Sections 4 4.1-4.4, pages 113-133, Aqueous Reactions and Solution 
Stoichiometry . 

• Sections 16.1-16.11, pages 613-653 Chemical Equilibrium. 
                                                 
13 The evaluation team was led by Ergosign GmbH (http://www.ergosign.de). 



 
 

 

 
Additionally, some background knowledge needed to be pump-primed to enable SMEs 
to formulate the selected syllabus. Sections 3, 4, and 16 require associating chemical 
names with formulae. Section 16 also required knowing the definition of moles, 
molarity, equilibrium, and buffer solutions. 

Biology  

From the reference textbook (Campbell and Reece, 2001), we selected the following 
syllabus, focused on two main aspects of Biology: the cell and DNA structure and their 
internal processes. These two main content areas form the basis of much of modern 
biology and physiology, and are representative of the type of content found throughout 
the biology domain.  From the representation point of view, these subjects deal with 
central problems in representation of objects and processes. Therefore, they make a 
good subject matter for evaluation. 

• Cell structure and cell processes, including mitosis and meiosis. Pages 112-124, 
217-223, and 239-245. 

• DNA structure and DNA structure processes, including DNA replication, repair, 
transcription, and translation. Pages 293-301, 304-311, and 317-319.  

 
Since Biology is a priori one of the most relevant domains for the process knowledge 
type, before the actual evaluation we had an additional senior Biology SME to analyse 
the syllabus selected for this particular domain. This biologist used the process 
metamodel as a framework to formulate process knowledge and produce a Biology 
ontology on the issues covered by the syllabus. She used the lexicon provided in the 
metamodel to describe process entities occurring in Biology and, especially, the 
methods contained in the PSM library as a flexible and reusable mechanism to acquire 
processes during knowledge formulation. 

Physics 

The following parts of (Serway and Faughn, 2003) were selected for the Physics 
domain. This syllabus contains basic knowledge of Kinematics and Dynamics, where, 
as anticipated by the domain analysis, the expected amount of process knowledge is 
very scarce. 

• Chapter 2: Kinematics - Describing motion in one dimension. 

• Chapter 3: Kinematics in two dimensions, except sections 3.1 to 3.4. 

• Chapter 4: Dynamics - Newton’s laws of motion. 

6.2. Distribution of the Formulated Processes across 

the Evaluation Syllabus  

Table 2 shows the distribution of the processes formulated by the SMEs across the 
different target domains. The overall number of resulting processes (eleven) is relatively 
small. The table also shows how processes are usually densely populated with a large 
number of entities from other knowledge types, like, e.g., rules, for reasoning 
throughout process steps. The considerably high number of rules used in each process 
indicates that SMEs succeeded in connecting rule and process knowledge during 
evaluation. 



 
 

 

 

 # of processes 
modeled 

# of rules 
imported per 

process 

# total number of 
rules for all the 

processes 

# average number 
of rules per 

process 

SME1 (Physics) 0 0 0 0 

SME2 (Biology) 2 26 / 2 28 9.33 

SME3 (Biology) 6 11 / 7 / 0 / 4 / 8 / 3 33 5.5 

SME4 (Chemistry) 0 0 0 0 

SME5 (Chemistry) 3 3 / 1 / 1 5 1.66 

SME6 (Physics) 0 0 0 0 

Total 11 - 66 6 

Table 2: Summary of the process knowledge type 

 
Preliminary analyses on Physics anticipated that this domain had a small amount of 
process knowledge. This has been confirmed by SMEs during evaluation, under the 
light of the selected syllabus. On the contrary, Biology has the largest knowledge bases 
and the topics selected for Biology contain large amounts of factual and rule-based 
knowledge, which is generally true for the domain of Biology.  
 
As expected, we find in Biology the largest population of processes amongst the three 
domains. SME2 formulated two processes while SME3 formulated six different 
processes. Both SMEs created tests for their processes with the test & debug facilities in 
order to validate them and to enable reasoning with them in the context of their 
respective knowledge bases. Most of the PSMs used during the formulation tasks of 
these Biology processes belong to the categories Join and Split. Modify methods were 
also used, but to a lower extent. 
 
Finally, Chemistry is at an intermediate point between Physics and Biology in terms of 
the size of the overall knowledge bases and the number of processes formulated. 
Chemistry SMEs (specifically SME5) built and validated three different processes using 
methods from the Split and Join categories. 

6.3. Utilization of the PSM Library and the Process 

Metamodel 

If we describe the different processes modeled by SMEs in terms of the main categories 
of the process metamodel used upon their formulation (fourth to seventh columns of 
Table 3), we can draw further conclusions from a different point of view. Process 
resources and relations are by large the main categories used by our SMEs, with 43% 
and 42% of the overall process entities, respectively. On the other hand, actions are the 
third more used category, with 11%. Finally, the use of forks has been merely 
testimonial (0, 25%). 



 
 

 

 

 Processes PSMs  # of 
resources # of relations # of forks # of 

actions 

Total 
number 

of 
process 
entities 

SME2  
(Biology) 

Transition from 
G2 phase to 

mitosis 

-  
12 21 1 3 37 

Mitosis - 34 37 0 5 76 

SME3  
(Biology) 

Mitosis decompose 
& combine 

29 11 0 5 45 

Carbohydrate 
metabolism 

consume, 
transform 5 6 0 2 13 

Cellular 
respiration 

decompose, 
consume 

5 7 0 2 14 

Detoxification transform 4 4 0 1 9 

Photosynthesis form by 
combination 6 6 0 1 13 

Ribosome protein 
synthesis 

situate & 
combine 2 2 0 1 5 

SME5 
(Chemistry) 

Complete ionic 
equation 

form by 
combination 7 7 0 1 15 

Molecular 
equation 

decompose 
& combine 

4 4 0 1 9 

Net ionic equation form by 
combination 3 3 0 1 7 

Total   111 108 1 23 243 

Table 3: Occurrences of process metamodel entities 

 
The utilization of the methods contained in the PSM library available in the process 
editor by SMEs responds to the following pattern. The degree of utilization of the PSMs 
by SMEs is inversely proportional to the size and complexity of the processes to be 
modeled. In general, when dealing with particularly complex processes, SMEs need 
several attempts in order to recognize the advantages of using the available PSMs as 
knowledge templates that can simplify the process formulation task. On the contrary, 
SMEs clearly identify relevant PSMs when the processes to be modeled are simpler, 
probably because it is easier for them to establish a correlation between the process and 
one single suitable PSM. 
 
This observation is due to two main factors: i) more effort should have been allocated 
during the training phase to make SMEs more familiar with the PSM library, enabling 
them to recognize PSMs as a commodity for process formulation and ii) usually SMEs 
discard PSMs that are suitable for their modeling purposes but need some editing or 
aggregation work to adapt them to their particular case. That is, though SMEs perceive 
the value, in terms of reusability and domain independence, of the methods contained in 
the PSM library, they have problems in perceiving their flexibility.  
 
The third column of Table 3 summarizes the methods from the PSM library that were 
actually used by SMEs. It is interesting that SME2 did not use any of the available 
PSMs in order to model either of her two processes, especially if we consider that the 
overall quality of this SME’s knowledge base was substantially lower than the other 
two. The measure of the quality of each knowledge base was provided by the execution 



 
 

 

of the test sets created by each SME, using the test & debug perspective for the process 
component. The process knowledge base of SME2 did not successfully pass the 
corresponding tests. This shows evidence that the generalized use of PSMs for process 
formulation has provided SME3 and SME5 with means that support building well-
formed processes, eventually contributing to higher quality knowledge bases.  
 
Figure 19 shows the distribution of the methods of the PSM library across the modeled 
processes. This figure, corresponding to the portion of the syllabus addressed by SMEs 
during evaluation, slightly diverges from Figure 15 (distribution of the process syllabus 
across the methods of the PSM library), which a priori showed a more relevant role of 
PSM transform, followed by replicate, and decompose. The characteristics of the subset 
of the syllabus used for evaluation and the design choices made by SMEs have shifted 
such relevance towards PSMs like form by combination. Additionally, the distribution 
of the PSMs used is almost uniform across three of the main process categories (Join, 
Split and Modify). 
 

 
Figure 19: Overall distribution of the PSM library  

6.4. Usage Experience of the SMEs with the Process 

Editor 

In general, SMEs only needed some training to get used to the basics of process 
modeling. However, at the beginning of the evaluation, SMEs did not clearly 
distinguish the boundaries between the rule and process editors, i.e., what diagram type 
can be used to represent what kind of knowledge. Additionally, some SMEs tried to use 
the process editor to assert concepts, instances, or rules, into the corresponding 
ontology. Table 4 summarizes the issues raised by SMEs during the evaluation, 
showing the number of questions about the behavior of the different components of 
DarkMatter.  



 
 

 

 

 Knowledge 
Navigator 

Rule 
Editor Mathematica Processes Test & 

Debug Explanation WYSIWYM Help 

SME 1 7 13 21 0 6 3 3 0 

SME 6 0 0 7 0 2 1 0 0 

SME 2 0 3 0 4 7 7 2 0 

SME 3 1 12 1 13 5 0 6 0 

SME 4 0 10 1 2 6 0 1 0 

SME 5 0 1 1 0 2 0 1 0 

Total 8 39 31 19 28 11 13 0 
Table 4: Issues raised by SMEs about processes in the different domains 

 
After evaluation, we polled SMEs for direct feedback on how much the system helped 
them to achieve their goals. This is a relevant indicator in a system aimed at knowledge-
level process formulation and reasoning like this, which intends to support SMEs to 
achieve these tasks without intervention of KEs. In this direction, two dimensions have 
been explored (usability and utility) whose results are detailed next. 

 

Usability 

Since DarkMatter components are perceived as a whole, integrated system by the users, 
usability was measured in an integrated manner for the whole system. In this regard, the 
System Usability Scale (Brooke, 1996) was adopted and the following questions were 
posed to SMEs: 

• I would recommend DarkMatter to be used by others. 

• I found DarkMatter unnecessarily complex. 

• I think DarkMatter was easy to use. 

• I think that I would need the support of a technical person to be able to use 

DarkMatter. 

• I found that the various functions in DarkMatter were well integrated. 

• I think there was too much inconsistency within DarkMatter. 

• I would expect that most people would learn to use DarkMatter very quickly. 

• I found DarkMatter very cumbersome to use. 

• I felt very confident using DarkMatter. 

• I had to learn a lot of things before I could get going with the DarkMatter. 
 
SMEs were asked to answer each question with a qualitative value ranging from 
strongly agree to strongly disagree, which were then transformed into a quantitative 
value between 1 and 100. Generally, scores around 65 (60-69) reflect average or 
acceptable satisfaction. Scores below 60 suggest poor satisfaction, and those over 70 
suggest good satisfaction.  
 
Table 5 shows the actual usability score as rated by the different SMEs for DarkMatter, 
including the process component. The average score is 64.5, reflecting an intermediate 
satisfaction level, acceptable but still improvable. The fact that SMEs using the process 
component (SME2, SME3, and SME5) provided low scores suggests that the process 
component needs improvement in terms of usability. This is comprehensible since the 
process knowledge type is considerably more complex than the remaining knowledge 



 
 

 

types, and so is the tool itself. However, more intensive training could have probably 
leveraged this measure. 
 

SME1 (Physics) 62 

SME2 (Biology) 50 

SME3 (Biology) 62.5 

SME4 (Chemistry) 87.5 

SME5 (Chemistry) 50 

SME6 (Physics) 75 

Table 5: SUS scores per SME and domain 
Utility 

In addition to the previous questionnaire, during the final interviews, SMEs were asked 
about their impression concerning the utility of the different components for achieving 
the specified goals by indicating their compliance to the following statement: “I found 
this component useful in helping me to achieve my goals”. SMEs rated their compliance 
on a scale from 0 - 4 (strongly disagree - strongly agree). In order to elicit more 
detailed information about their attitude to the tool under consideration, the interviewee 
was also asked about potential improvements that would increase the utility of the 
component. 
 
Figure 20 shows the utility ratings on the process component. Since the process 
component was not used for Physics, ratings concentrate on Biology and Chemistry. 
Chemistry SMEs (SME4 and SME5) did not perceive process as very useful. This can 
be due to more training being needed in this domain, especially for using the test & 

debug component in order to validate the formulated processes and the resulting overall 
knowledge bases. On the contrary, in Biology, where the process knowledge type is 
more evident (and the concentration of process knowledge for the selected syllabus is 
more representative of the domain than in the Chemistry syllabus), SMEs rated 
processes as very useful. 
 
Personal interviews with SMEs, especially SME3, who used the process component 
more intensively, show a high degree of satisfaction with respect to the tool. Specific 
comments from SMEs are as follows:  

• SME1 (Physics): “I didn’t use it... Had no reason to use it”. 

• SME6 (Physics): “I didn’t use it at all”. 

• SME2 (Biology): “It makes the representation of biological models easier”. 

• SME3 (Biology): “The modeling of processes is very useful. It must be possible 

to ask questions about the various states of a process. And asking questions with 

T&D worked okay”. 

• SME4 (Chemistry): “In Chemistry, possible to set by without it; only in one 

case necessary: dissolution; with a better reliability, it would be useful”. 

• SME5 (Chemistry): “I had some trouble coming along, how to use processes 

for Chemistry... maybe it isn’t that important for Chemistry”. 

 



 
 

 

 
Figure 20: SME-rated utility of processes 

7. EVALUATION: SUMMING UP 

In the previous section we have described the evaluation of our approach towards the 
acquisition of process knowledge by SMEs in the context of Project Halo. Now, we 
connect and contrast the results of the evaluation against each of the expected outcomes 
presented in the introduction of this article. Since the evaluation was constrained to six 
SMEs, these results must be analyzed from a qualitative rather than a statistical point of 
view, as follows: 
 

1. Higher quality and less costly knowledge bases of processes, by empowering 
SMEs and taking KEs out of the process knowledge acquisition loop. 

 
Providing SMEs with the tools and methods needed to enable them to formulate 
knowledge can significantly reduce costs of acquiring complex knowledge types like 
processes by taking KEs out of the KA loop. In order to accomplish this vision, it is 
necessary to abstract SMEs from the difficulties of the underlying representation 
languages, simplifying their modeling tasks for the process knowledge type.   
 
In the evaluation, the PSM library clearly helped SMEs in their modeling tasks. 
Furthermore, the SMEs using the methods from the PSM library to acquire process 
knowledge (SME3 and SME5) produced more and significantly better quality process 
models than those who did not use them (SME2). The quality of the resulting 
knowledge bases was determined by the tests created by the SMEs themselves in order 
to check that their process models actually behaved as expected. 82% of the process 
models (in general, those whose authors used the methods of the PSM library in a 
regular basis) were correct. In all cases, the process models were formulated by SMEs 
without intervention of KEs, who only required initial training and sporadic support in 
the utilization of the tools.  
 
Therefore, it is possible for SMEs to acquire and formalize process knowledge without 
the intervention of KEs through the utilization of the methods and tools provided by our 
approach. As a consequence, this reduces the costs of generating the resulting 
knowledge bases. Additionally, the evaluation indicates, but does not provide empirical 
proof, that the resulting SME-authored knowledge bases are at least of such a good 



 
 

 

quality as those produced by KEs since i) they have been checked by test batteries 
produced by SMEs themselves and ii) being produced by the SMEs, they reflect directly 
their expertise of the domain. 
 

2. Reduced complexity of acquiring process knowledge by SMEs through the 

use of PSMs as domain-independent, reusable abstractions of domain-specific 
processes. 

 
The fact that the rate of correct process models produced by the SMEs who made a 
more intensive use of the PSM library during knowledge acquisition was by far higher 
than those who did not use the PSM library indicates that PSMs succeeded in providing 
SMEs with the required level of abstraction to formulate process knowledge. The 
utilization of PSMs as domain-independent process templates contributed to reduce the 
complexity of the modeling task by SMEs, alleviating the blank page syndrome and 
providing SMEs with modeling guidelines about how to build process models and the 
type of knowledge required at each process step. Additionally, the approach was 
welcomed by the SMEs, as shown by their answers to our usability and utility studies.  
 

3. Keeping acquisition of process knowledge at the knowledge level through an 
underlying process knowledge representation formalism transparent from SMEs. 

 
The process component provides SMEs with means to model processes without 
worrying about the encoding of such process models in a particular language, thus 
keeping acquisition of processes at the knowledge level. The synthesis of executable 
code for actual reasoning with the formulated process models is completely transparent 
from SMEs, who can therefore focus on modeling. As a consequence, SMEs interact 
with the system in terms of their own domains, avoiding the knowledge acquisition 
bottleneck. 

 

4. Flexible and reusable mechanisms for acquisition and reasoning with 

process knowledge by SMEs, maximizing the application of the approach 
across several domains with little effort. 

 
Both the process metamodel and the PSM library have been used in the context of two 
of the three target domains (Chemistry and Biology), showing evidence of their 
reusability in this context. As to the graphical process modeling and reasoning 
environment, it is domain-independent and can be directly applied in any domain. 
Reusing the whole approach in other domains would however require updating the PSM 
library as necessary for such domains. The positive experience with the support 
currently provided for this task encourages the application of our approach to other 
domains, such as Business or Ecology. 

8. DISCUSSION AND FUTURE WORK 

Building executable systems from conceptual descriptions is not something new. Some 
of the most important issues discussed in this article have been already addressed in the 
literature, including modeling at the knowledge-level, allowing developers to build 
knowledge systems focusing on logical rather than operational aspects, and the 
development of structured libraries of reusable PSMs. However, the main difference 
between these approaches and the work described herein concerns the target users. 



 
 

 

While earlier systems aimed to support KEs in building knowledge intensive 
applications, we focus on creating tools that allow SMEs themselves, without the 
intervention of KEs, to author scientific knowledge of a particular type: processes. 
 
Process knowledge is one of the most widely used and complex types of knowledge, 
even beyond the target domains treated herein. Domains like business, healthcare, 
climate prediction and ecology in general are rich in process knowledge. In order to 
enable SMEs to model and reason with processes, tools must abstract SMEs from the 
formal representation and enactment of process-oriented reasoning, based on knowledge 
entities that can be reused across different domains with a reduced cost. Unfortunately, 
it is not sufficient to have a process metamodel describing individual process entities, 
e.g., actions, resources, etc, which must be connected like Lego blocks in order to build 
potentially large and complex processes, since SMEs lack the required knowledge about 
how to combine those pieces.  
 
Thus, SMEs need guidance that allows them to build well-formed, consistent process 
models. Ideally, this guidance could be provided by a process ontology that described 
the most frequent process types and could be reused across different domains. However, 
complex, domain-specific processes are difficult to generalize into abstract and reusable 
process classes, and therefore any process ontology is very unlikely to provide enough 
coverage to support each of the processes of one or several domains. On the other hand, 
processes can be decomposed into subprocesses, producing atomic processes that, quite 
on the contrary, are indeed amenable to be abstracted into (primitive) PSMs as high-
level but still easy to manipulate building blocks. This provides SMEs with the required 
modeling guidance, enabling SMEs to build complex processes by aggregating such 
domain-independent PSMs as process knowledge templates and instantiating them in 
their own domains.  
 
Final interviews with SMEs showed that the process component could be improved in 
terms of usability and also that the training received was not enough in order to 
completely master its functionalities. Nevertheless, the combined use of the process 
metamodel and the PSM library allowed SMEs to model all the process knowledge 
occurrences identified in the evaluation syllabus. In any case, though the use of PSMs 
provides SMEs with extended modeling capabilities for representing processes, it is still 
hard for SMEs to realize how to combine these process knowledge templates in order to 
build complex processes. This problem, derived from the bottom-up nature of our 
approach, could be addressed by means of an ontology that describes the multiple 
combination patterns of the different PSMs, taking into account the context provided by 
the domain of the process being modeled.  
 
Additionally, the evaluation showed that increasing the expressiveness of the process 
metamodel will be necessary in order to allow representing more complex process 
constructions from different domains and enabling more sophisticated reasoning that 
supports answering questions addressing extensive flow characteristics of process 
knowledge. For example, scientists designing a complex biotechnology experiment will 
need to reason on the different stages comprised in the process, e.g., regarding certain 
process steps as optional or context-specific, that need to be expressed by our 
metamodel. This will help SMEs to understand the consequences of adding a new stage 
to their processes or what process steps would be necessary and how they should be 
arranged in order to achieve a certain outcome of the overall process.  



 
 

 

 
Though large part of the PSMs from the PSM library are abstract enough to be reused in 
domains different from the scientific ones discussed here, a detailed analysis of those 
domains would probably reveal new abstract processes that would lead to the inclusion 
of new methods in the PSM library. Furthermore, the same process abstractions can be 
named differently in different domains. For an appropriate reuse in other domains, 
SMEs need to be provided with the required lexical resources. An interesting line of 
work that can simplify the modeling task for SMEs is the use of NLP techniques for the 
detection of process instances in textual sources and the identification, from amidst the 
PSM library, of the PSMs suitable for modeling them. We have preliminarily explored 
this path but, since processes can be described in such various ways using free text, 
even implicitly, as, e.g., in textbooks, their identification is extremely complicated 
beyond detection of the most frequently used verbs in processes and the process 
metamodel entities and their synonyms. 
 
In summary, we have shown that it is possible to engage SMEs in formulating complex 
knowledge like processes. However, the solutions that we have proposed live on the 
ground of the Semantic Web in the Small. We have adopted relevant Semantic Web 
principles like ontologies and PSMs and applied them to the formulation of processes 
by SMEs in a well-defined scenario, with a limited number of SMEs, and well-known, 
complete, and reliable sources of information. The application of the methods presented 
in this article to the open and unregulated scenario proposed by the WWW anticipate 
exciting research challenges related with the acquisition, sharing, and reuse of process 
knowledge by communities of online users. Such challenges include technical issues, 
such as nonmonotonicity, dealing with possible inconsistencies of distributed but 
interacting knowledge bases, as well as trust issues, performance, and scalability. 
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APPENDIX A: A PSM Library for Process 

Knowledge  
This appendix contains an extensive description of the PSMs contained in our PSM 
library. The graphic representation chosen to describe the methods is the PSM 
knowledge flow view. This perspective supports SMEs during knowledge acquisition, 
bridging the gap between the particular, domain-specific process being formulated by 
SMEs and the generic, domain-independent PSMs, whose roles are grounded into the 
corresponding domain for that particular process. 
 
For each particular PSM, occurrences of the higher-level definition of resources (roles), 
decisions, and actions, as in Figure 4, Figure 5, and Figure 6, respectively, are extended 
with more specific terms from our process metamodel, which refine them. Additionally, 
the description of each PSM is accompanied by a table that summarizes its properties14.  

Category Join 

Form processes 

The PSM library contains two different methods which can be applied to achieve a 
process of the Form type: form by combination (Figure 21) and form by aggregation 
(Figure 22). The output of a combination method is a completely different element from 
the input, while in the case of an aggregation the input does not lose its properties. 
Method form by combination can be applied to processes like, e.g., a chemical 
precipitation or an ionic binding. In Biology, this method can be applied to processes 
like, e.g., fusion (a firm association between two cellular components). On the other 
hand, form by aggregation can achieve processes like, e.g., chemical mixes or 
biological attachment processes. In comparison to fusion, in these processes a loose and 
temporally restricted association between substances occurs (e.g., an attachment of a 
tRNA molecule to an mRNA codon). 
 
name form by combination 
Goal ∃ ep, cp 

member(combination set, element) and  
property(element, ep) and  
property(combination, cp) and  
ep ≠ cp 

input roles combination set, combinatory 
output roles combination, byproduct 
                                                 
14 For a more simple notation, we assume variables (representing method roles) to be universally 
quantified in the goal expression. Additionally, predicates member/2, property/2, interpretation_of/3, 
is_byproduct_of/2, part_of/2, interact/2, and layout/2 contribute to simplify the goal expression.  



 
 

 

 

 
Figure 21: PSM form by combination 

 
Name form by aggregation 
Goal member(aggregation set, element) and  

member(aggregation, element) 
input roles aggregation set, aggregator 
output roles Aggregation 
 

 
Figure 22: PSM form by aggregation 

Contrast processes 

Process of putting together an item with well-known property/ies and another one 
whose property/ies is/are totally or partially ignored, and draw a series of conclusions 
from the results of such interaction. PSM compare & interpret can be applied to this 
process category by dividing the original process in two subprocesses: compare and 
interpret. During the first subprocesses, the reference element is compared against the 
element whose properties are unknown. Then, the observations obtained are interpreted 
and a conclusion, i.e., the contrast, is produced. 
 
name compare & interpret 
goal interpretation_of(pattern element, element, contrast) 
subactions compare, interpret 
input action Compare 
output action Interpret 
input roles pattern element, element 
output roles Contrast 
 



 
 

 

 
Figure 23: PSM compare & interpret 

 
Titration, in Chemistry, is an example of a contrast process where a solution of 
unknown concentration (role element in PSM compare & interpret) reacts with one of 
known concentration (pattern element). The point at which stoichiometrically 
equivalent quantities are brought together is known as the equivalence point of the 
titration and determines the concentration of the unknown solution (contrast). Titrations 
can be conducted using acid-base, precipitation, or redox reactions. 

Neutralize processes 

PSM neutralize specializes form by combination to describe processes whose output is 
the result of combining its input in a way that the relevant properties of those element 
are no longer present in the output. 
 
name neutralize 
goal member(neutralization set, element) and  

property(element, ep) and  
property(neutralization, cp) and  
ep ∩ cp = ∅ 

input roles neutralization set, neutralizer 
output roles neutralization, byproduct 

 
Figure 24: PSM neutralize 

 
An example of neutralization are chemical reactions between the neutralization set 

formed by an acid (element) and a base (element) in order to produce a salt 
(neutralization) and water (byproduct). 

Category Split 

Consume processes 

Items undergoing this process do not exist anymore. Upon termination, neither any so 
called product has been created, only byproducts. 



 
 

 

 
name consume 
goal member(consumable set, element) and  

is_byproduct_of (waste, element) 
input roles consumable set, consumer 
output roles byproduct 
 

 
Figure 25: PSM consume 

 
Combustion is an example of consumption where the combustible (element) is burnt by 
fire (consumer) to produce byproducts like CO2 and H2O (waste) 

Decompose processes 

PSM decompose is the reverse from form by aggregation. Processes achieved by this 
PSM take an element and produce two or more other items upon termination.  
 
name decompose 
goal member(constituent set, piece) and  

part_of(piece, element) 
input roles element, decomposer 
output roles constituent set 

  

Figure 26: PSM decompose 

Examples of decomposition processes are distillation, filtration, and photodissociation. 
Other examples are hydrolysis, a chemical process where a substance is split in parts by 
the addition of water molecules, and the formation of the cleavage furrow. The cleavage 
furrow is a structure developing during mitosis. The middle of the dividing cell grows 
inward until the two new cells are separated. 



 
 

 

Recombine processes 

PSM decompose & combine can be applied to this process category by dividing the 
original process in two subprocesses: decompose and combine. During the first 
subprocesses, the input is divided into its constituent elements, which are then put 
together to produce te overall output. It is a specialization of PSM form by combination. 

 
name decompose & combine 
goal member(recombination set, element) and  

member(constituents set, piece) and 
part_of(piece, element) and  
part_of(piece, combination) and 
∃  ep, cp  
property(element, ep) and 
property(combination, cp) and  
ep ≠ cp 

subactions decompose, combine 
input action decompose 
output action combine 
input roles recombination set, decomposer, combinatory 
output roles combination, byproduct 
 

 
Figure 27: PSM decompose & combine 

 
Examples of application of this PSM include reformation, where cellular components 
which have been destroyed (in part) during some process can afterwards be restored to 
build new structures, and digestion. Digestion splits nutrients into its finest components, 
which can then be used to build new cellular tissues. This PSM has also been used to 
formulate the precipitation process in Figure 16. 

Replicate processes 

PSM replicate, achieving this category of processes, copies its input and produces an 
exact replica. 
 
name replicate 
goal element = replica 
input roles element 
output roles element, replica 
 



 
 

 

 
Figure 28: PSM replicate 

 
Biology seems to be the domain where a large number of replicative processes occur, 
e.g., those related to the cell cycle, DNA replication, sexual reproduction, transcription, 
translation, and binary fission.  

Category Modify 

Transform processes 

name transform 
goal transformed element ≠ element 
input roles element, adapter 
output roles transformed element 
 

 
Figure 29: PSM transform 

 
Examples of transformation processes are cell growth (a change in size and structure of 
a cell), changes in chemical structures, e.g., posttranslational modification, RNA-
processing, and metabolic reactions, synthesis processes during which some cellular 
component or substance is produced, e.g., protein, DNA, RNA, membrane, or 
organelles, detoxifications, when accompanied by a change in the chemical structure 
and function, and energy transformations, e.g., cellular respiration and photosynthesis, 
where the energy of sunlight is transformed into chemical energy.  

Implement processes 

PSM situate & combine can be applied to this process category by dividing the original 
process in two subprocesses: situate and combine. During the first subprocess, the new 
element is settled in its new environment. Then, both combine in order to produce an 
evolution of the later. 



 
 

 

 
name situate & combine 
goal ∃ ep, cp, vp 

property(element, ep) and 
property(environment, vp) and 
property(combination, cp) and  
ep ≠ cp and 
vp ≠ cp 

subactions situate, combine 
input action situate 
output action combine 
input roles element, environment, driver, combinator 
output roles combination 
 
Embryogenesis is an example of process that can be achieved by this PSM. It is the 
process of cell division and cellular differentiation which leads to the development of an 
embryo, occurring in both animal and plant development. Mitosis happens all through 
the process, generating more and more cells, making the embryo grow. The blastocyt 
grows and invades the uterus where it stays until the end of its development. 

 
Figure 30: PSM situate & combine 

Balance processes 

In Nature, items put together tend to equilibrate each other’s properties. The result of 
this kind of processes is an adjustment in the properties of the interacting elements until 
they reach an equilibrium point where changes stop  
 
name balance 
goal member(balanced set, e1) and 

member(balanced set, e2) and 
¬ interact(e1, e2) 

input roles unbalanced set, stabilizer 
output roles balanced set 

 
Figure 31: PSM balance 



 
 

 

Examples of balance processes achievable by this PSM are osmosis and the 
autoionization of water. 

Category Locate 

Situate processes 

This process category and its associated PSM refer to spatial notions. Though expressed 
in the Physics domain, using the MATH knowledge type, other domains, fundamentally 
Biology, express movement basically in terms of the PCS knowledge type, describing 
the cause and the agents inducing motions and their effects on the matter. 
 
name Situate 
goal original situation ≠ final situation and 

property(element, ep) and 
property(situated element, sp) and 
ep = sp 

input roles element, driver, original situation 
output roles situated element, final situation 

 
Figure 32: PSM situate 

Examples of processes achievable by PSM situate are cell export/import, where 
substances are transported in and out of the cell, and cell movement, where it is the 
whole cell that moves from one location to another. 

Oscillate processes 

PSM oscillate specializes situate. Figure 33 adds a visual notion of control flow to the 
extended data flow view. Oscillation is periodic and needs specifying a loop condition 
in that regard by means of the specific construct of the process metamodel periodic 

action. 
name oscillate 
goal original situation = periodic situation  

property(element, ep) and 
property(situated element, sp) and 
ep = sp 

input roles element, driver, original situation 
output roles situated element, periodic situation 



 
 

 

6 
Figure 33: PSM oscillate 

 
Wave propagation, particle oscillation, vibration and applications like echolocation in 
the Physics domain can be classified into this category and represented using PSM 
oscillate. 

Rearrange processes  

In general, it appeals to processes where elements are recombined but their internal 
structure remains. It can also be regarded as a specialization of transformation 
processes. 
 
 

name rearrange 
goal layout(rearrangement set, initial_layout) and  

layout (rearranged set, final_layout) and 
initial_layout ≠ final_layout 

input roles rearrangement set, driver 
output roles rearranged set 

 

 
Figure 34: PSM rearrange 

 
Examples of rearrangement include changes in conformation, i.e., processes leading not 
to a change of the chemical structure, but to a change in the (3-dimensional) 
conformation of a substance, e.g., a change in protein conformation, chromosome 
condensation, and contraction.   

Release processes 

In general, an agent acting upon a store for a set of items gives them out upon fulfilment 
of a precondition. PSM accumulate & consume can be applied to this process category 
by dividing the original process in two subprocesses: accumulate and consume. During 
the first subprocesses, elements of a given type are accumulated. Then, upon a certain 



 
 

 

condition, the accumulated elements are consumed. Examples of this process category 
include hormone secretion after accumulation in the corresponding gonads. 
 
name accumulate & consume 
goal member(storage, element) and  

is_byproduct_of (waste, element) 
subactions accumulate, consume 
input action accumulate 
output action consume 
input roles element, storage, accumulator, consumer 
output roles waste 

 
Figure 35: PSM accumulate & consume 

 


