
Real-time Social Recommendation Based on Graph
Embedding and Temporal Context

Peng Liua,∗, Lemei Zhanga, Jon Atle Gullaa

aDepartment of Computer Science, NTNU, 7491, Trondheim, Norway

Abstract

With the rapid proliferation of online social networks, personalized social rec-
ommendation has become an important means to help people discover their
potential friends or interested items in real-time. However, the cold-start issue
and the special properties of social networks, such as rich temporal dynamics,
heterogeneous and complex structures, render the most commonly used recom-
mendation approaches (e.g. Collaborative Filtering) inefficient. In this paper,
we propose a novel dynamic graph-based embedding (DGE) model for social rec-
ommendation which is capable of recommending relevant users and interested
items. In order to support real-time recommendation, we construct a hetero-
geneous user-item (HUI) network and incrementally maintain it as the social
network evolves. DGE jointly captures the temporal semantic effects, social
relationships and user behavior sequential patterns in a unified way by embed-
ding the HUI network into a shared low dimensional space. Then, with simple
search methods or similarity calculations, we can use the encoded representa-
tion of temporal contexts to generate recommendations. We conduct extensive
experiments to evaluate the performance of our model on two real large-scale
datasets, and the experimental results show its advantages over other state-of-
the-art methods.

Keywords: Real-time, Social recommendation, Heterogeneous social network,
Graph embedding, Temporal context

1. Introduction

With the rapid development of Web 2.0 and smart mobile devices, online
social networks have proliferated and are still promptly growing. According to
Twitter statistics, the number of users is estimated to have surpassed 300 million
generating more than 200 million tweets per day1. Faced with the abundance

∗Corresponding author
Email addresses: peng.liu@idi.ntnu.no (Peng Liu), lemei.zhang@idi.ntnu.no (Lemei

Zhang), jon.atle.gulla@idi.ntnu.no (Jon Atle Gulla)
1https://blog.twitter.com/2011/200-million-tweets-per-day, accessed: March 15, 2017.

Preprint submitted to Journal of LATEX Templates April 1, 2019

of user generated content, a key issue of social networking services is how to
help users find their potential friends or interested items that match the users’
preference as much as possible, by making use of both semantic information and
social relationships. This is the problem of personalized social recommendation.

Generally, different techniques used in building personalized recommender
systems are mainly divided into three categories: collaborative filtering, content-
based filtering and hybrid system (Aggarwal, 2016). Although previous tech-
niques have been shown to be effective to some extent, there still exist two major
challenges in front of online social networks. First, the complex structures in the
social network need to be properly mined and exploited by algorithms. Second,
these networks contain millions or even billions of edges making the problem
very difficult computationally. For example, the efficiency of classic item-based
k nearest neighbor (KNN) recommendation algorithms is largely limited by the
construction of the KNN graph (Deshpande and Karypis, 2004). Matrix factor-
ization involves eigen-decomposition of the data matrix which is expensive and
usually with approximation calculation (Rendle and Schmidt-Thieme, 2010).
Therefore, it is crucial to handle large-scale heterogeneous networks for social
recommender system.

In recent years, there have been numerous studies exploiting different types
of relationships in heterogeneous networks (Kouki et al., 2015; Shi et al., 2015;
Sun and Han, 2013; Yu et al., 2014) to improve the quality of recommenda-
tions. However, considering the dynamic nature of social network, almost all
existing social recommendation methods are incapable of supporting real-time
recommendation principally, and they would suffer from the following three
drawbacks: 1) Delay on model updates caused by the expensive time cost of
re-running the recommender model. 2) Disability to track changing user pref-
erences due to the fact that latest entries used for updating recommendation
models are often overwhelmed by the large data of the past. 3) Cold start prob-
lem becomes even more severe in online social networks as the new users and new
items will join in the recommender system constantly over time. Some online
learning algorithms address this problem by keeping a representative sample of
the data set in a reservoir to retrain the model (Diaz-Aviles et al., 2012), which
however is not appropriate for large streaming data set. To avoid this problem,
some other online algorithms propose to update the model based solely on the
current observation (Vinagre et al., 2014), at the cost of reducing the quality of
recommendations.

In this work, our goal for social recommendation is to provide real-time and
accurate recommendation services for users in large-scale heterogeneous net-
works. Specifically, it demonstrates three requirements. First of all, the recom-
mender system needs to produce accurate recommendations for users. Second,
the model should be updated in real-time to capture users’ instant interests and
social network evolution in very short delay. Third, the processing needs to be
executed in parallel, i.e., scalable to handle large amounts of computations.

To fulfill the aforementioned goals, we propose a novel dynamic graph-based
embedding (DGE) model which can effectively recommend relevant users and
interested items in real-time. Inspired by recent progress in network represen-

2

Figure 1: The flowchart of dynamic graph-based embedding framework.

tation learning and deep learning (Mikolov et al., 2013b; Perozzi et al., 2014;
Tang et al., 2015b), we propose to use the distributed representation method
for modeling online social networks. Specifically, we construct a heterogeneous
user-item (HUI) network, in which the two types of vertices represent users and
various items and the three types of edges respectively characterize the semantic
effects, social relationships and user behavior sequential patterns. Based on the
differential behaviour represented among continuous time slots, the HUI network
is incrementally maintained as the social network evolves. Then, an incremental
learning algorithm is applied to embed the HUI network into low-dimensional
vector spaces, in which the proximity information of each vertex is encoded into
its learned vector representation. Afterwards, we use the learned representa-
tions of vertices with some simple search methods or similarity calculations to
conduct the task of social recommendation.

Fig. 1 illustrates the idea of dynamic graph-based embedding framework. To
summarize, this paper makes the following contributions:

• We propose a dynamic graph-based embedding model that integrates the
temporal semantic effects, social relationships and user behavior sequen-
tial patterns into the process of network embedding. To the best of our
knowledge, this work is the first to address real-time social recommenda-
tion by a network representation learning approach.

• We devise a transition probability matrix P for the complex HUI network
to capture the semantic effect of different edge types. Based on this, an
asynchronous parallel stochastic gradient descent method is proposed to
allow horizontally scaling the algorithm for large-scale social networks and
improve the efficiency of the inference.

• To speed up the process of producing top-k recommendations from large-

3

scale social media streams, we develop an efficient query processing tech-
nique by extending the Threshold Algorithm (TA) (Fagin et al., 2003).

• We conduct extensive experiments to evaluate the performance of our
model on two real large-scale datasets. The results show the advantages
of our method for social recommendation in comparison with state-of-the-
art techniques.

The remainder of the paper is organized as follows. Section 2 introduces the
related work. In section 3, we formally define our problem and give the definition
of each source for the heterogeneous network. Section 4 presents our new model.
We describe the data sets, comparative approaches and the evaluation criteria
we use in section 5. Section 6 shows our experiment results. Finally, we present
the conclusions and future work in Section 7.

2. Related Work

2.1. Social Recommender System

Most traditional social recommendation models such as matrix factorization-
based models (Koren, 2008), graph-based models (Aggarwal et al., 1999) and
latent semantic models (Hofmann, 2004) etc, deal with homogeneous objects or
separately deal with different types of objects. In recent years, the flourish of
the heterogeneous social networks provides a new environment for recommenda-
tion targets. Kouki et al. (2015) proposed a hybrid approach, HyPER (Hybrid
Probabilistic Extensible Recommender), to incorporate and reason over a wide
range of information sources. Sun and Han (2013) explored the meta structure of
the heterogeneous information network to boost similarity searching and other
mining tasks. Shi et al. (2015) explored a weighted heterogeneous information
network and weighted meta path based recommender system (SemRec) to pre-
dict the rating scores of users on items. To the best of our knowledge, existing
heterogeneous network processing methods which focus on social recommenda-
tion problems, have not considered real-time updating and online incremental
processes.

In order to capture the evolution of the recommender systems, Agarwal et al.
(2010) proposed a fast online bilinear factor model to learn item-specific factors
through online regression by using a large amount of historical data to initialize
the online models and thus reducing the dimensionality of the input features.
Diaz-Aviles et al. (2012) presented Stream Ranking Matrix Factorization, which
utilizes a pairwise approach to matrix factorization in order to optimize the per-
sonalized ranking of topics and follows a selective sampling strategy to perform
incremental model updates based on active learning principles. Chen et al.
(2013) extended the online ranking technique and proposed a temporal recom-
mender system TeRec, through which, users can get recommendations of topics
according to their real-time interests and generate fast feedbacks according to
the recommendations when posting tweets. Huang et al. (2015) presented a

4

practical scalable item-based collaborative filtering algorithm, with the charac-
teristics such as robustness to implicit feedback problem. Subbian et al. (2016)
proposed a probabilistic neighbourhood-based algorithm for performing recom-
mendations in real-time. The recommendation strategies proposed by Huang
et al. (2015) and Subbian et al. (2016) focus on scalability and real-time pruning
in recommender system. Our proposed framework considers the combination of
the heterogeneous characteristics of social networks and graph-based updat-
ing schemes on real-time condition, and thus is substantially different from the
above-mentioned systems.

2.2. Distributed Representation Learning

Recently, distributed representation learning has drawn lots of attention
due to its effectiveness in representing and extracting useful knowledge in many
tasks, including text classification (Tang et al., 2015a), knowledge graph mining
(Yang et al., 2015) and recommender system (Wang et al., 2015). Particularly, in
text processing field, the word embedding model word2vec developed in Mikolov
et al. (2013a,b) makes it possible to train the embedding vectors on large-scale
datasets with a single machine. Stochastic Gradient Descent (SGD) is used to
train the parameters with two alternative optimized algorithms for speedup,
namely hierarchical softmax (Morin and Bengio, 2005) and noise contrastive
estimation (Mnih and Teh, 2012). Several usages of distributed representa-
tion learning also have been proposed for different applications. For instance,
DeepWalk (Perozzi et al., 2014) adapted Skip-Gram (Mikolov et al., 2013b), a
widely used language model in natural language processing area, for network
representation learning on truncated random walk. LINE (Tang et al., 2015b)
is a scalable network embedding algorithm which modelled the first-order and
second-order proximities between vertices. Our work is highly built upon these
studies. The novelty lies in the idea of adopting the graph embedding methods
into the dynamic environment for real-time recommendation.

3. Problem Formulation

In this section, we first introduce the key data structures and the definition
of each source for the heterogeneous network. Then, the problem statement of
this study is presented. Table 1 summarizes the notations of frequently used
variables.

Definition 1. Item Profile An item is defined as a uniquely post (e.g., a
tweet or a news article). In our model, an item can be denoted as a five tuple
(iId,M,H,W, ρ), representing itemID, named entity, hashtag/category, con-
tent, create time respectively.

Definition 2. User Profile For each user u, we create the user profile as a
three tuple (uId,L,D), which indicates userID, user social links and a set of
items associated with u.

5

Table 1: Notations used in the paper.

Symbol Description

U , P the set of users and items
M, H, W, L the set of named entities, hashtags/categories, content

words and social links
Gmix heterogeneous user-item (HUI) network

t the timestamp of heterogeneous user-item network

Rd d dimensional latent space
−→v , −→p embeddings of user u and item p, respectively

∆t the time interval
α, β, γ model parameters controlling the relative importance

of user behavior sequential patterns, social relation-
ships and semantic effects

Ri the social links of user ui

P the transition probability matrix of heterogeneous
user-item network

Ṽt the active nodes at timestamp t

Definition 3. User-user Relationship Network A user-user relationship
network can be represented by Guu = (U , εuu), where U = {u1, u2, ...un} is the
set of users, and εuu is the set of edges. Each eij ∈ εuu is a social link, such as
following or friends, between user i and user j.

Definition 4. Item-item Relationship Network An item-item relationship
network can be represented by Gpp = (P, εpp), where P = {p1, p2, ...pn} is the
set of items, and εpp denotes the set of edges. If item pi and item pj have a
semantic link such as Named Entity or Hashtag, there will be an edge eij ∈ εpp
between them, otherwise none.

Definition 5. User-item Interaction Network A user-item interaction net-
work can be represented by Gup = (U ∪ P, εup), where U = {u1, u2, ...un} is the
set of users, P = {p1, p2, ...pn} is the set of items, and εup denotes the set
of edges. If item pj is of interest to user ui (based on user activities such as
‘clicked’, ‘retweet’, etc), there will be an edge eij ∈ εup between them, otherwise
none.

Definition 6. Heterogeneous User-Item (HUI) Network A heterogeneous
user-item network can be represented by Gmix = Guu∪Gpp∪Gup, which consists
of the user-user relationship network Guu, the item-item relationship network
Gpp and the user-item interaction network Gup. The same sets of users and
items are shared in Gmix.

The heterogeneous user-item network can well capture social relationship
influence, semantic effect and user behavior sequential patterns simultaneously.
Take the semantic effect as an example, we can interpret it as following: if a
user ui is visiting an item pj at time slot t and item pk is more similar with pj
than other items, then ui is most likely to visit pk. Our goal is to embed the
heterogeneous user-item network into a shared low dimensional space Rd where
d is the dimension. Then, we can get the vector representations of users −→v and
items −→p .

6

Finally, we formally define the problem investigated in our work. Given
a time-stamped heterogeneous user-item network, we aim to provide real-time
social recommendations stated as follows.

Problem 1. (Real-time Social Recommendation) Given a heterogeneous
user-item network Gmix at timestamp t and a querying user u ∈ U , the task
is to generate a ranked list of user or item recommendations that u would be
interested in.

4. DGE: Dynamic Graph-based Embedding Model

In this section, we propose a novel dynamic graph-based embedding (DGE)
model for real-time social recommendation. Firstly, the construction of the HUI
network as well as its update process are described in details. Then, we introduce
the dynamic graph embedding approach which involves the edge sampling and
an incremental learning algorithm. Finally, a list of top-k recommendations can
be generated by evaluating the similarities between the learned representations
of different vertices.

4.1. Heterogeneous User-Item (HUI) Network

4.1.1. HUI Network Construction

For notational simplicity, we ignore the time-subscript in this subsection.
Assume that we are given a set of users U = {u1, u2, ...um} and a set of items
P = {p1, p2, ...pn}. To integrate the semantic effects, social relationships and the
user behavior sequential patterns simultaneously, we construct a heterogeneous
user-item network comprising two types of nodes and three types of edges, as
shown in Fig. 2. The two types of nodes which consist of user and item nodes
are formed by projecting the user set and item set respectively. The three types
of edges are defined as follows:

Figure 2: The Heterogeneous User-Item (HUI) Network.

1) Each user node ui and each item node pj are connected if user ui shows
an interest on item pj . In the HUI network, such an edge is indicated by

7

yellow solid lines. The associated item nodes of the user node ui are de-
noted as Ip(ui), the associated user nodes of the item node pj are denoted
as Iu(pj).

2) Two user nodes ui and uj are connected with the property of user simi-
larity simu(ui, uj) if user ui and uj have a social link, such as following
or friends. In the HUI network, such edge is indicated by grey dash lines.
The adjacent user nodes of the user node ui are denoted as Au(ui).

3) Two item nodes pi and pj are connected with the property of item simi-
larity simp(pi, pj) if item pi and pj have a semantic link such as Named
Entity or Hashtag. In the HUI network, such edge is indicated by orange
dash lines. The adjacent item nodes of the item node pi are denoted as
Ap(pi).

We assume that Ri is a r-dimensional vector representing the social links of
user ui, where r is the total number of users, and the k-th dimension of vector
Ri equals 1 only if there is an edge between ui and uk, otherwise 0. The user
similarity simu(ui, uj) between user ui and user uj can be defined as the cosine
similarity between the two vectors,

simu(ui, uj) =
RTi · Rj√

RTi · Ri ·
√
RTj · Rj

(1)

Likewise, the item similarity simp(pi, pj) between two item nodes pi and
pj is also defined as the cosine similarity between the two corresponding fea-
ture vectors, which contain named entity, hashtag/category and the occurrence
frequency of words in the item content.

Corresponding to the three types of edges with different characteristics, there
are three types of random walk modes, which are between user nodes, between
item nodes as well as between user and item nodes. Directly applying random
walk to the HUI network does not work due to different edge types, leading
to a challenging problem. To this end, we propose a novel way to capture the
different edge type characteristic into the transition probability matrix P , where
three parameters α, β, γ with α+ β+ γ = 1 are used to respectively control the
relative importance of user behavior sequential patterns, social relationships and
semantic effects.

Definition 7. A transition probability matrix P ∈ R(m+n)×(m+n) is constructed
for the HUI network,

P =

(
Pu Pup
Ppu Pp

)
(2)

which comprises four matrix blocks Pu ∈ Rm×m, Pup ∈ Rm×n, Ppu ∈ Rn×m
and Pp ∈ Rn×n respectively representing the transition probabilities of random
walks between user nodes, from user nodes to item nodes, from item nodes to

8

user nodes and between item nodes. That is

Pi,j = Prob(uj |ui), i < m, j < m

=

{
0 uj /∈ Au(ui)
β

α+β ×
simu(ui,uj)∑

uk∈Au(ui)
simu(ui,uk) uj ∈ Au(ui)

(3)

Pi,m+j = Prob(pj |ui), i < m, j < n

=

{
0 pj /∈ Ip(ui)
α

α+β ×
1

|Ip(ui)| pj ∈ Ip(ui)
(4)

Pm+i,j = Prob(uj |pi), i < n, j < m

=

{
0 uj /∈ Iu(pi)
α

α+γ ×
1

|Iu(pi)| uj ∈ Iu(pi)

(5)

Pm+i,m+j = Prob(pj |pi), i < n, j < n

=

{
0 pj /∈ Ap(pi)
γ

α+γ ×
simp(pi,pj)∑

pk∈Ap(pi)
simp(pi,pk) pj ∈ Ap(pi)

(6)

In the above definition, we do not use the same similarity measurement
to quantify the user-item connection since the user content and item content
adopt independent lexicons and different representation schemes, which means
that it is difficult to compute their similarities (e.g., cosine similarity). Be-
sides, selecting different values for parameters α, β and γ corresponds to assign
different importance degrees to semantic effects, social relationships and user
behavior sequential patterns, which depends on the datasets. In the experi-
ments, we will show that setting the same values for the three parameters, i.e.,
α = β = γ = 1/3, can lead to the best recommendation results on the two
testing datasets.

4.1.2. HUI Network Update

Assume at timestamp t, the current HUI network Gmix,t = (Vt, εt) =
(Ut, εuu,t,Pt, εpp,t, εup,t) contains the user node set Ut, item node set Pt and
their related edge sets εuu,t, εpp,t and εup,t. Due to the evolving of the network,
Ut and Pt will contain the sets of the newly attached nodes, denoted as ∆Ut and
∆Pt respectively, while there exists another subsets of Ut and Pt containing the
nodes that have changed at the current timestamp, which are denoted as ΘUt
and ΘPt. Similarly, subsets of εuu,t, εpp,t and εup,t contain the newly attached
edges, separately denoted as ∆εuu,t, ∆εpp,t and ∆εup,t, while the subsets of
changed edges within εuu,t, εpp,t and εup,t at current timestamp are denoted as
Θεuu,t, Θεpp,t and Θεup,t separately.

9

It is necessary to update the HUI network from timestamp t−1 to timestamp
t according to the evolving nodes (∆Ut ∪ΘUt,∆Pt ∪ΘPt) and edges (∆εuu,t ∪
Θεuu,t,∆εpp,t∪Θεpp,t,∆εup,t∪Θεpp,t). This can be easily achieved by updating
the two types of nodes and three types of edges in HUI network. For instance,
u new user nodes and e new user-user edges are added to the HUI network
and their similarities of user social links are computed among related nodes.
Accordingly, the transition probability matrix P can be easily updated.

The active nodes at timestamp t (denoted as Ṽt) are defined as the union
of the evolving nodes (∆Ut ∪ΘUt,∆Pt ∪ΘPt) and the nodes incident upon the
evolving edges (∆εuu,t ∪Θεuu,t,∆εpp,t ∪Θεpp,t,∆εup,t ∪Θεpp,t). That is

Ṽt = ∆Ut ∪ΘUt ∪∆Pt ∪ΘPt ∪ {ui|∃eu ∈ ∆εuu,t ∪Θεuu,t, eu = (ui, uj)}
∪ {pi|∃ep ∈ ∆εpp,t ∪Θεpp,t, ep = (pi, pj)}
∪ {uk, pf |∃eup ∈ ∆εup,t ∪Θεup,t, eup = (uk, pf)}}

(7)

The underlying principle of the network constructing and updating process
can be analogous to the case of adopting sliding window schema to manage
continuous data streams. The construction process of HUI network is based on
the historical records, and the updating course of the network can be conducted
only within several timestamps like a certain length sliding window. The worst
case happens only when all nodes {vi|vi ∈ Vt} have changed within timestamp
t. In such case, the retraining process of the whole HUI network is inevitable.

4.2. Heterogeneous User-Item Network Embedding

Inspired by DeepWalk (Perozzi et al., 2014) and the idea of modelling docu-
ment (Djuric et al., 2015; Le and Mikolov, 2014) in natural language processing,
our model contains two main stages, heterogeneous random walk and model
learning process. In this section, we will illustrate each stage in details.

4.2.1. Heterogeneous Random Walk

According to the previous work (Jeh and Widom, 2003), random walk can
be used to define proximity, but it is only limited to the network with one type
of nodes and links. In order to extend random walk into heterogeneous networks
with multiple nodes and various types of edges, the transition probability matrix
P defined in Section 4.1 is introduced to treat different kinds of nodes and edges
equally.

Given the length of random walk as h and the total number of random
walks as l, the starting step will be performed at each of the active node Ṽt
at timestamp t. Based on the updated transition probability matrix P , the
heterogeneous random walk will generate possible route sequesces for active
nodes, denoted as S = {s1, s2, ..., s|Ṽt|}. The detailed procedure is proceeded as

follows.

1. When the walker is in the user node ui, it will jump to either one of
its associated item nodes pj ∈ Ip(ui) or one of its adjacent user nodes
uj ∈ Au(ui), with probabilities accessed from the transition probability
matrix P .

10

2. When the walker is in the item node pi, it will jump to either one of
its associated user nodes uj ∈ Iu(pi) or one of its adjacent item nodes
pj ∈ Ap(pi), with probabilities accessed from the transition probability
matrix P .

Such hop process is repeated until finishing h hops, which is taken as a single
random walk. And since the total number of l random walks are performed, the
whole procedure generates l × h hops. The encountered combination of nodes
for node vi during these hops is denoted as the possible route sequence of vi. In
random walk, the jump cannot go directly back to the previous node, for exam-
ple, vi to vj back to vi is not allowed, which in order to avoid getting stuck in
some hops with high probabilities in P . Algorithm 1 summerizes the procedure
of the heterogeneous random walk for the active nodes at each timestamp.

Algorithm 1: Heterogeneous Random Walk

Input: Transition probability P , active node set Ṽt, number of random
walks l, length of random walk h.

Output: The set S of possible route sequence for each node in active
node set Ṽt

1 for ∀vi ∈ Ṽt do
2 for i = 1 to l do
3 Perform an h-hop random walk starting at vi using the transition

probability matrix P
4 end
5 Possibile route sequence si for node vi
6 end

4.2.2. Incremental Network Embedding Learning

During the model learning process, the heterogeneous random walk will be
performed on the initial HUI network Gmix = (V, ε) firstly, and it results in
a set of possible route sequences S = {s1, s2, ..., s|Ṽt|}, where each sequence

can be denoted as s = {v1, v2, ..., v|s|}. DeepWalk treats each route sequence
s as a word sequence by regarding nodes as words. Then by introducing Skip-
Gram, a widely used word representation learning algorithm, DeepWalk is able
to learn node representations from the sequence set S. Similarly, our model
also adopts Skip-Gram to learn the representation of each node. More specifi-
cally, when given a node route sequence s = {v1, v2, ..., v|s|}, each node vi has
{vi−T , ..., vi+T }\{vi}, as its local context nodes. Thus, DGE model learns node
representations by maximizing the average log probability of predicting context
nodes:

L(s) =
1

|s|

|s|∑
i=1

∑
i−|T |≤j≤i+|T |

logPr(vj |vi) (8)

11

where vj is the context node of the node vi, and the probability Pr(vj |vi) is
defined using the softmax function:

Pr(vj |vi) =
exp(v′j · vi)∑
v∈V exp(v

′ · vi)
(9)

where vi is the representation of the center node vi and v′j is the context repre-
sentation of its context node vj . Then subsequently, during incremental learning
process at each timestamp t > 1, the heterogeneous random walk procedure and
Skip-Gram will be proceeded on active node set Ṽt and their related edges.

Given that calculating Eq. (9) directly is not feasible and will lead expen-
sive computing cost in practical implementation. Therefore, a computational
efficient approximation of the full softmax called hierarchical softmax (Mikolov
et al., 2013b), is introduced to solve this problem. The hierarchical softmax
uses a binary tree representation for every context node vj ∈ V as its leaves,
and each tree node is explicitly associated with an embedding vector θ for com-
puting the relative probability to take the branch. Each leave can be reached by
an appropriate path from the root of the tree. In this way, instead of evaluating
all the |V| nodes, it needs to evaluate only about log(|V|) nodes to obtain the
probability distribution.

More precisely, given the representation vi of node vi for target context vj ,
let L(vj) be the length of its corresponding path, and let b

vj
n = 0 when the path

to vj takes the left branch at the n-th layer and b
vj
n = 1 otherwise. Then, the

hierarchical softmax defines Pr(vj |vi) as follows:

Pr(vj |vi) =

L(vj)∏
n=2

([σ(vTi θ
vj
n−1)]1−b

vj
n · [1− σ(vTi θ

vj
n−1)]b

vj
n) (10)

where σ(z) = 1
1+exp(−z) . All parameters are trained by using the Stochastic

Gradient Descent method. During the training, the algorithm iterates over the
nodes through all possible route sequences, and at each time, a target node vj
with its context window is used for update. After computing the hierarchical
softmax according to Eq. (10), the error gradient is obtained via backpropaga-
tion and we use the gradient to update the parameters in our model. To derive
how θ is updated at each time step, the gradient for θ

vj
n−1 is computed as follows:

∂L(vj , n)

∂θ
vj
n−1

= [1− bvjn − σ(vTi θ
vj
n−1)]vi (11)

In this way, θ
vj
n−1 can be updated as:

θ
vj
n−1 ← θ

vj
n−1 + η[1− bvjn − σ(vTi θ

vj
n−1)]vi (12)

where η denotes the learning rate. To derive how the representation of the
center node is updated, the fradient for vi is computed as follows:

∂L(vj , n)

∂vi
= [1− bvjn − σ(vTi θ

vj
n−1)]θ

vj
n−1 (13)

12

With this derivative, an embedding vector vi in the context of node vj can
be updated as follows:

vi ← vi + η

L(vj)∑
n=2

∂L(vj , n)

∂vi
(14)

In Algorithm 2, we summerize the learning process using hierarchical soft-
max for proposed DGE model. The algorithm iterates through all possible route
sequences and updates the embedding vectors until the procedure converges. In
each iteration, given a current node, the algorithm first obtains its embedding
vectors and computes its context embedding vector. Based on the derivative
above, the binary tree in hierarchical sampling is updated followed by the em-
bedding vector. Given the vector size of d, the leaf nodes number |V |, the
sequence length |s| within one iteration and window length |T |, then the time
complexity for an iteration is O(d · |T | · |s| · log(|V |)).

Algorithm 2: Heterogeneous Softmax Algorithm for Learning Parameters
of DGE

Input: Possible route sequence set S, window length |T |, embedding
vector dimension d, sequence length |s|.

Output: The embedding representation vi of node vi
1 Initialize the parameters randomly;
2 Shuffle the dataset;
3 repeat
4 Sample a route sequence s = {v1, v2, ..., v|s|} from S;
5 for i = 1 to |s| do
6 Set e← 0;
7 Compute the representation vi of vi;
8 for each vj ∈ s[i− |T |, i+ |T |] do
9 for n = 2 to L(vj) do

10 q ← σ(vi · θ
vj
n−1);

11 g ← η · (bvjn − 1− q);
12 e← e+ g · θvjn−1;

13 Update θ
vj
n−1 ← θ

vj
n−1 + g · vi;

14 end
15 Update vi ← vi + η · e;
16 end

17 end

18 until convergence;

4.2.3. Parallelizability

For real-world social networks, the frequency distribution of vertices in ran-
dom walks follows a power law which results in a long tail of infrequent vertices
(Perozzi et al., 2014). Therefore, the updates of vertices’ representation will

13

be sparse in nature. Based on this, we adopt the lock-free solutions in the
work (Recht et al., 2011) to parallelize asynchronous stochastic gradient de-
scent (ASGD). Given that our updates are sparse and we do not acquire a lock
to access the model shared parameters, ASGD will achieve an optimal rate of
convergence. Fig. 3 presents the effects of parallelizing DGE model with multi-
ple threads. It shows the speed up in processing Twitter and Last.fm datasets
is consistent as we increase the number of workers to 8 (Fig. 3a). It also shows
that there is no loss of predictive performance relative to the running DGE
serially (Fig. 3b).

20 21 22 23

of Workers

2-3

2-2

2-1

20

R
e
la
ti
v
e
 T
im

e

Twitter

Last.fm

(a) Running Time

20 21 22 23

of Workers

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

R
e
la
ti
v
e
 C
h
a
n
g
e
 i
n
 R
e
c
a
ll
@
1
0

Twitter

Last.fm

(b) Performance

Figure 3: Effects of parallelizing DGE model.

4.3. Recommendation Using DGE

Once we have learnt the model parameters, recommendations can be made
by utilizing the embeddings for each vertex in the social network. In this section,
we propose the top-K recommendation algorithms for a user to select potential
friends and interested items respectively.

4.3.1. Recommending top-K friends:

This task is to recommend top-K friends that a user u would like to follow
in the social network. More precisely, Given a target user ui ∈ U with the query
time t, for each user node uj who has not been connected with ui, we compute
its ranking score as in Eq. (15), and then select the k ones with the highest
ranking scores as recommendations.

S(ui, uj , t) =

D∑
k=1

xik · yjk (15)

where ui = (xi1, xi2, ..., xiD), uj = (yj1, yj2, ..., yjD), D is the dimension of the
representation vector.

The straightforward method of generating the top-k friends needs to compute
the ranking scores for almost all users according to Eq. (15), which is compu-
tationally inefficient, especially when the number of users becomes large. To

14

speed up the process of producing recommendations, we extend the Threshold-
based Algorithm (TA) (Fagin et al., 2003), which is capable of finding the top-k
results by examining the minimum number of users.

We first pre-compute the ordered lists of users, where each list corresponds
to a dimension of the user’s representation vector uw = (yw1, yw2, ..., ywD). So,
we could get D lists of sorted users, Ln, n ∈ {1, 2, ..., D}, where users in each list
Ln are sorted according to ywn. Given a query q = (ui, t), we run Algorithm
3 to compute the top-k users from the D sorted lists and return them in the
priority list L. As shown in Algorithm 3, we first maintain a priority list PL for
the D lists where the priority of a list Ln is the ranking score S(ui, uw, t) of the
first user w in Ln (Lines 2-6). In each iteration, we select the most promising
user (i.e., the first user) from the list that has the highest priority in PL and
add it to the resulting list L (Lines 9-16). When the size of L is no less than k,
we will examine the k-th user in the resulting list L. If the ranking score of the
k-th user is higher than the threshold score Ts, the algorithm terminates early
without checking any subsequent users (Lines 18-20). Otherwise, the k-th user
w

′
in L is replaced by the current user w if w’s ranking score is higher than that

of w
′

(Lines 21-24). At the end of each iteration, we update the priority of the
current list as well as the threshold score (lines 27-32).

Eq. (16) illustrates the computation of the threshold score Ts, which is
obtained by aggregating the maximum ywn represented by the first user in each
list Ln. Consequently, it is the maximum possible ranking score that can be
achieved by the remaining unexamined items. Hence, if the ranking score of
the k-th user in the resulting list L is higher than the threshold score, L can
be returned immediately because no remaining user will have a higher ranking
score than the k-th user.

Ts =

D∑
n=1

xin · max
w∈Ln

ywn (16)

4.3.2. Recommending top-K items:

This task is to recommend top-K items that a user u would like to be inter-
ested in. From the fresh-based perspective, the most recent items that a user
shows an interest on could better reflect his/her current preference and they
should contribute more in the computation of the recommendations (Stefanidis
et al., 2013). Thus, we use the exponential function f(t1, k) = e−k(t−t1), where
t1 is the timestamp of item and k is employed to adjust the decay rate, to reflect
the freshness of items. According to this, the ranking score of recommendations
can be computed as follows:

S(ui, pj , t) = f(tj , k)

D∑
n=1

xin · zjn (17)

where ui = (xi1, xi2, ..., xiD) is the representation of target user and pj =
(zj1, zj2, ..., zjD) is the representation of a candidate item. Once the newly
arrived items have been settled in ordered candidate item lists, as time goes on,

15

Algorithm 3: Threshold-based algorithm

Input: A query q = (ui, t), ranked lists (L1, ..., LD).
Output: List L with all the k highest ranked users.

1 Initialize priority lists PL, L and the threshold score Ts;
2 for n = 1 to D do
3 w = Ln.getfirst();
4 Compute S(ui, uw, t) according to Eq. (15);
5 PL.insert(n, S(ui, uw, t));

6 end
7 Compute Ts according to Eq. (16);
8 while true do
9 nextListToCheck = PL.getfirst();

10 PL.removefirst();
11 w = LnextListToCheck.getfirst();
12 LnextListToCheck.removefirst();
13 if w /∈ L then
14 if L.size() < k then
15 L.insert(w, S(ui, uw, t));
16 else
17 w′ = L.get(k);
18 if S(ui, u

′
w, t) > Ts then

19 break;
20 end
21 if S(ui, u

′
w, t) < S(ui, uw, t) then

22 L.remove(k);
23 L.insert(w, S(ui, uw, t));

24 end

25 end

26 end
27 if LnextListToCheck.hasMore() then
28 w = LnextListToCheck.getfirst();
29 Compute S(ui, uw, t) according to Eq. (15);
30 PL.insert(nextListToCheck, S(ui, uw, t));
31 Compute Ts according to Eq. (16);

32 else
33 break;
34 end

35 end

16

the decay value of all items freshness will be the same as e−k·∆t, ∆t is the time
interval, without influencing the order of them. Thus this allows us to lever-
age TA algorithm for retrieving and recommending items the same as friends
recommendation.

4.4. Framework Extensibility

Here we discuss the extendability of our proposed framework, which we
believe may be of interest.

4.4.1. Multiple Social Networks

Intuitively, our DGE model could be extended to multiple sources for a user
who is affiliated to them. For instance, if a user has an account in Facebook and
also in Twitter, then both kinds of social sources can bring valuable and multi-
ple information which could assist to improve the recommendation performance.
Nowadays, some approaches have been designed to apply the recommendation
strategies to support users operating in multiple social sites (De Meo et al.,
2011). Other researches concentrate on the construction of a global user profile
with the integration of multiple information from different sources (Buccafurri
et al., 2016). Zhang and Yu (2016) proposed an unsupervised network align-
ment framework (UNICOAT) to address the partial co-alignment problem and
discover the potential links between users and between locations for multiple
sources. In Jia et al. (2016), the authors introduced a deep learning-based
approach integrating fusing social networks to predict volunteerism tendency.
More specifically, it learns predictive models independently for multiple sources
with the input of the hyper representations of features extracted from multiple
sites separately, and then weighted sum of these models into the final predictive
model.

Inspired by Jia et al. (2016), we can build our heterogeneous network sepa-
rately for multiple sources, and learn the node representations separately. Then,
a weighted average can be used to form the final representation of each node.
Specifically, let vki be the learned representation of user/item node vi in the
k-th source, and thus the final representation of node vi can be derived as

vi =
∑
k∈K

λkvki (18)

where K represents the source set, and λk represents the weight of different
sources in k. Thus the objective function of Eq. (8) can be redefined as

L(s) =
1

|s|

|s|∑
i=1

∑
i−|T |≤j≤i+|T |

logPr(vj |vi) + ηR (19)

where R is the regularization term defined as

R = −
∑
i∈|S|

K∑
k=1

λki ||vki − vi||22 (20)

17

and η is a parameter used to control the weight of the regularization term. By
maximizing this objective function, different multiple sources can be collabo-
rated to learn the robust node representations.

4.4.2. User Bias

In some practical scenarios where users rate for the related items, the ma-
trix blocks Pup and Ppu in the transition probability matrix can be defined
incorporat- ing user bias:

Pi,m+j = Prob(pj |ui), i < m, j < n

=

{
0 pj /∈ Ip(ui)
α

α+β ×
wij∑

pk∈Ip(ui)
wik

pj ∈ Ip(ui)
(21)

Pm+i,j = Prob(uj |pi), i < n, j < m

=

{
0 uj /∈ Iu(pi)
α

α+γ ×
wji∑

uk∈Iu(pi)
wki

uj ∈ Iu(pi)

(22)

where wij denotes the rating score that the user ui assigns to item pj . Then
the same learning procedures (Section 4.2) can be used to achieve the represen-
tations of the nodes.

5. Experimental Setup

5.1. Dataset Description

For experimental study, we evaluate the proposed DGE model on two kinds
of real-world datasets: Twitter and Last.fm. We downloaded the Twitter
dataset from Twitter API2, which includes users and their posts. We collected
the Last.fm dataset through Last.fm API3, which contains users and artists.
The statistics of each dataset is summerized in Table 2. For both datasets, the
user-user links are constructed from bi-directional friendships between social
network users, user-item links are constructed from the user listening or posting
behaviour, and item-item link are constructed if the two artists share the same
tag or the two posts have the same hashtag.

Table 2: Some statistics of the datasets.

Dataset user item user-user links user-item links item-item links
Twitter 87,287 7,855,830 537,251 86,414,130 38,493,509
Last.fm 50,000 11,215 291,805 14,358,010 2,264,562

2https://dev.twitter.com/docs, accessed: March 15, 2017.
3http://www.last.fm/api/, accessed: March 15, 2017.

18

5.2. Comparative Approaches

We compared the proposed approach with four state-of-the-art methods:

• Popular in Neighborhood (PN). Given a personalized graph Gu,
the Popular in Neighbourhood (PN) algorithm ranks the candidate items
based on the number of actions all users performed on them within the
context of Gu. Hence, the algorithm ranks the candidate entities that
appear in Gu based on how popular they are.

• Weighted Regularized Matrix Factorization (WRMF). This is a
state-of-the-art offline matrix factorization model for item prediction in-
troduced by Hu et al. (2008). Their method outperforms neighbourhood
based (item-item) models in the task of item prediction for implicit feed-
back datasets. The model is computed in batch mode, assuming that the
whole stream is stored and available for training.

• Stream Ranking Matrix Factorization (RMFX). It is proposed in
Ernesto’s recent work (Diaz-Aviles et al., 2012), which can achieve partly
online and much quicker updates of matrix factorization for item predic-
tion.

• DeepWalk (Perozzi et al., 2014). It uses local information obtained from
truncated random walks to learn latent representations of nodes in a graph.
It is an extended application of word2vec-based model.

• LINE-2nd. We also adopt the LINE (Tang et al., 2015b) second-order
(2nd) version in order to make the comparison to our proposed context
embedding model. According to Xie et al. (2016), the author builds mul-
tiple graphs incorporating geographical influence, temporal cyclic effect
and semantic effect. Similarly, in this paper, we build multiple graphs in-
tegrating user relationships, user-item interactions and semantic influence
into one model.

WRMF setup is as follows: λWRMF = 0.015, C = 1, epochs = 15, which
corresponds to a regularization parameter, a confidence weight that is put on
positive observations, and to the number of passes over observed data, respec-
tively. For RMFX, we set regularization constants λRMFX = 0.1, learning rate
η0 = 0.1, and a learning rate schedule α = 1, and find that the setting gives
good performance. Moreover, the number of iterations is set to the size of the
reservoir. For all the embedding algorithms (DeepWalk, LINE, and our model),
the embedding dimensionality is set to 128. We tried dimensionalities in the
range [16, 256] and found that 128 generally gives the best results. Context
window length is set to 8, walk length is set to 40, walks per vertex is set to 30.

5.3. Evaluation Criteria

Given a dataset D which includes user profile and item profile, we first
rank them according to their tweets timestamp in Twitter dataset or listening

19

timestamp in Last.fm dataset. Then we use the 80-th percentile as the cut-off
point so that user-item interaction behaviors before this point will be used for
training and the rest are for testing. In the training dataset, we choose the last
10% records as the validation data to tune the model hyper-parameters such as
the dimension of the latent space. According to the above dividing strategies,
we split the dataset D into the training set Dtrain and the test set Dtest.

Since we are interested in measuring top-k recommendation instead of rating
prediction, we measure the quality by looking at the Recall@K metric, which is
widely used for evaluating top-k recommender systems (Deshpande and Karypis,
2004; Cremonesi et al., 2010). We show the performance when k = {1, 5, 10}, as
a greater value of k is usually ignored for a typical top-k recommendation task
(Cremonesi et al., 2010).

In our recommender system setting, the recall metric is defined as follows:

• Recall@K (also known as hit rate) is the proportion of relevant items/users
found in the top-k recommendations. A larger recall value indicates that
the system is able to recommend more satisfactory items or users, leading
to a better performance. Formally, we define hit@k for a single test case as
either the value 1, if the test item or user appears in the top-k results, or
the value 0, if otherwise. The overall Recall@k is computed by averaging
over all test cases:

Recall@K :=
#hit@K

|Dtest|
(23)

where #hit@K denotes the number of hits in the whole test set.

Another evaluation metric we used is average reciprocal hit-rank (ARHR)
(Deshpande and Karypis, 2004) which in our setting we define as follows:

• ARHR (average reciprocal hit-rank) is a weighted version of hit rate that
rewards each hit based on where it occurs in the top-k list. If we take
top-k item recommendation as an example, for a target user u, let h be
the number of the true interested items in the recommended top-k list,
and nu be the number of u’s true interested items in the test dataset.
The ARHR is to measure the effectiveness of ranking for each target user.
When p1, p2, ..., ph are the positions of the true interested items in the
recommended top-k items, the ARHR for u can be defined as

ARHR :=
1

nu
·
h∑
i=1

1

pi
(24)

As the true interested items appear with high ranks in the recommended
items, this measure becomes larger.

In top-k friend recommendations, let h represents the number of the true
friends in the recommended top-k list, and nu represents the number of u’s true
friends in the test dataset, for each target user u, the average reciprocal hit-rank
can be computed similarly.

20

6. Experimental Results

6.1. Sentivity to Parameters

In this section, we first analyze the performance sensitivity to the three trade-
off parameters, which control the relative importance of user behavior sequential
patterns, social relationships and semantic effects respectively. Additionally, the
performance sensitivity to the random walk parameters is also analyzed.

6.1.1. Trade-off Parameters

To investigate how the performance of the DGE model is effected by the
relative importance of user behaviour sequential patterns, social relationship
and semantic effect, we run the method using various trade-off parameters. The
performance is evaluated in terms of the Recall@10 value obtained at each
timestamp. Fig. 4 plots the Recall score on the two datasets using different
trade-off parameters.

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7

Time

0.0

0.1

0.2

0.3

0.4

0.5

R
e
ca
ll@

1
0

α=7/9,β=1/9,γ=1/9

α=4/9,β=4/9,γ=1/9

α=4/9,β=1/9,γ=4/9

α=3/9,β=3/9,γ=3/9

α=1/9,β=7/9,γ=1/9

α=1/9,β=4/9,γ=4/9

α=1/9,β=1/9,γ=7/9

(a) Twitter

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7

Time

0.1

0.2

0.3

0.4

0.5

0.6

R
e
ca
ll@

1
0

α=7/9,β=1/9,γ=1/9

α=4/9,β=4/9,γ=1/9

α=4/9,β=1/9,γ=4/9

α=3/9,β=3/9,γ=3/9

α=1/9,β=7/9,γ=1/9

α=1/9,β=4/9,γ=4/9

α=1/9,β=1/9,γ=7/9

(b) Last.fm

Figure 4: Sensitivity to trade-off parameters.

From Fig. 4, we can see that, on the two testing datasets, the worst results
are obtained when the relative importance of user behaviour sequential patterns
is set very large while the relative importance of social relationship and semantic
effects are set very small, i.e. α = 7/9, β = 1/9, γ = 1/9. This is because in the
heterogeneous social network, the content information of items and the influence
among user-relationships encoded in the edges is the essential motivation to
attract the user to click related items. Especially, in Last.fm dataset, this kind of
settings causes a noticeable drop of theRecall value at the last three timestamps.
The main reason may be that during that time period the users constructed
friendship more widely than before.

On the other hand, when setting the relative importance of user behaviour
sequence patterns, social relationships and semantic effects to the same level as
α = 3/9, β = 3/9 and γ = 3/9, the best Recall value is obtained with at least
0.1 improvement, which is very significant. Therefore, in all experiments, except
stated otherwise, the relative importance of these three aspects are set to the

21

same level. The performance sensitivity to the trade-off parameters provides a
strong evidence of integrating multiple information in the recommender system.

6.1.2. Effect of Dimensionality and Sampling Frequency

Tuning model parameters is critical to the performance of the proposed
model. In this experiment, we study the influence of the embedding dimension
d and the number of samples l by fixing the window size |T | = 8 and the random
walk length h = 40. We then vary the number of dimensions d and number of
walks started per node l to determine their impact on the recommendation
performance. The results are shown in Fig. 5.

From Fig. 5, similar observations can be made on both datasets. It can be
observed that recommendation Recall value of DEG model is not highly sensi-
tive to the dimension d, but still presents a tendency that its recommendation
accuracy increases with the increasing number of dimension d holistically, and
then it reaches peak when d is around 128. However, DGE is sensitive to the
number of samples l, the Recall score varies a lot. First, the performance of
DEG increases quickly with the increasing number of l, this is because the model
has not achieved convergence. Then, it does not change significantly when the
number of samples becomes large enough, since the model DGE has converged.
Thus, to achieved a satisfying trade off between effectiveness and efficiency of
model training, we set l = 30 and d = 128 on both datasets.

22

16 32 64 128 256

Dimensions d

0.1

0.2

0.3

0.4

0.5

Re
ca
ll@

10

l=1

l=5

l=10

l=20

l=30

l=40

(a1) Twitter Dataset

16 32 64 128 256

Dimensions d

0.1

0.2

0.3

0.4

0.5

0.6

Re
ca
ll@

10

l=1

l=5

l=10

l=20

l=30

l=40

(a2) Last.fm Dataset

(a) Stability over dimensions, d

1 5 10 20 30 40 50 60

Sampling Frequency l

0.1

0.2

0.3

0.4

0.5

Re
ca
ll@

10

d=16

d=32

d=64

d=128

d=256

(b1) Twitter Dataset

1 5 10 20 30 40 50 60

Sampling Frequency l

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Re
ca
ll@

10

d=16

d=32

d=64

d=128

d=256

(b2) Last.fm Dataset

(b) Stability over number of samples, l

Figure 5: Effect of Dimensionality and Sampling Frequency.

6.2. Online Recommendation Efficiency

In this section, we evaluate the online recommendation efficiency with Twit-
ter and Last.fm datasets. We test the average time cost of top-k recommenda-
tions on two methods, DGE-TA and DGE-BF which utilize the knowledge learnt
by DGE to produce recommendations. DGE-TA uses the proposed TA-based
query processing technology described in Section 4.3 to produce top-k recom-
mendation results. In DGE-BF, we adopt a brute-based algorithm by scanning
all recommendation candidates and computing their ranking scores, to produce
top-k recommendations with k highest ranking scores. In addition, we also use
the state-of-the-art online recommendation algorithm RMFX to produce top-k
recommendations because the other baselines are offline methods and they need
to retrain the model during each updating period before recommendation task.
Thus here we mainly focus on the online algorithms efficiency comparison.

23

1 2 4 6 8 10 12 14 16 18 20

K

0

50

100

150

200

250

300
P
ro
ce

ss
in
g
 T
im

e
 (
m
s)

DGE-TA DGE-BF RMFX

(a) Twitter dataset

1 2 4 6 8 10 12 14 16 18 20

K

0

20

40

60

80

100

P
ro
ce
ss
in
g
 T
im

e
 (
m
s)

DGE-TA DGE-BF RMFX

(b) Last.fm dataset

Figure 6: Online recommendation efficiency.

Fig. 6 presents the results of different methods with varying number of k
from 1 to 20 for Twitter and Last.fm datasets. On average for k equals to 10,
our DGE-TA produces top-10 recommendations for Twitter dataset in 43 ms,
and for Last.fm dataset in 11 ms. From the figures we conclude several ob-
servations that: 1) DGE-TA outperforms the other two methods significantly
in both datasets, which verify that the benefits gained by proposed TA-based
query processing techinique; 2) DGE-BF ranks the second in top-k recommen-
dation efficiency in both datasets for RMFX generates ranking scores using large
amount of matrix operations while DGE uses inner product of two vectors as
shown in Eq. (15) and (17); 3) the time cost of DGE-TA method grows with
the increasing number of k for DGE-TA needs to scan more recommendation
candidates to find top-k recommendations, but DGE-TA is still much efficient
than the other two recommendation algorithms since the value of k is normally
constrained in a small range; 4) The time cost of each algorithm in Twitter is
more expensive than that in Last.fm, showing that if a dataset contains more
data, it requires more processing time to produce top-k recommendations.

6.3. Recommendation Effectiveness

Table 3: Top-k items recommendation effectiveness.

Methods
Twitter Last.fm

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10
PN 0.068 0.109 0.189 0.143 0.203 0.261

WRMF 0.156 0.235 0.314 0.227 0.293 0.385
RMFX 0.125 0.201 0.283 0.196 0.278 0.355

DeepWalk 0.194 0.278 0.351 0.265 0.341 0.423
LINE-2nd 0.223 0.297 0.382 0.271 0.357 0.441

DGE 0.315 0.397 0.481 0.392 0.462 0.552

24

Table 4: Top-k friends recommendation effectiveness.

Methods
Twitter Last.fm

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10
PN 0.052 0.085 0.161 0.107 0.157 0.223

WRMF 0.115 0.188 0.275 0.176 0.256 0.329
RMFX 0.104 0.158 0.219 0.139 0.232 0.304

DeepWalk 0.149 0.221 0.310 0.216 0.289 0.367
LINE-2nd 0.176 0.232 0.329 0.216 0.311 0.385

DGE 0.246 0.303 0.385 0.293 0.352 0.409

Table 3 and 4 summerize the item and friend recommendation performance
for the state-of-the-art methods and the DGE model. Generally speaking, it can
be shown from these two tables that the Recall@K value grows gradually along
with the increasing number of K, and the performance of item recommendation
is better than friend recommendation. Besides, we can also observe on both
datasets that: Firstly, embedding-based algorithms (DeepWalk, LINE-2nd and
DGE) consistently perform better than non-embedding based benchmarks (PN,
WRMF and RMFX). For instance, if we consider item recommendation with
Recall@10 in the Twitter dataset, as shown in Table 3, DeepWalk correctly
predicts 35.1% of items, while the best performance of non-embedding based
algorithms WRMF correctly predicts 31.4% of items. It is because embedding-
based algorithms can fully explore the network structure of the given informa-
tion, which alleviates the issues of sparse and noisy signals. Secondly, among
embedding-based algorithms, DeepWalk is only applicable to homogeneous net-
works, while LINE-2nd and DGE are capable of handling heterogeneous net-
works, and thus LINE-2nd and DGE perform better than DeepWalk algorithm.
Besides, through considering the semantic effects, social relationships and user
behaviour sequential patterns as well as their potential relations simultaneously,
DGE encapsulates more contextual information, leading to more informative up-
dates and robustness. Therefore, DGE performs better than LINE-2nd method.
The incremental training ability makes DGE update process more efficiently and
timely, which also contributes to the better performance of the model.

1 5 10 15 20 25 30

K

0.00

0.05

0.10

0.15

0.20

0.25

A
R
H
R

PN WRMF RMFX DeepWalk LINE-2nd DGE

(a) Top-k items recommendation

1 5 10 15 20 25 30

K

0.00

0.05

0.10

0.15

0.20

A
R
H
R

PN WRMF RMFX DeepWalk LINE-2nd DGE

(b) Top-k friends recommendation

Figure 7: Recommendation performance with regard to ARHR.

25

Fig. 7 compares the performance of alternative approaches taking average
reciprocal hit-rank (ARHR) as metric. During experiments, we vary the number
of recommendations K from 1 to 30. As expected, our DGE model performs
better with ARHR as well, and LINE-2nd ranks the second place, which shows
the same orders in Table 3 and 4. As can be seen from Fig. 7a, when we
recommend more items, since we have more chances to answer the true interested
items correctly, ARHR grows gradually with increasing number K. The same
trends appeared in the friend recommendation task.

6.4. Cold Start Problem

In this experiment, we conduct experiments to study the effectiveness of
different recommendation algorithms in addressing cold-start issues on the two
datasets. For evaluating the top-k items and friends recommendations, the
target users who have less than 20 available items and social link information in
total are selected. As there are not many interaction records between users and
items available for cold-start cases, WRMF and RMFX model which are based
on collaborative filtering, are not suitable for cold-start experiments. Thus, we
compare our DGE model with other three recommender models that are able to
leverage semantic effects and user relationships to recommend cold-start cases.

Twitter Last.fm
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
e
ca
ll@

1
0

PN LINE DeepWalk DGE

(a) Top-k items recommendation

Twitter Last.fm
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
e
ca

ll@
1
0

PN LINE DeepWalk DGE

(b) Top-k friends recommendation

Figure 8: Recommendations for Cold-start Cases

The experimental results are shown in Fig. 8, from which we have the follow-
ing observations: 1) our proposed DGE model still performs best consistently in
recommending cold-start cases; 2) by comparing the recommendation results in
Table 3 and 4, the Recall value of all recommendation algorithms decreases. For
instance, the Recall value of DeepWalk rapidly drops from 35.1% to less than
4% for twitter item recommendation, while our model deteriorate slightly. This
is because DeepWalk recommends items according to their content information
such as hashtags and labels, while our method also considers the content simi-
larities when training models and the potential relationships among all effects.
This is to say, our model leverages not only user-item interactions, semantic
effects and user relationships, but also the potential links between the features,
when recommending cold-start items/users.

26

7. Conclusion

In this paper, a novel dynamic graph-based embedding model, DGE is pro-
posed for real-time social recommendations. DGE jointly captures the temporal
semantic effects, social relationships and user behavior sequential patterns in a
unified way by embedding the heterogeneous user-item network into a shared
low dimensional space for addressing the issues of temporal dynamics, cold start
and context awareness in the social recommender system. To capture the se-
mantic effect of different edge types, a transition probability matrix is devised
and updated as the social network evolves. For efficiently handling large-scale
social media streams, a parallel incremental learning algorithm and an efficient
query processing technique are developed to generate top-k recommendations.
Our recommendation process is based on the proximity of the related users and
items while considering the freshness of the items. Evaluation on two different
real-world datasets demonstrated the effectiveness of the proposed approach.

There are a series of future works we can do for the recommender system.
First, we only consider the local context information (such as their neighbors)
to learn vertex representations. There are still some global information can
be employed, such as communities and groups. Second, more advanced deep
learning models such as Convolutional Neural Networks can be explored for
feature learning.

Acknowledgement

This work was supported by the Research Council of Norway (grant number
245469).

References

Agarwal, D., Chen, B.C., Elango, P., 2010. Fast online learning through offline
initialization for time-sensitive recommendation, in: Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM. pp. 703–712.

Aggarwal, C.C., 2016. Recommender Systems: The Textbook. 1st ed., Springer
Publishing Company, Incorporated.

Aggarwal, C.C., Wolf, J.L., Wu, K.L., Yu, P.S., 1999. Horting hatches an egg:
A new graph-theoretic approach to collaborative filtering, in: Proceedings of
the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM. pp. 201–212.

Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A., 2016. A model to support
design and development of multiple-social-network applications. Information
Sciences 331, 99–119.

27

Chen, C., Yin, H., Yao, J., Cui, B., 2013. Terec: A temporal recommender
system over tweet stream. Proceedings of the VLDB Endowment 6, 1254–
1257.

Cremonesi, P., Koren, Y., Turrin, R., 2010. Performance of recommender algo-
rithms on top-n recommendation tasks, in: Proceedings of the fourth ACM
conference on Recommender systems, ACM. pp. 39–46.

De Meo, P., Nocera, A., Terracina, G., Ursino, D., 2011. Recommendation
of similar users, resources and social networks in a social internetworking
scenario. Information Sciences 181, 1285–1305.

Deshpande, M., Karypis, G., 2004. Item-based top-n recommendation algo-
rithms. ACM Trans. Inf. Syst. 22, 143–177.

Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., Nejdl, W., 2012. Real-time
top-n recommendation in social streams, in: Proceedings of the Sixth ACM
Conference on Recommender Systems, ACM, New York, NY, USA. pp. 59–66.

Djuric, N., Wu, H., Radosavljevic, V., Grbovic, M., Bhamidipati, N., 2015. Hi-
erarchical neural language models for joint representation of streaming docu-
ments and their content, in: Proceedings of the 24th International Conference
on World Wide Web, ACM. pp. 248–255.

Fagin, R., Lotem, A., Naor, M., 2003. Optimal aggregation algorithms for
middleware. Journal of computer and system sciences 66, 614–656.

Hofmann, T., 2004. Latent semantic models for collaborative filtering. ACM
Transactions on Information Systems (TOIS) 22, 89–115.

Hu, Y., Koren, Y., Volinsky, C., 2008. Collaborative filtering for implicit feed-
back datasets, in: Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, Ieee. pp. 263–272.

Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y., 2015. Tencentrec: Real-
time stream recommendation in practice, in: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, ACM. pp. 227–
238.

Jeh, G., Widom, J., 2003. Scaling personalized web search, in: Proceedings of
the 12th international conference on World Wide Web, ACM. pp. 271–279.

Jia, Y., Song, X., Zhou, J., Liu, L., Nie, L., Rosenblum, D.S., 2016. Fusing
social networks with deep learning for volunteerism tendency prediction., in:
AAAI, pp. 165–171.

Koren, Y., 2008. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, in: Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM. pp.
426–434.

28

Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., Getoor, L., 2015. Hyper: A
flexible and extensible probabilistic framework for hybrid recommender sys-
tems, in: Proceedings of the 9th ACM Conference on Recommender Systems,
ACM, New York, NY, USA. pp. 99–106.

Le, Q.V., Mikolov, T., 2014. Distributed representations of sentences and doc-
uments., in: ICML, pp. 1188–1196.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013a. Efficient estimation of
word representations in vector space. CoRR abs/1301.3781. URL: http:

//arxiv.org/abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013b. Distributed
representations of words and phrases and their compositionality, in: Advances
in neural information processing systems, pp. 3111–3119.

Mnih, A., Teh, Y.W., 2012. A fast and simple algorithm for training neural
probabilistic language models. arXiv preprint arXiv:1206.6426 .

Morin, F., Bengio, Y., 2005. Hierarchical probabilistic neural network language
model., in: Aistats, Citeseer. pp. 246–252.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014. Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM. pp. 701–710.

Recht, B., Re, C., Wright, S., Niu, F., 2011. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent, in: Advances in Neural Information
Processing Systems, pp. 693–701.

Rendle, S., Schmidt-Thieme, L., 2010. Pairwise interaction tensor factorization
for personalized tag recommendation, in: Proceedings of the Third ACM
International Conference on Web Search and Data Mining, ACM, New York,
NY, USA. pp. 81–90.

Shi, C., Zhang, Z., Luo, P., Yu, P.S., Yue, Y., Wu, B., 2015. Semantic path
based personalized recommendation on weighted heterogeneous information
networks, in: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, ACM, New York, NY, USA. pp.
453–462.

Stefanidis, K., Ntoutsi, E., Petropoulos, M., Nørv̊ag, K., Kriegel, H.P., 2013.
A framework for modeling, computing and presenting time-aware recommen-
dations, in: Transactions on Large-Scale Data-and Knowledge-Centered Sys-
tems X. Springer, pp. 146–172.

Subbian, K., Aggarwal, C., Hegde, K., 2016. Recommendations for stream-
ing data, in: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, ACM. pp. 2185–2190.

29

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Sun, Y., Han, J., 2013. Meta-path-based search and mining in heterogeneous
information networks. Tsinghua Science and Technology 18, 329–338.

Tang, J., Qu, M., Mei, Q., 2015a. Pte: Predictive text embedding through large-
scale heterogeneous text networks, in: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM.
pp. 1165–1174.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q., 2015b. Line: Large-
scale information network embedding, in: Proceedings of the 24th Interna-
tional Conference on World Wide Web, ACM. pp. 1067–1077.

Vinagre, J., Jorge, A.M., Gama, J., 2014. Fast incremental matrix factorization
for recommendation with positive-only feedback, in: International Conference
on User Modeling, Adaptation, and Personalization, Springer. pp. 459–470.

Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., Cheng, X., 2015. Learning hierar-
chical representation model for nextbasket recommendation, in: Proceedings
of the 38th International ACM SIGIR conference on Research and Develop-
ment in Information Retrieval, ACM. pp. 403–412.

Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S., 2016. Learning graph-
based poi embedding for location-based recommendation, in: Proceedings of
the 25th ACM International on Conference on Information and Knowledge
Management, ACM. pp. 15–24.

Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y., 2015. Network representation
learning with rich text information., in: IJCAI, pp. 2111–2117.

Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han,
J., 2014. Personalized entity recommendation: A heterogeneous information
network approach, in: Proceedings of the 7th ACM International Conference
on Web Search and Data Mining, ACM, New York, NY, USA. pp. 283–292.

Zhang, J., Yu, P.S., 2016. Pct: partial co-alignment of social networks, in:
Proceedings of the 25th International Conference on World Wide Web, Inter-
national World Wide Web Conferences Steering Committee. pp. 749–759.

30

	Introduction
	Related Work
	Social Recommender System
	Distributed Representation Learning

	Problem Formulation
	DGE: Dynamic Graph-based Embedding Model
	Heterogeneous User-Item (HUI) Network
	HUI Network Construction
	HUI Network Update

	Heterogeneous User-Item Network Embedding
	Heterogeneous Random Walk
	Incremental Network Embedding Learning
	Parallelizability

	Recommendation Using DGE
	Recommending top-K friends:
	Recommending top-K items:

	Framework Extensibility
	Multiple Social Networks
	User Bias

	Experimental Setup
	Dataset Description
	Comparative Approaches
	Evaluation Criteria

	Experimental Results
	Sentivity to Parameters
	Trade-off Parameters
	Effect of Dimensionality and Sampling Frequency

	Online Recommendation Efficiency
	Recommendation Effectiveness
	Cold Start Problem

	Conclusion

