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Abstract

This paper describes the use of Reinforcement Learning in Immersive Virtual

Reality to make a person move to a specific location in a virtual environment.

Reinforcement Learning is a sub-area in Machine Learning in which an active

entity called agent interacts with its environment and learns how to act in

order to achieve a pre-determined goal. The Reinforcement Learning had no

prior model of behaviour and the participants no prior knowledge that their

task was to move to and stay in a specific place. The participants were placed

in a virtual environment where they had to avoid collisions with virtual pro-

jectiles. Following each projectile the agent analysed the movement made by

the participant to determine paths of future projectiles in order to increase

the chance of driving participants to the goal position and make them stay

there as long as possible. The experiment was carried out with 30 partici-

pants, 10 were guided towards the leftmost part of the environment, 10 to the

rightmost area, and 10 were used as control group where the projectiles were

shot randomly throughout the game. Our results show that people tended
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to stay close to the target area in both the Left and Right conditions, but

not in the Random condition.
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1. Introduction

Normally Reinforcement Learning (RL) is used in computer graphics and

virtual reality to control the behaviour of characters, for example, so that

they walk, run, jump, avoid obstacles, and appear to do this with the most

humanlike behaviour possible (Lee and Lee, 2006; Treuille et al., 2007). The

aim in this study, however, was to use RL to influence the behaviour of people

in an Immersive Virtual Environment (IVE) where the RL agent would learn

to guide them to carry out a task of which they were unaware. This technique

relies on the participants exhibiting Presence, that is, responding realistically

to the virtual situation and events (Sanchez-Vives and Slater, 2005). In

earlier work, Kastanis and Slater (2012) showed a novel way to use RL to

elicit a required behaviour from people by taking advantage of Proxemics

(Hall, 1966). In that study a virtual character could move closer to, away

from or wave to the participant to come closer. The goal of the RL was to

get the person to go backwards compared to their starting point to a specific

position. It took no more than 7 minutes for the RL to learn to make people

move to the target location. However, this was a one-dimensional problem.

In our study, we allowed people free movement in a two dimensional area

using natural movements of the body, such as walking or running.

Our design executed in an IVE (a Cave), consisted of a game-type scenario

where the participant needed to move around in order to avoid being hit by
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virtual projectiles shot from a virtual spacecraft, controlled by the computer.

At the same time, and without the participant’s knowledge, the RL agent

analysed the movements of the person following each projectile. Its goal was

to make the person move to a target location and make them stay there as

long as possible. Our hypothesis was that, with no prior knowledge for each

participant and given enough time to try a reasonable number of actions,

the RL agent would learn to make people move to a specific location in the

virtual environment and stay there the longest time possible. On the other

hand, an agent shooting randomly during all the game would not achieve the

same results.

The contribution of this study is to show with a simple experiment, the

potential applications of using RL to influence in people’s behaviour indi-

vidually and change their responses without prior knowledge about how a

person behaves. This study uses a virtual environment as an example, but

the applications can be easily extended to other human-computer interaction

fields such as websites, for example studying the users’ behaviour and their

interests to increase the number of web pages visited.

The remainder of this section is dedicated to a description of RL and

IVR, and gives some examples of relevant studies in these two areas. In the

Methods section, we describe the design of the study and its procedures.

The Results section contains the statistical analysis carried out with the

data collected. The Discussion section summarises the findings discovered

previously, expands on the research topic, and suggests ideas to be considered

in the future.
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1.1. Reinforcement Learning

Reinforcement Learning (RL) is a method of Machine Learning that tries

to solve problems designed as a Markov Decision Process. The typical setup

involves an active entity called agent that interacts with its environment.

Given a current state, the agent takes an action and observes the changes

in the environment. During this process, the agent might get a positive or

negative reward in the form of a numerical value. In RL, the agent needs to

develop a strategy to maximise its long term reward (Kaelbling et al., 1996;

Sutton and Barto, 1998; Wiering and van Otterlo, 2012), usually within a

limited amount of time. As the agent tries different actions, it builds up a

statistical model that determines the best action to take for each possible

state individually that will help the agent to achieve it.

RL has some substantial differences with Supervised Learning. Super-

vised Learning algorithms have two sequential stages, learning and exploit-

ing the knowledge. RL problem do not necessarily have a learning stage in

the beginning, the agent carries out both tasks concurrently. The experience

collected in previous interactions with the environment can be used as knowl-

edge as soon as it is obtained. Supervised Learning also relies on an external

entity that knows a priori the right solution and teaches the agent in the

learning stage. In a RL problem, this information is often not available and

the agent is able to learn without any prior experience and without knowing

anything about the goal. Moreover, if there is a change in the environment, a

RL agent may be able to adapt its strategy. The agent might be required to

carry out the same task periodically. Every time it performs the task, it uses

the experience obtained in previous episodes. But it might need to perform
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the task only once. In this case, the strategy needs to be updated on the fly,

as soon as results are obtained.

The design of the RL problem is the critical step for a RL setup to be

successful. While we could say that a RL agent will find the optimal solution

if there is no time limit, it is sometimes necessary that the optimal solution is

found within a reasonable number of trials. A greater number of actions and

state variables can increase the accuracy of the model of the environment,

but it also entails an exponential growth of state-action combinations to try.

On the other hand, using a simplified version can make the design inaccurate.

The idea is to find a good balance between available time and complexity of

combinations.

In a deterministic environment, the reward for each action-state pair re-

mains constant. The reward obtained can also depend on a probability func-

tion, which allows the agent to try various combinations at different times to

adjust the policy. Furthermore, the environment can be dynamic and change

over the time in a way that can not be predicted. In this case, the agent

has to find a good trade-off between exploiting the knowledge expecting to

obtain a high value immediate reward or explore and observe if there was

any change.

The first successful applications of RL were used to train a machine to

learn to play board games. Board games provide a discrete and finite deter-

ministic environment ideal for simple RL problems. They are also repeatable,

which means that the agent can play as many games as needed and accu-

mulate the knowledge obtained based on the outcome of each game. After

a computer successfully learned to play checkers (Samuel, 1959, 1967), other
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board games followed afterwards, such as Chess, Go and Othello.

More recently, it has been applied to computer games in more complex

setups, for example, affording a computer to learn how to improve its skills

playing a role-playing game (Spronck et al., 2003) or commanding an entire

army with the use of various agents concurrently (Marthi et al., 2005) or

even an agent learning to play different games (Mnih et al., 2015). Robotics

is the other major field where RL has been applied, where it has been used

to make mechanical devices learn to perform physical tasks (Kober et al.,

2012; Kormushev et al., 2013). While the problem of dimensionality is also

present in these fields due to large number of degrees of freedom, Robotics has

the added difficulty of the accuracy of the sensors and actuators employed.

Other applications of RL are in systems control. One example is computer

animation, where a RL agent can learn to find the path to a target position

(Vigorito, 2007), in environments with obstacles (Treuille et al., 2007; Kolter

and Ng, 2009) which can be useful for autonomous entities such as virtual

characters or unmanned aerial vehicles (Ng et al., 2004; Hoffmann et al.,

2005).

1.2. Immersive Virtual Reality

IVR allows the realization of scenarios in a laboratory environment where

the responses can be observed and recorded in a controlled situation. It also

supports repeatability for as many participants as needed for each study.

Moreover, people tend to have authentic responses in IVR if certain techni-

cal requirements are met. These requirements include a low latency tracking

system (Meehan et al., 2003) to adjust the imagery to the person’s perspec-

tive, and a stereoscopic display (IJsselsteijn et al., 2001) with a minimum
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required field of view degree (Lin et al., 2002). These technological require-

ments allow the participant to perceive and, to some extent, interact with

the environment in a realistic way that the results of their actions are contin-

gent with their expectations (Noe, 2004). When this happens, people tend

to have the feeling of being in the place depicted, even knowing that they

are experiencing a computer generated simulation. This is referred to in the

literature as the sense of Presence (Held and Durlach, 1991; Slater et al.,

1994; Sanchez-Vives and Slater, 2005).

A wide range of applications have been developed over the last two

decades to study people’s behaviour in situations that can be easily con-

trolled and manipulated in an IVR system. Some examples of these are the

study of violence emergencies Slater et al. (2013), therapy related studies

such as treatment of phobias (Pertaub et al., 2002; Garcia-Palacios et al.,

2002), and Post-Traumatic Stress Disorder (Rothbaum et al., 1999). But

all these scenarios are prescribed or have little interactivity, and have been

implemented to observe people’s responses to a scripted situation. Besides

this, people might have different reactions based on their personality traits.

Therefore, a certain degree of adaptability can be useful in these situations.

Kastanis and Slater (2012) used RL to learn how to make every individual

achieve a goal in the virtual environment, without the use of any previous

knowledge by the RL observing how participants responded to the actions

of a virtual character that it controlled. The participant was placed in an

alley and the goal was to make them move to a location that was behind

them by only using the principle of Proxemics (Hall, 1966) so that partici-

pants would tend to move backwards away from the virtual character when
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it invaded their personal space. This study showed how to change the events

depending on the real person’s behaviour and regardless of how other partic-

ipants performed. However, the participant’s movements were limited to one

dimension and the RL agent could only choose from a set of 4 actions, move

forward, move backwards, stay idle or call the participant to move towards

it.

2. Methods

2.1. Scenario

In the scenario, the spacecraft could move left and right for the entire

available width in the IVR system. The visual contents also included a dis-

play where each participant could see how many lives remained, a scoreboard

and a time countdown starting at the total length of the game, 420 seconds.

The spacecraft shot one projectile every 3 seconds towards the participant.

A shot was considered a hit if the participant was in the same lane as a pro-

jectile when the it flew by, and a miss otherwise. The score was incremented

by 1 every time they avoided a shot. If they got hit, one life was subtracted

from the pool and the score was reset to zero. Participants were instructed

to carry on with the game even if the life pool was empty, as long as the time

countdown had not reached zero.

The projectiles travelled quickly enough so that a participant could not

avoid it once it was shot (7.5m/s and the participant was between 0.5m and

3.5m away). It was designed this way to encourage participants to try to

develop a strategy based on prediction. The game score and the number of

lives left were not relevant for the experiment and were not included in the
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data analysis, but they proved to be very useful for keeping the participants

engaged in the game.

2.2. The IVR system

The system used was a Cave-like virtual reality (VR) system similar to the

one described in Cruz-Neira et al. (1993). The floor area was 3×3 meters and

three walls 2.7 meters high. The images were rendered on all four surfaces,

each one by a DLP projector with a resolution of 1440 × 1050 pixels with

a refresh rate of 100Hz. The projectors were controlled from a cluster of 4

computers, each one equipped with an Nvidia Quadro FX 5600 graphics card.

The participant wore light-weight Crystal Eyes shutter glasses synchronised

with the rendering system to deliver stereoscopic images. The participant’s

head was tracked with an Intersense IS-900 tracking system to adjust the

imagery from their perspective in real time. This system was chosen instead

of a head-mounted display type because it allows the participant to wear

just a pair of light weight shutter glasses and move around the space while

still maintaining tracking. Furthermore, participants had to make sharp

movements during the experiment, so shutter glasses and the Cave were

safer than wearing a helmet that blocks out the sight to real world.

2.3. The RL design

The floor surface in the Cave was divided into 5 longitudinal lanes on the

depth dimension, 60cms wide each. The current state of the RL machine was

the lane the participant was in. This was computed at the time an action was

taken. The action decided the lane from which the space craft would shoot

and the projectile would travel along the lane towards the participant. In
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summary, there were 5 lanes that the participant could be in and 5 possible

positions the spacecraft could shoot from. All 5 actions were available on

all 5 states. Thus the state-action map had dimensions 5 × 5 leading to 25

state-action possible permutations.

We used the on-line, off-policy algorithm Q(λ) as described in Sutton

and Barto (1998) with the following RL parameters: learning rate α = 0.5,

discount rate γ = 1, and decay rate for eligibility traces λ = 0.2. ε represents

the probability that the next action would be an exploratory one (choosing

one randomly from all the possibles in the current state) or will exploit the

best action. When ε = 1, there is a 100% chance that the next action will

be an exploration, and, ε = 0 would mean that the agent will exploit the

observed best action. In the non-random conditions, ε remained 1 for the

first minute to encourage exploration, and then afterwards was decreased over

time by −0.1 per step to progressively reduce the amount of exploration and

increase the chance of using the accumulated experience, until it reached its

minimum value, ε = 0.1. In the Random condition, ε was 1 throughout the

game. The reward obtained on each try was a discrete value that depended

on the distance from the goal. If the participant was at the goal, then the

reward would be 5. The reward would be then 1 less for each lane away from

the target. The RL agent did not use the experience collected from previous

participants, therefore it adapted for each participant individually.

2.4. Experimental design

The experimental conditions were Left, Right and Random. In the Left

condition, the goal of the RL agent was to learn how to guide the partici-

pant to the leftmost lane. In Right, the target location was the rightmost
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one. Random made the spacecraft shoot randomly throughout the game and

did not use the experience collected at any time. Our decision to use the

outermost areas of the Cave as the goal came after a pilot study, where we

had asked volunteers about the place they felt safest. Most of them said that

the centre was the safest, since staying there allowed them to move in any

direction, thus having better options in the centre. Our hypothesis is related

to whether we could override this feeling of safety and make them stay in a

corner, thereby contradicting the most common response.

32 male participants were recruited among students at the university

campus, all of them between 18 and 44-years-old with no significant differ-

ences between groups. Two participants had to be discarded due to technical

problems recording the data. Participants were assigned to each experiment

version alternately on arrival at the laboratory, with 10 participants in to-

tal in each group, in this between-group design. Once in the VR lab, they

were instructed that the goal was to avoid the projectiles and they had to

maximise the score displayed on the screen. No information about the RL

agent’s actual goal was given before the game. Each participant was paid £7

and it took about 25 minutes in total for each participant. This experiment

was approved by the UCL Research Ethics Committee and participants gave

written informed consent.

3. Results

The main response variable was the total reward obtained by the RL

agent, as this measures how close a participant was from the goal. High re-

ward values mean that a participant stayed closer to the goal and for longer
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periods of time compared to others with lower scores. This is a single factor

experiment, Version, and had three levels: The RL agent was trying to guide

the participant to either the leftmost part of the Cave (Left), the rightmost

part of the Cave (Right) or was shooting randomly throughout the game

(Random). Our hypothesis was that the total reward obtained in Left and

Right version would be similar and both be greater than in Random. Sec-

ondly, we expected the reward per action obtained in Left and Right during

the game to increase over the time. This can also be defined as ε value being

negatively correlated with the average reward per action obtained for these

two versions.

One-way ANOVA was carried out for the response variable Reward on

version, to test the null hypothesis of no difference in the mean rewards

between the three conditions. This hypothesis is rejected with F(2,27) =

116130, P = 0.0015, R2 = 0.38. Shapiro-Wilk test on the residual errors

of the fit does not reject the assumption of normality (P > 0.85). Scheffe

method overall confidence intervals for marginal differences show no signifi-

cant difference between Right and Left (-60.09 to 213.69), a clear difference

between Right and Random (-349.69 to -75.91) and support for difference

between Left and Random (-272.89 to 0.89). Šidák multiple comparisons

between groups provide further support for these results, having the 95%

confidence interval values on the comparison between Random versus Left

-270.5 to -1.5.

Concerning the progression of the rewards over the time, Figure 1 shows

the average reward obtained in actions taken for each value of ε with the

standard deviation represented by the whiskers on the bars. In early stages
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of the game, when ε = 1.0, the agent was only exploring and therefore the

average reward obtained in Left and Right was similar to the reward obtained

in Random (Left = 1.91±0.74;Right = 2.18±0.82;Random = 1.86±0.87).

As ε started to decrease, the agent made greater use of the data collected

and chose the actions that were more likely to return the highest reward.

In the final stage of the game, for ε = 0.1, the rewards obtained were Left

(2.73 ± 0.61) and Right (2.9 ± 0.75).

Figure 1: Mean and standard deviation for each ε grouped by experiment version.

The rewards obtained over the time can also be interpreted as the time

spent in each area for each participant, since the reward obtained is inversely

related to the distance from the goal area. The histograms of the distribution

of time spent in each area for Left and Right version have roughly a symmetric
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bell shape with the median on the centre value representing the middle lane

in the Cave. The tendency of the participants to spend less time on the centre

of the scenario as the ε decreased makes the histograms to skew towards the

goal on each version. Figure 2 shows the histogram in three different stages,

in the first stage of the experiment (Fig. 2a), half way through (Fig. 2b) and

the last stage where the experience was used on 90% of the actions taken

(Fig. 2c).
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(a) ε = 1.0

(b) ε = 0.5

(c) ε = 0.1

Figure 2: Percentages of time spent on each area for ε values 1.0, 0.5 and 0.1 . Left

plots are from the Left version of the experiment, right plots are from the Right version.

(FL=far left area, L=left, C=centre, R=right, FR=far right).
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The significance levels of Kolmogorov-Smirnov tests to test the hypothe-

ses that the Left and Right samples collected for each ε value are from the

same distribution are shown in Table 1. The difference between Left and

Right distribution functions for ε = 0.9 and ε = 0.8 is not significant. As ε

decreases, the distribution functions for Left and Right rapidly move away

from one another. Examining the evolution of the skewness as a measure of

asymmetry in the distribution functions of the time spent on each area, both

Left and Right start close to 0 for ε = 1.0. As ε approaches the low values,

the skewness values reach higher magnitudes. In the Left version, although

not in constant progression, the level of skewness tends to increase over the

time, while in Right the result is the opposite and move towards negative

values (Fig. 3).
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Epsilon
Left

#samples

Left

skewness

Right

#samples

Right

skewness

2-way KS test

p-value

1.0 560 -0.06 559 0.10 0.16

0.9 292 -0.40 298 0.14 0.18

0.8 298 -0.07 295 0.19 0.51

0.7 298 -0.17 295 0.13 0.001

0.6 293 -0.04 299 0.14 < 0.001

0.5 596 0.35 592 -0.12 < 0.001

0.4 296 0.22 298 -0.20 < 0.001

0.3 593 0.18 592 -0.21 < 0.001

0.2 593 0.53 593 -0.47 < 0.001

0.1 294 0.24 297 -0.72 < 0.001

Table 1: Number of samples and skewness for each epsilon and experiment condition.

KS test p-values show a progressive difference between Left and Right distributions as ε

decreases.
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Figure 3: Skewness values of the histogram functions of the time spent on each area per

ε for experiment versions Left and Right.

4. Discussion

The results show that the RL agent generally learned to guide participants

towards the goal. In Left and Right conditions, the values obtained differ

substantially from the ones in the version where the spacecraft was shooting

randomly throughout the game, confirming our hypothesis. Despite the ten-

dency that people moved towards the goal, the time spent at the goal area

was still small. This is due to the fact that the goal was to make them stay

at the corner and people thought it was a weak spot where the options to

escape are reduced. Our goal was to override this natural feeling but the

number of actions on each game might have needed to be higher to achieve
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it. However, it is important to point out that there is a convergence towards

the goal and, with a higher number of actions, it is likely that participants

would have ended up staying at the corner for longer periods of time.

It is also interesting to note that we have used RL to influence the move-

ments of the people. This is different from typical applications of RL, such

as in board games or in Robotics. The target of the RL were the behaviours

of the participants rather than those of virtual or robotic actors. Our exper-

iment shows that RL can perform well in dynamic environments, since each

person’s strategy can be different from the rest based on their personality.

Furthermore, a person might change his strategy over time. A RL agent is

able to adjust its strategy by observing the outcome of the actions that takes.

Although the RL setup was 1D, the participant was unaware of this and

was free to move anywhere in the 2D space of the Cave. However, in one

sense this could be regarded as a replication study of the Kastanis and Slater

(2012) study but applied in quite a different setup. Such replication studies

are increasingly recognised to be important in science, since it is only through

these that there is an ultimate validation of results. Additionally though, the

present study has some important differences. In the Kastanis and Slater

(2012) study emphasis was placed on the RL Agent eventually learning that

the rules of proxemics operate in VR. The agent controlled an avatar that

could go nearer or further away from the participant. Over time the agent

learned that if it would go close to the participant then the participant would

back away, moving her to the target position (a position unknown to the

participant). In the new study the content of the situation is different in

the sense that we rely on the RL agent learning that people will attempt

19



to dodge the virtual projectiles flying towards them, and that by targeting

appropriately the participants can be constrained to particular areas of the

space.

Some previous studies in RL have used techniques to mitigate the problem

of having a large state-action space by adding a training session before the

RL agent starts to solve the problem. In the context of our research, this

could have also been applied to teach the RL agent how an average person

behaves in our scenario and use it as a starting point. This would enable

the RL agent to exploit this knowledge to make people move towards the

goal in less time. Although it is possible to discover patterns of behaviour

across participants, each individual has a different personality. This could

lead the system to not converge to an optimal solution if the policy is based

on a model created from other people. However, RL can be programmed

to adjust its policy based on recent observations. In this experiment, the

RL agent learned for each participant with no accumulated experience, but

it was not difficult to observe common behaviour. Examples of this are the

difficulties in making people stay in a corner, projectiles that were shot far

away from the person were likely to make them stay idle, the tendency to

move to the left when the projectile was shot very close to the right of the

person, and vice versa. Nevertheless, the RL adapts individually to each

person. It is does not assume that each one behaves in the same way. That

is the power of this method, it is adaptive.

The applications that RL can have to influence on people’s behaviour are

not limited to IVEs. The same principles could be applied to other areas of

human-computer interaction. For example, websites that want to maximise
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the number of web pages visited or online stores in order to increase the

sales by presenting different users with a range of different options that can

dynamically change, and then learning over time the relationship (if any)

between dynamic changes in content and the number of web pages read.

The design of the RL problem is critical and it is the key to a successful

application using RL. The number of tries that the agent needs to complete is

directly related to the number of possible state-actions pairs to ideally make

sure that each pair has been tried a minimum number of times. But this is not

always feasible due to the lack of time or because the environment changes

too rapidly to test all of the pairs in an ideal frequency. In our experiment,

the number of states and actions were reduced from the initial idea based on

the observation of a pilot study with seven people, whose results have not

been included in the analysis. The game length was also extended in order

to increase the number of actions.

Virtual environments are built in the last analysis to influence partici-

pants – whether for entertainment, therapy, training, or some other goal.

Usually how this influence operates is left to chance. We have shown how

using RL it is possible to influence behaviour in a systematic way, that is

adaptable to each participant. Clearly more complex examples need to be

studied for future applications. In the future, we aim to include a RL agent

to the scenario presented in Slater et al. (2013) where a participant faced a

violent emergency between two virtual characters and had to decide whether

to intervene in order to stop them arguing or step back and do nothing about

it. In this upcoming scenario, the RL agent will make the virtual characters

perform certain actions to learn how the likelihood of intervention can be
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maximised.
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Figure Captions

Figure 1: Mean and standard deviation for each ε grouped by experiment

version.

Figure 2: Percentages of time spent on each area for ε values 1.0, 0.5 and 0.1

. Left plots are from the Left version of the experiment, right plots are from

the Right version. (FL=far left area, L=left, C=centre, R=right, FR=far

right). Figure 2.(a): ε = 1.0

Figure 2.(b): ε = 0.5

Figure 2.(c): ε = 0.1

Figure 3: Skewness values of the histogram functions of the time spent on

each area per ε for experiment versions Left and Right.
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