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Abstract 

In this article, we study how drivers interact with in-car interfaces, particularly by focusing 

on understanding driver in-car glance behavior when multitasking while driving. The work 

focuses on using an in-car touch screen to find a target item from a large number of 

unordered visual items spread across multiple screens. We first describe a cognitive model 

that aims to represent a driver’s visual sampling strategy when interacting with an in-car 

display. The proposed strategy assumes that drivers are aware of the passage of time during 

the search task; they try to adjust their glances at the display to a time limit, after which they 

switch back to the driving task; and they adjust their time limits based on their performance 

in the current driving environment. For visual search, the model assumes a random starting 

point, inhibition of return, and a search strategy that always seeks the nearest uninspected 

item. We validate the model’s predictions with empirical data collected in two driving 

simulator studies with eye tracking. The results of the empirical study suggest that the visual 

design of in-car displays can have a significant impact on the probability of distraction. In 

particular, the results suggest that designers should try to minimize total task durations and 

the durations of all visual encoding steps required for an in-car task, as well as minimize the 

distance between visual display elements that are encoded one after the other. The cognitive 

model helps to explain gaze allocation strategies for performing in-car tasks while driving, 

and thus helps to quantify the effects of task duration and visual item spacing on safety-

critical in-car glance durations.  
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1 INTRODUCTION 

Ubiquitous computing has brought a wealth of information and entertainment to the 

fingertips of drivers. Although there are clear benefits to the increased availability of services 

and infotainment on the road, there may be serious drawbacks: in-car visual tasks increase the 

probability that driver’s eyes wander from the road, potentially leading to unsafe situations 

for the driver and others. Extensive field studies have noted the statistical relationship 

between in-car glance durations and the probability of safety-critical incidents (see Liang et 

al., 2012). While the responsibility of safe driving belongs primarily with the driver, those 

who design and build in-car user interfaces also strive to minimize the potential of visual 

distraction of these interfaces. 

The U.S. National Highway Traffic Safety Administration (2013) recently released 

testing and verification guidelines for in-vehicle electronic devices. These guidelines propose 

three criteria for newly developed in-car systems: 

1. Individual glance durations: “For at least 21 of the 24 test participants, no more than 

15 percent (rounded up) of the total number of eye glances away from the forward 

road scene have duration of greater than 2.0 seconds while performing the testable 

task one time.”  

2. Mean glance duration: “For at least 21 of the 24 test participants, the mean duration of 

all eye glances away from the forward road scene is less than or equal to 2.0 seconds 

while performing the testable task one time.” 

3. Total glance time: “For at least 21 of the 24 test participants, the sum of the durations 

of each individual participant’s eye glances away from the forward road scene is less 

or equal to 12.0 seconds while performing the testable task one time.” 
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As a complement to such guidelines, there are various helpful procedures (e.g., SAE-J2365, 

2002) and prototyping tools (e.g., Distract-R: Salvucci, 2009) available for designers for 

analyzing relevant measures of driver distraction and performance, such as in-car task 

completion times and effects on lateral vehicle control. However, these methods are currently 

unable to predict arguably the most safety-relevant aspect of multitasking while driving, 

namely in-car glance behavior (NHTSA, 2013; Liang et al., 2012) and to provide guidance in 

design to create in-car user interfaces that would pass the NHTSA criteria. At least for now, 

designers and manufacturers must still rely on expensive and time-consuming testing with 

human drivers on novel in-car user interfaces. A deeper understanding of drivers’ visual 

sampling strategies would go a long way toward more rigorous testing procedures, empirical 

and otherwise, to better predict and alleviate driver distraction. 

In this paper, we study how drivers perform visual sampling on an in-car device 

interface, specifically when searching through a large number of unordered visual items (e.g., 

radio stations, music albums and songs, navigational points of interest) spread across multiple 

screens. Specifically, we study the effects of two possible layouts for its visual items: a grid 

layout with a constant number of columns and varying number of rows, and a list layout with 

a vertical list of all items. Kujala and Saariluoma (2011) found higher individual in-car 

glance durations by increasing the number of items per screen as well as increased glance 

durations for a grid-style menu layout compared to a list layout.  

The results of the current work help to better understand the effects of unordered 

menu layout on driver glance behavior, and more generally, to elucidate possible gaze 

allocation strategies used by drivers when interacting with in-car displays. As such, we hope 

to better understand drivers’ visual sampling in general and in the context of recent 

guidelines and tools like those mentioned above. 
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We begin by specifying a proposed strategy for visual sampling while driving, along 

with an instantiation of this strategy as a computational cognitive model developed in the 

ACT-R cognitive architecture (Anderson, 2007). The proposed strategy is based on several 

key assumptions: (1) each in-car glance begins with the driver fixating a random item on the 

display; (2) after encoding the current item, the driver transitions to the nearest yet-

unattended item (in unordered menus), thus inhibiting return to attended items; (3) drivers 

monitor the passage of time during performance of the search task; (4) to the best of their 

ability, drivers try to limit their glances at the display to a reasonable amount of time, after 

which they switch back to the driving task; (5) drivers adjust their time limits for search 

based on their performance in the current driving environment. Given this sampling strategy 

and model, we describe two experiments that provide human data to elucidate these issues 

and to test the validity of the claims as embodied by the cognitive model. 

2 VISUAL SAMPLING WHILE DRIVING: STRATEGY AND MODEL 

Visual search construed most broadly is an extremely interesting and challenging problem 

with many aspects (Wolfe, 2007). In the context of in-vehicle interfaces, visual search can 

take on a more specific form in three ways. First, visual search is often constrained to a set of 

similarly sized items with text labels and/or icons; certainly this is not always the case (e.g., 

search in a navigational map), but is one common case for in-vehicle interfaces. Second, 

visual search often occurs across multiple screens of items: because an in-vehicle display can 

typically hold a very limited set of items, scrolling across screens is likely in many search 

scenarios. Third, the visual search is not continuous, but instead done by brief in-vehicle 

glances returning vision back to the road in between the glances (i.e., visual sampling). Thus, 

as mentioned, we focus our efforts on visual sampling in the context of a grid or list of 

varying number of items spread across multiple screens. 
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2.1 Visual-Search Strategy 

We begin by proposing a core strategy for visual search while driving, borrowing a number 

of ideas from previous models of visual search in non-multitasking contexts. First, we assume 

that the visual-search task is interleaved with driving in a series of glances to the display (for 

search) that are interleaved with glances to the roadway (for driving). An in-car glance is 

defined here (following SAE-J2396: SAE, 2000) to begin once the gaze starts to move 

towards the in-car display, and to end once the gaze has returned to the road scene. Thus, an 

in-car glance can comprise of several fixations on the in-car display. 

 Each in-car glance begins with the driver fixating a random item on the display. When 

the driver finishes encoding the current item, we assume, following the model of Halverson 

and Hornof (2007), that the driver transitions to the nearest yet-unattended item; if there are 

multiple nearest unattended items, the driver chooses one at random. The limitation of this 

kind of search model is that it does not probably apply to semantic and alphabetic 

organizations of items (Bailly et al., 2014). Thus, here we are modeling search behaviors in 

unordered menus. It also assumes inhibition of return to attended items, which has been 

found in standard visual-search paradigms (e.g., Klein, 2000; Posner and Cohen, 1984) but 

has not, to our knowledge, been explored in a similar multitasking context. The central issue 

here is whether “markers” of attended items (e.g., “finsts”: Pylyshyn, 1989) persist across 

multiple glances to a display—or, put another way, whether the items marked as attended 

will remain marked after an interleaving glance to the roadway and the associated time 

needed to focus on the driving task. 

2.2 Interleaving Strategy 

The next challenge in our understanding of visual sampling while driving concerns the timing 

of interleaving between the search and driving tasks. Our understanding of this process 
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generally follows the guidelines of the theory of threaded cognition (Salvucci and Taatgen, 

2008), which assumes that each task is associated with a distinct cognitive “thread” and that 

these threads share cognitive resources in a balanced manner. However, this theory does not 

dictate one important piece of driver behavior, namely how the driver shares visual resources 

between the two tasks. For this purpose, we make three important assumptions: (1) that 

drivers are aware of the passage of time (to the best of their ability) during performance of 

the search task; (2) that drivers try to limit their glances to a reasonable amount of time, after 

which they switch back to the primary driving task; and (3) drivers adjust their time limits for 

search based on aspects of, and their performance in, the current driving environment. 

Related to the first two assumptions, Wierwille (1993) found that drivers try to limit 

in-car glances within the range of 500 to 1600 milliseconds in most real-world driving 

environments. Related to the third assumption, Wierwille (1993) also found that drivers adapt 

their in-car glance durations according to the driving task demands by shortening individual 

glance durations with increased driving demands. More specifically, our proposed strategy 

posits that drivers adapt their time limit for in-car glance based on the driving environment 

immediately upon returning to the driving task: if the vehicle is stable and “well-placed” in 

the lane, driver increase the limit, under the notion that perhaps they could have done more 

searching; if the vehicle is unstable and/or badly displaced from the lane center, drivers 

decrease the limit, under the notion that the current limit was too long and resulted in a less 

desirable situation. The details of this process are further quantified in the model below. 

2.3 Cognitive Model 

The above sections provide a description of the overall strategy for visual sampling while 

driving; however, we desire a more rigorous formulation to facilitate testing and direct 

comparison to empirical data. For this purpose, we developed a computational cognitive 

model of these strategies in the ACT-R architecture (Anderson, 2007) using the Java ACT-R 
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task environment (version 1.1). ACT-R has a long history of modeling both driving 

(Salvucci, 2006) and complex perceptual-motor tasks more generally (summarized in 

Anderson, 2007). Models developed in ACT-R are specified as condition-action production 

rules that embody particular procedural skills (e.g., the skills necessary for driving and 

search). For our model here, ACT-R offers a number of benefits, most notably the 

incorporation of rigorous theories of eye movements and temporal perception (described 

soon), as well as the ability to run computer simulations to gather testable predictions. 

  The model of visual search generally follows the strategy specified earlier, 

instantiated in the form of ACT-R production rules that follow this process: for each in-car 

glance, ACT-R’s spotlight of visual attention starts at a random item, then proceeds to the 

nearest not-yet-attended item. From these unobservable shifts of visual attention, ACT-R 

predicts observable eye movements using a recent theory developed for reading and related 

tasks (Salvucci, 2001); this theory can predict, for example, skipped fixations on short high-

frequency words and multiple fixations on long low-frequency words, and thus provides a 

realistic mapping from attention to eye movements. To check whether or not a particular item 

matches the target, the model checks the first word of the item’s title, and in the case of a 

match, continues checking the rest of the title. If the item matches the target, the model 

presses the item to complete the trial; otherwise, the model continues to the nearest 

unattended item as described earlier. Eventually, if the model has attended all the items and 

still has not found the target, the model locates and presses the downward scroll arrow to 

view the subsequent screen. We assume, following Janssen et al. (2012), that the press of a 

scroll button would act as a motor cue and a natural breakpoint for a task switch, and thus, 

our model returns eyes back to the driving environment after each change of a screen. 

The model of the secondary task was then integrated with an existing model of driver 

behavior (Salvucci, 2006). The interleaving of search and driving follows the strategy 
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mentioned earlier, and through its instantiation in ACT-R, benefits from ACT-R’s embedded 

theory of time perception (Taatgen et al., 2007). The theory of time perception posits that 

internally, time perception acts like a metronome that ticks slower as time progresses, with 

additional noise drawn from a logistic distribution—the end result being predictions that 

match well to the abilities and limitations of real human time perception. The initial number 

of “ticks” used by the model for an in-car glance was set to start with a cautious strategy, near 

the lower limit of Wierwille’s (1993) visual sampling model—17 ticks, which corresponds to 

roughly 500 milliseconds (although noise in the model may change this interval slightly). 

Whenever the model begins an in-car glance, it starts its mental timer, and continues to check 

whether the time has reached or surpassed the current limit; when it has, the model switches 

back to the primary driving task. 

As for human drivers, the model driver can adapt its time threshold according to the 

demands of the driving environment. When the model returns to the driving task after a 

search glance, it estimates the stability of the driving in relation to speed and lane position. 

Vehicle stability is measured in the model as a function of the vehicle’s lateral position in the 

lane and its lateral (side-to-side) velocity; as detailed in Salvucci (2006), there are two 

parameters that control the estimate of stability, namely thresholds for lateral position and 

lateral velocity respectively. If the driving is stable, the model increases the time limit by 1 

tick; if not, the model resets the limit to its initial value, representing a decision to revert back 

to a safe interval (see Salvucci, Taatgen, & Kushleyeva, 2006, for a similar approach). The 1-

tick increase here corresponds to the most cautious increase—initially small, but increasingly 

large because of increasing noise in estimates of longer time periods (Taatgen et al, 2007). 

Figure 1 provides an overview of the model’s general flow of processing including 

branches at decision points. The boxes roughly correspond to the core ACT-R production 

rules that control behavior, and the arrows represent typical control flow from one rule to the 
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next. It should be noted that under the integrated theory of time perception (Taatgen et al., 

2007), the internal cognitive timer is updated subconsciously (i.e., is not actively performed 

or controlled by the driver directly). The noise in the timing process also occurs automatically 

and can result in slightly different perceptions of time for different trials. Nevertheless, the 

act of checking and acting upon the running timer is indeed under active driver control, and is 

noted in the figure as part of the checks for whether the time has reached the desired limit. 

In running model simulations, the model driver was given the goal to drive at 80 km/h 

on the center lane of a three-lane road and to follow a simulated car that kept a constant speed 

of 80 km/h, following the NHTSA testing guidelines (2013). We estimated several 

parameters of the model to achieve the best overall fit to the empirical data of the 

experiments: two parameters that account for visual encoding times (emma-enc-fac=.009, 

default .006, emma-enc-exp=1.0, default .4), and the driver’s stability factor 

(stabilityFactor=2.0). The stability factor affects the driver’s threshold for vehicle instability, 

above which the driver avoids switching away from driving as described above (Salvucci, 

2009). It was observed that drivers did tolerate a fair amount of deviation in vehicle’s lateral 

position but that lane excursions were rare. 

 

Figure 1. Schematic overview of the model’s flow of processing. 
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The resulting model of search and driving behavior runs in simulation and generates 

predictions of task performance. Most critically for purposes here, the model generates 

predictions of in-car glance durations, as derived by the movement of visual attention 

dictated by the model’s search and task interleaving mechanisms as well as by the predictive 

model of eye movements built into the ACT-R architecture, as mentioned. In the next two 

sections, we report the results of two empirical studies and, for each, compare these results 

with the predictions of the full model to better understand how our proposed strategies 

correspond to human behavior in the empirical tasks. 

3 EXPERIMENT 1: MENU STRUCTURE AND ITEMS PER SCREEN 

The first experiment examined the effects of varying the menu layout and the number of the 

items in the in-car menu, using the grid and list layouts as well as the number of menu items 

(6, 9 and 12 items per screen, i.e., 60, 90 and 120 menu items per 10-screen menu) as the 

critical variants. This section describes the experiment and results, and also compares the 

empirical results to those of the ACT-R model to better understand how human behavior 

matches the visual-search and interleaving strategies described in the previous section. 

3.1 Research Method 

The experiment followed a within-subject 2x3 design. There were two different menu 

structures in the in-car search tasks, Grid and List, as well as three different sizes of item sets 

per screen (6, 9 and 12 items), corresponding to item sets of 60, 90, and 120 items in total per 

10 screen menus. 

3.1.1 Participants  

A total of 12 volunteers were recruited via student mailing lists of University of Jyväskylä. 

The sample included 6 women and 6 men between the ages of 22 and 34. They all had a valid 

driving license and either 20,000 km or 2 years of driving experience; these criteria served to 
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mitigate the effect of low driving experience on visual sampling efficiency (Wikman et al., 

1998). All the participants had normal or corrected-to-normal vision. The experiments were 

conducted in Finnish with fluent Finnish speakers. Participants received a movie ticket as 

compensation for participation in the study. 

3.1.2 Environment and Tools 

The medium-fidelity fixed-base driving simulator used in the study is located at the driving 

simulator laboratory of the Department of Computer Science and Information Systems in the 

University of Jyväskylä (see Figure 2). The virtual driving scene was projected on three 

screens with a resolution of 1280 x 1024 pixels each. The front screen, positioned on a 

distance of roughly 135 centimeters from the participants’ eyes, measured 170 x 64 cm and 

the two side screens measured 110 x 64 cm. The left screen was roughly 130 centimeters 

whereas the right side screen was roughly 150 centimeters from the participant’s eyes. The 

corresponding visual angles subtended by the front driving scene were: horizontal 72.2 

degrees, vertical 27.2 degrees. The visual angles subtended by the left screen were: 48.5 

degrees horizontal, 28.2 degrees vertical and by the right screen: 42.0 degrees horizontal, 

24.4 degrees vertical. The visual angle for the participant between the driving screens and the 

22” interactive display was roughly 37 degrees. The size of the interactive screen on the 

upper part of the display was 640 by 380 pixels (18.0 x 10.7 cm, 8.2“), the distance form the 

participant’s eyes was about 75 centimeters and the corresponding visual angles subtended by 

the screen were: horizontal 13.7 degrees, vertical 8.2 degrees. The simulator was equipped 

with a Logitech G25 force-feedback steering wheel, accelerator, and brake. The distance 

from participant to the screens was fixed but the positions of the pedals and the steering 

wheel were adjustable. 
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Figure 2. The medium-fidelity driving simulator and the experimental setup from the 

participant’s point of view. 

The driving simulation software was provided by Eepsoft (http://www.eepsoft.fi). In the 

experiment, drivers navigated a virtual environment with a three-lane empty straight highway 

road and an instructed speed limit of 80 km/h. The virtual environment included a heads-up 

display (HUD) speedometer, RPM gauge, and rear- and side-view mirrors. The virtual car’s 

transmission was set to automatic. Driving log data were logged and saved at 10 Hz. The 

research equipment included a head-mounted Dikablis eye-tracking system with a 50 Hz 

sampling rate and a laptop for controlling the secondary-task display, namely a 3M 

M2256PW (22") capacitive multi-touch display. In this first experiment, an additional eye 

tracking system—a SMI RED remote eye-tracking system with 500 Hz sample rate—was 

attached to the top of the touch screen to record more detailed data on participants’ eye 

movements on the display. 

The search tasks were performed on the screen with six different layouts, illustrated in 

Figure 3. The font size was identical in all text labels in all conditions. The search tasks 

simulated a situation in which the participant searches for a certain song in an in-car music 

player. The distraction effects of searching music tracks while driving are some of the most 
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studied topics in distraction research (e.g., Jeon et al, 2015; Lee et al., 2012; Chisholm et al., 

2007; Salvucci et al., 2007). The song titles were artificial and were generated with an online 

song name generator (http://www.songname.net/). The song lists were unordered and the 

positions of the song titles on each screen were varied. Although an alphabetical ordering 

might be used in some cases on real systems, there are many real-world situations in which 

alternative orderings would be used (e.g., sorting points of interest by proximity to the 

driver); we focus here on the more general case in which there is no predetermined ordering 

for the items, thus minimizing potential effects of previous knowledge and practice. 

 

Figure 3. The in-car search displays with the Grid and List designs, with 6, 9 or 12 items per 

screen and the scroll buttons on the right (Experiment 2: scroll buttons left). 
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3.1.3 Procedure 

After collection of demographic data, all participants completed a practice driving session 

that used the same driving environment as the experiment and lasted until the participant felt 

comfortable with the task (on average about 5 minutes per practice). Participants also did a 

practice session on multitasking (i.e., performing the search task while driving). In the 

experiment there were 6 blocks, one for each condition. Blocks were clustered by menu 

layout (grid or list), with half the participants starting with the list layout, and half with the 

grid layout in order to control unwanted learning effects (see Appendix 1 for an example). 

For the first three blocks, a random order of number of items per screen (6, 9, 12) was chosen 

for each participant. This order of blocks was repeated for the second set of blocks. Within 

each block, there were three trials. The first trial was considered a practice trial and only the 

other two were analyzed in order to further mitigate unwanted learning effects. The target 

items were always located at the same serial position from the beginning of the menu 

between the trials, which meant that the target item was located on different screens in the 

menus but the participant had to inspect the same number of items in the menu (from List-6 

to List-9 and so on) in order to reach the target (see Appendix 1). 

Participants were instructed to follow a speed limit of 80 km/h, following the NHTSA 

(2013) driving scenario and the simulation model. To encourage the participants prioritize the 

driving task, they were informed that the 6 most accurate participants in the driving task 

would be rewarded with an additional movie ticket. Driving task accuracy was instructed as a 

function of the total duration of lane excursions (where more time outside the lane being 

equivalent to lower accuracy). The accuracy of lane keeping was assessed by how many 

times the HUD speedometer (see Figure 2) crossed a white lane marking. Participants were 

also instructed to beware of unexpected events and react as they would in real situations. 

There were no unexpected events in the experiment, because the NHTSA (2013) driving 
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scenario does not include these. The participants may have ignored the instruction early after 

a few trials without unexpected events but with this instruction we wanted to encourage the 

participants to observe the road ahead in a more natural manner than merely observing the 

speedometer and the lane position. There were no time limits given for the completion of the 

trials. Participants were told not to hurry completing the search tasks and to take their time 

and prioritize the driving task. The driving task proved to be relatively easy and lane 

excursions were found to be rare. This also suggests that the participants were successful in 

prioritizing the driving task regarding the lane keeping as instructed and that they selected a 

cautious strategy for multitasking as assumed in our model. 

3.1.4 Data Analysis 

The in-car glance durations were scored manually frame-by-frame from the overlaid gaze and 

eye videos following the SAE-J2396 (SAE, 2000) definition. For the model predictions, the 

glance durations were calculated in a similar manner based on the predicted eye movements 

in the simulated task environment. Only the first five screens of the last two trials were 

scored for in-car glance durations, in order to have a data set of absent target search with four 

button presses. The first trial was intended for practice; to reduce unwanted learning effects 

in the data. The sixth screen included the search target for the second 12-item trials, and this 

is why we selected only the five first screens in trials 2 and 3 per condition (5+5 screens) 

under analyses. In order to compare the fit between the model’s predictions and the data, 

correspondingly 12 simulated absent target searches on 10 screens each were ran for 

calculating the predicted values. In summary, for both Grid and List menus, 10 screens with 

6, 9, and 12 items per screen, totaling in 60, 90, and 120 item search tasks were analyzed and 

compared between the empirical data and the model predictions with N=12. 

The relevant measures related to the number and duration of the in-car glances (i.e., 

glances to the touch display): the total number of glances, total glance duration, mean and 



  17 

maximum glance duration, and number and percentage of glances over 2.0 seconds. The first 

three measures are related to the visual demand of in-car tasks, whereas the latter three are 

intended to measure safety-critical lapses of control. Glance durations over 2 seconds have 

been associated with increased risk of safety-critical events in real traffic (Liang et al., 2012). 

We wanted to also see if our model can predict the values of our in-car tasks for the NHTSA 

(2013) criteria on the total glance times (max 12.0 s for the 85th percentile), mean glance 

duration (max 2.0 s for the 85th percentile), and the percentage of over-2.0-second glances 

(max 15% for the 85th percentile).  

Even if not in the focus of our current modeling approach, we also evaluated the 

relationship of the predicted lane deviation to the predicted continuous glance metrics to 

validate the relationship between the long glance durations and deviation in vehicle’s lane 

position. Our proposed strategy for visual search posited that drivers could mark attended 

items to inhibit return to these items, and that these markers remain even after looking away 

briefly to the driving task. This assumption makes the implicit prediction that items would 

not be revisited during visual search. In order to test this assumption, the participants’ eye 

movements on the display were recorded with a sampling rate of 500 Hz. For each condition 

and for each participant, a screen with interrupted search was randomly selected for closer 

calculation on revisits per item (12 x 6 = 72 screens in total).  

For statistical analyses, repeated-measures ANOVAs with an alpha level of .05 were 

used. For pairwise comparisons, a Bonferroni correction with SPSS-adjusted significance 

level of .05 was applied. In this paper, SPSS’s Bonferroni adjusted p-values are quoted, and 

for each ANOVA, assumptions of sphericity were confirmed. If the assumption of sphericity 

was violated, degrees of freedom were adjusted with the Greenhouse-Geisser correction. 

Partial eta-square and mean differences were calculated as measures of effect size. In order to 

evaluate the relationship of the predicted lane deviation to the predicted glance metrics, we 
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analyzed how total, mean and max glance duration per screen could predict average lane 

deviation per screen of the model simulations with linear regression models (12 x 6 x 10 

screens, N=720). 

For testing the goodness-of-fit between model and data, two measures, RMSSD (Root 

Mean Squared Scaled Deviation) and r2, are used. RMSSD was used to evaluate deviation 

from exact location whereas r2 is a measure of fit to relative trend. High values for r2 are 

important for reliably pointing out the better user interface alternatives, whereas RMSSD 

should be small if predictions of passing acceptance criteria are to be made. 

3.2 Results and Goodness-of-Fit 

As shown in Figure 4 for a total of 10 screens, study participants showed a significant 

increasing effect of the number of menu items in the number of in-car glances, F(2,22) = 

7.880, p=.003, partial η2 = .417. The mean difference between 6 item and 12 item tasks was 

10.25 glances, p=.033, and between 9 and 12 item tasks 6.88 glances, p=.012. As expected, 

the model predicted similar trends. As the number of items per screen increased from 6 to 9 

to 12, so did the total number of items to be inspected increase from 60 to 90 to 120 for the 

total of 10 screens. Both the human and model results reflect the fact that more items simply 

take more time to encode and process. There was also a significant interaction between the 

menu type and the number of menu items, F(2,22) = 3.910,  p=.035, partial η2 = .262. For the 

6-item tasks, the number of glances was slightly lower for Grid than for List, whereas for the 

9- and 12-item tasks, the number of glances was lower for List than for Grid. The model did 

not show this interaction effect but predicted an overall lower number of glances for List 

compared to Grid. No main effect of menu was found. 
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Figure 4. Number of in-car glances, scroll buttons right (10 screens, N=12), r2=0.672, 

RMSSD=3.261. Bars represent 95% confidence intervals. 

The total in-car glance durations in Figure 5 tell a similar story. There was a significant effect 

of the number of menu items on total glance duration, F(2,22) = 12.765, p<.001, partial η2 = 

.537. The mean difference from 6 item tasks to 12 item tasks was 20.74 seconds, p=.006, and 

from 9 item to 12 item tasks it was 13.87 seconds, p=.001. The model predicted the relative 

trend and the deviation from the exact location of the data was small, although the model 

suggested somewhat lower total glance durations for the List menu structure than for the 

Grid. In the experiment, there were no significant differences between menus or significant 

interaction effects. Regarding the NHTSA (2013) criteria, none of the tasks would pass the 

criterion of total glance time being at most 12 seconds, as predicted. 
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Figure 5. Total in-car glance duration (s), scroll buttons right (10 screens, N=12), r2=0.843, 

RMSSD=1.615. Bars represent 95% confidence intervals. NHTSA (2013) verification 

threshold illustrated at 12.0 seconds. 

The mean in-car glance durations (Figure 6) were close to the predictions, although the 

relative trends were somewhat off. The number of menu items had a significant effect on the 

mean glance durations, F(2,22) = 7.108, p=.004, partial η2 = .393. The mean difference from 

6 item to 12 item tasks was small (160 ms) but statistically significant, p=.005. No main 

effect of menu was found, but there was a significant interaction between menu and items, 

F(2,22) = 5.187,  p=.014, partial η2 = .320. For 6 item tasks, the mean glance durations were 

slightly shorter for List than for Grid, whereas for 9 and 12 item tasks, the mean durations 

were slightly longer for List. This could suggest the participants did take advantage of the 

closer distances between the titles in List-9 and List-12 and encoded more titles per glance 

than in Grid. In general, considering what the visual demands of the search task were 

compared to what the in-car tasks were like in the 1990s, the mean glance times were still 

near 1.6 seconds, in line with the upper limit of Wierwille’s visual sampling model (1993). 

As predicted, all the tasks would pass the NHTSA (2013) criterion of mean in-car glance 

durations being at most 2.0 seconds for 85% of the participants. 
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Figure 6. Mean in-car glance duration (s), scroll buttons right (10 screens, N=12), r2=0.396, 

RMSSD=1.705. Bars represent 95% confidence intervals. NHTSA (2013) verification 

threshold illustrated at 2.0 seconds. 

Whereas the measures above speak for the average visual demands of the in-car tasks, the 

maximum in-car glance durations and the number of very long in-car glances—representing 

lapses of control in visual sampling—provide safety-critical information and can also be 

more challenging to predict. Although the observed maximum in-car glance durations shown 

in Figure 7 were shorter than predicted, there was some similarity in the relative trend. As 

predicted, the number of menu items had a significant effect on maximum glance durations, 

F(1.333,14.658) = 11.411, p=.002, partial η2 = .509. The mean difference between 6 item and 

12 item tasks was .54 seconds, p<.001. Against predictions, no main effect of menu was 

found. 
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Figure 7. Maximum in-car glance duration (s), scroll buttons right (10 screens, N=12), 

r2=0.766, RMSSD=4.180. Bars represent 95% confidence intervals. 

For the safety-critical measure of number of glances over 2.0 seconds, the observed effect of 

the number of menu items was somewhat stronger than predicted for the List-conditions, in 

particular (r2=0.725, RMSSD=1.425), F(2,22) = 9.604, p=.001, partial η2 = .466. This effect 

was particularly strong for the List condition. The mean difference between 6 and 12 item 

tasks was 3.79 glances, p=.008, and between 9 and 12 item tasks 3.29 glances, p<.001. SEMs 

were large for this measure, which could explain partly the absence of the expected effect of 

menu structure. However, there was a significant interaction between menu and items on the 

percentage of over-2.0-second glances (Figure 8), F(2,22) = 4.138, p=.030, partial η2 = .273. 

For List-6 the percentage was significantly lower than for Grid-6 whereas for the 9 and 12 

item tasks the Grids had somewhat lower percentages. Regarding the NHTSA (2013) 

acceptance criterion, the model predicted pass for List-6 (percentage of over-2.0-second 

glances max 15% for 85% of participants) whereas the data suggests all tasks would fail. 
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Figure 8. Percentage of over-2.0-second in-car glances, scroll buttons right (10 screens, 

N=12), r2=0.316, RMSSD=2.005. Bars represent 95% confidence intervals. NHTSA (2013) 

verification threshold illustrated at 15.0 percent. 

A closer analysis on gaze revisits per item (for 72 screens in total) revealed that for the List 

conditions, there were no revisits at all, and for the Grid conditions there were a few revisits 

for 4 participants on 5 screens (G6: 1, G9: 3, G12: 1). In total, only 7% of the searches 

included revisits, thus supporting (albeit not decisively) the assumptions underlying the 

model and the notion that, in general, a driver’s visual search is efficient in avoiding revisits 

on items. In addition, the assumption that drivers begin search at any item and move their 

eyes to the nearest unattended item gained support by visually inspecting the gaze paths on 

these screens: systematic top-down or similar strategies seemed to be rare, and saccades 

tended to stay minimal in length and tended to avoid revisiting attended items. 

The relationship of the predicted lane deviation of the vehicle to the predicted glance 

metrics was analyzed with linear regression models with a single screen as a sample (12 x 6 x 

10 screens, N=720). Only the maximum in-car glance duration was able to predict average 

lane deviation (F(268.338, p<.001, β = .522, r2 = .272, t(718) = 16.381, p<.001, 95% CIs 
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[.027, .035]). Total or mean glance duration did not correlate with lane deviation in a way 

that these could be used to predict lane deviation in the simulation. The finding gives support 

for the assumed relationship between individual glance durations and the driving stability in 

our model. 

3.3 Discussion 

In Experiment 1, the model was able to predict the observed increases in the number of in-car 

glances as well as in the total in-car glance durations, as the number of items to be inspected 

increased from 60 to 90 to 120 (with 6 to 9 to 12 items per screen across 10 screens). The 

model, as the embodiment of the search-while-driving strategy proposed earlier, did well at 

predicting the qualitative glance-behavior trends in the empirical data, although the 

quantitative predictions were sometimes less accurate. The model was able to predict the 

lower number of glances for the List-9 and List-12 tasks compared to corresponding Grid 

tasks. The model suggests the advantage is due to the shrinking distance between text labels 

in the List condition, as opposed to the distances in Grid condition, which remain farther 

apart.  

In general, the model was able to predict that as the task durations increase (as seen in 

the total number and duration of in-car glances), the mean and maximum glance durations, as 

well as the percentage of over-2-second glances, tend to increase as well. The model was also 

able to predict correctly an advantage for the List structure over Grid on the individual glance 

lengths as the number of items is at 6. However, the model generally overpredicted the 

maximum in-car glance durations. The predicted relative trend for the increase of maximum 

glance durations with more items was generally present in the data, but the expected small 

difference between the menu structures was not observed. In addition, the observed increase 

of glances over 2.0 seconds, as the number of items increase, was much larger than predicted 

for Lists in particular. 
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The detailed gaze data revealing that only 7% of screens included a few revisits gave 

support for the assumption of stable markers of visually attended items. The analyzed data 

still does not reveal if the marker span is limited in duration—that is, if the survival of the 

markers is dependent on the duration of the interruption. However, the findings give support 

for the perseverance of the inhibition of return mechanism for facilitating visual search on an 

in-car display when interrupted by the visual demands of the driving task. 

In the model simulations, only the maximum in-car glance duration predicted 

vehicle’s lane deviation whereas total or mean glance duration did not. This finding suggests 

that in particular the long glances can lead to instability in driving and validates our model 

behavior in that also in our simulation a long off road glance affects the stability of the 

vehicle. However, the relationship in real traffic between lane deviation and crash risk is 

unknown, whereas there is a wealth of evidence of the more direct association between crash 

risk and long off road glances (Liang et al., 2012). It seems that in general, drivers do not try 

to optimize their lane position while multitasking and some lateral deviation is allowed even 

if the driving is prioritized (Janssen and Brumby, 2010). Keeping the own lane seems to be a 

sufficient and more critical goal than keeping an optimal lane position at all times, which is 

why we focus on glance metrics here. 

4 EXPERIMENT 2: SCROLL BUTTON POSITION 

When comparing the findings of Experiment 1 to those of Kujala and Saariluoma (2011), on 

the effects of menu structure on maximum in-car glance durations and overlong glances, the 

effects in the present study are much weaker. One possible explanation is that, in Experiment 

1, the lapses of control that induce long glances seemed to arise from the driver’s choice to 

complete a subtask before switching task (Bailey and Iqbal, 2008), where a subtask boundary 

would be reflected in the pressing of the down button to indicate completion of one screen of 

items. This mechanism is visible in the manually scored videos: the longest glances were 
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often terminated when the driver pressed the scroll button after finishing searching a screen. 

The scroll buttons were located in Experiment 1 on the right side of the display (Figure 3). 

This position could have undermined the advantage of List menu structure compared to Grid 

because of the large distance of the text labels in List to the touch screen button due to 

encoding demands no matter to what title the search ends at the screen. Besides increasing 

the number of individual long in-car glances, this scroll button position could have also 

decreased the total number of the glances if the participants decided to prolong a glance 

instead of investing a dedicated in-car glance for locating and pushing the button. It seems 

these types of events were more frequent in the empirical data than our model was able to 

predict. 

To address these questions raised in the first experiment, we conducted a second 

experiment to elucidate whether the earlier observed difference between the menu structures 

(Kujala and Saariluoma, 2011) would be due to the distance of the interaction elements (text 

labels and the scroll buttons) on the display. After Kujala and Saariluoma (2011) an 

advantage for List over Grid was expected in the in-car glance durations when the scroll 

buttons are positioned closer to the items in the List. This modification in turn would help to 

further validate the model’s account with respect to small changes in the secondary task.  

4.1 Research Method 

The Experiment 2 repeated the design of Experiment 1 but with one critical difference: the 

display’s two scroll buttons (up and down) were positioned on the left side of the screen (see 

Figure 3). This subtle change has differing performance implications for the two conditions: 

for List, the decreased distance to these elements should decrease total encoding and task 

time, whereas for Grid, the position of the scroll buttons should not make a significant 

difference. With this change in the experimental design, we wanted to validate that the model 

would still work even if the elements of the particular in-car task were slightly modified, and 
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a relative advantage for List could be expected in the empirical data. The model with its 

parameters used for the predictions of Experiment 2 was exactly the same as for Experiment 

1. 

The driver sample was different than in Experiment 1 but represented the same 

demographics. In the statistical analyses of the empirical data, the sample size was 11 

because of missing data on G12-tasks for one participant due to erroneous selections of items 

before the fifth screens in two tasks. Detailed eye movements were not recorded or analyzed 

in Experiment 2 and the analyses focused on the glance metrics. 

4.2 Results and Goodness-of-Fit 

For this experiment, there was a significant effect of menu structure on the observed number 

of in-car glances as expected (Figure 9), F(1,10) = 6.657, p=.027, partial η2 = .400. The mean 

difference between Grid and List was 4.54 glances, p=.027. Again, as expected, the number 

of menu items had also a significant increasing effect on the number of glances, F(2,20) = 

32.835, p< 001, partial η2 = .767. The mean difference between 6 and 12 item tasks was 8.95, 

p<.001; between 9 and 12 item tasks, 4.00, p=.007; and between 6 and 9 item tasks, 4.95, 

p=.002. The fit on the relative trend is fair but the deviation from the exact location is still 

large. 
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Figure 9. Number of in-car glances, scroll buttons left (10 screens, N=12), r2=0.972, 

RMSSD=5.119. Bars represent 95% confidence intervals. 

As expected, there was also a significant effect of menu structure on the total in-car glance 

durations (Figure 10), F(1,10) = 6.961, p=.025, partial η2 = .410. The mean difference from 

Grid to List was 6.53 seconds, p=.025. For the effect of number of menu items on the total 

glance durations (F(2,20) = 69.751, p<.001, partial η2 = .875), the effect size between 6 and 

12 item tasks was 17.30 seconds, p<.001; between 9 and 12 item tasks, 8.42 seconds, p<.001; 

and between 6 and 9 item tasks, 8.88 seconds, p<.001. Again, none of the tasks would pass 

the NHTSA (2013) criterion on maximum total glance time of 12 seconds, as predicted. 
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Figure 10. Total in-car glance duration (s), scroll buttons left (10 screens, N=12), r2=0.950, 

RMSSD=1.108. Bars represent 95% confidence intervals. NHTSA (2013) verification 

threshold illustrated at 12.0 seconds. 

Again, the mean in-car glance durations were close to the 1.6-second upper limit of 

Wierwille’s (1993) model (Figure 11). The number of menu items had again a significant 

effect on mean glance durations, F(2,20) = 10.317, p=.001, partial η2 = .508, with the small 

mean difference between 6 and 12 item tasks of .197 seconds, p=.003. The positioning of the 

scroll buttons on the left side of the menu seemed to bring down the mean glance durations as 

compared to Experiment 1 (see Figure 6). The model was able to predict the increase in mean 

glance duration by the number of items but the magnitudes were off, in particular for Grid. 

This was probably due to the overestimated number of glances. In addition, List did not have 

the predicted relative advantage over Grid in the data, there was no significant main effect of 

menu or a significant interaction effect. As predicted, all the tasks would pass easily the 

NHTSA (2013) limit of 2.0 seconds for mean glance duration. 
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Figure 11. Mean in-car glance duration (s), scroll buttons left (10 screens, N=12), r2=0.659, 

RMSSD=4.038. Bars represent 95% confidence intervals. NHTSA (2013) verification 

threshold illustrated at 2.0 seconds. 

The left-side position of the scroll buttons seemed to slightly lower also the observed 

maximum in-car glance durations (compare Figures 7 and 12). Again, the predicted 

maximum durations were significantly higher and the predicted effect of menu structure did 

not become visible in the data. The effect of the number of menu items was this time smaller 

but still significant, F(2,20) = 4.295, p=.028, partial η2 = .300. The significant mean 

difference between 6 and 12 item tasks was .32 seconds, p=.026. 
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Figure 12. Maximum in-car glance duration (s), scroll buttons left (10 screens, N=12), 

r2=0.888, RMSSD=4.799. Bars represent 95% confidence intervals. 

A significant effect of the number of menu items was observed on the number of over-2.0-

second in-car glances, F(2,20) = 17.330, p<.001, partial η2 = .634. The significant mean 

difference between 6 and 12 item tasks was 3.73 glances, p<.001; and between 6 and 9 item 

tasks, 1.86 glances, p=.026. There was no significant main effect of menu but a significant 

interaction between menu and items, F(2,20) = 6.997, p=.005, partial η2 = .412. The 

interaction seems to suggest that Grid is worse for 6 item displays, whereas List is worse for 

12 item displays.  
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Figure 13. Percentage of over-2.0-second in-car glances, scroll buttons left (10 screens, 

N=12), r2=0.421, RMSSD=1.037. Bars represent 95% confidence intervals. NHTSA (2013) 

verification threshold illustrated at 15.0 percent. 

The number of menu items had also a significant effect on the percentage of glances over 2 

seconds, F(2,20) = 6.473, p=.007, partial η2 = .393 (Figure 13). The mean difference from 6 

to 9 item tasks was 7.88 percentage points, p=.037, whereas the mean difference between 6 

and 12 item tasks was 13.89 percentage points, p=.015. There was no significant main effect 

of menu but a similar significant interaction between menu and items as with the number of 

over-2.0-second glances, F(2,20) = 5.369, p=.014, partial η2 = .349. The direction of the 

relative trend on the number and percentages over 2.0 second glances was predicted fairly by 

the model although the magnitudes are again somewhat off and the model predicted lower 

percentages for List-12 and higher percentages for Grid-12 than what was observed. In this 

case, the List-6 task would pass the NHTSA (2013) criterion on the percentage of over-2.0-

second glances (max 15% for 85% of the participants), as predicted.  



  33 

4.3 Discussion 

Experiment 2 repeated the findings of Experiment 1 but with better fit on the relative trends. 

Besides the more obvious effects of the number of items to encode, this time the List menu 

structure gained more advantage compared to Grid in the predicted as well as observed 

glance numbers and durations. This advantage derived from the placement of the scroll 

buttons to the left side of the screen and thus, shorter encoding times, as expected. However, 

unexpectedly also the Grid got advantage from this button placement. This could be due to 

the reduced distance between the buttons and the driving environment, as the focus typically 

shifted back to driving after a button press. 

There are still critical differences between the predictions of the model and the 

observations, in particular regarding the safety-critical maximum in-car glance durations and 

the numbers of long, over-2-second glances. The fit on the relative trend for the maximum 

glance durations is fair but the predicted maximum glance durations are much higher than 

observed, and the observed differences between the menu structures did not become 

significant with this sample size. These observed differences were also much smaller than the 

predicted. What is important to note, the data tells that the Grid menu structure is worse than 

List on the long glances only for the 6-item displays, but on displays with 9 or 12 items, the 

difference becomes insignificant. The model predicts advantage also for the List-9 and List-

12 layouts compared to Grid. It could be that the denser layout of the titles in List-9 and List-

12 encourages encoding more items per glance than in Grid and thus, undermining the 

positive effect of shorter encoding times. 

Also for the over-2-second long safety-critical glances, the observed interaction effect 

seems to suggest that Grid is worse for 6 item displays, whereas List is worse for 12 item 

displays. However, the large SEMs could suggest that 9 or 12 items per screen (i.e., 90/120 

item tasks) are too much for these types of in-car search tasks, regardless of the menu 
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structure. What is important, both the data and the model suggest consistently that the List 

menu structure with 6 items, with scroll buttons near the items, may be advantageous with 

respect to drivers’ visual sampling performance. 

5 GENERAL DISCUSSION 

In this paper, we investigated how drivers perform visual sampling while driving, focusing on 

various effects of grid versus list layouts and the number of menu items on an in-car touch 

display. The central question explored is how drivers share visual resources temporally 

between the search and driving tasks. Both the empirical study and the general visual 

sampling strategy proposed in this paper offer explanations for the empirical findings in 

several ways. 

5.1  General Findings and Implications 

The empirical data as well as the model seem to suggest that increases in in-car task 

duration may not only increase the total number and duration of the in-car glances, but may 

also increase the individual glance lengths—a critical result given the potential hazards of 

long in-car glances while driving. This effect has been observed in previous studies (e.g., Lee 

et al., 2012; Kujala and Saariluoma, 2011) but a theoretical explanation for the effect has 

been lacking. Our proposed strategy and model seem to offer a plausible explanation for this 

phenomenon, as described below. 

The findings indicate that as the number of on-screen items increases, the task time 

increases proportionally, with higher total in-car glance duration and larger number of in-car 

glances. The higher total glance duration is a basic set size effect and this is what our model 

predicts. The number of glances increases in our model because of the time limit for a single 

in-car glance. Drivers seem to interleave search and driving efficiently in general, in the 

sense that mean in-car glance durations are kept well below the threshold of 2.0 seconds that 



  35 

is linked to increased crash risk in real traffic (Liang et al., 2012). A plausible explanation is 

that they succeed in this by using their perception of time to determine when their searching 

has reached a temporal “limit” at which time they must switch back to driving.  

Due to the upward adjustment of the time limit after each in-car glance when the 

driving stays stable, the longer the task (i.e., the more in-car glances), the higher and riskier 

the time limit is able to grow during an in-car search task (more upward adjustments can be 

made). Because of the inbuilt delay and noise in the human time perception mechanism 

(Taatgen et al., 2007), larger time limits translate to a greater chance of overlong glances. The 

dynamic adjustment of the time limit following the model of Wierwille (1993) together with 

the inbuilt delay and noise in the human time perception mechanism might also explain some 

of the variance in the observed in-car glance durations in studies of in-car multitasking in 

highly controlled driving scenarios (e.g., Horrey and Wickens, 2007). 

The List structure has an advantage regarding total glance time and the total number 

of glances over Grid, in particular when the scroll buttons are close to the list of items and the 

number of items increase. Our model is able to predict this and the effect can be explained by 

the titles being closer to each other in List, reducing encoding time from item to the next in 

the assumed nearest uninspected item next search strategy. The empirical findings give 

support for one of these key assumptions of the search strategy; when performing search in 

unordered menus while driving, drivers seem to be able to inhibit return to already visited 

items. Only a few of the randomly selected screens included gaze revisits on visited items. 

The data as well as our model suggest the List-6 alternative is the least distracting in 

terms of the safety-critical long in-car glances in any case. The List-6-task with 60 search 

items in total is possible to be conducted in such a small number of glances (in particular 

when the scroll buttons are placed left near the titles and the driving view) that the time limit 

won’t grow as high as with the other menu structures. Our model suggests the advantage of 
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List-6 over Grid-6 with the same total number of items and with scroll buttons close to the 

items is caused by the decreased distance between the search items in the list-style menu 

compared to the grid-style menu, and thus, lower total task durations and total number of 

glances. 

The model and the data seem to indicate the placement of the scroll buttons to the 

left-hand side of the display decreases the mean and maximum glance durations, as well as 

the number and percentages of over-2.0-second in-car glances compared to the right-hand 

side (for both List and Grid). Our model is able to predict this in particular for the long 

glances towards the List menus. The advantage of placing the scroll buttons to the left in the 

List condition arises from their proximity to the titles for reducing encoding time for screen 

change. In addition, for both menus, left-side buttons decrease the length of the shift of visual 

attention from the display to the driving scene after a screen change. It might be noted, 

however, that this effect may be mitigated or eliminated with practice if the touch screen 

scroll buttons were replaced with physical buttons, freeing visual resources (e.g., Burnett and 

Porter, 2001). 

Regarding the NHTSA (2013) criteria for in-vehicle electronic devices, the List-6 

with scroll buttons next to the list items was the only task in our studies that would have 

passed the maximum 15% rate of glances over 2 seconds. The model was able to correctly 

predict this result. None of the tasks would have passed the criterion for total glance time 

(maximum 12.0 s) and all tasks would have passed easily the criterion for mean glance 

duration (maximum 2.0 s). The outcomes on total glance times are not as demanding to 

predict as the first one because the total glance times can be estimated with basic tools that 

utilize knowledge of human visual processing, such as GOMS (Card et al., 1983) and SAE-

J2365 (2002). The pass of all in-car tasks on the mean glance duration criterion is not either 

hard to predict because according to Wierwille’s (1993) visual sampling model, drivers try to 
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keep the mean in-car glance durations below 1.6 seconds in all traffic scenarios. More recent 

studies in simulators as well as in the field (as well as our current experiments) have 

indicated that for some reason the mean in-car glance durations are still kept between 0.5 to 

1.6 seconds regardless of the type of the in-car task. For example, the naturalistic driving 

study with a sample of 100 drivers by Klauer et al. (2006) indicated similar in-car glance 

duration distributions. 

The empirical results illustrate that the visual design of in-car displays can have a 

significant impact on the potential for visual distraction. Task length and the spatial 

separation between interaction elements, especially those encoded sequentially, arise as two 

of the critical factors for the probability of in-car glances to exceed the safe glance limits in 

this context. The findings suggest that visual designers should try to minimize task duration 

as well as the durations of all visual encoding steps required for the in-car task. This means, 

for example, that the number of available menu items should be limited and that the distance 

between interaction elements encoded one after another in a task sequence should be 

minimized to a level where clutter is still avoided. Given a prolonged search task, an 

extended estimate of a safe in-car glance duration, inaccuracy in driver’s time perception 

ability, and a longer individual encoding step near the end of a glance, milliseconds can truly 

matter in this context (Gray and Boehm-Davis, 2000). The idea of minimizing visual 

encoding steps relates to the idea of Janssen et al. (2012) of providing shortest possible 

“action sets” and thus, natural breakpoints to encourage task switching and reduce distraction 

by secondary tasks. In short, shorter visual encoding steps should give more room for 

breakpoints. 

5.2 Limitations and Further Research 

Our current understanding of drivers’ visual sampling strategies in the model has several 

limitations. It overestimates somewhat the number of in-car glances per task in general. A 
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plausible explanation is that the human drivers preferred to extend a glance to press a scroll 

button as a natural breakpoint for a task switch even if the time limit was close or passed 

(Janssen et al., 2012), whereas our model tended to move attention back to driving 

immediately after exceeding the time limit. The underestimated number of overlong glances 

for List menus supports this explanation in particular when the scroll buttons were farther 

away from the items (Experiment 1). It is also possible that the human drivers were able to 

encode more titles per fixation than the model, giving similar fixation durations per title and 

thus similar total glance times, but with the model splitting the encoding steps into greater 

number of fixations and thus greater number of glances. Ojanpää et al. (2002) have shown 

that, for vertical lists in particular, the word identification span covered with a single fixation 

could be even 4-5 words, but this increases fixation (i.e., encoding) time compared to a single 

word.  

The model predicted somewhat greater relative disadvantage for the Grid than what 

was observed. One plausible explanation is the local density effect (Halverson & Hornof, 

2004), which suggests that people spend less time per word searching sparser layouts as 

opposed to denser layouts. It could also be that the denser layout of the titles in List-9 and 

List-12 encouraged encoding more items per glance than in Grid. This is a possible strategic 

choice that is not built in our current model. Besides the higher number of items to encode, 

there may be additional set-size effects related to the difficulty of discriminating and/or 

encoding the stimuli (see, e.g., Palmer et al., 2000), which are not currently represented in the 

model.  

Another limitation relates to having in-car search tasks of varying complexity. Some 

tasks may result in cognitive capture (Blanco et al., 2006) or might have other properties than 

the task used here, such as reading news or Facebook posts, or tasks with multiple decision-

making elements. Other search tasks might evoke the central menu performance phenomena 
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as well as directed search strategies (see Bailly et al., 2014), whereas we have only 

considered exhaustive visual search with target absent and in unordered menus. The items 

changed for each screen per task, and thus, no practice effects were incorporated in the 

model. The timing and control of eye movements has been found highly adaptive to varying 

tasks and demands (Sims et al., 2011), and the learning effects associated with different types 

of ordered and static menus should be modeled. Here, our main focus and contribution was 

on the model of drivers’ gaze allocation and timing strategy between the primary task of 

driving and a secondary in-car task. We expect that this strategy should be generalizable 

across in-car tasks but certainly this generalizability needs to be better understood. The 

strategy and the cognitive model based on it can be easily extended to evaluate other types of 

in-car task layouts, but each in-car task requires a specific task model. 

Yet another limitation is the simplicity of the driving scenario: Although we have 

used the standard and fairly simple NHTSA (2013) testing scenario which can help elucidate 

specific behaviors, it remains to be seen how these strategies would generalize to more 

complex and more realistic driving scenarios. However, increase in driving task demands, 

such as using a curved road, should affect the stability of the vehicle, which should reduce 

the maximum time limit available for an in-car glance in our model. This behavior would 

correspond to the visual sampling model of Wierwille (1993), suggesting that drivers reduce 

individual in-car glance durations according to the demands of the driving task. 

Future studies of visual sampling while driving will also need to take into account 

drivers’ individual differences and individual task and time-sharing strategies that can be 

seen in the eye-tracker’s video data. Janssen and Brumby (2010) have shown that people 

sometimes strategically control the allocation of attention in multitasking to meet specific 

performance criteria. For our purposes, for example, one might imagine strategic tradeoffs 

between stable driving and finishing a screen by a slightly longer in-car glance than the 
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current time limit would allow, as discussed above. The stability parameter in the model 

could be adjusted for accommodating individual differences in these priorities as in Distract-

R (Salvucci, 2009). The model seems to overestimate the maximum glance durations in 

particular for Grid and for the higher number layouts (9 and 12). This could suggest there is 

some additional chunking strategy in work, limiting the maximum time limit for a single in-

car glance (Janssen and Brumby, 2010).  

Besides the cautious strategy of resetting the glance time limit always back to the 

lower limit of 500 ms by Wierwille (1993) after each instance of instable driving, other 

plausible strategy would be to retrieve the latest successful time limit and reset there. As in 

Salvucci et al. (2006), this would simulate behavior of the driver trying to determine on the 

basis of accumulating experience the optimal (the longest safe) length of in-car glance 

duration depending on the visual demands of the particular driving scenario. More stable 

factors, such as driving experience (Wikman et al., 1998) and the tolerance of uncertainty 

(Furnham & Marks, 2013), may also provide an avenue for understanding how individual 

drivers determine their particular point in the space of tradeoffs.  

Uncertainty, event expectancies, and internal task state estimates (Johnson et al., 

2014; Wickens, et al., 2001; Senders et al., 1967), saliency, as well as the expected effort and 

value (reward) of gathering visual information from a particular source (Sullivan et al., 2012; 

Wickens, et al., 2001) can certainly play a role in driver multitasking behavior and may 

provide alternative venues or improve the current model for explaining the empirical 

findings. The current model is based on the theory of threaded cognition in multitasking by 

Salvucci and Taatgen (2008) and does not require modeling of uncertainty or internal task 

state estimates (for now at least) or an explicit central executive process in multitasking 

situations; instead, a straightforward “threading” mechanism suffices to interleave the 

resource processing between tasks. 
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Beyond developing a better understanding of how drivers perform in-car visual 

search, we would also like to incorporate this knowledge in computational tools that help to 

quantify and use this knowledge. Specifically, design tools such as Distract-R (Salvucci, 

2009) are currently capable of predicting drivers' performance on defined tasks with a 

particular in-car user interface; further knowledge of visual in-car sampling can greatly 

augment the functionality of such systems. The predictions of these tools would ideally be 

used in conjunction with standard experimentation as well as broader guidelines (e.g., 

NHTSA, 2013). Our hope is that these systems ultimately help to pinpoint the distracting 

visual features of in-car display designs, and thus, in guiding the visual designer in creating 

better and safer user interfaces for multitasking behind the wheel. 
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Appendix 1. Example of search targets and the orders of tasks (for participant P02). 

# of items  Search target 
Target screen/position of 
the target on the screen 

 
GRID 

 

12 

Bad Clues 2 / 8. 

Deafening Feelings 6 / 10. 

Hospitality To Make You Cry 7 / 8. 

6 

Silver Restrictions 4 / 2. 

Promises Are Just A Start 12 / 4. 

Ruin Is The Best 14 / 2. 

9 

Accusation Of The Century 3 / 2. 

Imitations Are For Girls 8 / 7. 

Beautiful Nature 9 / 8. 

LIST

12 

Modern Distractions 2 / 8. 

Summer Dreams 6 / 10. 

Frowns From Hell 7 / 8. 

6 

Feelings For A Dollar 4 / 2. 

Giving Em Scandals 12 / 4. 

Ideas Flashing Before Me 14 / 2. 

9 

Karma Moves 3 / 2. 

Giving Em Scandals 8 / 7. 

A Flash Of Wisdom 9 / 8. 

 


