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Abstract
Breakdowns in complex systems often occur as a result of system elements interacting in
unanticipated ways. In systems with human operators, human-automation interaction associated
with both normative and erroneous human behavior can contribute to such failures. Model-driven
design and analysis techniques provide engineers with formal methods tools and techniques
capable of evaluating how human behavior can contribute to system failures. This paper presents a
novel method for automatically generating task analytic models encompassing both normative and
erroneous human behavior from normative task models. The generated erroneous behavior is
capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions,
jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing
for the generation of higher order phenotypes. The task behavior model pattern capable of
generating erroneous behavior can be integrated into a formal system model so that system safety
properties can be formally verified with a model checker. This allows analysts to prove that a
human-automation interactive system (as represented by the model) will or will not satisfy safety
properties with both normative and generated erroneous human behavior. We present benchmarks
related to the size of the statespace and verification time of models to show how the erroneous
human behavior generation process scales. We demonstrate the method with a case study: the
operation of a radiation therapy machine. A potential problem resulting from a generated
erroneous human action is discovered. A design intervention is presented which prevents this
problem from occurring. We discuss how our method could be used to evaluate larger applications
and recommend future paths of development.
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1. Introduction
Complex systems depend on goal-oriented human operators interacting with automation in a
dynamic environment. Thus, failures in such systems will often result from poor human-
automation interaction (HAI). Erroneous human behavior (Hollnagel, 1993), where the
human operator does not follow the normative procedure for interacting with a system has
been associated with failures in aviation (BASI, 1998; FAA Human Factors Team, 1996;
Hughes and Dornheim, 1995; Johnson and Holloway, 2004), process control (O’Hara et al.,
2008), medicine (Kohn et al., 2000), and other safety critical domains. A number of model-
driven analysis techniques have been developed to give engineers methods and tools for
evaluating HAI in system design and analysis. However, there are gaps in the techniques
that attempt to use formal methods to evaluate the impact of human behavior on system
safety. We describe these model-driven approaches before presenting a new method that
attempts to address some their shortcomings.

1.1. Model-driven Design and Analysis
Model-driven design and analysis techniques (Hussmann et al., 2011) use models of the
automation, human-device interfaces, human task behavior, human cognition, and/or
environmental conditions to provide guarantees about the performance of the system using
formal methods.

Formal methods are a set of languages and techniques for the specification, modeling, and
verification of systems (Wing, 1990). While there are a number of different ways in which
models can be both manually and automatically verified, two particular computer software
technologies, automated theorem provers and model checkers, have been shown to be useful
for the formal verification of large complex systems. Theorem proving is a deductive
technique that closely resembles the traditional pencil-and-paper proof activity: from a set of
axioms, using a set of inference rules, one builds theories and proves theorems to verify
correctness claims about the system under investigation with the help of a proof assistant
program. Model checking is an automated approach used to verify that a formal model of a
system satisfies a set of desired properties (a specification) (Clarke et al., 1999). A formal
model describes a system as a set of variables and transitions between variable values
(states). Specification properties are commonly represented in a temporal logic, usually
Linear Temporal Logic or Computation Tree Logic, using the variables that describe the
formal system model to construct propositions. Verification is the process of proving that
the system meets the properties in the specification. Model checking performs this process
automatically by exhaustively searching a system’s statespace to determine if these criteria
hold. If there is a violation, an execution trace is produced (a counterexample). This
counterexample depicts a model state (a valuation of the model’s variables) corresponding
to a specification violation along with a list of the incremental model states that led up to the
violation.

Formal, model-based approaches have been used to model human-device and human-
computer interfaces both with and without the underlying automation (Abowd et al., 1995;
Degani, 2004; Degani et al., 2011; Degani and Heymann, 2002; Dix et al., 2008; Dwyer et
al., 1997, 2004; Harel, 1987; Harrison and Duke, 1995; Parnas, 1969; Sherry and Ward,
1995; Thimbleby and Gow, 2007a). These models can then be used in a variety of formal
analyses to evaluate the HAI. For example: researchers have formulated a number of generic
temporal logic properties for evaluating interface usability with a model checker (Abowd et
al., 1995; Berstel et al., 2005; Campos and Harrison, 1997, 2009; Paternò, 1997); a variety
of techniques have been developed for detecting potential mode confusion1 in automated
systems (Bredereke and Lankenau, 2005; Buth, 2004; Campos and Harrison, 2001, 2011;
Degani and Heymann, 2002; Javaux, 2002; Joshi et al., 2003; Leveson et al., 1997; Rushby,
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2002; Wheeler, 2007); graph theory can be used to evaluate usability (Thimbleby and Gow,
2007b); methods have been developed for generating test cases that will guarantee coverage
of the devices features and displays (Duan et al., 2010; Giannakopoulou et al., 2011); code
for implementing a modeled human-computer interfaces can be automatically generated
(Berstel et al., 2005); and human-device interfaces can be automatically generated to ensure
certain usability properties are maintained (Combéfis et al., 2011; Gimblett and Thimbleby,
2010; Heymann and Degani, 2007).

1.2. Formally Evaluating the Impact of Human Behavior on System Safety
Of particular relevance to this work are model-driven analysis techniques that attempt to use
formal methods and human-behavior modeling to evaluate system safety. In these
approaches, the human operator’s behavior is determined by device interface models,
cognitive models of human behavior, or task-analytic models of human behavior.

1.2.1. Using device interfaces to define human behavior—In the simplest
approach, the human operator’s behavior is determined by the human-device interface such
that any input acceptable by the interface is allowed. The human-device interface and/or
automation behavior, including its response to human behavior, is modeled formally. Formal
verification is then used to determine if there is any way the system could ever violate a
safety property (Abowd et al., 1995; Campos and Harrison, 1997, 2008; Thomas, 1994).

This approach is powerful in that it will tell an analyst whether or not there is ever a
situation where human behavior could contribute to a system failure. However, it gives the
analyst little insight into what the human operator was doing when a failure occurred.
Additionally, this approach can find failure sequences that a human operator may never
actually perform. Finally, there are many safety critical systems where the human operator
will always be able to cause a failure. For example, an aircraft pilot is always capable of
causing a crash.

1.2.2. Using cognitively driven models of human behavior—Another approach
explicitly includes human behavior as part of the larger formal system model. In the work of
Blandford, Curzon, and colleagues (Blandford et al., 2004, 1997; Butterworth et al., 1998,
2000) human behavior is driven by a formal model of human cognition (based on
Programmable User Models; Young et al. 1989). These cognitive models encompass the
human operator’s goals, his or her beliefs and knowledge about the operation of the system,
the information available to him or her from the human-device interface, and the actions he
or she can use to interact with the system. When such models are integrated into a formal
system model, system safety and liveness properties can be evaluated using model checkers
and/or automated theorem provers. With this approach, erroneous behavior can result from
the human cognitive process. Cognitive models can be used to generate simple erroneous
behaviors such as the repetition, omission, intrusion, replacement, mis-sequencing or mis-
timing of actions (Curzon and Blandford, 2002). They can also be used to generate post
completion errors (Curzon and Blandford, 2004), a type of omission which occurs when a
human operator successfully completes his or her primary goal with a device but fails to
perform supplemental actions to fully complete the task (Byrne and Bovair, 1997). These
types of analyses can also be used to determine how different types of human operators
(novice or expert) may impact system performance based on how their knowledge of, beliefs
about, and goals for the operation of the system can result in repetitions of actions or post
completion errors (Curzon et al., 2007). The architecture has been extended to a generic

1Mode confusion is a HAI issue which occurs when the human operator is unable to keep track of the state or mode of the device
automation (Norman, 1990; Sarter and Woods, 1995).
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cognitive framework that models the effect of salience, cognitive load, and the interpretation
of spatial cues and assesses whether they result in erroneous human behavior (Rukšėnas et
al., 2008; Rukšenas et al., 2009; Rukšėnas et al., 2007). Habituation, impatience, and
carefulness have also been incorporated into these types of models (Basuki et al., 2009).
Means of evaluating distributed cognition formally have also been explored (Masci et al.,
2011).

Because they explicitly model human behavior and because they represent the cognitive
basis for erroneous behavior, the techniques discussed here give analysts additional insights
into why failures occur. However, these analyses require each cognitive mechanism to be
incorporated into the model. As such, they miss un-modeled behaviors. Finally, the
cognitive models employed in these techniques are less commonly used than other human
behavior modeling techniques such as task models.

1.2.3. Using models of task analytic human behavior—A third approach for
assessing the impact of human behavior on system safety incorporates task analytic models
into formal verification analyses. When designing the procedures, displays, controls, and
training associated with the HAI of an automated system, human factors engineers typically
use task analytic methods to describe the normative human behaviors required to control the
system (Kirwan and Ainsworth, 1992). Information from these methods can be used to
model the mental and physical activities operators use to achieve goals with the system.

Task analytic models are computational structures represented as a hierarchy of activities
that decompose into other activities and (at the lowest level) atomic actions. Task analytic
models such as ConcurTaskTrees (CTT) (Paternò et al., 1997), Operator Function Model
(OFM) (Mitchell and Miller, 1986), Enhanced Operator Function Model (EOFM) (Bolton et
al., 2011), User Action Notation (UAN) (Hartson et al., 1990), AMBOSS (Giese et al.,
2008), and HAMSTERS (Martinie et al., 2011) can be represented using discrete graph
structures. In these models, strategic knowledge (condition logic) controls when activities
can execute, and modifiers between activities or actions control how they execute in relation
to each other.

Because they can be represented discretely, task analytic models can be used to include
human behavior in formal system models. A number of researchers have incorporated task
analytic models into formal system models of human-automation interactive systems by
either modeling task behavior natively in the formal notation (Basnyat et al., 2007, 2008;
Campos, 2003; Gunter et al., 2009) or translating task analytic models implemented in task
analytic representations (such as CTT, EOFM, or UAN) into the formal notation (Aït-Ameur
and Baron, 2006; Aït-Ameur et al., 2003; Bolton and Bass, 2009b, 2010a; Bolton et al.,
2011; Fields, 2001; Palanque et al., 1996; Paternò and Santoro, 2001; Paternò et al., 1998).
This allows system safety properties to be verified in light of the modeled, normative human
behavior, thus giving researchers a means of proving that (assuming the representativeness
of their system model) the system will always operate safely if the human operators adhere
to the modeled behavior.

These analyses have the advantage that they allow engineers to reuse the information
gleaned from task analytic methods. However, these approaches are limited because the
models only encompass normative human behavior and thus the analyses provide no insight
into the impact of erroneous human behavior. To address this, researchers have investigated
how erroneous human behavior can be systematically incorporated into task analytic
behavior models, often with the explicit or implied ability to evaluate the impact of the
generated erroneous human behavior on system properties using formal verification. For
example, several researchers have demonstrated how task analytic models of normative
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human behavior can be manually permuted to include erroneous human behaviors: either
simple deviations from the performance of actions in a task (Bolton et al., 2008; Fields,
2001) or more complicated, cognitively significant divergences such as post completion
errors (Basnyat and Palanque, 2005; Palanque and Basnyat, 2004; Paternò and Santoro,
2002). Bastide and Basnyat (2007) and Fields (2001) have taken this a step further by
introducing “error patterns” representing erroneous behavior deviations from normative task
behavior models, where the manual application of the transformation rules will
automatically incorporate the erroneous behavior in the desired location. This approach
allows an expert on erroneous human behavior to examine a normative human task behavior
model and selectively include erroneous human behaviors in locations where he or she
thinks they might occur. The impact of the included erroneous behaviors can then be
evaluated with formal verification (Bolton et al., 2008; Fields, 2001).

The approaches covered in this section have an advantage over the cognitive modeling-
based techniques discussed above in that they leverage information commonly developed in
the task analysis process. Further, the erroneous behavior manually incorporated into the
task behavior models can be included for both cognitive or non-cognitive reasons. However,
the fact that erroneous behaviors must be manually included in these analyses means that
these methods will not provide insight into the impact of unanticipated erroneous human
behavior, while the more advanced cognitive models can.

1.3. Objectives
Clearly, analysts have some options if they want to evaluate the impact of human behavior
of system safety formally. What is missing is an approach that would allow engineers to
reuse task analytic behavior models to evaluate the impact of potentially unanticipated,
erroneous deviations from normative behavior. Such an approach would avoid the pitfalls of
the human device interface and cognitive modeling approaches. Further, it would be able to
leverage the advantages of using task analytic behavior models without forcing the analyst
to select which erroneous behaviors to include.

In this work, we present a technique capable of performing such an analysis. Our technique
uses a well established taxonomy of erroneous human behavior (based on Hollnagel 1993)
to automatically generate erroneous behavior within instantiated EOFM task analytic models
of normative human behavior. Because instantiated EOFMs can be automatically translated
into formal modeling notation (Bolton et al., 2011), the impact of the generated, and
potentially unanticipated, erroneous human behavior on system safety can be evaluated
using formal verification with a model checker. In the remainder of this paper we discuss
our analysis method for the formal verification of HAI and show how erroneous human
behavior can be automatically generated and evaluated as part of this process. We report
benchmarks which show how our method scales with respect to the number of available
human actions and the maximum number of erroneous acts allowed with different task
structures. We demonstrate how our method can be used to find violations of system safety
properties due to automatically generated erroneous human behavior with a radiation
therapy machine example. We show how our method can be used to explore design
interventions which eliminate the discovered problem. Finally, we discuss our results and
recommend avenues of future research.

2. Using EOFM in the Formal Verification of HAI
We have developed a method (Bolton and Bass, 2009b) to evaluate HAI formally using task
analytic models of human behavior. The method utilizes a formal modeling architectural
framework which encompasses models of human missions (i.e. goals), human task behavior
(the activities and actions the human operator uses to achieve mission goals), human-device
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interfaces (displays and controls available to the human operator through the device), device
automation (underlying device behavior), and the operational environment (Bolton and
Bass, 2010a). In our analysis framework, human task models are created using an
intermediary language called Enhanced Operator Function Model (EOFM) (Bolton et al.,
2011), an XML-based human task modeling representation derived from the Operator
Function Model (OFM) (Mitchell and Miller, 1986; Thurman et al., 1998). EOFMs are
hierarchical representations of goal driven activities that decompose into lower level
activities, and finally, atomic actions. EOFMs express task knowledge by explicitly
specifying the conditions under which human operator activities can be undertaken: what
must be true before they can execute (preconditions), when they can repeat (repeat
conditions), and when they have completed (completion conditions). Any activity can
decompose into one or more other activities or one or more actions. A decomposition
operator specifies the temporal relationships between and the cardinality of the decomposed
activities or actions (when they can execute relative to each other and how many can
execute).

EOFMs can be represented visually as tree-like graphs (see Figure 1). Actions are rectangles
and activities are rounded rectangles. An activity’s decomposition is presented as an arrow,
labeled with the decomposition operator, that points to a large rounded rectangle containing
the decomposed activities or actions. In the work presented here, four of the nine
decomposition operators (Bolton et al., 2011) are used:

• ord – all activities or actions in the decomposition must execute in the order they
appear;

• or seq – one or more of the activities or actions in the decomposition must execute,
where only one activity or action can be executing at a given time;

• optor par – zero or more of the activities or actions in the decomposition must
execute, where the execution of activities or actions can overlap; and

• xor – exactly one activity or action in the decomposition must execute.

Conditions on activities are represented as shapes or arrows (annotated with the logic)
connected to the activity that they constrain. The form, position, and color of the shape are
determined by the type of condition. A precondition is a yellow, downward-pointing
triangle; a completion condition is a magenta, upward-pointing triangle; and a repeat
condition is an arrow recursively pointing to the top of the activity. More details can be
found in (Bolton et al., 2011).

EOFM has formal semantics which specify how an instantiated EOFM model executes
(Bolton et al., 2011). Specifically, each activity or action can have one of three execution
states: waiting to execute (Ready), executing (Executing), and done (Done). An activity or
action transitions between each of these states based on its current state; the state of its
immediate parent, its siblings (activities or actions contained in the same decomposition),
and its immediate children in the hierarchy; and the decomposition operators that connect
the activity to its parent and its children.

Instantiated EOFM task models can be automatically translated (Bolton et al., 2011) into the
language of the Symbolic Analysis Laboratory (SAL) (De Moura et al., 2003) using the
language’s formal semantics where they can be integrated into a larger system model using a
defined architecture and coordination protocol (Bolton and Bass, 2010a; Bolton et al., 2011).
Formal verifications are performed on this complete system model using SAL’s Symbolic
Model Checker (SAL-SMC). Any produced counterexamples can be visualized and
evaluated using EOFM’s visual notation (see Bolton and Bass 2010b). These techniques
have been successfully used to evaluate a patient controlled analgesia pump (Bolton and
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Bass, 2009b, 2010a), an automobile cruise control system (Bolton and Bass, 2010b; Bolton
et al., 2011), and an aircraft on approach (Bolton and Bass, in press).

We next discuss the design philosophy behind our erroneous behavior generation method
and describe how it can be automatically incorporated into this infrastructure.

3. Erroneous Behavior Generation
3.1. Phenotypes of Erroneous Human Behavior

Erroneous human behaviors have been classified based on how they arise from human
decision making, cognition, and task execution (Hollnagel, 1993; Jones, 1997; Norman,
1988; Reason, 1990). Task analytic behavior models generally do not model low level
perceptual, motor, and cognitive processes (exceptions are discussed by John and Kieras
1996). However, they do model human task behavior hierarchically down to the atomic,
observable action level. For this reason, Hollnagel’s (Hollnagel, 1993) phenotypes of
erroneous action are appropriate.

Hollnagel (Hollnagel, 1993) showed that erroneous human behaviors can be classified based
on how they observably manifest as a divergence from a plan or normative sequence of
actions (a task). He called these the phenotypes of erroneous human action. In this
taxonomy, erroneous behaviors are composed of one or more erroneous acts, all capable of
being detected by observing the performance of a single act in a plan. These “zero-order”
phenotypes include: prematurely starting an action, delaying the start of an action,
prematurely finishing an action, delaying the completion of an action, omitting an action,
jumping forward (performing an action that should be performed later), jumping backward
(performing a previously performed action), repeating an action, and performing an
unplanned action (an intrusion). These serve as the building blocks for additional, “first-
order”, phenotypes: spurious intrusions (actions are added to plans via zero-order
intrusions), jumping forward or backward in a plan (multiple skips or jumps), place losing
(performing planned actions in an arbitrary order via multiple skips and jumps), recovery
(performing previously omitted actions via multiple jumps), capture (performing part of
another action sequence in the wrong place via multiple intrusions), reversal (reversing the
execution of two adjacent actions via a skip and a jump backward), and time compression
(multiple premature starts and/or premature finishes).

4. Phenotypical Erroneous Human Behavior Generation
Hollnagel’s phenotypes (Hollnagel, 1993) for delays and premature starts and finishes refer
to time explicitly, which is not currently supported by our method (Bolton and Bass, 2009b).
However, all of the other zero-order phenotypes relate to the performance or non-
performance of actions; all of which are compatible with the formal semantics and structure
of the EOFM. Thus the intent of this work was to develop an erroneous behavior generation
process capable of replicating Hollnagel’s (Hollnagel, 1993) zero-order phenotypes of
erroneous human behavior for omitting, skipping, re-performing, repeating, or intruding an
action for each original action in an instantiated EOFM. To allow for more complex
erroneous human behaviors, erroneous behavior generation must be capable of chaining
zero-order erroneous human acts. An unconstrained number of erroneous acts could result in
an unbounded human task behavior model, which would eliminate the benefit of including
human behavior in the model. Thus, the erroneous behavior generation process must support
a mechanism for constraining the number of erroneous acts that can be performed in the
formally translated erroneous human behavior model. To facilitate analysis with our method,
the erroneous behavior generation structure should be represented in the EOFM language
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thus making it compatible with the EOFM to SAL translation process and counterexample
visualization.

To accomplish these goals, we replace each action in an instantiated EOFM task model with
an EOFM task structure that generates erroneous behavior. Thus, for every given action in
the original normative structure, the new structure can allow for the original action and/or
one or more zero-order phenotypes. The ability to perform multiple erroneous acts allows
zero-order erroneous acts to be chained together to form higher order erroneous behaviors.
A counter keeps track of the number of erroneous acts, and the number of erroneous acts is
limited by a maximum. What follows is a discussion of the details for implementing
erroneous behavior generation in this manner, and how it was adapted into our method for
the formal verification of HAI.

To generate erroneous actions, zero-order phenotypes for omissions, skips, re-performances,
repetitions, and intrusions are incorporated into an instantiated EOFM by replacing each
atomic action (Actionx) with a customized structure (Actionx’) (Figure 2). This design
includes an upper bound on the number of erroneous acts (EMax) and a variable (ECount)
that keeps track of the number of erroneous acts that the task model has performed. Any
activity that represents an erroneous act has a precondition asserting that it cannot be
performed unless the current number of performed erroneous actions is less than the
maximum (ECount < EMax). Every time an activity representing an erroneous act executes,
ECount is incremented by one (ECount++).

Actionx’ decomposes into several additional activities, allowing Actionx’ to complete
execution if one or more of these activities executes (via the or seq decomposition operator).
CorrectAction allows the original correct action (Actionx) to be performed. The Omission
activity allows a human operator to perform the erroneous act of omitting the original action,
represented as the DoNothing action. The Repetition activities each allow the correct action
to be performed erroneously multiple times, one for each activity. The Commission
activities each allow any other single erroneous action to be performed (via the xor
decomposition operator), where the set of erroneous actions corresponds to the n human
actions available to the human operator. There are EMax Commission and Repetition
activities, thus allowing for up to EMax erroneous actions to occur in place of or in addition
to the original action.

Aside from keeping the number of erroneous acts from exceeding the maximum, the
precondition of each activity in this structure ensures that there is only one way to produce a
given sequence of actions for each instance of the structure. An omission can only execute if
no other activity in the structure has executed (all other activities must be Ready) and every
other activity can only execute if there has not been an omission (Omission = Ready). The
first repetition activity (Repetition1) cannot execute unless the correct action activity is done
(CorrectAction = Done). Every subsequent repetition activity (Repetitioni) cannot execute
unless the previous repetition activity has executed (Repetitioni−1 = Done). Similarly, every
commission activity Commissioni where i > 1 cannot execute unless the previous
commission activity is done (Commissioni−1 = Done).

This design allows the specified zero-order erroneous behavior phenotypes to be generated
when the EOFM executes. Skips and omissions occur through the execution of the Omission
activity. Repeating the current action can occur through a Repetition activity. Re-performing
a previously completed action or performing an intrusion can occur by executing either a
previously performed action or some other action (respectively) through one of the
Commission activities. Multiple erroneous actions can occur before, after, or instead of the
correct action due to the or seq decomposition and multiple erroneous acts can occur
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between erroneous behavior generating structures for different actions. Thus, the use of this
structure allows for single, zero-order erroneous actions as well as more complicated (first-
order or second-order) erroneous behaviors to be generated.

Our Java-based EOFM to SAL translator (Bolton et al., 2011) was modified to incorporate
the erroneous behavior generation structure into any instantiated EOFM. The translator takes
a normative human behavior model (an instantiated EOFM XML file) and the maximum
number of erroneous acts (EMax) as input and traverses the EOFM structure, replacing each
action with its corresponding erroneous behavior generative structure (Figure 2). To
accommodate the verification process, the translator represents EMax as a constant and the
range for the number of possible erroneous acts (0 to EMax) as a type. It modifies each
human operator by adding a variable representing the current number of performed
erroneous acts (ECount) and a DoNothing human action.

The translator produces two files as output. The first is an EOFM XML file representing the
created erroneous human behavior model (separate from the model of normative behavior).
The second is the translated SAL representation of this model.

5. Testing and Benchmarks
Benchmarking was performed to shed light on how the erroneous behavior generation
process impacted model complexity and scalability. For these analyses, we wanted to
develop an understanding of how the erroneous behavior generation process contributed to
the statespace size and verification times of task behavior models instantiated in EOFM. The
complexity added to an instantiated EOFM task behavior model can be influenced by two
factors. The first is the complexity of the erroneous behavior generation structure that
replaces each action. This, in turn, can be influenced by the maximum number of erroneous
acts (EMax), which determines how many Commission and Repetition activities are in the
erroneous behavior generation structure; and the number of available human actions, which
populate the generating structure’s Commission activities. The second factor that impacts
complexity is the relationship between each of the generating structures based on the
decomposition operators that control it (Bolton et al., 2011).

We conducted a series of verifications using three different instantiated EOFM normative
task behavior models (Figure 3). The structure shown in Figure 3(a) represents the simplest
valid instance of an EOFM: where a single activity decomposes into a single action. Thus,
benchmarks collected from verifications using this model as input provide insight into the
scalability of the erroneous behavior generation structure in isolation. The structures shown
in Figs. 3(b) and 3(c) represent the simplest EOFM task structure in which there is more
than one action. The ord decomposition operator2 (used in Figure 3(b)) has the least impact
on model complexity while the optor par decomposition operator3 (used in Figure 3(c)) has
the most (Bolton et al., 2011). Thus, the model in Figure 3(b) supports lower bound analysis
of the impact the erroneous behavior structures has on verification results while the model in
Figure 3(c) supports an upper bound analysis.

In the analysis, we varied the number of available human actions (between 1 and 16) and the
maximum number of erroneous acts (between 0 and 8) for each of the task structures ((a),
(b), and (c)) from Figure 3. We used our translator to create a formal SAL model for each
distinct combination. Each model was formally verified once against a valid specification
using SAL-SMC on a computer workstation with a 3.0 gigahertz dual-core Intel Xeon

2All of the sub-activities or actions must execute sequentially in the order they are listed.
3Zero or more of the sub-activities or actions can execute in any order and the execution of activities or actions can overlap.
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processor and 16 gigabytes of RAM running the Ubuntu 9.04 desktop, where both the total
number of visited states and the verification time, as reported by SAL-SMC, were recorded.
These results are presented in Figure 4. Note that the results for task structure (c) with an
EMax of 8 and 16 human actions are not reported because the verification exceeded the
memory capacity of the computer.

A visual inspection of these results suggested that, for all three task structures, the statespace
and verification times initially increased with the introduction of the erroneous generation
structure (EMax = 0 to EMax = 1). It then grew exponentially with EMax, where the rate of
exponential growth was higher for larger numbers of allowable human actions. We
confirmed this exponential relationship by calculating the R2 of the log of both the number
of visited states and the verification time as predicted by the value of EMax (for EMax > 0)
for each number of available human actions (Table 1). R2 ranged from 0.938 to 1. All were
significant at p < 0.05. Thus, both statespace and verification time increase at an
approximately exponential rate with EMax.

As expected, models based on task structure (a) (which had only one action in its normative
configuration) were less complex (had fewer visited states) for comparable numbers of
human actions and EMax values than the models based on the other two task structures
(which both had two actions in their normative configuration). Similarly, models based on
task structure (b) which had the more restrictive ord decomposition operator had smaller
statespaces for comparable parameters than models based on task structure (c) which
utilized optor par. Verification times generally increased with the complexity of the model.

6. Application
To demonstrate how this type of erroneous behavior generation can be used, we evaluate a
model of a human operated radiation therapy machine4 based loosely on the Therac-25, a
radiation therapy machine responsible for the deaths of several patients in the 1980s
(Leveson and Turner, 1993). This device is a room-sized, computer-controlled, medical
linear accelerator. It has two treatment modes: the electron beam mode is used for shallow
tissue treatment, and the x-ray mode is used for deeper treatments -requiring electron beam
current approximately 100 times greater than that used for the electron beam mode. The x-
ray mode uses a beam spreader (not used in electron beam mode) to produce a uniform
treatment area and attenuate radiation of the beam. An x-ray beam treatment application
without the spreader in place can deliver a lethal dose of radiation.

In the following, we describe the components of the formal model and the specification that
were used as the basis for all analyses. We then describe a sequence of verification analyses
in which the maximum number of erroneous acts (EMax) was iteratively increased.
Verification results and statistics are reported for each verification analysis.

6.1. Formal Model
6.1.1. Human-device interface—The human-device interface model (Figure 5) includes
interactions with the 5 relevant keyboard keys (‘X’, ‘E’, Enter, Up and ‘B’) and the
information on the monitor. The interface state (InterfaceState; Figure 5(a)) starts in Edit
where the human operator can press ‘X’ or ‘E’ (PressX or PressE) to select the x-ray or
electron beam mode and transition to the ConfirmXrayData or ConfirmEBeamData states
respectively. When in the ConfirmXrayData or ConfirmEBeamData states, the appropriate
treatment data are displayed (DisplayedData; Figure 5(b)), and the human operator can

4A full listing of all of the model code used in this process can be found at http://cog.sys.virginia.edu/formalmethods/
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confirm the displayed data by pressing enter (advancing to the PrepareToFireXray or
PrepareToFireEBeam states) or return to the Edit state by pressing up (PressUp) on the
keyboard. In the PrepareToFireXray or PrepareToFireEBeam states, the human operator
must wait for the beam to become ready (BeamState; Figure 5(c)), at which point he or she
can press ‘B’ (PressB) to administer treatment by firing the beam. This transitions the
interface state to TreatmentAdministered. The operator can also return to the previous data
confirmation state by pressing up.

6.1.2. Device automation—The device automation model (Figure 6) controls the power
level of the beam, the position of the spreader, and the firing of the beam. The power level
of the beam (BeamLevel; Figure 6(a)) is initially not set (NotSet). When the human operator
selects the x-ray or electron beam treatment mode, the power level transitions to the
appropriate setting (XrayLevel or EBeamLevel respectively). However, if the human
operator selects a new power level, there is a delay in the transition to the correct power
level, where it remains in an intermediary state (XtoE or EtoX) at the old power level before
automatically transitioning to the new one. The position of the spreader (Spreader; Figure
6(b)) starts either in or out of place (InPlace or OutOfPlace). When the human operator
selects the x-ray or electron beam treatment mode, the spreader transitions to the appropriate
setting (InPlace or OutOfPlace respectively). The firing state of the beam (BeamFireState;
Figure 6(c)) is initially waiting to be fired (Waiting). When the human operator fires the
beam (pressing ‘B’ when the beam is ready), the beam fires (Fired) and returns to its waiting
state.

6.1.3. Human mission—The human mission identifies the goals the human operator is
attempting achieve when interacting with the device: the type of treatment the human
operator is attempting to administer. In the formal model, this is represented as a variable
(TreatmentType) that can initialize to either Xray or EBeam.

6.1.4. Normative human task behavior—Three goal directed task models describe the
administration of treatment with the radiation therapy machine (Figure 7): selecting the
treatment mode (aSelectXorE; Figure 7(a)), confirming treatment data (aConfirm; Figure
7(b)), and firing the beam (aFire; Figure 7(c)).

These models access input variables from the human-device interface (the interface state
(InterfaceState), the displayed treatment data (DisplayedData), and the ready status of the
beam (BeamState)) and the mission (treatment type (TreatmentType)) to generate the human
actions for pressing the appropriate keyboard keys.

When the interface is in the edit mode (aSelectXorE; Figure 7(a)), the practitioner can select
the appropriate treatment mode based on the mission TreatmentType by performing either
the PressX or PressE actions. When the interface is in either of the two data confirmation
states (aConfirm; Figure 7(b)) the practitioner can choose to confirm the displayed data (if
the displayed data correspond to the desired treatment mode) by pressing enter or return to
the Edit state by pressing up. When the interface is in either of the states for preparing to fire
the beam (aFire; Figure 7(c)), the practitioner can choose to fire the beam if the beam is
ready by pressing ‘B’ or return to the previous interface state by pressing up.

6.2. Specification
We specify that we never want the radiation therapy machine to irradiate a patient by
administering an unshielded x-ray treatment using Linear Temporal Logic as shown in (1).
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(1)

This can be interpreted as “we never want the beam to fire when it is at the x-ray level and
the spreader is out of place.”

6.3. Analyzing System Safety with Normative Human Behavior
6.3.1. Translation—The EOFM instance was translated into SAL code using our modified
translator and incorporated into the larger formal system model using only the normative
human behavior (EMax = 0). The normative behavior model’s EOFM representation was 74
lines of XML code. Its corresponding formal representation was 166 lines of SAL code. The
majority of the increase in code size is due to the fact that the SAL model must explicitly
represent the formal semantics of the EOFM and the coordination protocol that allows the
task model to interact with other system elements.

6.3.2. Verification—When (1) was checked against the formal system model, it verified to
true in 0.90 seconds having visited 1,648 states. Thus, the radiation therapy machine will
never irradiate a patient if the human operator behaves normatively.

6.4. Analyzing System Safety with Up to One Erroneous Act
6.4.1. Translation—The EOFM instance was re-translated into SAL code, this time
allowing for up to one erroneous act (EMax = 1). The produced erroneous EOFM model (an
example of which appears in Figure 8) was 272 lines of XML code. Its formal representation
was 739 lines of SAL code.

6.4.2. Verification—The specification in (1) was checked against this new system model.
This produced a counterexample after 44.11 seconds indicating that, when the human
operator performs up to one erroneous act, the specification in (1) can be violated.

To aid in the problem diagnosis, the counterexample was visualized using a technique
documented by Bolton and Bass (2010b). In this approach, for each step in a
counterexample, formal model variables are listed under categories based on their location
in the architecture of the formal model (human-device interface, device automation, human
mission, human task behavior, and operational environment). Changes in variable values
from the previous step are highlighted. Further, the execution state of the EOFM task model
is rendered using the EOFM visual notation for each step of the counterexample, where an
activity in a rendered structure is color coded to indicate if it is Ready, Executing, or Done.

The counterexample illustrated one way that the specification violation could occur:

1. The model initialized with the interface in the edit state with no displayed data and
the beam not ready; the beam power level not set; the spreader out of place; the
beam fire state waiting; and the human mission indicating that the human operator
should administer electron beam treatment.

2. When attempting to select the electron beam mode, the practitioner erroneously
pressed ‘X’ instead of ‘E’ via a generated Commission activity in aSelectXorE
from Figure 7 (in the counterexample visualization, this is indicated by ECount
changing from 0 to 1 and the rendering of the EOFM task structure showing that
the generated Commission activity was Executing). This caused the interface to
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transition to the x-ray data confirmation state and display the x-ray treatment data.
The spreader was also moved in place and the beam was set to the x-ray power
level.

3. Because the incorrect data were displayed, the practitioner pressed up to return the
interface to the edit mode.

4. The practitioner selected electron beam treatment mode by pressing the ‘E’ key.
The interface transitioned to the electron beam data confirmation state and
displayed the electron beam treatment data. The spreader was moved out of place
and the beam prepared to transition to the electron beam power level (XtoE in
Figure 6(a)).

5. The practitioner confirmed the treatment data by pressing enter and the interface
transitioned to the electron beam’s waiting to fire state.

6. The beam became ready.

7. The practitioner fired the beam by pressing ‘B’. Because the beam power level had
not yet transitioned to the electron beam power level, the beam fired at the x-ray
power level with the spreader out of place.

6.4.3. Redesign—One way of eliminating this discovered system failure is by modifying
when the beam becomes ready in the human-device interface. This can be done by adding
the additional constraint that the beam will not transition to ready unless it is set to the
correct power level (Figure 9).

6.4.4. Re-verification—When this modified model was incorporated into the system
model with the erroneous human behavior model (EMax = 1) and checked against (1), it
verified to true in 47.06 seconds having visited 114,708 states.

6.5. Analyzing System Safety with Two or More Erroneous Acts
6.5.1. Translation—Using the modified human-device interface design from the previous
section, the EOFM instance was re-translated into SAL code three more times allowing for
up to two (EMax = 2; 455 lines of XML and 1028 lines of SAL code), three (EMax = 3; 598
lines of XML and 1364 lines of SAL code), and four (EMax = 4; 741 lines of XML and
1700 lines of SAL code) erroneous acts.

6.5.2. Verification—In all cases, when (1) was checked against the resulting system
model, it verified to true (see Figure 10 for verification statistics). Thus, with the redesigned
human-device interface, the model indicates that the patient will never be irradiated even if
the human operator performs up to four erroneous acts.

7. Discussion
The method presented here represents a novel contribution to model-driven design and
analysis techniques that use formal verification to evaluate the role of human behavior in
system safety. Using task analytic behavior models, phenotypical erroneous behavior
generation, formal modeling, and model checking, the presented methods gives analysts the
ability to use task analytic human behavior models to evaluate whether or not normative
human behavior and/or potentially unanticipated variations from that behavior will or will
not contribute to violations of system safety. Further, the nature of the presented technique
allows the analyst to scale his or her evaluation to allow for the generation of a number of
different erroneous behaviors. By using an EOFM task structure to replace every action in
an instantiated EOFM, the method is capable of generating zero-order phenotypes of
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erroneous human action: omitting an action, skipping an action, re-performing a previously
completed action, repeating the last performed action, or intruding an action. The use of the
structure in each action, and the use of the or seq decomposition operator (which allows one
or more sub-activities to execute) in each instance of the structure allow multiple zero-order
phenotypical erroneous acts to generate all of Hollnagel’s first-order phenotypes except for
time compression. The number of possible erroneous acts is constrained by a maximum and
a counter preventing generated erroneous behavior from making the task behavior model
unbounded. The erroneous behavior generation structure is represented in EOFM constructs
and is thus compatible with the EOFM to SAL translator and counterexample visualizer.

While simple, the radiation therapy machine example illustrates how this process can be
used to find potential system problems due to erroneous human behavior in HAI systems.
The discovered problem is very similar to one found in the Therac-25 (Leveson and Turner,
1993). Similar problems have also resulted in injury and death with a number of modern
radiation therapy machines (Bogdanich, 2010).

7.1. Excluding Specific Erroneous Behaviors
The nature of model checking is such that an analyst may uncover a counterexample
illustrating a system problem involving an erroneous human behavior neither interesting nor
correctable. In this situation, the analyst may wish to rerun the analysis without considering
a specific erroneous behavior.

In the current implementation, this can be achieved by modifying the specification to ensure
that the unwanted behavior is never executed. This can be accomplished with the following
specification:

(2)

This asserts that, for the EOFM Action or Activity representing the erroneous act the analyst
wishes to ignore (ErroneousAct) and the original desired specification
(OriginalSpecification), the erroneous act never executing (G(ErroneousAct = Ready)) will
imply that the original specification will always be true.

For example, where PressX represents the action for erroneously pressing ‘X’ instead of ‘E’
when selecting the treatment mode, we can apply this to the un-corrected radiation therapy
machine model with EMax = 1 erroneous human behaviors as:

(3)

This specification verifies to true.

Note that (2) can be modified to exclude additional erroneous acts simply by adding them to
the expression to the left of the implication operator.

Future work should investigate other means of allowing analysts to exclude specific
erroneous acts or groups of them from formal verifications.
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7.2. Statespace Complexity
The fact that the complexity (and verification time) of the model increases exponentially
with the maximum number of allowable erroneous acts indicates that analysts will be limited
in the number of erroneous acts they can introduce in a formal verification. Even with the
simple benchmark models with maxima of only 8 erroneous acts, we were able to generate
models that took longer than an hour to verify and exceeded the memory capacity (16
Gigabytes) of our analysis machine. These limitations are also seen in the radiation therapy
application in the exponential increase seen in the statespace with each increase in maximum
number of erroneous acts (Figure 10). That said, verifications with up to a maximum a four
erroneous acts were performed with the application without coming close to reaching the
analysis limit.

There may be possibilities for future improvements. Some of the increased complexity of
the model containing erroneous behavior is associated with the fact that every activity or
action incorporated into an instantiated EOFM task behavior model adds a variable
(representing the activity’s or action’s execution state) with three possible values. Thus, the
complexity of the model would likely decrease with a reduction in the number of additional
activities and actions contained in the generative structure. One way of doing this would be
to remove the multiple Repetition and Commission activities and allow single instances of
them to execute multiple times. Implementing this with our current technology would
require that the erroneous behavior generation structure not adhere to the EOFM’s formal
semantics (Bolton et al., 2011). Future work should investigate if such a solution improves
model complexity and whether EOFM formal semantics should be extended to support this.

Another possibility for reducing the statespace of the model lies in eliminating the
intermediary transitions of EOFM activity and action execution states. In the current
implementation of the translator (Bolton et al., 2011), the formal model represents every
transitional step of an activity’s execution state as a single transition in the formal model.
While this accurately adheres to the formal semantics of the language, the formal model
requires a discrete state for every intermediary transition in the task model hierarchy. These
intermediary transitions are of no consequence to the other elements of the system model,
which are only concerned with the resulting human actions. Thus, the complexity of the
formal task model representation could be reduced by decreasing the number of internal
transitions required to traverse an instantiated EOFM’s translated task structure (including
the erroneous behavior generation structure) during execution. Future work should
investigate the feasibility of this approach.

The reported benchmarks (Figure 4) show that some decomposition operators scale better
than others. It is not clear how often the less scalable decompositions will be used. However,
every decomposition operator has been used in some application (Bolton, 2010, 2011;
Bolton and Bass, 2009a,b, 2010a,b, in press; Bolton et al., 2011). Future work should
investigate how the frequency with which different decomposition operators are used will
impact the scalability of the method.

Even though the scalability of the current implementation could be improved, the radiation
therapy example illustrates that significant insights into the safety of a system can be found
with only a maximum of one erroneous act. As such, our method would likely be most
effective if applied iteratively (as was done in this paper), where analysts start with a
maximum of one erroneous act and progressively increase the maximum number of
erroneous acts until the necessary insights are gained or the model exceeds the available
computational resources.
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7.3. Future Extension of Our Method
Our method currently does not support Hollnagel’s (Hollnagel, 1993) phenotypes for
delaying, prematurely starting, or prematurely finishing an action. Future work should
investigate if these types of erroneous behaviors can be incorporated into our analyses using
timed automata (Henzinger et al., 1991).

The EOFM language supports the synchronous execution of actions, where a sync
decomposition operator is used to specify that all of the actions in a given decomposition
execute at the same time. Hollnagel’s phenotypes assume that human behavior is executing
sequentially, with no parallelism or synchronization between human actions. For this reason,
the current method does not support the erroneous behavior generation for synchronized
human actions and does not support synchronized erroneous actions within a given
generative structure, such as a human performing two erroneous actions synchronously or
performing the correct action synchronously with erroneous actions. Future work should
investigate how parallelism could be incorporated into our erroneous human behavior
generation structure, and investigate how this impacts the statespace complexity and
verification time of models in which it is used.

For a large maximum number of erroneous acts, our approach will ultimately be capable of
reproducing the more complicated and cognitively significant erroneous behavior patterns
that have been explored by Basnyat and Palanque (2005), Palanque and Basnyat (2004), and
Paternò and Santoro (2002). However, doing so will also generate a significant number of
complex erroneous behaviors that are not as cognitively probable (see Reason 1990). Future
work should explore alternative erroneous behavior generation processes that might be
capable of generating these types of patterns with EOFM and our analysis method.

If the model checker encounters a situation that the human task behavior model cannot
address (it deadlocks), it will abandon it as a path of inquiry in the model. This is not
realistic because, if real human operators encounter such situations, they may respond in a
number of different ways. For example, they may attempt other means of achieving the task,
they may restart the task, or they may abandon it and move on to other tasks. All of these
behaviors could be viewed as erroneous since they do not conform to the task model. Thus,
they should be included in formal verification analyses concerned with generating erroneous
human behavior. Palanque et al. (2011) have modeled interruptions when evaluating systems
with task analytic behavior models. Doherty et al. (2008) have investigated a resourced
action approach to modeling human goal directed behavior without formally articulated task
models. Future work should investigate whether these techniques could be adapted to model
the human response to task deadlock in our infrastructure.

7.4. Comparison of Existing Techniques
As described in the introduction, there are tradeoffs in scope and purpose between the
different methods that allow formal verification to be used to evaluate the safety of human-
automation interactive systems. There are scalability tradeoffs as well. Analyses that only
use a model of the human-device interface will likely scale better than the other presented
techniques, but will explore many different human behaviors that may not be realistic or
useful. Techniques that use erroneous behavior patterns that analysts must manually include
in task analytic models will also likely scale better than the presented method, but they will
not allow for the inclusion of unanticipated erroneous behavior. Analyses using cognitive
models allow the impact of unanticipated (cognitively caused) erroneous behavior to be
evaluated, but it is not clear how such analyses will scale compared to the method presented
here.
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To better understand the tradeoffs between techniques, future work should investigate how
an infrastructure could be constructed to enable all of these approaches to be applied to a
common system. Such an infrastructure would facilitate the comparison of the different
techniques across many applications. This would allow analysts to determine what types of
systems the different techniques are compatible with, how they scale relative to each other,
and what types of problems they can discover.

It should be noted that, because of the similar modeling approaches, the method presented
here should be capable of being used synergistically with the unconstrained and other task-
model-based techniques that have been discussed. For example, an analyst can use
unconstrained task behavior (a task model that allows a human operator to perform any
action at any time) to evaluate system safety properties that must always be true no matter
the human behavior. The analyst can incorporate a normative human task behavior model
and verify that other system safety properties that depend on human behavior will be
maintained. The analyst can then apply the technique presented in this paper to see if
expected deviations from the task model (based on the phenotypes of erroneous action) will
result in violations of these safety properties. Finally, the analyst can evaluate whether more
complex erroneous behaviors impact system safety by incorporating the erroneous behavior
patterns discussed by (Basnyat and Palanque, 2005; Palanque and Basnyat, 2004; Paternò
and Santoro, 2002) into the normative task behavior model. It is not clear how the methods
that utilize cognitive architectures could be made to work synergistically with these other
techniques. This should be explored in future research.
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Figure 1.
An example of the visual representation of a task structure in an instantiation of an EOFM.
Activity aActivity1 has both a precondition and a completion condition. It decomposes into
activities aActivity2 and aActivity3 with an or_seq decomposition operator. aActivity2 has a
precondition and decomposes into Action1 with an ord decomposition operator. aActivity3
has both repeat and completion conditions. It decomposes into aActivity4 and aActivity5
with an optor_par operator. aActivity4 and aActivity5 each decompose into two actions,
Action2 and Action3 with an xor decomposition for the former and Action4 and Action5
with an ord decomposition for the latter.
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Figure 2.
Visualization of the EOFM structure used to generate zero-order phenotypical erroneous
human behavior.
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Figure 3.
Instantiated EOFM normative task behavior structures used as inputs to verification
benchmark experiments: (a) A single activity decomposing into a single action with an ord
decomposition; (b) A single activity decomposing into two actions with an ord
decomposition; and (c) A single activity decomposing into two actions with an optor_par
decomposition.
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Figure 4.
Plot of the verification results (verification time in seconds and the number of visited states)
vs. the maximum number of erroneous acts (EMax) for between 1 and 16 available human
actions for each of the three task structures ((a), (b), and (c)) from Figure 3 on log-linear
coordinates.
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Figure 5.
State transition representation of the formal human-device interface model. Rounded
rectangles represent states. Arrows between states represent transitions. Dotted arrows
indicate initial states.
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Figure 6.
State transition representation of the formal device automation model.
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Figure 7.
Visualization of the EOFMs for interacting with the radiation therapy machine: (a) selecting
the treatment mode (aSelectXorE), (b) confirming treatment data (aConfirm), and (c) firing
the beam (aFire).
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Figure 8.
Visualization of the EOFM structure that was produced when the erroneous behavior
generating structure with a maximum of one erroneous act (EMax = 1) was incorporated
into the aSelectXorE activity (Figure 7(a)).
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Figure 9.
State transition diagram depicting the modified formal model’s human-device interface
indications of the beams ready state.
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Figure 10.
Plot of the verification results (verification time in seconds and the number of visited states)
vs. the maximum number of erroneous acts (EMax) for all successful verifications with the
radiation therapy machine application.
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