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Abstract

The development of customized image processing applications is time con-
suming and requires high level skills. This paper describes the design of an
interactive application generation system oriented towards producing image
processing software programs. The description is focused on two models
which constitute the core of the human-computer interaction. First, the for-
mulation model identifies and organizes information that is assumed neces-
sary and sufficient for developing image processing applications. This model
is represented as a domain ontology which provides primitives for the formu-
lation language. Second, the interaction model defines ways to acquire such
information from end-users. The result of the interaction is an application
ontology from which a suitable software is generated. This model emphases
the gradual emergence of a semantics of the problem through purely symbolic
representations. Based on these two models, a prototype system has been
implemented to conduct experiments.

Keywords: Human-computer interaction, Knowledge acquisition, Ontology
design, Image Processing and Computer Vision

1. Introduction

The development of image processing applications has proven to be a
highly complex and time consuming activity. This prevents the penetration
of image processing into industry, whereas the demand for concrete appli-
cations is growing in all domains: medicine, biotechnology, remote sensing,
astronomy, ecology, security, forensics, chemistry, surveillance, quality con-
trol, etc. As a result, it is becoming important to develop systems that
can help end-users build customized applications. The challenge is to allow
end-users to program software at the image feature level rather than at the
computer code level.
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This paper is meant as a contribution to the development of a system ori-
ented towards producing customized software programs for image processing
applications. Such a system is first configured “off-line” by image process-
ing experts, with resources required to process images in a given application
domain, for example segmentation of cytology images. Then, the system is
distributed to end-users of the target domain, for example cytotechnologists.
Users interact “on-line” with the system to autonomously produce concrete
applications in the target domain. Their role is focused on query formulation.

In absence of consensus on a clear-cut boundary of the image processing
field, we supply our own definition so as to delineate the project scope.

Definition 1. Image processing is any form of image-to-image transforma-
tions without any interpretation of content, for which input data are iconic
images and output data are iconic, intrinsic, or segmented images.

Our definition locates image processing applications as one component of
the low level part of more global image analysis or computer vision systems.
Thus, image processing is not an end in itself and it has no decision-making
authority. Its role is completely determined by the high-level part which uses
its results to perform interpretation, visualization, storage, or transmission
of image data. Definition 1 is stated from the point of view of the trans-
formation objectives and the input image types. It is narrower than other
definitions available in the literature (e.g., [1, 2, 3]), and excludes higher level
categories of objectives such as feature extraction, object classification, and
object recognition. Only six categories of objectives are considered:

• Restoration objectives refer to recovery of an original image from de-
graded observations, knowing the degradation phenomenon.

• Enhancement objectives concern the improvement of the visual quality
of images.

• Compression objectives address problems related to the reduction of
the amount of data needed to store a digital image.

• Reconstruction objectives intend to infer new spatiotemporal informa-
tion such as shape, 3D, and motion.

• Segmentation objectives aim at structuring signal information into more
abstract primitives such as regions, contours, and points of interest.

• Detection objectives seek to build positive masks that locate informa-
tion of interest.
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These six objectives are considered independent. However, Definition 1
makes no assumption about the way they may be achieved. For example, an
image segmentation program can be implemented by means of restoration,
enhancement, and feature extraction operations.

An image processing application is devoted to one of the above mentioned
objectives and one class of “similar” images. Consider the following image
analysis application that will be used as a running example throughout this
paper. It is a biological application in the context of cancer screening de-
scribed in [4]. The purpose is to assist cytotechnologists in finding suspect or
abnormal cells from the analysis of serous cytology images. Within this im-
age analysis application, the specific image processing objective is to segment
images into regions corresponding to individual cells. Then, the resulting re-
gions will be fed into a classifier which has been trained to identify the various
cellular types. The image class (see examples Figure 1) is composed of color
images of serous effusions acquired by an optical microscope always under
the same resolution and illumination conditions.

Figure 1: Four samples of microscopic images of serous effusions. (Reproduced by courtesy of
the Pathological Anatomy and Cytology Department of the Public Hospital Center of Cotentin.)

Within application generation systems, the interface between human and
computer plays a preponderant role. This interface is the only means to take
into account end-user requirements. Its expressive power determines the
scope of the system and its degree of compliance with the user requirements.
In this paper, we argue that the formulation interface must be more than a
simple passive control panel that exhibits the elements identified as necessary
for carrying out the solutions stored into the system. Indeed, through such
control panels, users believe they develop customized applications, but in
fact they only choose and parameterize ready-made ones. Actually, the pre-
existing solutions are hidden under a predefined list of task names exposed
on the interface, and the parameters are hidden under a predefined list of
image features to be set. Thus, the query is composed with the same list of
features for every problem, only feature values may change.
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On the contrary, to cope with unanticipated problems and to develop
genuine customized software programs, the solution and the query should
be built incrementally by complementarity between the user and the system
[5]. The query should be composed with only relevant features, and the
program should be constructed by aggregation of solution elements according
to the query composition. In this new perspective, the interface provides a
formal language that allows for rich formulation of application problems, and
organizes the cooperative problem-solving process by dynamically linking
user formulation elements to solution elements provided by the system. As
a result, the final software program is the best compromise between user
intentions and system processing capabilities.

This idea has been in use in interactive image segmentation for a long time
[6], and more recently in image retrieval [7, 8]. But it is difficult to implement
in the case of interactive construction of image processing applications. The
main difficulty stems from the need to design a solution that will suit a whole
class of images, and not only a single image. Some recent works have been
undertaken with the idea of complementarity between human and computer
for the interactive development of image processing applications, such as
those of Draper et al. [9], Levner et al. [10], Nouvel et al. [11], or Hudelot
et al. [12]. But to reduce complexity, these systems remain limited to sole
cases of image segmentation problems where the concept of describable and
measurable objects of interest exists in the scene.

Our goal is to propose a general purpose system that covers all the
image processing objectives as stated in Definition 1, and that is domain-
independent. In its current state, the system is limited to 2D and 3D still
images. If users no longer have to be image processing experts, they still
need to have image processing skills, since they have to identify what image
information is relevant for performing accurate processing.

This paper is focused on the definition of two models that are the pre-
requisite for the design of such interactive systems: the formulation model
and the human-computer interaction model. The formulation model iden-
tifies what kind of information is necessary and sufficient for the system to
produce customized software programs. This model provides the basis for
the definition of a query language. The interaction model identifies ways to
collect this information from users in order to compose queries. However,
problems raised by the generation of the software solution as well as those
raised by the evaluation of the image processing results are beyond the scope
of the paper. The rest of the paper is organized as follows. Section 2 first
discusses the problematics of the formulation of image processing objectives
and then presents a review of various approaches to address this issue. Our
formulation model is detailed in Section 3. The formal representation of
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formulation information rests on a domain ontology, which is presented in
Section 4. Section 5 details the human-computer interaction model and the
means to acquire formulation information from end-users. Then, experiments
and discussion of the results are given in Section 6. Finally, conclusions and
future directions of research are presented in Section 7.

2. Image processing formulation problematics

The purpose of this section is to explain why it is so complex to provide
formulations of image processing applications and to review some approaches
from the literature.

2.1. Why image processing application formulation is necessary?

Inferred from Definition 1, we propose the following definition of image
processing application, stated from a functional standpoint:

Definition 2. An image processing application is a software specialized in
the achievement of a given image transformation goal from input images
belonging to a given class.

This definition clearly determines an image processing application by one
image transformation goal and one image class defined as a set of images that
share common features. Therefore, one can conclude that the development
of image processing applications is not an activity that operates without
purpose and knowledge about the objective. The reason is twofold. First,
image acquisition is responsible for creating incomplete, degraded, and cor-
rupted images that underconstrain the observed scene (e.g., noise, blur, loss
of motion or depth) [13]. Second, the image content has no meaning in itself.
An image is inherently ambiguous and does not provide information about
its content. Without a goal, an image cannot allow to discriminate between
relevant and irrelevant information. For instance, apparently simple informa-
tion like object edges is impossible to extract accurately without knowledge
about the type of edges observed in the images. Edges are usually modeled
as sharp changes in image intensity, but it is also the case of noise, shadows,
and texture elements. Accordingly, the problem to be solved is external to
the input images and therefore a problem formulation is required.

2.2. What is involved in an image processing application formulation?

Every image processing algorithm is built on a presupposed model of the
information contained in the images which conditions its domain of definition.
Consequently, the formulation aims at providing an explicit representation
of the model of information to be considered for a given application which
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allows the system to select relevant algorithms. As pointed out above, the
model of information should be composed of three categories of information
absent from the input images:

1. the expression of the goal in order to give the subject matter of the
application;

2. the description of the image acquisition process in order to reveal lost,
altered, and hidden information about the observed scene;

3. the definition of the application domain concepts in order to assign
meaning to the observed scene by designating information to be con-
sidered as relevant in the images.

The first category of information is collected during the goal specification,
and the last two categories during the image class definition. Therefore, an
image class is a set of images which share common features in terms of acqui-
sition effects and relevant information. All these information elements must
be provided by users. However, the difficulty is to set an appropriate formu-
lation level since humans provide a semantic interpretation of the problem
whereas computers use a symbolic representation. Hence, formulating means
bridging the sensory and semantic gaps that separate the real world, which
is the level of the problems, from the symbolic world, which is the level of the
processing solution. The sensory gap results from the acquisition. It is the
difference between objects in the world and their representation in images [7].
The semantic gap is the difference between the interpretation of a scene that
one can make from images and the interpretation made from a denotation
of the image contents in terms of symbolic features [7]. Therefore, the role
of the human-computer pair is to express a real-world problem as a set of
measurable symbolic features.

2.3. Related works on image processing application formulation

Two approaches for image class definition as well as two approaches for
goal specification can be identified in the literature.

2.3.1. Image class definition

The two approaches to image class definition distinguish between the
iconic description (definition by extension) and the linguistic description (def-
inition by intension).

Definition by extension. In this approach, relevant information elements are
represented by sample image parts. In order to perform image processing,
a list of measurable features should be extracted from these sample image
parts. Two types of sample image parts can be considered: blobs and patches.
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• A blob surrounds an image area that isolates one visual manifestation
of an object of interest (e.g., Figure 2.a) or one acquisition effect. For
example, noise features can be calculated from an image area that
is supposed to be homogeneous in the scene. Blobs can be drawn
manually or obtained from an automatic segmentation [14, 15].

• A patch is a thumbnail that isolates one visual manifestation of one
salient part of one object of interest. Thus, an object of interest is
identified by a collection of patches together with the spatial relations
between one another (e.g., Figure 2.b). Patches are the terms of an
iconic vocabulary used to describe the various appearances of an ob-
ject of interest. Generally, patches are automatically extracted from
sample images around the interest points [16, 17], which are regarded
as information-rich locations.

Figure 2: Two different ways to define by extension the commercial vehicle of image (a),
from blob (b), from patches (c).

Definition by intension. In this approach, the definition of image classes is
done using a linguistic description of the relevant information. The formu-
lation language is generally built over a domain ontology which provides the
concepts for describing the image classes and the role of these concepts. This
approach is widely used in content-based image and video retrieval, most of
them inspired by the MPG-7 standard [18, 14, 19, 15, 20, 21]. Thereby, the
formulation of a concrete application refers to the construction of an applica-
tion ontology which consists in choosing and reifying concepts of the domain
ontology [22]. For example, Maillot et al. [20] propose a visual concept on-
tology that distinguishes between concepts of texture, color, geometry, and
spatial relation. Figure 3 gives a simplified textual representation of an ex-
ample of an application ontology that defines an image class of grains of
grass pollen with respect to the concepts of this ontology. In order to better
capture the variability of the visual manifestation of objects, an image class
definition should be phrased by means of linguistic variables (e.g., “pink”
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“red”, “circular”, “slightly oblong”, “is front of”, “close to”) [23, 24]. But
image processing needs quantitative values. Therefore, intensional definition
should cope with the symbol anchoring problem [25], in order to connect the
linguistic symbol to numerical image data. Generally, symbol grounding is
addressed as a learning problem from a base of blobs [20, 26, 24].

Figure 3: A simplified textual representation of the definition of a pollen grain of type
poaceae using the concepts available in the visual concepts ontology proposed by [20].

2.3.2. Goal specification

The two approaches to goal specification depend on whether the goal is
expressed by what to do (specification by task) or by what to get (specification
by example).

Specification by task. A task describes a particular processing objective. Con-
straints may be associated to fine-tune the scope of the task. For example,
a request for the Multimission VICAR Planner (MVP) system is just “ra-
diometric correction” [27] and a request for the Low-Level Vision Expert
(LLVE) system is more detailed “find a rectangle whose area size is between
100 and 200 pixels” [28].

Specification by example. A goal is formulated by the way of reference images
which contain the representation of the result to be obtained from test images.
Three different representations have been suggested in the literature:

• Reference images as sketches of the expected results (e.g., Figure 4.a).
Sketches are drawn by the user on test images as samples of the contours
[29] or the region boundaries to be extracted [9].

• Reference images as ground truth. These are complete expected results
for test images [30] (e.g., Figure 4.b).

• Reference images as rough scribbles drawn inside the regions of interest
(e.g., Figure 4.c) [31, 32]. These scribbles are markers positioned inside
the regions to be extracted and their complementary regions. They are
generally used as initial seeds of a region-growing segmentation process
for isolating the expected regions of interest.
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Figure 4: Three approaches for the specification by example of a segmentation goal: (a)
from sketch (b) from manual segmentation (c) from scribbles.

2.4. Towards a formulation model

One can notice that the two approaches of the image class definition as
well as the two approaches of the goal specification are complementary.

The advantage of a definition by extension is undoubtedly to minimize
the amount of a priori information that it is necessary to supply. Hence, it
reduces the user cognitive load since it does not require any formal language,
even if it may be tedious when the number of sample images to provide
is high. The drawback is that the way to deduce the symbolic definition
of the image class from examples is implicitly encoded within the system,
generally through feature selection or patch extraction methods. It means
that the semantics of the application is not completely decided by users.
Conversely, the advantage of a definition by intension is to better reflect
the expertise about the scene since it provides users with a language able
to represent the semantics of the application. Thus, users can master the
semantics of their application. In addition, this approach can be applied to
3D images and image sequences as well [33]. However, the drawback is that a
linguistic description of the image content is known to be difficult to perform
[7]. This requires skills and a long refinement process so as to choose the
right descriptors and set the appropriate values.

Specification by task has the advantage to cover all the objectives iden-
tified in Definition 1. Moreover, the tasks can take into account specific
user requirements through associated constraints. However, the drawback
is that the formulation is qualitative with no direct link to the image data.
This has two consequences: first, the specification of a task is not explicit
enough to predict the exact expected results, and second, there is only a
finite number of possible problem statements (a combination of predefined
tasks and constraints). On the other hand, the advantage of the specification
by example is that the formulation is quantitative and that it gets its values
directly from the image data. Therefore, it allows for an infinite variety of
problem statements (actually, as many as there are images). Moreover, it
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reduces the user cognitive load because no specialized formal vocabulary is
required to state the problem. The drawback of this second approach is that
a reference image is not self-sufficient to formulate applications, for at least
three reasons. First, this approach does not cover the whole range of image
processing objectives. It only addresses object detection, image segmenta-
tion, and image enhancement objectives. Second, it does not span all image
classes. In particular, it gets tedious using it for 3D image or image sequence
applications, even though the sketch-based approach has been extended to
3D images for a particular medical application [34]. Third, it does not take
into account precision or quality requirements. For example constraints such
as “prefer false detection to misdetection” or “prefer no result to bad result”
cannot be conveyed by reference images.

Therefore, a non-dedicated system should integrate all of these approaches.
The goal specification should be done by task, in order to state the concrete
objective of the application, and by example, when possible, to ground the
objective into the image data. The image class definition should combine a
definition by intension in order to capture the semantics of the application
and a definition by extension, each time it is possible, to get closer to the
real nature and internal consistency of the data.

3. Formulation model

Our proposed formulation model takes advantage of human-computer in-
teractions to build an intensional definition of the application objective which
gradually expresses the semantics of the application through purely symbolic
representation, starting from an initial extensional definition.

3.1. System overview

Our interactive software generation system consists of two main subsys-
tems interacting with one another [35] (see Figure 5): a query formulation
subsystem based on a user-friendly interface, and a software generation sub-
system operating from a query and a set of test images.

The user formulates an image processing objective through the formu-
lation interface. The formulation subsystem queries the software generation
subsystem with a formal representation of the objective. The software gener-
ator builds an appropriate software program and returns the images yielded
by the execution of this software on test images. Upon seeing the resulting
images, the user may reconsider his formulation and decide to submit a new
query with a refined description of the objective. The formulation cycle stops
as soon as the user deems the test results acceptable.
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Figure 5: Architecture of our interactive software generation system.

To conduct our experiments, image processing software program gener-
ator Borg [36] has been used. Borg is a knowledge-based system that rests
on the program supervision paradigm [37], which is prominent in image pro-
cessing program reusing (e.g., [38, 39, 40, 27]). In this paradigm, image
processing operations are implemented as executable programs and stored
into a library. Software production consists in choosing appropriate oper-
ators from this library, tuning associated parameters, and then organizing
them thanks to iterative, repetitive, and alternative control structures so as
to compose complex processing chains. As a result, software programs are
implemented as graphs of operators which define execution schemas.

To build a solution as a graph of operators, Borg uses a hierarchical ab-
stract reasoning that consists in three decision-making levels, which succes-
sively address the determination of a strategy to achieve the objective (e.g.,
top-down, bottom-up, or hybrid strategy), the choice of tactical methods to
perform each part of the strategy (e.g., pixel classification, edge detection,
noise reduction), and finally the selection and the tuning of operators to im-
plement the methods. The knowledge base consists of multiple Knowledge
Sources that are rational agents encapsulating one way to contribute to the
construction of solutions. Thus, the building of a solution needs the coop-
eration of several Knowledge Sources. Their accuracy depends on necessary
conditions and aptitude measures. The conditions are verified and the apti-
tude measures are computed from the query contents. At each step of the
resolution, the control mechanism selects and executes the Knowledge Source
with the highest aptitude.

3.2. Query composition

The software generator requires a linguistic representation of the problem
grounded in the image data to perform an abstract reasoning. A linguistic
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expression is an explicit intensional representation of the objective and mean-
ing of the application made up of an organized set of symbols. The symbol
values must be grounded into the data to provide a representation directly
related to the appearance of real world information [41]. Broadly speaking,
the abstract reasoning uses the symbols of the query to decide on the strat-
egy, the methods, and the operators of the solution, whereas it uses the image
values to parameterize and control its execution. For example, the system
will choose a segmentation technique based on pixel classification if the user
describes the physical objects by their color. The range of acceptable color
values is then used to parameterize and control the pixel classification.

A query submitted to Borg is represented by a goal and an image class.
The goal combines a task and reference images. We only consider ground
truth reference images. The task specifies the problem to solve and reference
images provide some expected results. The image class is represented as a set
of linguistic descriptors with numerical and iconic values. The formulation
language is defined over a domain ontology (see Section 4). Indeed, “an
ontological query language provides a way of narrowing the semantic gap
between users and the system by providing a shared language and hierarchy
of concepts for both” [41]. Thus, a formulation of a concrete application is
represented by an application ontology which is a specialization of the domain
ontology in a specific application domain.

3.3. Frame Problem

To reduce the complexity of formulation, we propose to narrow down the
scope of the problems accepted by the system to a unique task. This avoids
dealing with the frame problem.

Real-world image processing problems often involve more than one of
the tasks identified in Definition 1. These tasks are chosen and organized
sequentially by the users, regarding their practice of image content analysis.
For instance, for the serous application, the cytotechnologist considered that
the complete localization of the serous cells required a sequence of four tasks:

1. “Illumination correction”, to compensate the heterogeneity of the illu-
mination on the slide;

2. “Detection of serous cell nuclei”, to stop the processing program if
there is no cell on the slide;

3. “Elimination of red blood corpuscles”, to remove distracting objects
that hinder the localization of the cell nucleus boundary;

4. “Extraction of serous cell nuclei”, to localize the serous cell nucleus.

A sequence of several tasks forces the system to update the image class
definition after each task completion, before performing the following tasks.
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The frame problem arises when the system has to describe the effects of
processing operations on the initial image class definition. For example, the
task “Illumination correction” may affect the color appearance of red blood
corpuscles and thus may change the definition of the image class for the next
task “Red blood corpuscles elimination”. Unfortunately, the determination
of the effects of image processing operations on images is known to be a very
difficult—may be impossible—task. To avoid the frame problem, each task
is considered separately and therefore users have to provide one definition of
the image class for each task.

3.4. From extensional to intensional problem representation

Even reduced to one task, a linguistic intensional representation of the
problem grounded in the image data is still difficult to provide. To help
users, the linguistic definition of the image class is initiated by an extensional
definition.

3.4.1. Formulation by extension

An extensional definition of an image class has the twofold advantage
of being pretty easy to provide by end-users and offering a solution to the
symbol anchoring problem. The extensional definition of an image class
uses blobs and entire images to describe objects of interest (e.g., serous cell
nucleus) and image characteristics (e.g., the illumination model of a scene).
Users build extensional definition through suitable graphical interfaces.

3.4.2. Formulation by intension

The intensional definition is built using feature extraction for each concept
or characteristic described with blobs and images in the extensional defini-
tion. For example, if the user defines the concept of “serous cell nucleus” as
a region and describes it with blobs, the system will automatically compute
all region features such as colorimetry, photometry, morphology, size and so
forth. The variability of the “serous cell nucleus” region appearance in the
blobs is captured by numerical intervals of extreme values. The intensional
formulation is thus a set of symbolic descriptors with numerical or linguistic
values.

3.5. Emergent semantics

Not all the descriptors defined by the domain ontology are necessarily
relevant for all applications. Because the system has no a priori knowledge
about the problem, it computes values for all the descriptors defined by the
ontology. But some descriptors do not make sense for a given application.
For example, the object of interest “serous cell nucleus” is described, among
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others, by orientation descriptors after the automatic feature extraction. But
the cytotechnologist knows that the orientation is not an intrinsic property
of the nucleus appearance.

Thus, in a second phase, the system invites the users to build the seman-
tics of the application by ruling out the descriptors they deem irrelevant in
the initial definition. Obviously, this task needs that the users have image
processing skills. But even for skill users, it remains difficult. The difficulty
stems from the fact that users have no access to the interpretation of the
descriptors, and thus to the way they are used by the software generation
system to construct a solution. This is the so-called symbol grounding problem
[42], which is defined as the problem of how to get access to the meaning of a
symbolic system. In our system, the interpretation of the ontology symbols
is assigned by the knowledge engineer who is responsible for the knowledge
base content of the software generator.

3.5.1. Construction of the emergent semantics

To cope with the symbol grounding problem, we propose to take advan-
tage of the interaction between human and computer so as to construct the
semantics of the problem from the ontology symbols. This approach considers
that “semantics is an emergent property of the interaction between the user
and the system” [8]. Emergent semantics expresses semantics through purely
syntactic representation and thus “the semantic understanding is the process
of understanding one domain (application domain) in terms of another (im-
age processing domain)” [43]. This implies that the human-computer inter-
action has to be done within an environment created and configured by the
interaction activity itself. Users learn the interpretation assigned to the on-
tology symbols through their impact on the results yielded by the generated
software. Borg learns the confidence placed in each feature by the user. For
instance, the “serous cell nucleus” object should be pertinently characterized
by region and edge descriptors. But the cytotechnologist knows that some-
times, nucleus boundaries may be missed and thereby, edge features are less
credible than region features for designing the solution.

3.5.2. Interaction cycle

The interaction cycle carries out reformulation which consists, for the
users, in ruling out from the query descriptors that are deemed irrelevant,
and then penalizing and favoring the selected descriptors, and for Borg, in
maintaining a list of relative confidences for features and in constructing a
software program. This cycle relies on a strong hypothesis: the software gen-
erator always produces an acceptable solution regarding the query contents.
There is no reconsideration of the solution generated by the software genera-
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tor. Therefore, the only cause of unsatisfactory results comes from the query
contents; that is bad descriptor selection or wrong appraisals of descriptor
confidences.

To assist users in performing their reformulation, not only a list of images
resulting from the execution of the software are returned from the software
generator, but also a list of descriptors used to design the solution as well as
a list of the descriptors it would have liked to use. These features can be ex-
ploited by the users to measure the degree of responsibility of each descriptor
towards the failure of the solution, and thereby to facilitate reformulation.

As a consequence of this emergent semantics approach, the generated
software is not the result of the last formulation, but the result of the series
of formulations done through the interaction, because during the formulation
process, the system has also learnt the relative confidence in each descriptor.

4. Image processing ontology

A domain ontology is used to provide a formal and computational rep-
resentation of goal and data semantics. We have chosen to develop our own
domain ontology [35] because we have considered that existing ontologies
(e.g., [18, 11, 14, 19, 15, 41, 20, 21]) are not complete enough to take into
account all image processing objectives and all application domains. Indeed,
these ontologies are meant for video or image annotation, retrieval, or under-
standing purposes. Therefore, none of them can be used for reconstruction
and restoration objectives, most of them do not consider relationships be-
tween concepts, and none of them cover all acquisition effects.

Our ontology1 represents queries by triplets: < G, C, I >, where G is
the goal specification, C is the image class definition, and I is a set of test
images that is used to assess the program. It is expressed in OWL DL. The
concepts of image processing are implemented as 297 classes, the relations
as 26 object properties and 16 datatype properties, and the axioms as 192
restrictions. The main classes of the ontology are presented in Figure 6.

4.1. The phenomenological hypothesis

The ontology model relies entirely on the phenomenological hypothesis
[35]. This hypothesis states that only information that has a visual man-
ifestation in images is necessary and sufficient to develop concrete image
processing applications. This hypothesis has two consequences. The ben-
efit is to allow the construction of an ontology that covers all application

1http://www.greyc.ensicaen.fr/˜regis/Pantheon/resources/ImageProcessingOntology.owl
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Figure 6: Relations between main classes of the Image Processing Ontology.

domains, since the vocabulary is limited to image processing concepts, and
since it is not necessary to represent domain-specific knowledge. For exam-
ple, from a phenomenological point of view, the object “red blood corpuscle”
can be simply represented as a small oblong red region. The drawback is
that it may be necessary to distinguish as many denotations of a real object
as there are distinct appearances of this object in images.

Obviously, it is a simplifying hypothesis. Some complex applications need
deep knowledge about the physics of the observed phenomenon to decide
on the processing operations. Typical examples are applications where the
signal-to-noise ratio is very low and relevant information is not directly visible
in images. Such special cases are not taken into account in our approach.

4.2. Image class definition

The image class part of the ontology distinguishes three definition levels:
the physical, perceptive, and semantic levels. The physical level aims to help
users bridge the sensory gap, whereas the perceptive and semantic levels aim
to help users bridge the semantic gap.

4.2.1. Physical concepts

The physical level is the level of the measured signal. The class Physical-
Level references description elements of all sources of signal degradation
caused by acquisition chains. It is defined with the property hasDefinitionEle-
ment which takes its values from the subclasses of the class Acquisition-
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Effect: ImageColorimetry, ImagePhotometry, ImageGeometry, Image-

Storage, ImageSampling, ImageQuantization, ImageIllumination, Blur,
and Noise. Each subclass defines its own list of suitable descriptors using the
property hasDescriptor. For example, ImageIllumination defects are char-
acterized by the following descriptors: TemporalCondition, SpatialCondition,
DefectType, DarkImage, and Model.

Table 1 presents an example of an image class definition at the physical
level for the serous application. This definition is made with instances of
the acquisition effect subclasses that are linked to instances of the descriptor
subclasses by the hasDescriptor property. Actually, ImageIllumination 1

is linked to TemporalCondition 1, SpatialCondition 1, etc. In the same
way, TemporalCondition 1 is linked to the instance ’stable’ by the property
hasSymbolicValue. In this definition, it should be noticed that the illumi-
nation of the scene is described as spatially heterogeneous but temporally
constant. The illumination model is given by extension by means of a back-
ground image, which is the visualization of an empty field without any cellular
object.

Table 1: Definition of the serous application at the physical level.
Acquisition Effect Subclass hasDescriptor
ImageIllumination TemporalCondition = stable

SpatialCondition = heterogeneous

Model =
ImageColorimetry Colorspace = RGB
ImageQuantization BitsPerPixel = 24

Function = linear
Noise Composition = additive

Distribution = Gaussian
PowerSpectralDensity = white
Mean = 0
StandardDeviation = low

4.2.2. Semantic concepts

The semantic level is focused on the objects of interest. The notion of
object of interest is understood from a phenomenological standpoint, namely
based on visual appearance. Hence, an object of interest does not necessarily
correspond to a real object, but simply to a part of a real object, or to an
aggregate of real objects, and conversely any real object will be represented
by several objects of interest if it presents various different appearances.
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Thus, the SemanticLevel class has the hasDefinitionPart property which
takes its values from ObjectOfInterest instances. Users create ObjectOfInterest
instances and assign a semantics through a purely syntactic representation us-
ing the hasDefinitionElement property. The DefinitionElement subclasses
allows for individual visual characterization of the objects and description of
the spatial relationship between them.

The individual visual characterization of an object is done from the de-
scription of visual primitives. Available visual primitives are defined as sub-
classes of the class VisualPrimitive: Region, Edge, Background, PointOf-
Interest, ImageArea, and PointOfCloud. Each subclass defines its own list
of related descriptors using the property hasDescriptor. For example, the
Region class has the descriptors: ColorHue, Orientation, BoundaryNature,
Convexity, etc. Among the existing formal spatial relations [44], only the
TopologicalSpatialRelation (e.g., RCC-8 in 2D) and ExtrinsicSpatial-

Relation (e.g., Above, RightOf, InFrontOf) are included in the ontology,
because, as far as we know, these are the only spatial relations used in image
processing algorithms.

Table 2 gives an example of the individual definition of the object “serous
cell nucleus”. In this definition, the object is described as a region character-
ized by its color and its boundary. Practically, Serous cell nucleus is a
subclass of the ObjectOfInterest class. It is linked to the instance Region 1

by the hasDefinitionElement property, and the instance Region 1 is linked
to the instance ColorHue 1 by the hasDescriptor property. The relationships
between the various objects of interest are described in Figure 8.

Table 2: Visual definition of the serous cell nucleus at the semantic level.
Object of Interest hasDefinitionElement hasDescriptor
Serous cell nucleus Region ColorHue = [9π/8, 3π/2] radians

ShapeType = ellipsoid
BoundingBoxWidth = [8, 35] pixels
BoundaryNature = edge

Edge Profile = step
Contrast = high

4.2.3. Perceptive concepts

The perceptive level is concerned with the visual rendering of the im-
age contents without reference to objects of interest. This level is genuinely
useful when objects of interest do not exist, or when they are unpredictable
or indescribable. For example, in case of robotics or image retrieval appli-
cations, objects are generally unknown beforehand. The image class is thus
described at the perceptive level by homogeneous regions, background, points
of interest, or edges. But when objects of interest are all well known, it is
more informative to describe the scene at the semantic level.
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A definition at the perceptive level corresponds to a global “syntactic” de-
notation of the image contents. It is also composed from the VisualPrimitive
subclasses. The difference with the semantic definition is that each visual
primitive is described globally: users describe the various types of Region,
Edge, etc. that have to be considered.

Table 3 shows an example of the image class definition at the perceptive
level for the serous application. The image class is defined with instances of
the visual primitives: region, edge, and background.

Table 3: Description of the serous application at the perceptive level with instances of
visual primitive subclasses.

Visual Primitive Subclass hasDescriptor
Background PhotometryBrightness = the highest

TextureType = no-texture
Region RegionShapeType = ellipsoid

BoundingBoxWidth = [8, 35] pixels
BoundaryNature = edge

Edge EdgeProfile = step
EdgeContrast = high

4.2.4. Descriptor values

The descriptor values must allow for extensional and intensional defi-
nitions. To this end, the model combines descriptors with numerical and
symbolic values for the intensional definition, and descriptors with iconic
values for the extensional definition:

• Numerical values are single values, interval of values, set of values,
vector, and matrix of values (e.g., a geometrical distortion matrix).

• Symbolic values are conventional terms (e.g., RGB color space, Gaus-
sian noise), qualitative terms (e.g., high, very-low), and superlative
terms (e.g., the-least, the-most), which allow to express things like
“cell nucleus has a very low size” or “cell nucleus has the most area.”

• Iconic values are represented by entire image or blob file names (e.g.,
Illumination model).

4.3. Goal specification

The Goal class is described by the following three properties:

• hasTask identifies the current Task to perform;

• hasControlConstraint takes its values from the elements of the ControlConstraint
class.

19



• hasReferenceImage is a list of <TestImage, ReferenceImage> pairs.

Table 4 describes the “ObjectExtraction {serous cell nucleus}” objective
of the serous cytology application.

Table 4: Specification of the “extract {serous cell nucleus}” objective.
Task ObjectExtraction {serous cell nucleus}
Optimization criterion Maximize hits
(acceptable error) (prefer false alarm to miss)

Maximize boundary localization
(prefer boundary inside the region)

Detail Level Separate just touching
(acceptable error) (prefer no separation)
Performance criterion Running-time ≤ 2s
Quality criterion Ability = reliability

4.3.1. Task concepts

Available tasks are subclasses of the Task class, such as: ColorEnhancement,
EdgeDetection, ObjectExtraction, ObjectDetection, ImageDenoising,
ImageSegmentation, etc. They are described by the following properties:

• hasArgument specifies the object of interest to which the task is applied
if any (e.g., “ObjectExtraction {serous cell nucleus}”).

• hasDetailLevel is used to refine the scope of the task. Examples of
DetailLevel subclasses are “do not affect the original color rank”,
“separate just touching objects”, or “separate all objects”.

• hasOptimizationCriterion is used to set the focus of attention of the
task. Examples of OptimizationCriterion subclasses are ‘maximize
boundary localization” or “maximize detection hits”.

Each subclass defines its own restrictions on the range of the proper-
ties. For example, the ObjectDetection task has the following detail lev-
els: Separation, NoSeparation, AllOccurrences, AtLeastOneOccurrence,
BoundaryInside, BoundaryOutside, and SubPixelPrecisionLocalization.

In order to reach a compromise in case of doubt about compliance with
constraints, each criterion to be optimized and each level of detail constraint
can be associated to an AcceptableError by the hasAcceptableError prop-
erty. For example, if there is a doubt about the fact that two objects are
overlapping or just touching, an acceptable error for the “separate just touch-
ing objects” constraint may indicate a preference for the “separation” or the
“no separation” of the related regions.
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4.3.2. Control Constraint Concepts

The ControlConstraint class defines two types of constraints:

• The PerformanceCriterion class specifies processing time limits.

• The QualityCriterion class expresses requirements on the ability of
the system to perform the task according to the specified and unspec-
ified conditions. The two available ability values are reliability (i.e.,
prefer no result to bad result), and robustness (i.e., prefer bad result
to no result at all).

5. Human-computer interaction model

In the previous sections, the kind of information required to develop im-
age processing applications has been identified, and a domain ontology to
represent them was proposed. This section deals with the ways and means
to help users formulate application ontologies that correspond to concrete
applications. The interaction between the users and the system takes place
through a user interface that organizes the formulation cycle.

The interface is written in Java using Swing as the UI toolkit, and the
ontology is handled thanks to the OWL API.

5.1. Formulation cycle

The formulation cycle is split up into five iterative steps derived from the
formulation model exposed in Section 3:

1. The user formulates an initial representation of the objective, mainly
extensional.

2. The system performs feature extraction from this extensional formula-
tion and starts an intensional representation of the objective.

3. The user discards irrelevant features from the intensional representation
and adds a list of representative test images to compose the first query.

4. Borg generates a software program and returns the images yielded by
its execution on the test images, together with the features actually
used by the reasoning engine as well as features it would have liked to
use.

5. In case of unsatisfactory results, the user reformulates the objective
by ruling out irrelevant features and by penalizing or favoring feature
confidences. Then, the cycle goes back to step 4 until satisfaction.
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5.2. Initial extensional formulation
The formulation system provides users with five frames dedicated to:

• the specification of the post-processing operations which aims at spec-
ifying the context of use of the future software;

• the definition of the image class at the physical level;

• the definition of the image class at the semantic level or at the percep-
tive level if the notion of object of interest does not make sense;

• the specification of the task with related constraints and the input of
a set of reference images (when possible);

• and the determination of control constraints.

5.2.1. Specification of the post-processing operations

Post-processing refers to operations that will be performed on the results
yielded by the image processing application. Post-processing information
plays no direct part in the image processing formulation, but its purpose is
to provide assistance later, during the task specification (see Section 5.2.5).
To specify post-processing operations, the interface displays a panel with 11
different post-processing categories: classification, image comparison, quan-
tification, pattern recognition, registration, scene reconstruction, detection-
tracking, art visualization, visual inquiry, transmission, and archival storage.
For each post-processing category, users can select operations among a prede-
fined list (e.g., counting, printing, displaying, and measuring (size, position,
orientation, radiometry, morphology, and topology)).

In the case of our running example, the “ObjectExtraction {serous cell
nucleus}” task is followed by a classification of the extracted regions in order
to detect abnormal or suspect cells. This classification is based on size,
morphology, and radiometry measurements.

5.2.2. Physical definition of the image class

Users select the descriptors that best account for the effects of the acqui-
sition chain on the visual appearance of the scene. All “physical descriptors”
defined by the Image Processing Ontology are displayed in a panel in the
form of tables (See Figure 7). Users choose relevant descriptors and assign
values with blobs or numerical values. In order to help users give numerical
values, the system exploits a database that stores known descriptor values
for some traditional acquisition systems.

For the “IlluminationCorrection” task of the cytology example, the cy-
totechnologist has provided the definition given in Table 1. This definition
combines symbolic and iconic descriptors.
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Figure 7: The part of the interface that allows users to define the physical level of the
image class.

5.2.3. Semantic definition of the image class

If the image class can be described at the semantic level, the definition
relies on the construction of a tree of objects of interest. Indeed, a tree
helps users determine the significance of a node according to its parent and
siblings [45]. Four principles can be used to define objects organized in a
tree: principles of similarity and difference with parents, and principles of
difference and similarity with siblings. This allows a differential definition of
the objects: the description of an object is given in terms of its similarities
and differences with other neighboring objects.

Figure 8: A serous cytology scene viewed through microscopic slides is composed of serous
cells and red blood corpuscles scattered on mucous. A serous cell is composed of a nucleus
surrounded by a cytoplasm. In this tree DC, EC, TPP, NTPP, and PO are the RCC-8
topological relations.

Users identify all objects of interest that may appear on images and or-

23



ganize them hierarchically by specifying the hyperonymic and meronymic
relations between them:

• The hyperonymic relation “kind-of” defines a taxonomy of objects of
interest based on similarities. This structure is the basis of two elemen-
tary inferences that humans perform daily: identification, which is our
ability to recognize the class of an object from its features, and spe-
cialization/generalization, which is our ability to organize the objects
in prototypical categories.

• The meronymic relation “part-of” describes the composition of these
objects into entities and components, which can then be supplemented
with extrinsic, distance, and topological spatial relations.

Based on the tree, users then describe each object of interest with relevant
visual primitive descriptors using a differential definition.

Figure 8 is an example of the object tree defined for the serous application.
Table 5 gives an excerpt of a possible semantic definition for the objects. The
{Serous cell nucleus} object is described with blobs whereas the {mucous}
object is described with linguistic values as the clearest region.

Table 5: Excerpt of the extensional definition of the serous image class at the semantic
level for the segmentation task: ’ObjectExtraction {serous cell nucleus}’.

Object of Interest hasDefinitionElement hasDescriptor

Serous cell nucleus Region Model = . . .
Mucous Background PhotometryBrightness = the most (clearest)

TextureType = none

5.2.4. Perceptive definition of the image class

If users choose to describe an image class at the perceptive level, the
interface displays tables containing the symbolic descriptors associated to
each visual primitive as defined in the ontology. Users can also provide
several blobs for describing the different visual appearances of what they
consider as a region, a background, a point of interest, an edge, etc.

The cytology application is described at the semantic level because all
objects are predictable and describable. However, if we consider a hypo-
thetical “ImagePartition” task, then the image class will be described at the
perceptive level with several blobs, at least one for the each type of regions,
edges and background (see Table 6).
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Table 6: Excerpt of the extensional definition of the serous image class at the perceptive
level for a hypothetical segmentation task: “ImagePartition”.

Visual Primitive Subclass hasDescriptor

Region Model = . . .

Background Model = . . .

Edge Model = . . .

5.2.5. Task specification

Users select the tasks to perform from a list provided by the interface,
and if needed, the related argument within the list of the objects of interest.
When possible, users should add a list of reference images. These reference
images are built with specialized interfaces (e.g., image manipulation software
and interactive image segmentation system).

Then, users choose the related constraints from the list defined in the
ontology. To that aim, the system uses post-processing information provided
by users at the inception of the formulation process, to suggest some pos-
sible constraints and related acceptable errors. This is done by using first
order production rules. For example, since radiometric measurements are
required during post-processing of the “ObjectExtraction” task, the system
proposes the boundary localization as an optimization criterion with a re-
lated acceptable error “prefer boundary inside” in order to avoid distorting
the measurement results with boundary pixels:

(Goal(?x) ∧ ObjectExtraction(?y) ∧ hasTask(?x, ?y) ∧
PostProcessingTask(?z) ∧ hasMeasurement(?z, radiometry)
→ assert(BoundaryLocalization(?w)) ∧ hasOptimizationCriterion(?x, ?w) ∧
hasAcceptableError(?w, prefer boundary inside))

5.2.6. Control constraints

Finally, users determine the type of optimization and ability required for
the software solution through an appropriate frame.

5.3. First intensional formulation

Based on the initial formulation, the system builds an intensional formu-
lation by extracting values from blobs and images given during the initial
formulation. The list of descriptor values that can be extracted from blobs
for each feature is prescribed in the ontology. For example, Table 7 gives an
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excerpt of the list of region descriptor values that can be extracted from the
blobs given for the extensional definition and presented in Table 6.

Table 7: Excerpt of the intensional definition of the {serous cell nucleus} concept after the
feature extraction phase.

Object of Interest hasDefinitionElement hasDescriptor
Serous cell nucleus Region PhotometryBrightness = [38, 124]

PhotometryContrast = [12, 86]
ColorSaturation = [0, 0.609]
ColorHue = [3.53, 4.71] radians
Convexity = [0.4, 0.9]
Rectangularity = [0.15, 0.81]
Area = [65.56, 179.67] pixels2

BoundingBoxWidth = [8, 35] pixels
MajorAxisAngle = [0, 345] degrees
CenterOfMass = [(10, 256), (5, 245)]
NumberOfHole = 0

Then, the formulation system invites users to correct their initial formu-
lation by ruling out the descriptors they deem not relevant to the application.
For our example, we choose to rule out the descriptors in italic in Table 7.
As a matter of fact, serous cell nuclei are not characterized by their position,
rectangularity, orientation, and number of holes. The intensional and the
extensional definition together with test and references images compose the
first query that is sent to Borg.

5.4. Program Generation

Borg exploits the intensional definition to perform abstract reasoning that
supports the construction of the software program. The ontology elements
are used notably to rate the knowledge source aptitude. Aptitude measures
the distance between the ideal knowledge source application context and the
given application context. For example, the aptitude of a knowledge source
that suggests using an edge detection technique as part of the processing pro-
gram is represented in Table 8. Each criterion is weighted with its importance
in the aptitude rating. Borg computes the knowledge source credibility and
plausibility against the current intentional definition using the Dempster-
Shafer theory [46]. Then, depending on the control constraints selected by
the user—reliability or robustness—Borg may decide to select the knowl-
edge source to execute at each step of the resolution process only among the
credible knowledge sources or also among the plausible ones.

5.5. Reformulation

During the reformulation process, most changes occur at the semantic
level (or at the perceptive level) of the image class definition. After each pro-
duction of a software program, the interface displays the resulting images,
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Table 8: List of weighted criteria that defines the ideal application context of the knowledge
source “Edge Detection.”

Criteria Importance
OptimizationCriterion=BoundaryLocalization high
Noise.SignalNoiseRatio ≥ low very-high
Noise.PowerSpectralDensity=white medium
Background.TextureType= no-texture high
Edge.Contrast ≥ low high
Edge.Profile= step high
Edge.Orientation ∈ {vertical, horizontal} low

the list of descriptors used by the software generator to determine its strate-
gies and methods, and the descriptors the software generator would have
liked to use. From this information, users can reformulate their problem by
ruling out descriptors, adding new descriptors, and increasing or decreasing
the confidence on descriptors through related user interfaces. When Borg
receives the new query, it computes the new relative confidences for the de-
scriptors before constructing a fresh solution. Consider a descriptor d, the
new confidence value cd is updated as follows:

• +0.2, if d is marked with ’+’ by user;

• −0.2, if d is marked with ’−’ by user (if cd < 0 then cd = 0);

• 0, otherwise.

Then, all descriptor confidences are normalized: ∀d, c′
d

= cd

max |cd|
.

A value of 0.2 in the domain [0.1] corresponds to a five point scale rating.
It is chosen experimentally. However, G. Miller in his seminal article [47]
justifies experimentally the use of seven point rating scales (plus or minus
two) to absolutely rate the magnitude of unidimensional stimulus variables
(e.g., auditory loudness, auditory pitch, saltiness) and thus image features.

In our example, the “ObjectExtraction {serous cell nucleus}” task gives
rise to different solutions depending on the user preferences. If users give
preference to edge features, an edge detection process will be used to extract
the markers of the future regions followed by a watershed segmentation to
locate region boundaries. If users give preference to region features and more
particularly to color features, Borg will opt for a pixel classification based
on color segmentation to extract the markers of the future regions before
performing the watershed segmentation.

6. Experimentations and discussion

Trying to define quantitative measures to evaluate the formulation sys-
tem is tricky since the experimental results widely depend upon the quality
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of the knowledge stored in the knowledge base of the program generation
system. So, as evaluation, we propose to investigate through experiments,
first, the capacity of the system to represent different points of view on a
same application, which lead to build different software solutions, second,
the benefit of the interaction loop between the user and the system to build
customized software programs, and third, the ability of the system to deliver
effective services to users.

6.1. Capacity of representation

The capacity of representation is assessed by the ability of the language
to express different definitions of a same objective that set forth the reasons
justifying the design of various processing solutions described in the litera-
ture. Prior to the experiments, the knowledge sources and image processing
operators should be exhibited from the reverse-engineering of these solutions
and introduced into the knowledge base.

Let us take another example in the domain of aerial imagery. The task
is “ObjectExtraction {agricultural field}” with the optimization criterion
“maximize boundary localization”. Figure 9 shows a sample of the image
class with the expected result, and Figure 10 shows the part of the applica-
tion ontology representing the generic model of landscape scenes. For this ex-
ample, we analyze four different solutions that give rise to two points of view
on the definition of the objective. The differences between the various defi-
nitions are essentially located in the semantic definition of the {agricultural
field} object.

Figure 9: An example of the input image (a), and the expected result (b).

6.1.1. A first point of view

The definition of the {agricultural field} object of interest is viewed by
some authors [48, 49] as a rather homogeneous region with contrasted bound-
aries. They base their solution on a region growing method controlled by

28



Figure 10: The part of the application ontology representing the model of landscape scene.

edges. For instance, Butenuth et al. propose to use a watershed segmen-
tation controlled by the gradient image, where the markers are the minima
of the gradient image. They justify the use of this method by the fact that
the field areas are rather homogeneous regions (TextureType = notexture;
PhotometryContrast ≤ low) and the field boundaries are highly contrasted
(Contrast ≥ high). Mueller et al. propose to control the region growing
with the edges extracted from a prior edge detection algorithm. They con-
sider that the field boundaries are well defined, with high brightness contrast
to neighboring regions (Contrast ≥ high) and relatively long and straight
edges (Straightness ≥ high; Length ≥ medium). For both solutions, a
second step is carried out to merge neighboring regions with low gray level
differences and small regions into larger ones.

Butenuth et al. perform a final third step in order to fulfill the constraint
“maximize boundary localization”. They use the snake algorithm. The
snakes are initialized as the smallest bounding rectangle of each extracted
field since fields are polygonal regions often with four corners (Rectangularity >

medium). The external energy is the absolute value of the gradient since
edges are contrasted (Contrast ≥ high) and the internal energy is set so as
to favor rigidity because the field boundaries are described as long straight
edges (Straightness > medium; Length > low).

6.1.2. A second point of view

The definition of the {agricultural field} object of interest is viewed by
other authors [50, 51] as a region that can be discriminated from other re-
gions by texture and color features. This new point of view leads to use a
statistical approach based on supervised pixel classification. Dubuisson-Jolly
and Gupta propose to use maximum likelihood classification that combines
texture (TextureScale = micro; TextureType = complex) and color infor-
mation (ColorSaturation). Xu et al. opt for a SVM approach for pixel
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classification based only on texture information. Both methods use blobs to
train the related classifier (Model : blobs).

6.1.3. Definition at the semantic level

During the formulation cycle, if the user considers that {agricultural field}
object is characterized by its inner homogeneity and high contrasted bound-
ary, he provides a semantic definition close to the one given in Table 9. If the
user provides blobs, the values are set automatically at the feature extraction
stage. The definition thus contains all the information that motivates the
use of a solution based on a region growing approach: the regions are non-
textured areas with a known minimum area and low photometry contrast,
and their boundaries are long straight edges. Actually, Borg chooses the
Buthenuth’s solution because it is regarded as more stable than the second
one (edge detection is known to be an unstable process). But, if the user gives
higher confidence to the edge descriptors of the same formulation, then Borg
will select the Mueller’s solution. Conversely, if the user gives preference to
the region descriptors then Borg will choose the first one.

Table 9: A semantic definition that supports the use of the region growing approach.
Object of Interest hasDefinitionElement hasDescriptor
Field Region (field area) TextureType = no-texture

PhotometryContrast = [0, 27]
Rectangularity = [0.57, 1.0]
Area = [623, 120904] pixels2

BoundaryNature = edge
Edge (field boundary) Profile = step

Contrast = [0.11, 0.27]
Sharpness = [0.82, 0.98]
Straightness = [0.7, 1.0]
Length = [143, 634] pixels

If the user sees the {agricultural field} object as a textured region than
he provides a semantic definition such as the one in Table 10. This defi-
nition contains all necessary information that favors the use of a statistical
approach, given that the object is characterized by complex micro texture
(TextureScale = micro; TextureType = complex) and color saturation
(ColorSaturation = [0.220, 0.467]), and that the definition provides several
blobs as examples of real appearances (Model : blobs). The Xu’s solution
is chosen when the user has little confidence in the color features; otherwise
the Dubuisson-Jolly’s solution is selected because it involves more a priori
information.

We have shown in this example that the ontology is able to represent two
different points of view on the same object, which provide the information
necessary to the selection and parameterization of different solutions. This
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Table 10: A semantic definition that supports the use of the statistical approach.
Object of Interest hasDefinitionElement hasDescriptor

Field Region (field area) Model = . . .
TextureScale = micro
TextureType = complex
ColorSaturation = [0.220, 0.467]

experiment has been repeated with other applications, always by reverse-
engineering of solutions found in the literature: license plate detection, text
detection, film restoration, etc.

6.2. Benefit of interaction
In this section, we illustrate the use of the interaction so as to progres-

sively formulate an application from scratch and thus to construct a suitable
program. To that purpose, we now consider the new task ”ObjectExtrac-
tion {Forest}” in an aerial imaging application. As a first approximation, we
simply define a forest as a green region. Therefore, we create several blobs
from sample images, and use the feature extraction facility to create the first
formulation given in the Table 11.

Table 11: A first semantic definition of the forest object of interest.
Object of Interest hasDefinitionElement hasDescriptor
Forest Region ColorimetryHue = [109-241] degree

Then, we launch Borg with some test images, which builds a program
based on color selection. The results yielded by the program contains all the
true-positive regions but also many false-positive regions (e.g., agricultural
field). So, in a second cycle, we add a new feature to increase the distinction
to the all other geographic objects: a forest is also a dark region. We select
the photometry brightness descriptor which is already set by the feature
extraction process, and we provide the second definition given in Table 12.

Table 12: The second semantic definition of the forest objet of interest.
Object of Interest hasDefinitionElement hasDescriptor
Forest Region ColorimetryHue = [109-241] degree

PhotometryBrightness = [0, 69]

To be more selective, we finally add a characterization of the texture and
provide the third definition given in Table 13. This process could continue by
adding new descriptors, or increasing or decreasing the confidence in defined
descriptors. It turns out that the simple definition given in Table 13 is
suitable to extract the forest regions.
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Table 13: The third semantic definition of the forest objet of interest.
Object of Interest hasDefinitionElement hasDescriptor
Forest Region ColorimetryHue = [109-241] degree

PhotometryBrightness = [0,69]
TextureType = contrast
TextureScale = micro
TextureDirection = 0

6.3. Usability

Our system relates to configurable vision systems [52] since it allows users
to configure the system using external attributes. The main benefit is that it
allows users to create software solutions without programming. They are thus
focused on the formulation of the problems and no longer on the construction
of the solutions.

Our approach can be viewed as an alternative to purely numerical ap-
proaches based on supervised learning. For example, Martin et al. [53] use
reference images to configure their system. It learns to choose among sev-
eral algorithms stored in a library, the one (plus its parameter values) giving
the resulting images that are the closest to the reference images. The learn-
ing phase resorts to an automatic feature selection and an evaluation metric
(e.g., discrepancy measures between two images). From the user point of
view, our system is at least equivalent to a system based on such a numerical
approach and thus it provides the same usability. But, aside from the fact
that it can also deal with objectives that cannot be expressed by means of
references images, our approach outperforms the purely numerical approach
in that it provides users with a means to better control the construction of
their applications. First, it allows users to specify constraints on the ob-
jectives, such as “prefer over-segmentation” or “do not modify color table”.
In numerical approaches, these constraints are concealed in the predefined
evaluation metrics and cannot be adapted to each application. Secondly, it
allows users to explicitly construct the semantics of their application. With
purely numerical approaches, the semantics of the application is implicitly
encoded in the references images and it is decoded by the system via evalu-
ation metrics, without negotiation of meaning. Therefore, the system could
select features that are not relevant for the application if the reference images
are poorly chosen. With our approach, the query is the result of a negotiation
of meaning between what the users want and what the system can provide.

Of course, as mentioned above, the construction of an explicit semantics
is very difficult to exhibit beforehand. However, the interaction cycle leads
to build an intensional formulation starting from an initial extensional for-
mulation. It means that the construction is not a creation from scratch but
a selection process, easier to perform. Furthermore, because queries combine
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both intensional and extensional formulations, users can adjust the level of
detail they wish for the intensional expression. For example, the intensional
part of the second point of view of the aerial application is less developed
than the first one. Notice that there is no means to guarantee that one for-
mulation does not contradict the other. The consequence of inconsistencies
is bad output results. Users are responsible for ensuring consistency between
the iconic descriptors (blobs and images) and the symbolic descriptors as well
as their values, in the same way that they must ensure consistency between
the reference images and the objective formulation.

Just for information only, the development of the four solutions for the
aerial application took one week to supplement our image processing library
with the new operators and to create the knowledge base, and one day to
formulate the four intensional queries and thus to produce the four software
programs (most of the time was spent at creating the blobs and reference
images).

7. Conclusion

The main contribution of this paper stems from two models, a model of
formulation and a model of interaction. They are the foundations of an in-
teractive software generation system oriented towards producing customized
software for image processing applications.

7.1. The model of formulation

The model of formulation identifies and organizes pieces of information
required to build image processing software programs that suit users require-
ments. The model rests on the following assumptions:

1. An application is tailored for one processing goal and one image class.
The intent is to avoid the frame problem and to reduce the variability
of the input images.

2. The goal is specified as a task with constraints and optional reference
images. The task identifies the image processing objective, the con-
straints represent the user requirements, and the reference images give
some expected result samples.

3. The image class definition amounts to a denotation of the image con-
tents that comes from two of the three semiotic levels: physical and
perceptive or semantic levels. This denotation is done by means of ex-
tensional and intensional representations of the pertinent information
which accounts for the fact that some elements of the formulation are
advantageously described by means of an iconic vocabulary and others
by means of a symbolic vocabulary.
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Our approach adopts a cognitivist position which gives priority to an
intensional definition of the image class, because it provides an explicit rep-
resentation of the semantics of the application. However, an extensional
definition is also required to keep a strict matching with the visual appear-
ance of the information in images. The phenomenological hypothesis makes
the definition of a domain ontology possible, in so far as the image class
definition is restricted to a denotation based on visual features. This domain
ontology identifies which symbolic and iconic primitives, must be the symbols
of a formal language able to explicitly represent the objectives and semantics
of any application. In this paper, we claim that if phenomenological repre-
sentation is not sufficient to capture the complete meaning of an image [8],
it is nonetheless sufficient to design image processing software.

7.2. The model of interaction

It is well known that cognitivist systems suffer from the symbol ground-
ing problem [54]. We proposed to tackle this issue through interaction. The
model of interaction defines ways to compose suitable linguistic formulations.
The first phase of the interaction aims at formulating an intensional definition
of the problem, which is difficult to do beforehand, from an extensional defi-
nition, which makes the tasks easier. The second phase aims at constructing
the semantics of the application as an emergent process, where the users learn
the interpretation given by the knowledge engineer to the language symbols,
and the system learns the relative confidences given by the users to their
description elements. Thereby, interaction provides a means to bridge the
semantic and sensory gaps. It gradually leads to an explicit representation
of the semantics of the application grounded in the image data.

7.3. Future works

Extensions of this work concern, on the one hand, the reformulation and
on the other hand, the automatic generation of evaluation rules.

In the current state of the formulation system, there is still a cognitive
gap between the evaluation of the resulting images and the correction of the
query contents with new descriptors and new descriptor confidences. The
challenge is to connect the evaluation results to the formulation elements
represented in the query.

Moreover, the ontology gives us a means to automatically build suitable
evaluation rules. The formulation language provides explicit representation
of the purpose and the semantics of the application from which it is possible
to draw up customized supervised or unsupervised evaluation measures.
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[22] G. Cãmara, M. Engenhofer, F. Fonseca, A. Monteiro, What’s In An
Image?, in: Int. Conf. on Spatial Information Theory: Foundations of
Geographic Information Science, Vol. 2205, Morro Bay, CA, 2001, pp.
474–488.

[23] V. Mezaris, I. Kompatsiaris, M. Strintzis, Region-based image retrieval
using an object ontology and relevance feedback, Journal on Applied
Signal Processing 6 (1) (2004) 886–901.

[24] C. Hudelot, J. Atif, I. Bloch, Fuzzy spatial relation ontology for image
interpretation, Fuzzy Sets Systems 159 (15) (2008) 1929–1951.

[25] S. Coradeschi, A. Saffiotti, An Introduction to the Anchoring Problem,
Robotics and Autonomous Systems 43 (2-3) (2003) 85–96.

[26] Q. Li, S. Luo, S. Zhongzhi, Semantics-Based Art Image Retrieval Us-
ing Linguistic Variable, in: Fourth Int. Conf. on Fuzzy Systems and
Knowledge Discovery, Haikou, China, 2007, pp. 406–410.

[27] S. Chien, H. Mortensen, Automating Image Processing for Scientific
Data Analysis of a Large Image Database, IEEE Trans. Pattern Analysis
and Machine Intelligence 18 (8) (1996) 854–859.

[28] T. Matsuyama, Expert Systems for Image Processing: Knowledge-Based
Composition of Image Analysis Processes, Computer Vision, Graphics
and Image Processing 48 (1) (1989) 22–49.

[29] J.-I. Hasegawa, H. Kubota, J.-I. Toriwaki, Automated Construction of
Image Processing Procedures by Sample-Figure Presentation, in: 8th
Int. Conf. on Pattern Recognition (ICPR), Paris, France, 1986, pp. 586–
588.

[30] V. Martin, N. Maillot, M. Thonnat, A Learning Approach for Adap-
tive Image Segmentation, in: 4th IEEE Int. Conf. on Computer Vision
Systems (ICVS), New York, 2006, pp. 40–47.

[31] A. Levin, D. Lischinski, Y. Weiss, Colorization using optimization, ACM
Transaction on Graphics 23 (3) (2004) 689–694.

[32] A. Protière, G. Sapiro, Interactive Image Segmentation via Adaptive
Weighted Distances, IEEE Trans. on Image Processing 16 (4) (2007)
1046–1057.

37



[33] S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V.-K. Papastathis,
M. Strintzis, Knowledge-Assisted Semantic Video Object Detection,
IEEE Trans. on Circuits and Systems for Video Technology 15 (10)
(2005) 1210–1224.

[34] X.-R. Zhou, A. Shimizu, J. Hasegawa, J. Toriwaki, T. Hara, H. Fu-
jita, Vision Expert System 3D-IMPRESS for Automated Construction
of Three Dimensional Image Processing Procedures, in: Seventh Int.
Conf. on Virtual Systems and Multimedia, Berkeley, CA, 2001, pp. 527–
536.

[35] A. Renouf, R. Clouard, M. Revenu, A Platform Dedicated to Knowledge
Engineering for the Development of Image Processing Applications, in:
Int. Conf. on Enterprise Information Systems (ICEIS), Funchal, Portu-
gal, 2007, pp. 271–276.

[36] R. Clouard, C. Porquet, A. Elmoataz, M. Revenu, Borg: A Knowledge-
Based System for Automatic Generation of Image Processing Programs,
IEEE Trans. on Pattern Analysis and Machine Intelligence 21 (2) (1999)
128–144.

[37] M. Thonnat, S. Moisan, M. Crubézy, Experience in Integrating Image
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