
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Silva JL, Campos JC, Harrison MD. Prototyping and analysing ubiquitous 

computing environments using multiple layers. International Journal of 

Human-Computer Studies 2014, 72(5), 488-506. 

Copyright: 

© 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

DOI link to article: 

http://dx.doi.org/10.1016/j.ijhcs.2014.02.001 

Date deposited:   

15/12/2015 

  

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
javascript:ViewPublication(197701);
javascript:ViewPublication(197701);
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ijhcs.2014.02.001


Prototyping and Analysing Ubiquitous Computing
Environments using Multiple Layers

José Luı́s Silvaa,b,c,d,∗∗, José Creissac Camposa,b,∗, Michael D. Harrisone,f

aDept. Informática / Universidade do Minho, Braga , Portugal
bHASLab / INESC TEC, Braga, Portugal

cICS-IRIT, University of Toulouse III, Toulouse, France
dMadeira-ITI, University of Madeira, Funchal, Portugal

eSchool of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
fSchool of Electrical Engineering and Computer Science, Queen Mary University of London,

London, United Kingdom

Abstract

If ubiquitous computing (ubicomp) is to enhance physical environments then early and
accurate assessment of alternative solutions will be necessary to avoid costly deploy-
ment of systems that fail to meet requirements. This paper presents APEX, a prototyp-
ing framework that combines a 3D Application Server with a behaviour modeling tool.
The contribution of this framework is that it allows exhaustive analysis of the behaviour
models that drive the prototype while at the same time enabling immersive exploration
of a virtual environment simulating the proposed system. The development of proto-
types is supported through three layers: a simulation layer (using OpenSimulator); a
modelling layer (using CPN Tools) and a physical layer (using external devices and
real users). APEX allows movement between these layers to analyse different features,
from user experience to user behaviour. The multi layer approach makes it possible to
express user behaviour in the modelling layer, provides a way to reduce the number of
real users needed by adding simulated avatars, and supports user testing of hybrids of
virtual and real components as well as exhaustive analysis. This paper demonstrates
the approach by means of an example, placing particular emphasis on the simulation
of virtual environments, low cost prototyping and the formal analysis capabilities.

Keywords: Ubiquitous and Context-Aware Computing, Modelling, Prototyping,
Interactive Systems Analysis, 3D virtual environments

∗Corresponding author
∗∗Principal corresponding author

Email addresses: jlsilva@di.uminho.pt (José Luı́s Silva), jose.campos@di.uminho.pt
(José Creissac Campos), michael.harrison@eecs.qmul.ac.uk (Michael D. Harrison)

NOTICE: this is the authors version of a work that was accepted for publication in the International Journal
of Human-Computer Studies. Changes resulting from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control mechanisms may not be reflected in this docu-
ment. Changes may have been made to this work since it was submitted for publication. A definitive version
was subsequently published in International Journal of Human-Computer Studies, Volume 72, Issue 5, May
2014. DOI: 10.1016/j.ijhcs.2014.02.001.

Preprint submitted to Elsevier February 12, 2015

http://dx.doi.org/10.1016/j.ijhcs.2014.02.001


1. INTRODUCTION

Deploying a system prematurely can be a costly process. For this reason many tools
have been developed to specify and to prototype early versions of a design so that the
implications of the design can be explored. The development of ubiquitous computing
environments brings fresh challenges to prototyping. The impact of a potential design
cannot be fully understood without understanding the context in which the design is
developed. APEX is a framework that allows designers and developers to model, anal-
yse and simulate ubicomp environments. It is designed to support the development of
ubiquitous systems that enhance physical environments with sensors and situated ele-
ments. Examples of such elements and sensors are public displays, personal devices,
wireless and RFID sensors. The purpose of these ubiquitous systems is to improve the
experience of people within the environment. They provide services to occupiers of
the space, as they change context, through explicit and implicit interactions.

User experience has been defined as “a person’s perceptions and responses that re-
sult from the use and/or anticipated use of a product, system or service” [16]. Issues
such as physical texture of the environment may often have an important impact on
the experience that occupants have of a space. Ubiquitous computing environments
involve situated elements. For this reason changing the design can often involve costly
physical reconfiguration. While realistic evaluation requires exploration in the pro-
posed physical environment, some development and evaluation may be achieved using
prototypes and simulation. APEX uses 3D virtual worlds to create an immersive ex-
perience of the space. Virtual immersive 3D environments can be used to simulate
relevant (including textural) aspects of the target space. Such simulation enables pro-
duction of early information about use of the system. Target users can experiment with
the system and provide early feedback. This paper extends previous work [1, 3] by
describing the whole simulation environment. It focuses on the low cost prototyping
features of the tool. It illustrates the approach using an example environment within a
smart home. The environment alerts carers when a child is likely to be affected by an
asthma trigger.

Hands-on evaluation of a prototype is not sufficient in itself to fully recognise the
implications of a design. APEX therefore offers a set of patterns, from which prop-
erties or heuristics can be developed. These patterns enable further analysis of the
system under development. Empirical techniques for analysis are combined with for-
mal analysis seamlessly. The analysis approach echoes the philosophy of Scholtz and
others [22] who use a set of sample measures to evaluate ubiquitous computing appli-
cations. These measures assess whether adequate design principles are satisfied and if
the design produces the desired user experience. APEX allows exhaustive analysis of
a developed prototype behaviour against a set of properties derived from patterns that
are supported by the framework.

The APEX framework offers three complementary perspectives of a system under
development.

1. A 3D simulation of the environment (created in a “virtual world” supported by

2



the OpenSimulator2 web based 3D application server) captures the texture and
the spatial characteristics of the environment.

2. Rigorous behaviour models of system behaviour, that include sensors and dy-
namic objects, can be created, analysed and animated using CPN Tools [7] em-
bedded within the environment.

3. External (physical) devices can be connected to the virtual world using Blue-
tooth.

Each layer supports a specific type of evaluation. The virtual world simulates the
smart environment, making it possible for potential users to explore scenarios within
the world. Users can interact with the prototype by manipulating physical handheld
devices, using designs proposed for the deployed system, or by controlling avatars
located in the virtual world. Avatars can also simulate the behaviour of users au-
tonomously. The modelling layer allows the developer or designer to analyse scenarios
systematically, using properties offered by the patterns. Several modelling approaches
which were considered as the basis for behaviour models include: (Hybrid high-level
Nets (HyNets) [26], Communicating Sequential Processes (CSP) [40], Flownets [41],
ASUR++ [42], Interactive Cooperative Objects (ICO) [43] and Coloured Petri nets
(CPN) [7]. CPN was chosen because of the substantial set of tools available and its
expressive power in the APEX context. The integration of physical components in
the physical layer, for example smart phones, allows exploration of how the evolving
design would work.

In summary APEX supports:

• the design of ubicomp environments and the exploration of design alternatives,
with a particular emphasis on how users will experience these designs;

• analysis either by animation (similar to program execution) or by more formal
analysis of behaviour;

• multi-layered development, in which analysis can be combined with evaluation
of virtual simulations and actual implementations of components of the proposed
design;

• the whole prototyping cycle (design, experience, test and analysis);

• multiple users with collaborative features (e.g. speaking, chatting) enabling in-
teraction between users.

Section 2 discusses literature that is related to the framework. The example that is
used to demonstrate the capabilities of APEX is introduced in Section 3. The APEX
framework (Section 4) is then described. The method of developing a prototype of
the example is described in Section 5. The analysis process is described in Section
6. Section 7 briefly outlines the results of a preliminary evaluation of the framework.
Finally (Section 8) conclusions and future work are outlined.

2http://opensimulator.org/ (last accessed: 3 December 2012)

3

http://opensimulator.org/


2. RELATED WORK

The evaluation, simulation and analysis of ubiquitous systems is already a rich
area of research. Relevant research can be categorised in terms of: early evaluation
of ubiquitous systems, the development of prototypes using virtual environments and
analysis techniques.

2.1. Early evaluation of ubiquitous systems

Current prototyping tools (see [5] for an early overview of approaches) are mostly
concerned with single devices, rather than systems of systems combining people and
devices. Examples are UbiWise [8], UbiREAL[9], d.tools [20], Topiary [12] and Ac-
tivity Studio [23]. It is recognised that prototypes should be explored within their
envisaged setting [6] and therefore tools produce prototypes either for the real world
(for example, d.tools, Topiary and Activity Studio) or for a virtual world (Ubiwise and
UbiREAL).

d.tools supports the prototyping of physical devices. It combines elements of a real
and simulated world, from design to test and analysis. It allows the development of
both physical components (e.g. sensors, actuators) and virtual components in a de-
vice editor. The behaviour of the device is modelled using statecharts. The statecharts
can be animated for user testing and behaviour can also be analysed. Activity Stu-
dio, in contrast, is a tool for prototyping and in-situ testing of context aware software
applications. It supports the testing of low-cost prototypes in experimentally relevant
environments over extended periods. It is possible to explore prototypes over time in-
volving several users, either using real sensors or gathering data from users. Topiary,
on the other hand, allows users to explore context aware prototypes using a storyboard-
ing approach. Several other tools use Wizard of Oz techniques to avoid the need for
physical sensors and actual physical spaces.

These evaluation and prototyping techniques are valuable but they do not address
the interplay between device and environment in situ [6]. This interplay is crucial to
understanding how the system works as a whole. Displays, devices and sensors form
an integrated whole that, together with the physical characteristics of the environment,
contribute to the texture of the resulting system.

UbiWise and UbiREAL simulate ubiquitous systems using virtual environments.
The simulation acts as a development test bed for the devices and software. The APEX
framework, in contrast, supports the design of the environment itself, with a particular
emphasis on how users will experience it.

2.2. Simulation using virtual environments

Virtual environments enable the exploration of a proposed ubicomp environment.
It does this by means of navigation and interaction within a 3D simulation. These
simulations can immerse users. They make it possible to achieve user experience closer
to that of the proposed target system. The environment must be sufficiently rich and
textured to address usability requirements that depend on the target environment. The
simulated environment must produce an impression of what it would be like to use
systems once deployed.

4



3DSim [10], UbiWorld [11], the work of O’Neill and others [13] [24] and VARU
[14] all develop simulations of actual environments. 3DSim and UbiWorld use pro-
gramming languages to build prototypes. The advantage of an approach such as APEX
is that modelling, and its associated analysis, can be combined with simulation. Vanacken
and others [25], for example, use such techniques to model multimodal interaction
techniques. O’Neill and others combine 3D simulation with models to identify occur-
rences of unwanted system behaviours. APEX, in contrast, aims to provide exhaustive
analysis support.

Other approaches, for example VARU, provide user experience without supporting
analysis. VARU can be used to develop a tangible space, combining virtual and aug-
mented reality. A rendering game engine built on OpenSceneGraph3 is used to achieve
this.

APEX is unique in supporting analysis of ubicomp environments, combining sim-
ulation (similar to program execution) and formal analysis (State Space analysis). It
also allows evaluations of hybrids of virtual and physical elements.

2.3. Analysis Techniques

Interaction analysis in ubicomp environments presents challenging problems. The
physical environment of the system is important. Interaction can be implicit and there-
fore unconscious [28]. Kim and others [28] have presented several ubicomp case stud-
ies where evaluation has involved making use of physical space and implicit interac-
tions. Interaction within these environments can also be explicit. The devices used for
explicit interaction should also be analysed. Different techniques, for example standard
usability heuristics for small devices, are required in these cases. Whatever the style of
interaction, the user’s context plays an important role.

Several HCI techniques support the early analysis of interactive system designs.
Examples range from paper prototyping and Wizard of Oz techniques, to the devel-
opment of versions of the systems for user testing. These approaches require large
resource investment. Physical space is required to develop the ubicomp system for re-
alistic evaluation however partial. These costs can be reduced by careful application
of techniques that do not require explicit user testing. Such techniques include the use
of expert evaluation techniques, for example Heuristic Evaluation and Cognitive Walk-
through. A summary of techniques can be found in [27]. The application of heuristics
to a ubicomp application, involving ambient displays, has been explored by Mankoff
and others [29]. The problem with using these techniques is that their subjectivity leads
them to be unreliable [27].

APEX provides a set of patterns. These patterns derive and extend usability heuris-
tics and enable the generation of formal properties for analysis. Analysis is performed
on behavioural models relating to the whole ubicomp system. The analysis is system-
atic and depends on individual judgement only when considering scenarios where the
properties fail.

3http://www.openscenegraph.org (last accessed: 3 December 2012)

5

http://www.openscenegraph.org


2.4. Overview
To summarise the current state of the art, it is clear that different types of proto-

typing are possible. Techniques are available that allow evaluation of: a single device
isolated from its context of use; an application/device and its context of use; and the
environment including the applications and devices contained within it.

Several approaches aim at ubicomp prototyping. These approaches, however, typ-
ically focus on context aware applications or isolated devices. They do not prototype
ubicomp environments as a whole. Some approaches address the issue of experience
but do not address the whole environment. The key features of the research related to
the APEX tool are summarised in Table 1.

UbiReal d.tools Topiary 3DSim UbiWorld VARU AS4 Ubiwise OW5

Application/isolated
devices prototyping yes yes yes yes yes yes yes yes no
Unwanted behaviour
identification yes yes yes yes yes yes yes no yes
Ubiquitous
environement
prototyping no no no yes yes yes no no yes
Provide user
experience no yes yes yes yes yes yes yes yes
Formal exhaustive
analysis support no no no no no no no no no
Whole cycle of
prototyping support no yes yes no no no no no yes

Table 1: Prototyping approaches comparison

No prototyping approach focuses on the user experience of a whole ubicomp envi-
ronment, while at the same time providing the tools to support formal and exhaustive
analysis. APEX aims to fill this gap.

3. EXAMPLE DESCRIPTION

APEX will be demonstrated by using an application intended for a smart home.
The application is designed to improve quality of life for child asthma sufferers. The
system alerts carers when a child is likely to be affected by an asthma trigger. It also
offers carers suggestions about how to act. Cabana et al. [2] have indicated that carers
need support to help asthmatic children identify asthma triggers within their environ-
ment. Relevant information is sent to a carer’s mobile device or to a wall mounted
display in a room where the carer is located. Asthma triggers vary depending on the
individual. They occur when relevant conditions in the environment are met (examples
could include occurrence of tobacco smoke, house dust mites, pets, mould, outdoor air
pollution or cockroach allergen)6.

The developer intends to design a demonstrably safe system that creates a user
experience that will encourage use. Examples of properties to be guaranteed include:

4Activity Studio [23]
5O’Neill’ work [13] [24]
6http://www.cdc.gov/asthma/triggers.html (last accessed: 3 December 2012)

6



Figure 1: Logical architecture of the APEX framework

• “whenever a child is in danger carers are alerted”;

• “wherever carers go they will receive information about their child when they
need to be alerted”.

APEX will be used to develop a model of the proposed design that guarantees these
properties. The aim is also that users are able to explore a system prototype immer-
sively within a virtual environment that is driven by the model. Systems such as these
are hard to assess through observation alone. There are two reasons for this.

• The target physical environment is complex, involving a number of devices in
specific and significant locations.

• The activities that are representative of the use of the system are complicated and
impact significantly on the effectiveness of the system.

Analysis and exploration are required in combination. It is not possible to explore all
behaviours through observation. At the same time, the simple analysis of properties
does not provide a rich enough assessment.

4. THE APEX FRAMEWORK AND PROTOTYPING

APEX enables the development of immersive 3D prototypes. It combines Open-
Simulator based virtual worlds and CPN based [7] behavioural models with physical
devices. The framework coordinates these different components.

4.1. APEX architecture
The architecture of the framework has four components (see Figure 1).

• A virtual environment component manages the 3D simulation and the construc-
tion of the virtual environment.

7



Figure 2: Physical architecture of the APEX framework

• A behavioural component manages the behaviour of the prototype and provides
access to the analysis tools.

• A physical component supports connections to physical external devices, such
as smart phones and sensors.

• A communication/execution component exchanges data between the other three
components during simulation. This component brings the elements together to
create a realistic environment.

The architecture aims to make it easy to move between the different layers during
development.

4.2. Virtual Environment Component

The virtual environment is distributed across a server machine which hosts Open-
Simulator and client machines. A viewer is used to interact with the prototype (e.g.
Second Life Viewer7) in the user’s client machine (see Figure 2). Viewers are typically
transparent to use. They make it possible to achieve immersive web access for multiple
concurrent users. It is important to create a realistic object world to ensure immersion
and representative user experience. Immersion levels can range from a desktop to a
CAVE (e.g. CaveSL8) depending on the viewer used (see [17] for a discussion).

3D application servers offer several advantages over simple virtual environments.
It is possible to connect several clients to the same virtual space and thereby to as-
sess the experience of multiple users. OpenSimulator environments can be accessed
through a variety of different viewers. Besides the Second Life viewer itself, a number
of other third party viewers can be used9. The main goal of these viewers is to provide

7Second Life Viewer: http://secondlife.com/support/downloads/ (last accessed: 15 July 2013)
8CaveSL website: http://projects.ict.usc.edu/force/cominghome/cavesl/index.html (last accessed: 3 De-

cember 2012)
9Third party viewers to connect to Second Life or OpenSimulator:

http://wiki.secondlife.com/wiki/Alternate viewers#nonlinden (last accessed: 3 December 2012)

8



client access to the environment. However they do differ and this can lead to different
user experiences. Some are developed for specific uses (e.g. SL Military), others to
support specific visualisations (e.g. stereoscopic 3D visualisation) or specific hardware
configurations (e.g. multiple display usage).

Viewers provide limited support for virtual object creation compared with game
engines. However, most OpenSimulator viewers do allow the creation and editing of
objects and textures. A more detailed explanation of how object editing can be achieved
is presented in Section 5. They also enable the description of behaviours using Open-
Simulator scripts (written in Linden Scripting Language). Environments are generated
as OAR (Opensim ARchive files) reusable packages. Viewers such as the SecondLife
viewer and Cool VL Viewer10 provide further support for polygon meshes using the
widely available “.collada” format. These polygon meshes can be downloaded from
online repositories. Hence thousands of developed objects can be used off-the-shelf in-
cluding buildings, furniture, everyday household objects, cars and planes. This can be
done using shared repositories of objects such as the Google 3D Warehouse11. Objects
can also be created using external 3D computer graphics software, such as Blender,
Maya, 3DS Max or Google Sketchup, before being imported into the environment. By
these means the component enables the creation of complex environments.

4.3. Behavioural Component

The behaviour model coordinates the behaviours of dynamic objects and sensors
that compose the environment. The model specifies flows of information and represents
the generic structure of the ubiquitous environment. Behaviours can be selected from
a collection of predefined modules from the APEX library. These can be combined
with tailor-made modules as necessary. A generic CPN base model is provided to aid
the development of the model of the virtual ubiquitous computing environment. This
base model creates a generic CPN style that is relevant to the modelling of virtual
environments. It contains modules that:

• initialise the simulation, and establish the connection between the CPN model,
as represented by CPN Tools, and OpenSimulator;

• receive data (for example sensors’ data) from OpenSimulator and use it to update
appropriate tokens;

• describe the behaviour of each device in the system.

A detailed description of the base model is out of the scope of this paper (see [3] for
further information). However, its use will be illustrated when extending it to create a
prototype of a new ubiquitous environment in Section 5.

The behaviour model is specified using CPN. A CPN model consists of a set of
modules that interact with each other through a set of defined interfaces. A module
responsible for opening a gate for a user is presented in Figure 3 to illustrate the CPN

10Cool VL Viewer: http://sldev.free.fr/ (last accessed: 15 July 2013)
11Google 3D Warehouse: http://sketchup.google.com/3dwarehouse/ (last accessed: 3 December 2012)

9



Figure 3: CPN graphical syntax

notation. Each module contains a network of places (represented by ovals), transitions
(represented by rectangles), and arcs connecting transitions with places. Each place
can contain tokens (represented inside the place by dots with a number indicating the
quantity) that carry data values described as token colours. Transitions use variables to
manipulate tokens and move them from place to place. The arcs are annotated with the
names of the variables that flow through them. Each place can only carry tokens of the
type known as the colour set of the place. These types include string, product, record as
well as the usual basic types. The CPN components (places, arcs and transitions) can
have CPN ML constructs that affect the behaviour of a net associated with them. These
are called actions when effecting transitions (for example sendOpenGate in Figure 3).
Transitions can have Boolean expressions (called guards) that restrict the execution
of transitions to when the guards are satisfied. The CPN hierarchy supports places
called Fusion places that define a set of functionally identical places. Elements of
Fusion place sets can be used in different modules but they are functionally unique. So
anything that is happening within a Fusion place set also happens to all other places in
the set. The graphical representation of these places is illustrated by the place users in
Figure 3.

CPN Tools enables the automatic simulation of CPN models, where, through tran-
sitions, tokens are moved in the network of places. Options such as the number of steps
of the simulation, and the delay in milliseconds of each transition, are provided by the
tool. The user can pause or stop the simulation at any time. The CPN simulation works
by binding tokens (present in places) to variables of corresponding types present in out-
going arcs. This is done non-deterministically by CPN Tools. Tokens are selected to
satisfy the type of the variables on the arcs, and the guards of the destination transitions.
Alternatively, the simulation can be stepped through manually by the analyst. This can
be done by selecting the token for each binding that is required to execute a step in the
model. In the example of Figure 3, when the open gate transition is executed, a token
from the place gates moves to the place gates opened. The identifier (#id u) of the user,

10



to whom the gate was opened, is added to the token. The token present in the users
place remains there because the arc connected to the transition is bidirectional. In the
case of these arcs, tokens are only queried by transitions and not consumed. During a
simulation many transitions can be enabled at the same time. In these cases only one
transition is chosen and executed in each iteration. This selection is automatically done
by the CPN Tools. The selection uses a fair algorithm that takes into consideration
previous selections. However, more recent versions of CPN Tools make it possible to
associate priorities to transitions. These priorities enable the modeller to specify which
transition will fire first when there is more than one transition enabled at the same time.
More information can be found in [39]

The State Space (SS) tool, that is also part of CPN Tools [4], can be used for anal-
ysis (e.g. whether a carer is warned when a child approaches an asthma trigger). The
tool generates a reachability graph that indicates the states, that specify a specific prop-
erty, that can be reached from some starting state. Each node of the graph represents
an execution state, while arcs represent actions that lead from one state to another, see
for example Figure 16 (page 22). The whole graph can be used to represent all the pos-
sible executions of the ubicomp system subject to predefined constraints. The arcs and
labels of the graph can be checked interactively by the tool. Verification of a property
requires the application of a predicate to relevant states in the reachability graph. The
returned result is either that the predicate is true of all states, or that it fails to be true
and examples, for which it is false, are provided. These examples are then used as a
basis for exploration of a situation that may be of interest from a design point of view.

CPN Tools can support the simulation of systems that involve many users. The
modelling layer allows the creation of scenarios that use programmed avatars. These
scenarios are designed to simulate the experience of situations where there are several
users. Avatars can be modelled using different navigations through the environment.
By this means one real user can appear to experience situations where many users are
present. For example, several avatars can be programmed to arrive at an asthma trigger
at the same time. Hence behaviour of the system can be observed when many children
are within proximity of an asthma trigger. APEX can be used to model the programmed
avatars’ movement. This makes it possible to simulate implicit interactions within
a ubiquitous environment. Explicit interactions are not currently supported. Avatar
movement is either defined manually or uses previously recorded information taken
from real users exploring the simulation. The framework supports switching between
non-programmed (driven by real users) and programmed avatars in real time.

4.4. Physical Component

The APEX physical component (see Figure 1) connects external devices, such as
smart phones and sensors, to the framework. Receiving sensor data, as well as sending
information to actual implemented components in the physical world, can be achieved
using this component. Systems can evolve gradually by replacing virtual entities with
physical entities. The connection between external devices and the virtual world is
achieved via Bluetooth using the Communication/Execution component. This is dis-
cussed in the next section. A Bluetooth client application is installed in each of the
mobile devices. At the same time a Bluetooth server application is installed on the

11



Figure 4: Bluetooth Client Application installed in a smartphone running Android

client machines (running in parallel with the viewer – see Figure 2). Clients commu-
nicate with OpenSimulator via TCP/IP. APEX detects mobile devices automatically.
It links them to relevant avatars in the virtual environment by using login information
established when users connect the mobile device (see Figure 4).

Users can interact interchangeably, either with physical objects in the physical
layer, or with virtual objects in the simulation and modelling layer. Different com-
binations of physical and virtual objects can be used as prototypes of the system at
different stages of the development process. Interaction with physical devices enables
users to experience physical aspects of the proposed target ubiquitous environment. For
example, the smart phone application used in the proposed design could be prototyped
either as a simulated smart phone or as the actual smart phone.

4.5. Communication/Execution Component
The communication/execution component (see Figure 1) coordinates the compo-

nents of the framework. This component recognises changes in the Virtual Environ-
ment or Physical component and notifies relevant Behavioural and/or Physical compo-
nents. Changes are triggered explicitly as a result of direct user action, or implicitly
by sensors in the environment. Actions, triggered by the Behavioural component, are
reflected in both the virtual environment and the physical devices. Communication be-
tween the model and the communication/execution component is achieved using func-
tions (for example, sendUserInfo – see Figure 11, page 18) based on predefined ones
within CPN Tools [15].

12



Figure 5: Overview of the asthma alert working process

Communication in CPN Tools is achieved by means of Comms/CPN [15]. A CPN
ML library connects CPN Tools to external processes. An appropriate module must be
loaded into the external process (in this case OpenSimulator) so that Comms/CPN can
be used. Java and C modules are available with the distribution for this purpose. Open-
Simulator modules (DLLs) are developed in C#. Hence a new C#/CPN communication
module (DLL) was developed enabling the communication between CPN models and
C# processes.

Figure 5 illustrates the sending of an alert to carers when their child comes close to
an asthma trigger. The left column represents the virtual environment, the middle col-
umn the Communication/Execution component, and the right column the CPN model
responsible for specifying the behaviour of the parent alert system. To improve read-
ability, the figure presents a simplified version of the actual model. At the first step the
avatar of the child is in a room with no asthma triggers. A token that represents the
child is in the Users place (token c in the figure). The carer token is also on the Users
place because he or she has not yet been alerted (token p in the figure). The place Users
holds the children and carers not alerted. In step 1 the child’s avatar moves close to an
asthma trigger. At this moment the APEX communication/execution component is no-
tified of the identity of the avatar approaching the trigger. This is done by the presence
sensor which is located near the trigger (step 2) . In step 3 a state change takes place
in the alert system. The carer’s token is moved to the Parents Alerted place using the

13



Alert Parents transition. This transition is accompanied by an associated action (send-
UserInfo()). A result of this transition is that a notification request (with the identifier
of the carer’s avatar) is sent to the APEX communication/execution component (step
4). Finally, the APEX communication/execution locates the avatar and sends it the alert
message (step 5).

This process is fully automatic once the system is set up. Set up is achieved by
extending the CPN base model with relevant modules. In addition the dynamic ob-
jects are put in the simulation layer. Consistency across the multiple representations
at different layers, is maintained by the communication/execution component. Each
dynamic object/sensor in the simulation layer contains a unique identifier, used to rep-
resent it in the modelling layer. The predefined behaviour of sensors can be configured
using the viewer (detailed description in Section 5). A script is used to define dynamic
objects behaviour. Data is exchanged between the layers, as strings that carry the iden-
tification of the relevant object, as well as the event that is being communicated. This
information enables the update of the receiver component to reflect the changes in the
sender component. Information exchange occurs in both directions. The scripts linked
to the dynamic objects are designed to both react to changes in the environment, and to
effect changes in the object, to assure consistency with the state of the CPN model.

5. USING APEX TO DEVELOP A PROTOTYPE

This section describes how APEX was used to create the virtual environment and
associated behavioural models for the asthma example. The multi-layer approach is
illustrated through this example.

5.1. Virtual Environment
The target environment for the proposed system is the Aware Home12 at Georgia

Institute of Technology (GaTech). The home has two identical floors with nine rooms
on each floor. It was originally designed to explore emerging technologies and services
in the home. The prototype is explored in a virtual environment that represents the
space, the sensors and the people within the Aware Home. The spatial organisation
and position of the various sensors is indicated in the floor plan (Figure 6). 16 pres-
ence sensors are used in the prototype to detect the location of people. 16 environment
sensors detect environment conditions (for example smoke or air quality). Presence
and collocated environment sensors are distributed across rooms. Their locations are
indicated by the numbers in Figure 6. They are used to detect users and environmental
conditions everywhere in the house. The Cool VL viewer was used to create the vir-
tual environment. 3D models of the Aware Home, developed at GaTech using Google
Sketchup, were used as a starting point. The virtual environment is to be sufficiently
close to the physical target system to provide an adequate and realistic experience for
users. The rooms were furnished in part by uploading furniture objects selected from
an on-line 3D warehouse13. New objects were also developed within the viewer by

12Aware Home: http://awarehome.imtc.gatech.edu (last accessed: 4 December 2012)
133D warehouse: http://sketchup.google.com/3dwarehouse/ (last accessed: 4 December 2012)

14



Figure 6: Aware Home floor plan (without furniture) with inserted sensors (one presence sensor and one
environment sensor present in each number)

linking basic shapes to build the desired elements (e.g. chairs, bookshelves, tables –
see Figure 8 for an example of constructing a chair). The resulting virtual environment
within Opensimulator is illustrated in Figure 7.

Figure 7: Aware Home 3D environment

Figure 8: Linkage of the elements composing a chair

After being created, the virtual environment needs to be set up to work with the
CPN model. Each dynamic object and sensor that is present in the virtual environment
must be configured through the viewer. This is done by accessing the property panel

15



Figure 9: Sensor’s attributes

of the object (see Figure 9). Some environment conditions must be satisfied so that it
is possible to create appropriate animations.

• Each dynamic object in the virtual environment (represented by a token in the
CPN model) must:

– have a unique ID present in the field Name. This ID is used to identify the
objects in both layers (thus linking/associating a token to the correct object
in the virtual environment);

– indicate its object type using the field Description (e.g. object type =
screen).

• Each sensor must be loaded from the pre-defined sensors provided (OAR files).
Alternatively new ones can be defined. Figure 9 illustrates sensor features as
follow.

– The fields Name and Description must be changed to reflect the desired
values.

– The objectIDs list present in the Description field of the Presence Sensors
represents the Ids of the objects that the sensor affects.

– The sensorType present in the Description field of the Sensors indicates the
type of the sensor.

– The threshold present in the Description field of the Sensors represents the
distance from which the sensor reacts.

The behaviour of the dynamic objects in the virtual environment is triggered by
associated CPN modules (the link being established by common token and object IDs).
It is made concrete by LSL (Linden Scripting Language) scripts. When a screen is
in the show alert CPN state, this must be reflected in the environment. The concrete

16



Figure 10: Dynamic Object Script association

mechanism for doing this is a script linked to the relevant object in the environment.
The script is triggered by the behavioural component. In the smart home example,
scripts are associated with screens to display alerts. Figure 10 shows part of the script
that specifies how information to be displayed is linked to a public screen dynamic
object. The script is linked in the example to the object by using the object script
association feature provided by the viewer.

5.2. The behaviour model

An APEX behaviour model combines “off the shelf” and purpose developed mod-
ules to express the behaviour of the different components in a particular ubiquitous
computing environment. The model for the asthma system prototype uses two mod-
ules, described in Figure 11 and Figure 12, that hold information about the users and
the sensors present in the environment.

The purpose of the first module is to alert carers when their child is too close to
an asthma trigger. Places are associated with different hues to improve readability. No
semantics is associated with these colours. The Alert Parent transition is defined in
the “alerts carers” module, while the child safe transition removes the alert. Whether
the module alerts or removes alerts depends on information held in Users (which con-
tains carers and children that are not in danger) and P sensors (which contains the
presence sensors) places. Access to the values, held in places, is by means of the vari-
ables associated with arcs (for example, u and u1 represent users and ps represents a
presence sensor). The alert has behaviour that is described by the Alert Parent transi-
tion in Figure 11. The system alerts the carer as the child approaches a trigger related
to a specific allergy. The transition can fire when (expression between square brack-
ets) a child u, with a parent u1 is near a presence sensor ps and the parent has not
already been alerted. The presence sensor is modelled using the userNearPresence-
Sensor function. Firing the transition results in the update of carer information with

17



Figure 11: Parents alert system behavioural model

Figure 12: Air quality alert system

18



a warning (meaning that the carer is alerted). This is described by the updateUser-
Values(“PUT”,u1,“ACK”) function executing while placing the tokens in the users
place. Additionally, the Alert Parent transition moves the child’s token into the Child
parent Alerted place. During this transition carers are alerted using the sendUserInfo
function. This function, with the respective user and message as parameters, enables
the communication/execution component to trigger a script in the relevant objects(s)
in the virtual environment. When the child is no longer close to an asthma trigger,
indicated by not(userNearPresenceSensor(ps,u)), the token is removed from the Child
parents Alerted place. The earlier warning is then removed from the relevant carers
using updateUserValues(REM,u1,ACK).

The module described in Figure 12 sends an alert when the environment reaches
one of its alert states (e.g. air polluted). The environmental sensor (E sensor) models
environmental air quality as an integer. When the value is greater than or equal to 9
an alert zone is reached. This module is structurally similar to the one just described.
The main difference is that an arc is removed that was used in the previous model to
identify the carer of a specific child. This kind of association is not necessary because
the environment alerts are sent to all adults. The illustrated components are chosen for
their simplicity to aid explanation. It is not the present purpose to elaborate the CPN
modelling approach. A detailed description of more elaborate models can be found in
previous work [3].

6. USING APEX TO EVALUATE A PROTOTYPE

The ubicomp environment prototype described in the previous section can now be
evaluated using APEX. A detailed description of how to set up the environment, and a
list of commands provided by APEX, can be found at the APEX website14.

6.1. Analysis of User Experience
Different user experiences can be elicited with various versions of the prototype.

Variations can be produced using different combinations of physical and virtual com-
ponents. Example combinations that were explored in this case included: simulating a
smartphone or tablet as a popup window, and a more immersive option with the smart-
phone itself.

The proposed use of APEX simulations is with target users. However, meaningful
feedback about the design prototype can also be derived by developers as they explore
the implications of their design decisions. Improvements in the design resulted from
developer exploration of the simulation. For example, it became clear through sim-
ulation that some users prefer to be notified using fixed displays, while others would
rather use their smartphones. Users do not always have their smartphones with them,
so the system should allow carers to choose how the alert is to be transmitted. Figure
13 shows a carer experiencing a proposed alert system. The small window (bottom
right corner) represents the user’s (virtual) smartphone set up to receive alerts prior to

14http://wiki.di.uminho.pt/twiki/bin/view/Research/APEX/Documentation (last accessed: 2 December
2013)

19



Figure 13: Aware Home alert system user experience

the availability of the physical phone itself. The physical devices could alternatively be
connected through Bluetooth when available. Figure 14 (page 21) illustrates the recep-
tion of a carer alert (‘Your child “Tiago” is near an asthma trigger!’) via a smartphone
connected to APEX. Figure 15 illustrates the carers’ reception of an action plan via
their (simulated) smartphone when their child is near an asthma trigger (dust mites).

User experience of this virtual environment offers new dimensions of evaluation. It
is possible to address features such as salience, user preference or line of sight. Where
carers receive alerts at fixed displays a number of issues were identified. Firstly, the
displays were not always positioned to guarantee a continuous line of sight. Secondly,
some form of acknowledgement was required from an alerted carer within a specific
time-out to ensure that the carer was aware of the alert. A more persuasive (e.g. louder
or harsher) alert could be sent if there is no response. Alternative solutions, designed
to take these issues into account, can be developed and evaluated with little effort.

This approach to the development of ubicomp environments is flexible. It focuses
on providing user experience, whatever resources are available, and broad because it
embraces important aspects required to prototype ubiquitous environments.

6.2. Formal Behavioural Analysis
APEX makes it possible to complement observation of the simulated system with

an exhaustive analysis of possible user behaviours, using the behavioural component.
This is achieved by checking that properties of the system hold, subject to specific
and defined constraints. Standard templates are made available in APEX. They are
designed to help the developer discover properties that are relevant to evaluating the
system under design. APEX provides property patterns that combine these property
templates with analysis assistance. The patterns explain how to use the relevant CPN
Tools to check the instantiations of the templates that have been created.

20



Figure 14: Asthma trigger parent’s alert via their smartphone

Figure 15: Asthma trigger parent’s action plan via their smartphone

A ubicomp system design is typically complex. The number of states that would
require exploration, to check the truth of a property, is likely to be intractably large.
Analysis is therefore focused by constraining the system. State reduction is achieved
by narrowing considerations of the model to a restricted closed version, using experi-
mental data derived from the virtual and physical layers. These data, we call scenarios,
make it possible to consider all paths within the context of only those conditions that
are likely to be encountered at run time. The mechanism for construction of the sce-
narios is described in the next section. It is necessary, for example, to limit the values
each variable might take (e.g., the range of pollution levels read by a sensor).

21



Figure 16: Reachability graph

CPN Tools uses the State Space (SS) tool to bind each variable to each of the pro-
vided known values using brute force. The tool creates a reachability graph of the type
illustrated in Figure 16. The highlighted arc 83, in the reachability graph, represents
the firing of the transition reading with idRead bound to the value “removed”. Nodes
63 and 3 correspond to the states, before and after the firing of the transition respec-
tively. CPN Tools makes it possible to inspect nodes. The state corresponding to a node
can be visualized using the CPN Tools simulation facility. Values, and the choice of
binding elements generated by the model assumptions, can be explored by this means.

Properties generated from the templates can be checked by queries relating to the
generated graph (see the CPN Tools State Space manual [4] for more details). For
example, the Reachable query returns a path from the original node to a defined desti-
nation node. This can be used to determine whether conditions such as “if after parents
have been alerted they can be alerted again” hold. ListDeadMarkings finds system
states from which it is impossible to do anything. In other words if the system reaches
them no further action can be taken. ListLiveTIs provides the list of live transitions
that can always be enabled again. These standard queries can be augmented by further
predicates that are specific to particular properties required of the model.

6.2.1. Patterns
A pattern captures a known solution to a given recurring problem. The use of

verification patterns has already been established in other fields of software engineering
[31]. Indeed, a specific set of patterns, inspired by usability heuristics [26], has already
been selected for use in analysing interactive devices [32]. Applying patterns, in the
context of APEX, raises fresh challenges. Property templates, developed for other
purposes, may not be relevant to ubiquitous systems. If the template is to be of value
then developers should be able to understand how properties, instantiated from the
template, can be checked using CPN tools. Property instances must be translated into
a form that is meaningful for analysis. Guidance should be provided about how the
CPN Tools algorithms are created. APEX models combine behavioural models with
rich interaction context including devices and users. Unlike the simpler analysis of
individual devices, it is important to be clear when applying the patterns:

Who are the users? Several users might be present in the environment. User actions
may involve different sub-groups within the environment (for example, carers or
children). System responses may affect other parts of the community, e.g., an
action by one user might trigger a system response directed to a different user.

22



What are the actions? In a ubicomp setting interaction may be implicit as well as ex-
plicit. Response may occur as a result of implicit user action or changes to the
environment, e.g., a user entering or leaving a room.

What is being analysed? The broader idea of system, implied by ubicomp, leads to
concern about whether the analysis is addressing the design of the system or the
model itself, i.e., whether the property is being used to reason about features of
the systems design, or is being used to validate the model itself.

Verification involves constructing an algorithm over a reachability graph that can
be executed within the SS-tool. The pattern template is parameterised on events and
system responses that appear in the model. By this means the property can be related
to a specific scenario. Events and system states are represented as tokens defined in
relevant places in the behaviour model. The algorithm is instantiated by identifying
relevant tokens and places. Example patterns are now presented.

The Consistency Pattern.

Intuition Consistency [33] captures the requirement that a given event or system
state condition always causes a defined effect. An event may be an implicit or explicit
user action.

For example, an event may be a change in the environment that the system has
sensed. This would occur if the temperature of the space had reached a threshold.
Alternatively, the pattern could be defined in relation to the temperature being above
or below the threshold (a state condition) instead of having reached it (an event). The
defined effect is described in terms of the state of the system as a whole. It could
be defined in terms of a personal profile, the presence of other users or environment
information. The effect of the event in the environment may or may not be perceivable
by users.

An example consistency property in the asthma system is “a child near an asthma
trigger is always detected by a sensor”.

Algorithm Figure 17 presents the algorithm skeleton used to verify Consistency
properties (written in CPN ML).

The result of the verification is given in the CONSISTENCY variable (line 29 in
the figure). The variable contains node identifiers for which the verification fails. It
will be empty if it succeeds. The nodes represent counter-examples to the particular
instance of the property template being verified. They illustrate states of the system
that falsify the property.

To instantiate the template, appropriate places in the Petri net model must be identi-
fied. These define the relevant event/state condition and system response. This is done
by instantiating the underlined terms in the figure. Term (1) – line 2 in Figure 17 – must
correspond to places where the effect is observed. Term (2) – line 31 – corresponds to
places that hold tokens that together produce the event or represent the state condition
for which we want to analyse the system response.

23



Figure 17: Consistency/feedback property algorithm skeleton

Looking at lines 29 to 31, it can be seen that the value of the CONSISTENCY
variable is determined by applying (using the map function) the counterExampleNodes
function to all relevant tokens in the scenario to be verified. These tokens are calculated
by the UpperMultiSet function from the places instantiated in term (2).

The counterExampleNodes function (lines 4 to 27) identifies states where the de-
sired effect is verified (variable nodes - line 6). This is done using the identifyRel-
evantNodes function (line 1 and 2), which uses PredAllNodes to calculate all nodes
that have markings in the places instantiated in term (1) (i.e., those places where the
effect is observed). The counterExampleNodes function then takes these states and ex-
plores the alternative behaviours that might have occurred in the presence of the event
or condition. These are models of highly concurrent systems that may be reacting to a
number of different events simultaneously. The algorithm checks whether these other
behaviours also satisfy the desired effect.

The exploration of alternative behaviours is done in three steps. First (lines 9 to
11), a search is made for all predecessores of the nodes in variable nodes. The result
is available in variable predecessorsNodes. Then (lines 14 to 18), the result of that
search is filtered to consider only those nodes that have alternative behaviours (variable
nodesPredecessorsNodesWith2orMoreSucessors). Finally (lines 20 to 24), a search is
made for those nodes that have behaviours in which the desired effect is not observed.
If any node is found then a state has been found where the desired effect was not

24



observed.

The Feedback Pattern.

Intuition To provide adequate feedback is a key principle in Human Computer
Interaction. Feedback is understood in the APEX context to be a response reflected in
the environment as a whole to specific events. Events can be either explicit or implicit
actions by the user. Response represents an observable change in the environment.

The person that causes the system’s response is not necessarily the same as the per-
son to whom the response is directed. For example, in the case of “whenever a child
is in danger then carers are alerted”, the event is an implicit action that occurs when
the child “approaches” an asthma trigger. The response which is defined in the model
will be the effect of changing the environment so that parents are alerted. How salient,
for example visible, the feedback is makes this property pattern different from consis-
tency. Evaluating the salience of feedback will require complementary evaluation at
the simulation layer.

An example feedback property in the asthma system is “while a child is in a danger
zone, an alert is provided by the system”.

Algorithm Feedback is a specialisation of the consistency pattern. The consis-
tency requirement is further specialised to ensure that the response event is always
perceivable by relevant user(s). This can be achieved by using the algorithm for the
consistency pattern, with the added restriction that to verify a feedback property the
relevant nodes being analysed (underlined term (2) - line 31 in Figure 17) should cor-
respond to the perceivable effects being produced.

The Precedence Pattern.

Intuition This pattern captures the requirement that some event (the consequent)
must always be precede by some other event (the antecedent). The consequent event
is enabled by the antecedent event. If the consequent event occurs then the precedent
event must have occurred. An example of an instance of this pattern would be a require-
ment that if the carer has been alerted then a child must have approached an asthma
trigger. This complements the Feedback property that states that while a child is in a
danger zone, an alert is provided by the system.

Algorithm The algorithm skeleton for this pattern is presented in Figure 18. It
identifies the consequent states (variable TN – line 4) and then identifies each predeces-
sor and whether it satisfies the antecedent (variable ON – line 11). The PRECEDENCE
variable (line 15) contains the list of predecessor nodes not satisfying the antecedent.
If this list is empty then the property is verified true.

As before, the underlined terms in the algorithm presented in Figure 18 are the
terms to be instantiated. The tokens (TOKEN - lines 4 and 11) to look for, and the
place in the model that needs to be searched (MODULE’PLACE - lines 2 and 9), must
be provided with appropriate values for both the consequent (terms (1) and (2)) and the
antecedent (terms (3) and (4)).

25



Figure 18: Precedence property algorithm skeleton

The Reachability Pattern.

Intuition Reachability requires that the system be able to reach a specific state or
situation. It asserts that the system can always evolve from one specific (source) state
to another specific state (the target state).

Reachability properties relevant to the example are “when no alarm is raised, a
situation can be reached where no child is in danger but a carer is being alerted”, or
“wherever children are in danger, carers can always receive information about them”.
Some features of the state are likely to be directly controlled by the system as in the
case of the carers being alerted, while others are observed as in the case of the child’s
position. It is important to recognise that observed features might be indirectly influ-
enced by the system when instantiating these properties.

Algorithm For each source state the algorithm checks whether it is possible to
reach a new state with the desired environment attributes. The algorithm skeleton is
presented in Figure 19. Terms (1) and (2) are the identified target states, while terms
(3) and (4) are the source states. An instance of the algorithm for verifying the sec-
ond property above, in a particular scenario, can be found in Figure 20. Term (3)
was instantiated with place ChildInDanger from the Movement module, while term (4)
defines the specific child considered in the scenario. Terms (1) and (2) describe a par-
ticular carer being alerted. The variable REACHABILITY (line 19) contains the states
from which a counter-example exists.

6.2.2. Making the behaviour model tractable
Limiting the ranges of values, for each domain of the mode, will have the effect of

reducing the size of the model. This will ease analysis. It is important that the range of
scenarios is sufficient to ensure that analysis is complete. Some avatars’ positions (e.g.
“a child is far from the house”) in the present case are not relevant, while other positions
must be considered (e.g. “a child is near an asthma trigger”). The simulation layer in
the APEX tool can be used to create the samplings that make up the scenarios. The

26



Figure 19: Reachability property algorithm skeleton

Figure 20: Instance of the reachability property algorithm

open functions, that take values from the simulation or physical layers, are modified
to make a random choice from the limited set of values defined by the scenario (see
Figure 21). A set of system behaviours can then be constructed as a basis for exhaustive
analysis.

The APEXi tool, a component of APEX (see Figure 22) facilitates the selection of
values for relevant tokens to make up the scenario. This tool reduces configuration ef-
fort prior to analysis. The APEXi tool allows automatic insertion of values to construct
the deterministic model. The model can then be evaluated. The selection of adequate
values for analysis is an important step that the analyst must consider carefully. The
APEXi tool reuses part of the APEX communication/execution component responsible
for exchanging information with CPN models. Modules that receive values, sent by the
tool, also use functions of the Comms/CPN library [34] that connects CPN Tools with
external processes. Figure 23 illustrates how APEXi is connected to the remaining
components.

27



Figure 21: Data type reading - open (left) vs. closed (right)

6.2.3. Example of property instantiation and model reduction
Property patterns are designed to assist the development of suitable properties. For

example, the property “wherever carers go they can always receive information about
their child” is verified by instantiating the reachability algorithm skeleton (Figure 19,
page 27). The pattern checks whether it is possible to reach one state given another state
as a starting point (reachability between two nodes of the reachability graph). This can
be expressed in the terms of the template as “for every carer position and every child
position a carer alert state can be reached”. Figure 20 (page 27) shows the algorithm
skeleton associated with this pattern being instantiated. The targetNodes and origi-
nalNodes functions identify the relevant nodes. The places (i.e. Alert’parent Alerted
and Movement’ChildinDanger) identify the nodes to be used in the analysis. Concrete
tokens (i.e. carer and child) are identified in these places (see underlined terms in Fig-
ure 20). The execution of the pattern identifies the parent’s alerted nodes (returned
by the targetNodes function). The pattern then requires the identification of all nodes
in which the child is in danger (returned by the originalNodes function). Finally, the
identification of any node from which an alert should have been made and was not are
held in the REACHABILITY variable. Such a situation would occur when the system
did not reach any carer’s alerted node despite the child being in danger.

Checking the property in the example returns no nodes. For the selected scenario it
has been demonstrated that wherever carers go they can receive alerts about their child.
In other words the property is true.

6.3. Complementarity of the analyses
The interpretation of analysis results requires care. A property proved true is a

property of the system. This is relevant but it does not guarantee that a design solution
is appropriate from a human perspective. For example one of the properties, described
above, guarantees that the system will always provide feedback. However the elements
of the environment that are assumed to provide feedback may not actually be recog-
nised effectively by the nominated group of users. These issues of salience must be

28



Figure 22: APEXi interface

Figure 23: APEXi tool connection to the APEX behavioural component

explored through an evaluation of user experience in the simulation layer. Those tests,
however, are not enough to guarantee the correct behaviour of the system. The combi-
nation of the two approaches provides the best guarantee that a system’s design exhibits
appropriate characteristics.

When the property fails the behaviour model can be directly animated with the
failed behaviour. This allows selective step by step execution of the CPN models.
It also provides a means of seeing how the system reacts in particular situations and
enables an exploration of counter-examples generated through exhaustive analysis.

In summary, it has been demonstrated how the APEX framework provides a multi-
layered prototyping approach where each layer supports a specific type of evaluation.
The analysis provided by these three layers can be used to create analyses that comple-
ment each other to provide the full coverage of a proposed solution.

29



7. EVALUATION OF APEX PROTOTYPING APPROACH

7.1. Introduction to the study

An initial evaluation of APEX was conducted to obtain feedback about its effec-
tiveness in supporting the design and development of ubicomp prototypes. Because
APEX is aimed at software engineers and developers within a multi-disciplinary con-
text, we wished to evaluate whether the tools facilitate cross disciplinary evaluation
of alternative designs during development. Twenty seven post graduate software engi-
neers at the University of Minho participated in this preliminary study. They were all
male and their age varied between 21 and 27 years. The study has a number of features.
It introduced participants to CPN and to APEX. On the basis of this introduction they
were required to solve a problem using APEX. The problem involved designing and
producing a prototype using a provided virtual environment. When they completed the
task participants were asked to complete a questionnaire.

Each participant was given a set of instructions about how to use APEX. These
instructions described available options and viewer functionalities. A starter model
that simulated the aware home was provided so that they had a structure upon which
the solution could be built. This consisted of a CPN model and a virtual environment.
Each participant was provided with instructions to enable them to configure the virtual
environment and to connect and synchronise it with the CPN model. The exercise
required students to develop and compare different added functionalities designed to
help elderly people find their way to the bathroom at night.

A number of indications and alternative options were offered as hints in the briefing
notes. These included:

• putting lights on the floor to be turned on when the person leaves their bed in the
dark;

• using a presence sensor to detect whether the person has left their bed;

• using an additional presence sensor to turn the light off when the person has
returned to bed.

Functions were provided to facilitate the development of solutions based around
these issues. It was indicated to participants that these functions could be invoked from
the CPN transitions. Participants were invited first to develop solutions, and then to
comment on the adequacy of their solutions, as well as any problems with proposed
solutions. After completing the task, participants were invited to modify their designs
by adding a facility to turn the light off when the person returns to bed, both by using
a presence sensor and a timer.

Participant progress was monitored using a grounded theory approach [35]. This
provided a preliminary understanding of how easily the APEX system could be used to
produce a prototype. The anticipated development process was grounded in the follow-
ing phases: CPN interpretation; CPN development; virtual environment configuration
and examination of the prototype.

30



The questionnaire15 filled in by participants after the exercise addressed five as-
pects (as defined in the standard USE questionnaire [45]): participant characterization;
usefulness; ease of use; ease of learning; and user satisfaction. Subjects were asked to
answer on a 7 point Likert scale with values from −3 (strong disagree) to +3 (strong
agree). The questionnaire included an open question on the framework’s strong and
weak points, and enabled the participants to make any further comments they wished.

7.2. Results

All participants provided prototypes of possible solutions. The study focus was to
evaluate how effectively APEX supported the partipants’ development and evaluation
activity. As is to be expected, given the constrained design space, all solutions were
fairly similar, and close to what was expected. Solutions typically consisted of a set
of lights on the floor leading from the bed to the bathroom. The number, position and
dimension of the lights varied between the solutions. Some users chose few lights but
with larger dimensions while others chose more lights with smaller dimensions. The
shapes of the lights used were squares and rectangles. These were chosen in preference
to the other shapes that could have been chosen. All participants chose to put the lights
on the floor. The reasoning behind this option might have been to avoid disturbing
other persons sleeping but this rationale was not provided. Some solutions considered
the problem of getting up from either side of the bed by including sensors and lights on
both sides. These solutions triggered the turning on of different sets of lights on each
side of the bed by independent sensors. In general the sensors were located similarly
close to the bed and to the bathroom. Participants successfully identified the limitations
of their initial solutions (e.g. the turning off of the light before the person reached the
bathroom) and were able to improve them. They did this in a variety of ways, for
example by using additional presence sensors and a timer to ensure that the lights were
turned on or off as appropriate to the situation. The selected value for the timer was
adjusted by experiment in the environment and was finally very similar in all solutions.

The focus of this study was not to consider how well the tool enabled exploration
of the design space. This of course is an interesting question and a topic for future
consideration. The focus here, however, was on the participants use of the platform.

The observed phases of the participants’ development provided an overall under-
standing of where participants spent their time. While the results were inconclusive
in providing clear patterns, they did provide useful insights. These results must be
interpreted in the context of the actual example. As might be expected, the CPN
modeling phase (39.9%, σ = 9.5) and the virtual environment configuration phase
(30.2%, σ = 9.2), being the least familiar, were the most time consuming. Prototype
examination (15.5%, σ = 6.7) and CPN interpretation (14.4%, σ = 4.8) were less
time consuming. Unsurprisingly, as participants became more familiar with APEX ac-
tivities, they took less time to complete the tasks. The proportions of time spent in the
different phases remained similar however. The students spent between 42 minutes and
1 hour and 28 minutes to create the prototype.

15available at http://wiki.di.uminho.pt/twiki/bin/view/Research/APEX/Documentation (last accessed: 23
January 2013)

31



Figure 24: Questionnaire results.

In general, the questionnaires indicated (see Figure 24) a positive reaction to the
tool, with all criteria but one obtaining a mode of 1. Participants found it relatively
easy to learn how to use the framework. They found that it provided useful features that
were easy to memorise. Overall the framework was found to provide results that met
their goals in the proposed exercise. The weakest aspect was ease of use, with a mode
of -1 (a median of 0). Participants commented that the inherited CPN Tools interface
was difficult to use. The moded style of interface [44] differs from other comparable
software development and modelling tools. Furthermore the lack of an undo facility in
APEX made it difficult to recover from user error. This led to frustration in some cases.

7.3. Analysis

The results were effective in providing early warning of features of APEX that
should be improved. They also provide information about how the system is likely to be
used by software engineers. Work is being done to improve APEX features particularly
in terms of ease of use. A tool is being developed that improves the automation of the
development, setting up and deployment of the prototypes.

The results indicated that subject to minor usability improvements the tool is fea-
sible and appropriate for use by developers. The solutions developed were adequate
and the framework successfully enabled software engineers to identify issues relating
to their solutions and to improve them by analysing the results of the execution pf the
solution in the virtual environment. Most importantly, it indicated that APEX can be
used by software engineers with no particular relevant skills. This is corroborated by
our ongoing experience using the framework.

32



Further evaluation with end users is being carried out to determine whether gener-
ated APEX simulations are adequate to help understand how users would experience a
specific proposed ubiquitous computing environment. This evaluation includes a con-
sideration of the extent to which immersion was possible, and a consideration of the
extent to which the physical features of the space to be built were recognised through
the simulation. It is also clear that different stakeholders will have an interest in the pro-
totypes generated. At this stage it is assumed that users will be the main stakeholders.
However it is equally likely for example that the client will require a “birds eye view”
of the system in order to understand the design concept. These further developments
are scheduled for future work.

8. CONCLUSIONS AND FUTURE WORK

The aim of rapid prototyping frameworks should be to make complex system de-
velopment easier and more efficient. For this purpose these frameworks should be
flexible and extensible. APEX supports the development of prototype ubiquitous com-
puting environments. It provides tools to aid the creation of various types of immersive
prototypes. It achieves this by using techniques such as stereoscopic 3D and multiple-
displays. The exploration of user experience, using alternative ubicomp designs, be-
comes feasible with APEX. The use of external physical devices also helps immer-
sion by providing a more realistic means of user interaction. How much immersion is
enough, and when simpler solutions provide sufficiently similar user experience, are
topics that have been discussed by Bowman and McMahan [30].

APEX also offers support for formal verification techniques to reason about the be-
haviour of the systems. Evaluating the environment behaviour using formal techniques
guarantees an exhaustive exploration of possible interactions between the different de-
vices and users in the environment. This is not possible with user testing. Formal
analysis cannot however guarantee that a proposed design solution provides an ade-
quate experience. Formal analysis does not guarantee that:

• feedback is salient;

• feedback can be seen by the user;

• feedback will have specific physical characteristics.

These are issues that are better addressed by performing user tests.
The value of the APEX framework is that these broader questions can be addressed

cooperatively through the multiple layers. Each layer supports a specific type of evalu-
ation: observation of the behaviour of virtual objects, and user reaction to them within
a virtual world (in the simulation layer); analysis of the model (in the modelling layer);
observation of real objects (e.g. actual smart phones) connected to the virtual world,
and user reaction to them (in the physical layer).

The framework also supports a development process in which virtual, physical or
mixed elements are explored depending on the availability of these components. The
initial stages of development can be achieved entirely in terms of a CPN model. Further
development can be moved into the virtual world before moving, wholly or partially,

33



into the physical world. To summarise, it is possible to explore the design from a
variety of perspectives.

The paper has illustrated, through an example, the ability to interchange APEX
layers to enrich the exploration of a design, and has demonstrated briefly how different
features of a ubiquitous environment are explored in these different modes.

Avatars are controlled by real users through the viewer in the illustrative exam-
ple. This allows human users to experience the developed ubiquitous environment
immersively. An alternative possibility is for an “out of the box” view of the system
to be achieved through the use of programmed avatars who are driven by a module
that sends the avatars behaviour to the simulation. A path is defined in the model for
each avatar. The use of programmed avatars allows created scenarios to be tested or
analysed with combinations of programmed and non-programmed avatars. In practice
this enables the analysis to be focused on consistencies and accuracy (for example, of
the information sent to parents) in the presence of several avatars with reduced costs.
This “out of the box” view could be of value in helping other stakeholders understand
the implications of a design.

The example also illustrates how APEX enables reasoning, formal modeling and
analysis, while at the same time providing valuable feedback about how users experi-
ence ubiquitous environments. The results of a preliminary evaluation of the use of the
APEX tools show that it is useful and easy to learn. Further developments would make
APEX an effective tool for developers.

Further development of the framework are focusing on: tools to automate the set-
ting up and deployment of the prototypes; the connection of isolated sensors that are
not integrated into smart phones; a tool within the framework (already in prototype)
that enables the semi automatic selection of input values to be used in the test of the
prototyped environment; the development of different perspectives of value to other
stakeholders.

9. ACKNOWLEDGMENTS

Work carried out in the context of the APEX project, funded by ERDF – European
Regional Development Fund – through the COMPETE Programme (operational pro-
gramme for competitiveness) and by National Funds through the FCT - Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) – within
project reference FCOMP-01-0124-FEDER-015095. José Luı́s Silva was supported by
Fundação para a Ciência e Tecnologia (FCT, Portugal) through PhD Grant
SFRH/BD/41179/2007. Thanks to GaTech members for collaboration, especially Gre-
gory Abowd for hosting and Mario Romero for having provided the Aware Home 3D
model.

References

[1] Silva, J. L., Campos, J., Harrison, M., 2012. “Formal analysis of ubiquitous com-
puting environments through the APEX framework”. In Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive computing systems (EICS
’12). 131–140. ACM.

34



[2] Cabana, M. D., Slish, K. K., Lewis, T. C., Brown, R. W., Nan, B., Lin, X., Clark.
N.M., 2004. “Parental management of asthma triggers within a child’s environ-
ment”, Journal of Allergy and Clinical Immunology, Volume 114, Issue 2, 352–
357.

[3] Silva, J. L., Ribeiro, O., Fernandes, J. M., Campos, J. C., Harrison, M. D., 2010.
“The APEX framework: prototyping of ubiquitous environments based on Petri
nets”, Proceedings of the Third international conference on Human-centred soft-
ware engineering, HCSE’10, 6–21, 16, Springer-Verlag, Berlin, Heidelberg.

[4] Jensen, K., Christensen, S., Kristensen, L.M., 2006.“CPN Tools State Space Man-
ual”. University of Aarhus.

[5] IEEE Pervasive Computing. Special issue on rapid prototyping. (2005). Volume
4, Issue 4.

[6] Abowd, G. D., Hayes, G. R., Iachello, G., Kientz, J. A., Patel, S. N., Stevens,
M. M., Truong, K. N. 2005.“Prototypes and Paratypes: Designing Mobile and
Ubiquitous Computing Applications”, IEEE Pervasive Computing, 4(4),67–73.

[7] Jensen, K., Kristensen, L.M., Wells, L., 2007. “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems”. International Journal
on Software Tools for Technology Transfer (STTT), (9)3-4, 213–254.

[8] Barton, J.J., Vijayaraghavan. 2003. “UBIWISE, a simulator for ubiquitous com-
puting systems design”. Tech. Rep. HPL-2003-93, HP Laboratories, Palo Alto.

[9] Tamai, M., Nishigaki, K., Kitani, T., Shibata, N., Yasumoto, K., Ito, M.,
Nishikawa, H., Yamamoto, S. 2006. “Ubireal: Realistic smartspace simulator for
systematic testing”. Ubiquitous Computing , 459–476.

[10] Nazari, S., Klar. A., 2005. “3DSim: Rapid Prototyping Ambient Intelligence”.
SOcEUSAI conference. 303–307.

[11] Disz, T.L., Papka, M.E., Stevens, R., 1997. “UbiWorld: An Environment Inte-
grating Virtual Reality, Super-computing, and Design”. In Proceedings 6th Het-
erogeneous Computing Workshop, 46–57.

[12] Li, Y., Hong, J., Landay, J. 2004. “Topiary: a tool for prototyping location-
enhanced applications”. In Proceedings of the 17th annual ACM symposium on
User interface software and technology. 217–226. ACM.

[13] O’Neill, E., Lewis, D., Conlan, O. 2009. “A simulation-based approach to highly
iterative prototyping of ubiquitous computing systems”. In 2nd International Con-
ference on Simulation Tools and Techniques. 1–10.

[14] Irawati, S., Ahn, S., Kim, J., Ko. H., 2008. “VARU Framework: Enabling Rapid
Prototyping of VR, AR and Ubiquitous Applications”. Virtual Reality Confer-
ence, 201–208. IEEE.

35



[15] Gallasch, G., Kristensen, L.M., 2001. “Comms/CPN: A Communication Infras-
tructure for External Communication with Design/CPN”. In Proceedings of Third
Workshop and Tutorial on CPNs and CPN Tools, 79–93. Department of Computer
Science, University of Aarhus.

[16] ISO DIS 9241-210:2008 [3] standard.

[17] Moreira, R., 2011. Master Thesis: “Integrating a 3D ap-
plication server with a CAVE”. University of Minho.
http://wiki.di.uminho.pt/twiki/bin/view/Research/APEX/Publications (last
accessed - January 21st 2012).

[18] Bateman, E.D., Hurd, S.S., Barnes, P.J., Bousquet, J., Drazen, J.M., FitzGerald,
M., Gibson, P., Ohta, K., O’Byrne, P., Pedersen, S.E., Pizzichini, E., Sullivan,
S.D., Wenzel, S.E., Zar, H.J., 2008. “Global strategy for asthma management
and prevention: GINA executive summary”. The European respiratory journal :
official journal of the Euro-pean Society for Clinical Respiratory Physiology, vol.
31, no. 1, 143–78.

[19] Hong, H., Jeong, H. Y., Arriaga R. I., Abowd, G. D., 2010. “TriggerHunter: de-
signing an educational game for families with asthmatic children”. Proceedings
of the 28th of the international conference extended abstracts on Human factors
in computing systems, 3577–3582.

[20] Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L., Burr, B., Robinson-
Mosher, A., Gee, J., 2006. “Reflective physical prototyping through integrated
design, test, and analysis”. Proceedings of the 19th annual ACM symposium on
User interface software and technology, 299–308.

[21] Abowd, G., Hayes, G., Iachello, G., Kientz, J., Patel, S., Stevens, M., Truong, K.,
2005. “Prototypes and paratypes: designing mobile and ubiquitous computing
applications”. IEEE Pervasive Computing 4(4), 67–73.

[22] Scholtz J. and Consolvo, S., 2004. “Toward a framework for evaluating ubiquitous
computing applications”. Pervasive Computing, IEEE, vol. 3, no. 2, 82–88.

[23] Li, Y. and Landay, J. A., 2008. “Into the wild: low-cost ubicomp prototype test-
ing”. Computer, vol. 41, no. 6, 94–97.

[24] ONeill, E., 2004. Master Thesis: “TATUS a Ubiquitous Computing Simula-
tor”. University of Dublin. http://www.tara.tcd.ie/handle/2262/827 ((last accessed
- January 21st).

[25] Vanacken, L., De Boeck, J., Raymaekers, C., Coninx, K., 2008. “Designing
context-aware multimodal virtual environments”. Proceedings of the 10th inter-
national conference on Multimodal interfaces, 129–136.

[26] Nielsen, J., 1994. “Enhancing the explanatory power of usability heuristics”. Pro-
ceedings of the SIGCHI conference on Human factors in computing systems:
celebrating inter-dependence, 152–158.

36



[27] Ruksenas, R., Back, J., Curzon, P., Blandford, A., 2007. “Formal modelling of
salience and cognitive load”. Proceedings 2nd Int. Workshop on Formal Methods
for Interactive Systems, 57–75.

[28] Kim, S. and Kim, S., “Usability challenges in ubicomp environment”. Proceeding
of International Ergonomics Association, 4–4.

[29] Mankoff, J., Dey, A., Hsieh, G., Kientz, J., 2003. “Heuristic evaluation of ambient
displays”. Proceedings of the SIGCHI conference on Human factors in computing
systems, no. 5, 169–176.

[30] Bowman, D., McMahan, R., 2007. “Virtual reality: how much immersion is
enough?”. Computer, vol. 40, no. 7, 36–43.

[31] Dwyer, M. B., Avrunin, G. S., Corbett, J. C., 1999. “Patterns in property specifi-
cations for finite-state verification”. Proceedings of the 21st international confer-
ence on Software engineering, 411–420.

[32] Campos, J. and Harrison, M., 2008. “Systematic analysis of control panel inter-
faces using formal tools”. Interactive Systems Design, Specification, and Verifi-
cation, 72–85.

[33] Campos, J. and Harrison, M. D., 2009. “Interaction engineering using the IVY
tool”. Proceedings of the 1st ACM SIGCHI symposium on Engineering interac-
tive computing systems, 35–44.

[34] Gallasch, G., and Kristensen, L. M., 2001. “Comms/CPN: A communication in-
frastructure for external communication with design/CPN” in Kurt Jensen (Ed.):
3rd Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, 75–90.

[35] Adams, A., Lunt, P., Cairns, P., 2008. “A qualitative approach to HCI research”.
Research Methods for Human-Computer Interaction, cup, P. Cairns and A. L.
Cox, 138–157.

[36] Silva, J. L., Campos, J. C., and Harrison, M. D., 2009. “An infrastructure for
experience centered agile prototyping of ambient intelligence”. In Proceedings of
the 1st ACM SIGCHI symposium on Engineering interactive computing systems.
ACM, New York, NY, USA, 79–84.

[37] Basuki, T., Cerone, A., Griesmayer, A., and Schlatte, R., 2009. “Model-checking
user behaviour using interacting components”. Formal Aspects of Computing,
vol. 21, 571–588.

[38] Westergaard, M. and Lassen, K., 2006. “The britney suite animation tool”, in
Proceedings of the 27th international conference on Applications and Theory of
Petri Nets and Other Models of Concurrency, 431–440.

37



[39] Westergaard, M. and Verbeek H.M.W., 2011. “Efficient Implementation of Pri-
oritized Transitions for High-level Petri Nets”. Proceedings of the International
Workshop on Petri Nets and Software Engineering (PNSE11). Vol. 723 of CEUR
Workshop Proceedings, 27–41.

[40] Hoare, C., 2004. “Communicating sequential processes”. Prentice Hall Interna-
tional. p.260.

[41] Massink, M., Duke, D., and Smith S., 1999. “Towards hybrid interface spec-
ification for virtual environments” in Design, Specification and Verification of
Interactive Systems. Vol. 99, 3051.

[42] Dubois, E., Gray, P., and Nigay, L., 2002. “ASUR ++ : A Design Notation for
Mobile Mixed Systems” in Proceedings of the 4th International Symposium on
Mobile Human-Computer Interaction, 123–139.

[43] Navarre, D., Palanque, P., Bastide, R., Schyn, A., Winckler, M., Nedel, L., Freitas,
C., 2005.“A formal description of multimodal interaction techniques for immer-
sive virtual reality applications” in Proceedings of the 2005 IFIP TC13 interna-
tional conference on Human-Computer Interaction, 170–183.

[44] Ratzer, A., Wells, L. , Lassen, H. , Laursen, M., Qvortrup, J., Stissing, M., West-
ergaard, M., Christensen, S., Jensen, K., 2003. “CPN tools for editing, simulating,
and analysing coloured Petri nets” in Proceedings of the 24th international con-
ference on Applications and theory of Petri nets, 450–462.

[45] Lund, A.M., 2001. “Measuring Usability with the USE Questionnaire”. STC Us-
ability SIG Newsletter, 8:2.

38


	1 INTRODUCTION
	2 RELATED WORK
	2.1 Early evaluation of ubiquitous systems
	2.2 Simulation using virtual environments
	2.3 Analysis Techniques
	2.4 Overview

	3 EXAMPLE DESCRIPTION
	4 THE APEX FRAMEWORK AND PROTOTYPING
	4.1 APEX architecture
	4.2 Virtual Environment Component
	4.3 Behavioural Component
	4.4 Physical Component
	4.5 Communication/Execution Component

	5 USING APEX TO DEVELOP A PROTOTYPE
	5.1 Virtual Environment
	5.2 The behaviour model

	6 USING APEX TO EVALUATE A PROTOTYPE
	6.1 Analysis of User Experience
	6.2 Formal Behavioural Analysis
	6.2.1 Patterns
	6.2.2 Making the behaviour model tractable
	6.2.3 Example of property instantiation and model reduction

	6.3 Complementarity of the analyses

	7 EVALUATION OF APEX PROTOTYPING APPROACH
	7.1 Introduction to the study
	7.2 Results
	7.3 Analysis

	8 CONCLUSIONS AND FUTURE WORK
	9 ACKNOWLEDGMENTS

