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Abstract— Human multi-robot interaction exploits both the 
human operator’s high-level decision-making skills and the 
robotic agents’ vigorous computing and motion abilities. While 
controlling multi-robot teams, an operator’s attention must 
constantly shift between individual robots to maintain 
sufficient situation awareness. To conserve an operator’s 
attentional resources, a robot with self-reflect capability on its 
abnormal status can help an operator focus her attention on 
emergent tasks rather than unneeded routine checks. With the 
proposing self-reflect aids, the human-robot interaction 
becomes a queuing framework, where the robots act as the 
clients to request for interaction and an operator acts as the 
server to respond these job requests. This paper examined two 
types of queuing schemes, the self-paced Open-queue 
identifying all robots’ normal/abnormal conditions, whereas 
the forced-paced shortest-job-first (SJF) queue showing a single 
robot’s request at one time by following the SJF approach. As 
a robot may miscarry its experienced failures in various 
situations, the effects of imperfect automation were also 
investigated in this paper. The results suggest that the SJF 
attentional scheduling approach can provide stable 
performance in both primary (locate potential targets) and 
secondary (resolve robots’ failures) tasks, regardless of the 
system’s reliability levels. However, the conventional results 
(e.g., number of targets marked) only present little information 
about users’ underlying cognitive strategies and may fail to 
reflect the user’s true intent. As understanding users’ 
intentions is critical to providing appropriate cognitive aids to 
enhance task performance, a Hidden Markov Model (HMM) is 
used to examine operators’ underlying cognitive intent and 
identify the unobservable cognitive states. The HMM results 
demonstrate fundamental differences among the queuing 
mechanisms and reliability conditions. The findings suggest 
that HMM can be helpful in investigating the use of human 
cognitive resources under multitasking environments.  

Keywords- Human-robot Interaction; Cognitive Assistant; 
Task Switching; Hidden Markov model; System Reliability; 
Scheduling. 
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1. INTRODUCTION  
Robotic agents have been widely used to support humans 

in completing a variety of dangerous tasks, such as 
searching for trapped victims in risky environments or 
replacing human soldiers on a battlefield. In most of the 
human multi-robot interaction, robots operate with relative 
independence and are capable of operating in parallel, 
whereas an operator is usually incapable to control multiple 
robots at a time and regularly shifts her attention from one 
robot to another to monitor the robots’ status and acquire 
situation awareness (SA). The robots’ effectiveness 
therefore greatly depends on periodic human intervention. 
For example, a mobile robot could successfully explore the 
environment and perform the assigned tasks for a period of 
time only requiring an operator’s attention when it detects 
targets (e.g., trapped victims). In other words, the overall 
system performance is significantly affected by the 
effectiveness of operators’ attention allocation (Chen, 2009; 
Lewis, 2013; Prewett et al., 2010; Verma and Rai, 2013).  

Human-robot interaction (HRI) examines the uses of 
robotic systems and evaluates the interaction in human-
robot teams. Goodrich and Schultz (2007) suggested the 
quality of communication between human operators and 
robotic agents is essential to achieve an appropriate 
interaction as well as an efficient HRI structure. Therefore, 
to better design the communication schemes in human-robot 
teams, it is critical to understand how the operators allocate 
their attentional resources to communicate multi-robot 
teams. As an operator’s attentional resources are typically 
shared among a variety of tasks, however, even periodic 
human interventions may not be able to sufficiently serve 
the robots’ emergent requests. Previous research 
(Cummings and Mitchell, 2008) demonstrated that humans 
are incapable of shifting attention between robots to obtain 
the required SA in an effective and efficient manner. As a 
result, operators need assistance to maintain sufficient SA in 
complex and time-critical situations. Follow-up studies 
(Chen et al., 2010; Crandall et al., 2011; Cummings et al., 
2012) used a timeline display to assist operators in 



identifying bottlenecks and potential scheduling conflicts. 
The results suggested that HRI performance can be 
improved by appropriately scheduling an operator’s 
attention to only those robots that are in need of interaction.  

To enhance task performance, automated robot self-
reflection is frequently used to improve the HRI processes 
under a variety of complex conditions (Chien et al., 2012b; 
Wang et al., 2011). Automatically reporting a robot’s 
abnormal status not only eliminates an operator’s need to 
monitor, but also allows an operator to focus on critical 
interactions, thereby increasing the number of robots 
serviced during this interval. Although automated supports 
could conserve human cognitive resources, applying 
automated applications to direct an operator’s attention from 
an ongoing task to a specific task may decrease the 
operator’s SA and potentially increases the cognitive loads 
to acquire the necessary information while responding to a 
robot request (Eriksen and Yenh, 1985; Kiesel et al., 2010).  

Inappropriately directing an operator to service a 
particular robot has been found to have a negative effect on 
overall performance in human-robot systems (Crandall et al., 
2011). Most of time, operators may be less inclined to use 
relevant automated aids if the gain is offset by the mental 
cost of switching attention (Bainbridget, 1983; Crandall et 
al., 2011; Endsley and Kaber, 1999). Koch et al. (2010) 
concluded that switching costs arise from “both transient 
and long-term carry-over of task-set activation and 
inhibition” and may lead to the perception of a higher 
workload and lower overall system effectiveness. These 
costs are associated with impaired performance in task-
switch paradigms, as compared with repetition trials (Kiesel 
et al., 2010). Therefore, operators may take more time to 
complete mixed-task blocks (i.e., alternating between two or 
more tasks) than in repetitive single-task situations (Koch et 
al., 2005). Although enhancing robot autonomy can provide 
assistance with the control process and allow operators to 
interact with each robot as needed, the aforementioned 
studies suggested that the required interactions may greatly 
increase an operator’s perceived cognitive loads. Therefore, 
identifying an effective interaction scheme to satisfy 
operators’ cognitive demands as well as to respond to robots’ 
requests in time is indeed the most critical aspect of 
enhancing the HRI performance.  

Understanding the association between the operators’ 
cognitive states and their resulting behaviors is needed for 
improving human supervisory control in highly automated 
systems (Crandall et al., 2005; Olsen and Wood, 2004). In 
HRI fields, researchers employ two primary methods to 
investigate the supervisory processes. The first approach 
examines the overall system performance, such as the 
number of targets detected (Chen, 2009; Chien et al., 2012b), 
area explored (Scerri et al., 2011), or vehicles’ damage 
levels (Chien et al., 2016; Imbert et al., 2014; Miller and 
Parasuraman, 2007). The other approach characterizes 
operators’ attention allocation, such as the response rate in 
answering the robots’ requests (Crandall and Cummings, 
2007; Mekdeci and Cummings, 2009; Mercado et al., 2016). 

However, when an operator makes choices among 
alternatives, similar actions may be a result of different 
intentions. For example, a robot can be terminated because 
the assigned task has been successfully completed or the 
robot is incompetent to perform the task. Therefore, these 
conventional measures (overall performance and response 
rate) might be unable to reflect the underlying cognitive 
factors that significantly influence operators’ intent and 
behaviors.   

Conventional approaches evaluate the HRI performance 
by the overall task results that merely reflect the observable 
behaviors and fail to examine operators’ cognitive intentions 
or decision-making processes. In order to capture more 
insights from human supervisory control processes, we 
adopt the Hidden Markov Model (HMM) to explore the 
human’s cognitive states (Baum et al., 2011). HMM is a 
well-established method for parameter estimation and has 
been shown useful in modeling human behaviors and 
discovering unobservable human intentions in a wide range 
of application domains, such as astronaut supervisory 
monitoring behaviors (Hayashi et al., 2005) and 
collaborative web search processes (Yue et al., 2014). HMM 
analysis provides advantages over conventional approaches 
by making the explicit contexts for human supervisory 
control and assisting with interpretation of unobservable 
human intentions. 

As decision makers’ attention allocation may greatly 
influence by their scheduling strategies, the potential gains 
in various system developments of effective means to 
convey task recommendations warrant further investigation. 
Two different types of cognitive queues are evaluated in this 
paper, namely the Open-queue and SJF-queue methods. The 
Open-queue method presents all the robots’ conditions and 
sends out failure alarms at the same time. The SJF-queue 
method, a more sophisticated queuing mechanism, presents 
only one robot request generated by the shortest-job-first 
principle. The Open-queue scheduling mechanism was 
previously seen in Cummings et al. (2007) study, in which 
a timeline display was used to show each intelligent 
agent’s current status and to project the upcoming tasks. 
As the SJF approach is known to maximize throughput 
(Garey et al., 1976), we therefore develop a single event 
queuing display along with the SJF discipline. Prior research 
suggested that the operators with poor attentional control 
strategies tended to rely more heavily on automated aids, 
regardless of the system reliability levels (Chen et al., 2011; 
Chen and Terrence, 2009). To address these issues, two 
different system reliability levels are also investigated in this 
study, in which the robot failures are misdiagnosed (i.e., not 
detected) to simulate the effect of unreliable system. Both 
the conventional analysis and the HMM approach are used 
to measure the differences between the queuing types and 
reliability levels. We hypothesize that H1: High reliability 
level will result in better overall performance, covering both 
primary and secondary tasks. Since the SJF method is 
known to maximize throughput (Garey et al., 1976), we 
hypothesize that H2: The SJF-queue method will outperform 



the Open-queue approach across all the experimental 
scenarios. Moreover, a reliable queuing system can 
optimize attentional resources in both queuing conditions, 
whereas an unreliable queuing system may provide 
insufficient information and fail to effectively direct 
operators’ attention. Hence, we hypothesize, H3: In both the 
Open-queue and SJF-queue schemes, the high reliability 
will lead to better outcomes than the low reliability 
condition. As decision makers must prioritize tasks/alarms 
in the Open-queue, we hypothesize that H4: Operators will 
experience heavier workloads in the self-paced Open-queue 
condition, which could be a result of a higher level of 
perceived frustration, since no clear guidance will be 
provided in the Open-queue scheme. In other words, fewer 
workloads would be reported in the SJF-queue condition, 
regardless of the reliability levels. Additionally, since 
operators are allowed to perform the tasks based on their 
own strategies in the Open-queue scheme, we therefore 
hypothesize H5: HMM’s transition patterns will be more 
complex under the Open-queue group.  

2. RELATED WORK 

2.1.  Human-Robot Interaction (HRI) 
Human-agent teaming for multi-robot control is a 

complex process that requires both skilled operators and 
delicate system designs to effectively enhance overall HRI 
performance. To maintain appropriate situation awareness 
(SA), an operator must efficiently manage her cognitive 
resources and allocate attention among a variety of tasks. 
The situation in which one operator controls a team of 
robots is considered to be a more exhaustive and complex 
task than managing a single robot, which requires the 
operator to simultaneously manage attentional resources 
among robots to maintain necessary SA. Various factors 
affecting human-robot supervisory control processes (such 
as perceived cognitive load, allocation of attention, and 
cognitive capacity) have been studied in previous research 
(Donmez et al., 2010; Lewis et al., 2010; Nagavalli et al., 
2015; Visser and Parasuraman, 2011). Attentional control 
has been identified as one of the most critical factors 
influencing human supervision of robot teams, since most of 
the HRI tasks inevitably involve multitasking conditions 
(Chen and Barnes, 2014,  Chappelle et al., 2011). However, 
due to limited cognitive resources, human operators may 
encounter enormous difficulties in responding to robots’ 
requests for interaction in a timely fashion.  

The degree of attention allocation in multi-robot control 
tasks varies from completely manual control to supervisory 
control with a high level of automation (LOA). Sheridan and 
Verpank (1978) developed the first LOA taxonomy, which 
classifies autonomy into ten levels based on the range of 
control that an operator could manage. Operators must 
(partially) manually control the machines and make 
decisions in low LOA conditions, while fully autonomous 
systems are used under high LOA conditions. In other words, 
the intelligence of robots determines the human supervisory 

control behaviors, which may allow an operator to use 
cognitive resources to focus on higher level mission-related 
goals (e.g., decision selection) without spending resources 
on low level tasks (e.g., monitoring processes). However, 
while applying automation, operators and automated agents 
may perform similar operations with different purposes. 
These contradictory intentions may result in unexpected 
outcomes leading to serious system failures. Thus, while 
directing operators’ attention to necessary (automated) 
events, it is important to maintain appropriate system 
awareness and resolve the potential conflicts between a 
human’s intentions and system suggestions in a variety of 
diverse situations.  

Several solutions have been proposed to assist operators 
in managing sufficient cognitive resources in order to 
maintain adequate awareness and appropriate performance 
for multi-robot control tasks. Cummings et al. (2007) 
designed the schedule management aids that included 
timeline displays to show upcoming events, decision support 
tools to provide potential solutions, and task summary 
panels to recap mission statuses, along with color schemes 
to visualize a variety of tasks. Although the provided aids 
are beneficial in presenting the potential schedule 
bottlenecks and warning the operator of possible conflicts, 
the authors concluded that showing the potential problems 
without providing appropriate solutions is not more helpful 
than the baseline design (i.e., no visualizations). In addition, 
the vivid visualization aids of emerging problems may 
distract operator attention and interrupt the primary tasks.  

The interruption management approach is therefore 
proposed to lessen operators’ switching costs and allow the 
operators to have higher levels of SA during the tasks. 
Ratwani et al. (2007) used a tracking history list to remind 
the operators of the original tasks before the interruption. 
Chen et al. (2010) provided a changing history list to record 
what occurred during the interruption to recover the overall 
SA. However, providing support through a visual summary 
or a history of prior events may consume large amounts of 
cognitive resources to process the represented information, 
in which the (endless) list could lead operators to fix their 
attention on the changes to that list and neglect the 
important awareness of the ongoing tasks. Therefore, with 
respect to effectively managing cognitive resources, 
providing cognitive support to assist operators in achieving 
efficient attentional control is critical to enhancing HRI 
performance.  

2.2. Cognitive Issues in HRI 

Human interaction with multi-robot teams has been 
widely explored and raised many research questions. Prior 
research investigated the effects of robot team size on 
performance (i.e., metrics of tasks) and the influences of the 
robot’s LOA (i.e., metrics of robots). The metrics of tasks 
examine the number of robots that an operator can 
effectively control in various contexts (Lewis et al., 2010); 
whereas the metrics of robots identify the amount of effort 
that an operator has to invest in operating a single robot. 



These metrics provide thorough mechanisms to evaluate the 
quality of human multi-robot interaction and to measure the 
difficulties in a number of task contexts.  

However, the appropriate performance thresholds for a 
robot may vary widely depending on the task requirements. 
For example, a robot that paints street lines requires a higher 
degree of precision than a street-sweeping robot that collects 
rubbish from streets. As a consequence, robots typically 
need to be serviced on demand rather than sequentially, 
which introduces an additional complexity to human 
supervisory control of multi-robot teams. In addition, 
previous studies indicated that decision makers often over-
estimated their cognitive capabilities and failed to identify 
optimal scheduling strategies in controlling robot teams 
(Crandall et al., 2011; Sheridan and Tulga, 1978). The 
performance degradation therefore may not be simply 
caused by the size of robotic teams or the difficulty of 
assigned tasks but can be greatly affected by switching 
attention between tasks. To determine human strategies in 
multitasking environments, Cummings and Mitchell (2008) 
developed a neglect tolerance model that examined 
operators’ interactions with robots in a sequence of control 
episodes. The identified timeline intervals in their work 
were applied to a fan-out equation to predict the threshold 
for a human operator to control multi-robot teams.  

The attention allocation of multiple concurrent tasks 
such as in controlling multi-robot can be referred to as the 
cost of switching attention (Goodrich et al., 2005; Kiesel et 
al., 2010). To appropriately manage limited cognitive 
resources, task realization largely depends on a human’s 
capabilities of attention allocation (Crandall and Cummings, 
2007; Wickens and Hollands, 1999). In the research of 
Steinhauser and Hübner (2008), the cost of task switching is 
compared with repetition tasks and controlled processing 
tasks. Kiesel et al. (2010) further investigated the global 
switching costs of both repetition tasks and switching tasks 
as well as the local switching costs of simple repetition tasks. 
Switching tasks produce greater costs (i.e. more failed tasks 
and longer reaction time) and even lead to higher frequency 
of error rates (Steinhauser and Hübner, 2008). Therefore, 
providing aids to direct human’s attention to various 
conditions is important to help operators allocate attention to 
emergent tasks as well as to maintain efficient awareness of 
the original task (Altmann and Trafton, 2007; Goodrich et 
al., 2005). 

2.3. Cognitive assistance in HRI 
In time critical missions, it is particularly important that 

an operator can allocate attention effectively since the 
failure of managing a high-priority task in a timely manner 
not only lessens the effectiveness of the system, but also 
potentially results in disastrous consequences (Crandall et 
al., 2011). To mitigate the effect of operators’ cognitive 
limitations, applying cognitive assistance to manage 
attention resources is required, in which several directions 
were developed to improve operator attention allocation in 
HRI-related tasks.  

First, a thread of approaches focuses on visualizations 
that present the status, plans, and progress of robots in the 
system. This kind of visualization approach implicitly 
directs the operators to specific tasks and when to perform 
them. Cummings and Mitchell (2008) investigated timeline 
visualizations for unmanned aerial-vehicle (UAV) systems 
by presenting a schedule of anticipated events. Through the 
display, the operator can identify and select the task to 
perform and decide when to perform it. A subsequent study 
by Cummings et al. (2007) found that a single operator can 
control multiple UAVs with decision support tools, but the 
influences of the provided decision making tool on operator 
performance and SA cannot always be predicted.  

The second research thread proposes a warning system 
that detects potential critical events and sends an alert or 
signal explicitly to the operator. Lee et al. (2004) explored 
how the alert strategy and modality affected automobile 
collision-warning systems that mitigated distractions and 
directed a driver’s attention to the car ahead when it 
unexpectedly braked. They found that graded alerts led to a 
greater safety margin, resulting in fewer inappropriate 
responses to nuisance warnings and higher trust ratings to 
the system aids. Meanwhile, they suggested that the 
vibrating seat designed in their study as a haptic alert was 
perceived as less annoying and more appropriate, which 
suggested the graded haptic alerts offered a great 
opportunity to apply context awareness in a safety-critical 
domain. Donmez et al. (2009) investigated whether 
sonification (continuous auditory alerts) can inform the 
operator about the state of a monitored task and thereby 
support UAV control. Their results showed sonification can 
support operators in predicting states of monitored tasks but 
might also interfere with other ongoing tasks (i.e., too much 
distraction).   

Another direction works to explicitly provide 
suggestions or dictums for the operator to pay attention at a 
specific event at a given time. Crandall et al. (2011) 
modeled the operator’s attention in order to lead the 
human’s attention to the most effective event as well as the 
most needed event to perform the tasks. Their results 
showed that operators' attention allocation was effectively 
devoted to the primary goal (target detection) but was not as 
effective in the secondary mission, maintaining the robotic 
agents’ safety (Crandall et al., 2011). In other words, the 
operators were unable to effectively allocate their attention 
to the secondary missions in complex and time-critical 
situations. The rate of system presentation of elements in a 
(timeline) display varied from a few seconds to several 
minutes; however, human detection rates remained constant. 
Since concentrating attentional resources on different events 
is problematic, Eriksen and Yenh (1985) suggested that 
providing a cuing signal directed the concentration of 
attentional capacity into needed events. According to the 
previous studies from different directions of attention 
allocation, allowing robots to self-report abnormal states 
seems to be a fundamental approach of reducing the 
switching costs and enabling the operator to better prepare 



for the robots’ abnormalities. However, before applying the 
self-report aids, it is important to understand the effects of 
different types of cognitive mechanisms (such as the Open-
/SJF-queue methods in this study) and investigate the 
potential influences resulting from various types of 
cognitive assistance.  

2.4. Assessing cognitive assistance 
Examining the effectiveness of different attention 

allocation methods requires the development of proper 
performance assessments. Existing literature generally 
measures the task performance (Chien et al., 2012b), 
experienced workload (Lewis et al., 2010), or scheduling 
intervals (e.g., neglect tolerance model in Cummings and 
Mitchell (2008). For example, NASA Task Load Index 
(NASA-TLX; Hart and Staveland, 1988)  is a subjective 
multidimensional assessment instrument, in which 
participants report experienced workload with a task, an 
intelligent agent, a robotic system, etc. Additionally, the 
neglect tolerance model shows such operator interactions 
with an individual robot and the sequence of control 
episodes based on different time intervals. However, these 
approaches only identify the differences by analyzing the 
overall results (e.g., number of targets found, workload 
score, or interaction time), which is incapable of (1) 
identifying the fine-grained difference of interactions during 
the whole task completion course; and (2) revealing the 
human’s decision-making strategy and latent cognitive 
intentions. As understanding operators’ cognitive intentions 
and attentional strategies in multitasking environments is 
important, to further investigate these issues, a dedicated 
approach is needed to better understand complex human 
interactions.  

To permit a fine-grained understanding of the human 
interaction process, it is intuitive to think of modeling the 
implicit behavior sequence as a whole, which requires 
taking into account behavior-behavior relations. A Markov 
model can be applied in this situation as it accounts for both 
the current behavior and its predecessor. To the best of our 
knowledge, the Markov model has not yet been widely 
applied to analyze HRI systems, but it is frequently used in 
other domains. For example, using Markovian analysis, 
Chapman (1981) identified nine hidden search states in a 
behavioral pattern for web search behaviors. Chen and 
Cooper (2002) used the Markov model to analyze the 
patterns of Web-based library catalog browsing.  

However, the Markov approach only attempts to model 
and interpret two consecutive behaviors at a time, which 
cannot directly reflect latent human cognition patterns. To 
overcome this issue, previous studies (Boussemart and 
Cummings, 2008; Yue et al., 2014) tried to model human 
interactions at the hidden cognitive state level, at which 
HMM is often adopted. Yue et al. (2014) assumed that user 
behaviors are driven by hidden cognitive states instead of 
being directly influenced by the prior interactions. Therefore, 
by using HMM, researchers can bridge hidden cognitive 
states with observed actions in one unified framework.  

2.5. Hidden Markov Model (HMM)  
When an operator makes choices among alternatives, the 

observed behaviors simply represent the adopted actions; 
however, similar actions may result from a variety of 
intentions. Highly probable actions may not best represent 
the user’s intentions, whereas improbable events may 
convey more insights into operators’ true internal (cognitive) 
states. Conventional approaches evaluate interactions and 
performance through the accumulated results (e.g., number 
of targets found) that merely reflect the operators’ adopted 
behaviors, and may fail to examine intentions or cognitive 
strategies, which prompted us to perform a holistic 
evaluation on the intermediated behaviors.  

To better model human supervisory control processes, 
HMM (Baum et al., 2011) was applied to examine operators’ 
supervisory processes under different queuing approaches 
and system reliabilities to discover the variables influencing 
operators’ cognitive states as well as their behavioral 
patterns. HMM is a well-established machine learning 
method that has been shown to be useful in modeling human 
behaviors and examining unobservable human intentions in 
a wide range of application domains. For example, it has 
been used for modeling astronaut supervisory monitoring 
behaviors (Hayashi et al., 2005) and web search processes 
(Xie and Joo, 2010; Yue et al., 2014). However, little 
attention has been paid to using the HMM approach in the 
HRI field.  

HMM analysis provides advantages over conventional 
approaches by making the context surrounding human 
supervisory control explicit and aiding in the interpretation 
of unobservable human intentions. HMM assumes that there 
are several hidden states (namely, hidden user intentions) 
that govern the presence or absence of certain user 
interactions. While modeling user behaviors, HMM employs 
a two-layer model, in which the hidden state layer reflects 
the user’s cognitive states, while the observed action layer 
represents the sequence of user actions. The hidden layer 
can be inferred from observed interactions, using the Baum-
Welch algorithm (Baum et al., 2011).  

 

 
Figure 1.  An illustration of Hidden Markov Model. 

 
An illustration of HMM is provided in Figure 1. HMM 

assumes a sequence of user behaviors from A1 to AM, and a 
sequence of hidden states from H1 to HM. Here, M stands for 
the total number of human behaviors in one supervisory 
control process. Each behavior is supposed to be generated 
by one corresponding hidden state; however, different 
behaviors can be generated by the same hidden state with 
different probabilities. The hidden state sequence results in a 
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Markov Chain. A HMM model has several parameters, 
including the number of hidden states, the transition 
probabilities among any two hidden states, and the emission 
probability from one state to any of the behaviors. In this 
paper, we will follow this line of work by adopting the 
HMM for behavior sequence modeling and assessment in 
HRI domain. 

3. METHODS 
To examine human attention allocation in multi-robot 

teams, urban search and rescue (USAR) missions were used 
in our study along with different types of scheduling 
displays (Figure 2 and Figure 4). The USAR mission is 
composed of human operator(s) and robotic agents, where 
an operator has to perform supervisory control of multiple 
robots and interact with them to explore the environments 
and execute the search and rescue missions. The USAR 
robots are capable to perform some basic tasks, such as path 
plan or re-plan; however, due to the environmental 
complexity, the robots may be unable to sense and avoid all 
the potential risks (e.g., bump into a furniture and get 
tangled). An operator must monitor the robots’ statuses and 
interact with each as needed. 

An earlier study (Chien et al., 2011) found that HRI 
performance can be improved by appropriately directing the 
operator’s attention to robots in need of interaction. When 
robot self-reflection (Scheutz and Kramer, 2007) is used to 
identify a need for interaction with an operator, the resulting 
HRI forms a queuing system, in which the operator acts as a 
server to process the robot requests. To understand the 
effectiveness of different attention direction approaches, two 
types of queuing mechanisms were used to schedule 
operator attention in this paper:  

1) Open-queue: showing the entire queue with the 
current status for each robot (Figure 2). This queuing 
mechanism gives operators an overview of all robots’ states 
and provides color cues to differentiate the normal and 
abnormal status of robots along with the type of experienced 
failure. 

2) SJF-queue: showing a single robot’s request at a 
time based on the shortest-job-first discipline (Figure 4). 
This mechanism prioritizes the robot failure requests and 
displays the failure requiring the least effort to repair (i.e., 
the suggested robot can be repaired quickly). Although an 
operator could resolve more robots’ failures in a limited 
time through this approach, due to the nature of a forced-
queue scheme, the operator must follow the system 
suggestion to resolve the current prioritized request in order 
to proceed the next task, which provides little flexibility for 
the operator in handling the robots’ requests. 

Participants’ cognitive strategies and reliance behaviors 
may significantly depend on the system reliability. Since 
guaranteeing perfect automation is unrealistic, to examine 
the effects of system reliability, two levels of automation 
aids, high (90%) vs. low (50%), were simulated in addition 
to the two queuing approaches. For example, in the low 
reliability condition, half of the robots’ failures were 

misdiagnosed and were not reported to the operator. 
Additionally, HMM was adopted to further analyze the 
participants’ cognitive intentions and decision-making 
strategies among the experimental setups.  

3.1 Testbed Systems 
Urban search and rescue simulation (USARSim; Lewis 

et al., 2007), a high-fidelity robotic simulation, was used in 
our study to simulate USAR missions, featuring USAR 
robots and environments. USARSim supports human multi-
robot coordination by accurately rendering user interface 
elements and representing robot automation and its remote 
environment, which link the operator’s awareness with the 
robot’s behaviors. 

Multi-robot control system (MrCS; Carpin et al., 2007), a 
multi-robot control infrastructure, was also included in our 
study to provide a user interface to control and display 
multiple robots simulated in USARSim. MrCS provides 
tools to control robots in the simulation, displaying multiple 
camera and laser output, and supporting inter-robot 
communication. 

USARSim and MrCS were used in our study to simulate a 
USAR foraging task, in which an operator controlled multi-
robot teams to explore the environments, detect the presence 
of victims, and locate the victims on the map.  
 

 
Figure 2.  MrCS display in Open-queue: showing current conditions of all 

robots in the status panel (left-most window). 

Figure 2 shows the MrCS user interface in the Open-
queue condition. Thumbnails of robot camera feeds are 
shown on the top, which display each robot’s current view. 
Current locations and paths of the robots are shown on the 
Map window (middle) which allows operators to mark the 
position of victims. The red dots shown on the Map window 
are the victim marks that placed by a participant. A 
manually controlled panel in the bottom right allows 
teleoperation and camera pan and tilt. The status panel (left) 
for the Open-queue condition shows the current status for 
each robot and briefly summarizes any problems using 
differently colored indicators (Figure 3). 

 



 
Figure 3.  Status panel: Green color represents a robot is working 

appropriately; yellow color represents a robot is encountering problems; 
white color represents a robot is under manually controlled. 

Green tile indicates that the robot is in autonomous 
condition and functioning safely; yellow tile indicates an 
abnormal condition, such as being stuck at a corner. When a 
robot is manually controlled, its tile turns white. An operator 
has several ways to select a robot to control, from the status 
panel, camera thumbnail, or map window. Once a robot is 
selected, its camera view is also presented in the video of 
interest (middle right), which provides a larger display to 
help operators further examine the images.   
 

 
Figure 4.  MrCS display in SJF-queue: showing a single alarm, by 

following the first-in-first-out or shortest-job-first principle respectively, in 
the status panel (left-most window). 

Figure 4 shows the status window (left) for the SJF-queue 
condition in which only one robot in an abnormal state is 
presented at a time. Additional alarms can only be reviewed 
after the presenting problem is resolved. To avoid “clogging” 
the status window with an unrecoverable failure, operators 
have an option to use the “Dead button” (bottom left, Figure 
2 and Figure 4). Once switched off, the robot will stop 
reporting and no longer be scheduled.  

3.2. Primary Task: Victim Detection 
The main goal of this study is to help an operator to 

efficiently detect victims in the multitasking situations. 
Through the system, once an operator notices a victim 
appearing in a thumbnail, a complex sequence of actions for 
the victim detection task is initiated. The operator first 
identifies the robot detecting a victim and selects it in order 
to see the camera view in a larger window (video of interest 
in Figure 2). After the operator has successfully selected a 
robot, the next step is to locate it on the map by matching 
each robot’s unique border color or numerical label. Then, 
the operator must determine the orientation of the robot and 
its camera using cues such as prior direction of motion and 
matching surroundings between camera and map views. To 

gain this information, the operator may choose to 
teleoperate (i.e., manually control) the selected robot to 
locate it on the map and determine its orientation by 
observing the direction of movement. The operator must 
estimate the victim’s location on the map corresponding to 
an image of the victim in the camera view, and then place a 
red dot on the map window to represent a victim’s location 
(as the red dot shown in Figure 2 and Figure 4). If “another” 
victim is marked nearby, the operator must consider whether 
the current victim has already been recorded on the map to 
prevent missing or duplicate marks. In additional, a number 
of victims are evenly distributed in the environment and are 
simulated as paralyzed patients, in which the victims are 
unable to move and the robots can detect the victims all the 
time. 

3.3. Secondary Task: Failure Resolved  
The secondary task of this study is to resolve robot 

failures. An operator has to identify and select the failed 
robot, then teleoperate it to its next predefined waypoint 
where the automation can be resumed. To simulate a real 
robotic system, the simulated Pioneer P3-AT robot equips 
with the similar accessories and sensors as a real P3-AT 
robot, including laser sensor, color sensor, gyroscopic 
sensor, video camera, navigation package, global 
positioning system (GPS), and wireless Ethernet 
communications. These sensors are designed for exploring 
the environments, collecting surrounding data and detecting 
the robot’s current state. As the USAR tasks often occurred 
in the hazard situations, the design of the multiple sensors 
can not only overcome the tough environments but also 
compensate the potential system failures caused by the risky 
conditions. For example, while the video camera fails to 
provide the instant environmental information, the operator 
can refer to the GPS to regain the robot’s current location. 

TABLE I.THREE TYPES OF FAILURES OCCURRED IN THE STUDY 

Failure Description 

Teleoperation 
Lagged 

Robot executed operator's command with 
2~3 seconds delay 

Camera Sensor 
Failed 

Robot's video feed will be frozen right 
before the failure happened 

Map Viewer 
Failed 

Robot's position on the map viewer will be 
unable to update 

Recoverable failures were categorized into 3 major types 
(Table I), based on the data for commonly occurring on-
field repairable failures for the Pioneer P3-AT (Carlson et 
al., 2004). Two of these, camera and map failures, involve 
loss of display due to communication difficulties. 
Teleoperation lag is a control problem identified by 
Sheridan (1993) and determined to significantly degrade 
operator performance. 

 In this study, to resolve a robot’s failure, the operator 



needed to manually guide the robot from its current location 
to the next waypoint. Because each of the failure types 
imposed different difficulties for recovery, they took 
varying amounts of time to resolve. In order to estimate a 
typical resolution duration for different failures, a pretest 
using 10 participants was conducted. The resulting durations 
were adopted from our prior study (Chien et al., 2012a), in 
which the camera failure was the easiest to overcome and 
the loss of map indication proved to be the lengthiest failure 
to repair, with teleoperation delay falling in the middle. This 
ordering of estimated interaction times allowed failures to 
be presented to the operator in the SJF-queue following a 
shortest-job-first discipline, known to maximize throughput 
(Garey et al., 1976). In addition, to fulfill our experimental 
designs and satisfy the SJF methods, only one type of a 
failure will be injected to a robot at one time (e.g., 
teleoperation lagged and camera sensor failed will not be 
occurred to a robot simultaneously).    

3.4. Experimental Conditions  
The selected USAR environment was an office-like hall 

with many rooms full of obstacles such as chairs and desks. 
Victims were evenly distributed throughout the environment, 
and robots entered the environment from different locations.  

A total of six P3-AT robots were used in our study to 
perform the USAR task. Robots followed predefined paths 
of waypoints, similar to paths generated by an autonomous 
path planner (Chien et al., 2010) to explore the environment. 
All robots traveled paths of the same distance with ten 
visible victims and four system failures (i.e., robots’ failures 
not detected) along each designated path. Upon reaching a 
pre-programmed failure waypoint, the robot experienced a 
failure and sent a request to the queue. The operator then 
needed to assume manual control to teleoperate the robot 
out of its predicament and on to its next waypoint where 
communication could be reestablished with the lost camera 
feed or control, and autonomous exploration resumed.  

3.5. Participants and Procedure  
Forty-eight student participants were recruited from the 

University of Pittsburgh community, a group balanced in 
terms of gender (average age = 26.53). None had prior 
experience with robot control, although most were frequent 
computer users. A 2x2 between-subject design was applied 
to the study, in which each participant only experienced one 
of the queuing displays (Open-queue or SJF-queue) along 
with one of the reliability levels (high-90% or low-50%). 

Participants first read standard instructions about the 
experimental conditions. Participants were instructed that 
their primary task was to detect and mark as many victims 
as possible and their secondary task was to resolve robot 
failures. Additionally, they were also informed that a 
cognitive queue was used in managing the robot failure 
tasks, but that the queuing reliability was not perfectly 
reliable. In the following 15-minute training sessions, 
participants practiced control operations by resolving 
failures, three times for each type. Participants were 

encouraged to find and mark at least one victim in the 
training environment under the guidance of the study 
conductor. After the training session, participants began the 
15-minute experimental session controlling 6 robots in the 
assigned condition. Participants had been told the main task 
was to locate victims via detecting and that resolving robot 
failures was a secondary task. At the conclusion of the 
session, participants were asked to complete the NASA-
TLX workload survey (Hart and Staveland, 1988). 

3.6. Evaluation: User Behavior Analysis using Hidden 
Markov Model (HMM) 

To provide a deeper understanding of human interactions 
on different attentional scheduling conditions, this study 
examined the users’ decision-making processes in visual 
search and scrutinized their hidden intentions when 
performing USAR tasks. Latent user intentions were 
automatically detected through HMM, a two-layer 
(including hidden layer and observed layer) unsupervised 
machine learning model that assumed the observed layer 
was generated from the hidden layer. The hidden layer 
included a set of hidden states, whereas the observed layer 
consisted of observed user behaviors. Prior research 
suggested, with a small number of tweaks, HMM can 
quickly learn the users’ hidden states by using the Baum-
Welch algorithm (Baum et al., 2011).  

To learn the hidden states and corresponding parameters, 
we first need to specify the number of hidden states, which 
is a non-trivial task because of the lack of ground-truth. A 
complex model with a large number of hidden states may 
describe user interactions more accurately and specifically 
for one dataset, but it may be unable to predict other datasets 
under different task contexts. In HMM model selection, an 
information criterion such as Akaike information criterion 
(AIC; Akaike, 1974) or Bayesian information criterion (BIC; 
Mcquarrie, 1998) is adopted to avoid over-fitting. For this 
study, we chose to use the BIC score to determine the 
optimal number of hidden states for the HMM, because the 
BIC score accounts for the sample size (Yue et al., 2014). 
There are two important output matrices for a HMM: 
Emission Probability (also known as output probabilities) 
represents the distributions of the observed interactions from 
a specific state; Transition Probability shows the probability 
of transferring from one hidden state to another. Both of 
these measures were adopted in this paper.  

4. RESULTS 
Data were analyzed using a 2x2 between-subject ANOVA 

with scheduling mechanisms (Open-queue vs. SJF-queue) 
and reliability levels (high-90% vs. low-50%) to determine 
the differences in operators' performance. The following 
measurements (Table II) were adopted in our analysis:  

Two types of analyses were adopted: 1) the conventional 
performance analysis, and 2) the HMM analysis. The 
conventional performance analysis examined the overall 
performance in the primary and secondary tasks, and the 



TABLE II. MEASUREMENT SCALES AND ITS DEFINITION AND CONCEPT 
Measure Definition & Concept 

Conventional Performance Analysis 

Total Detected 
Victims 

The number of victims detected by the 
robots while exploring the environment, 
which results in an operator’s opportunity to 
detect the victim appearances 

Victim  
Finding Rates 

Number of correctively marked victims 
divided by Total detected victims, which 
indicates an operator’s performance in the 
primary task  

Victim  
Missing Rates 

Number of missing victims divided by Total 
detected victims, which represents an 
operator’s SA in the primary task 

Failures  
Resolved 

The amount of robots’ failures resolved by 
an operator, which shows an operator’s 
performance in the secondary task 

Area  
Explored 

The total distance travelled by the robots, 
where larger distance leads to better 
opportunities to find more victims 

Workload  
Survey 

An operator’s experienced workload is 
evaluated by the NASA-TLX workload 
survey, where task performance may decline 
when the operator perceives too high or too 
low workload 

Hidden Markov Model Analysis 

Emission 
Probability 

Counting the frequency that a specific 
interaction is generated by a cognitive state 

Transition 
Probability 

Computing the probability of transferring 
from one cognitive state to another 

subjective perceived workload. However, these 
examinations considered only the accumulated results (e.g., 
number of victims found) and failed to reveal an operator’s 
hidden cognitive intentions. The HMM analysis was 
therefore included in our analysis to further access the 
operator’s cognitive strategies via the emission and 
transition probabilities. A small portion of the preliminary 
results of the conventional performance analysis (number of 
victim detections and failures resolved, and workload scores) 
was presented in (Chien et al., 2013, 2012c); however, this 
paper adopted more precise measures (e.g., victim finding 
and missing rates) to determine the differences and applied 
the HMM approach to scrutinize the cognitive variances.  

4.1. Conventional Performance Analysis 

4.1.1. Victim Detection (Primary Task) 
Since the number of marked and unmarked victims are 

related to the existing of victim appearances, the number of 
detected victims was therefore first examined. The results 
showed a main effect for reliability conditions (F1,44=4.888, 
p=.032) and queue mechanisms (F1,44=5.426, p=.024), 
where more victims were detected under the high reliability 
and in the Open-queue condition (as shown in Figure 5). A 

pair-wise T-test showed that more victims were detected in 
the Open-queue method than in the SJF-queue condition 
(p=.041) under high reliability; as well as more victim 
targets were sensed in the high reliability than low reliability 
condition (p=.059) under the Open-queue approach.  

 
Figure 5.  Number of total detected victims.  

To better examine the relationship between the correct 
victim marks and total detected victims, an adjusted 
measure, victim finding rates, was used and computed by 
the number of correct victim marks divided by the total 
detected victims. Significantly higher victim finding rates 
were observed in the low reliability condition (F1,44=5.976, 
p=.019), as shown in Figure 6. A pair-wise T-test further 
revealed that, under the Open-queue condition, more victims 
were successfully marked in the low reliability than in high 
reliability condition (p=.051); however, the same effect was 
not observed in the SJF-queue approach.  

 
Figure 6.  Victim finding rates. 

An unmarked victim (i.e., missed target) can result from 
insufficient SA that should be addressed in the victim 
detecting process. An unmarked victim was defined as a 
victim appearing in a robot’s camera without being located 



by the operator. Another adjusted measure, victim missing 
rates, was calculated by the number of unmarked victims 
divided by the total detected victims. The results revealed a 
main effect for reliability conditions (F1,44=5.976, p=.019), 
in which higher victim missing rates were found under high 
reliability condition (as shown in Figure 7). The results of 
pair-wise T-test revealed that, in the Open-queue condition, 
more victims were missed in the high reliability than low 
reliability condition (p=.051). No statistical effect was found 
in the SJF-queue condition between the reliability levels.  

 
Figure 7.  Victim missing rates.  

4.1.2. Failure Resolved (Secondary Task) 
To examine the effects of unreliable automation, pre-

programmed system failures were injected along a robot’s 
route. When a robotic agent encountered the predesigned 
failures, the robot sent a request for further interaction and 
waited for the operator’s assistance. The results showed that 
significantly more failures were resolved under high 
reliability condition (F1,44=6.057, p=.018), as shown in 
Figure 8. A pair-wise T-test revealed that, under the Open-
queue approach, participants resolved more robot failures in 
higher reliability condition (p=.055); however, similar 
results were found in the SJF-queue regardless of the 
reliability levels.   

 
Figure 8.  Number of robot failures resolved. 

4.1.3. Area Explored  
Exploring larger areas could result in greater opportunities 

to detect more victims. The results showed marginal 
differences in the queue scheme (F1,44=2.844, p=.099), 
which suggested that when an operator interacted with the 
robotic agents via the Open-queue approach, the robots were 
able to travel longer distances; however, this effect was not 
observed in the lower reliability level (as shown in Figure 9).  

 
Figure 9.  Area explored. 

4.1.4. Interactive Behaviors between Queue and Camera 
The participants had multiple ways to interact with the 

robotic agents (i.e. selecting from the robot cameras, from 
the cognitive queuing assistant, or from the map window). 
The results revealed that the selection behaviors were 
significantly influenced by the queue schemes (F1,44=20.867, 
p<.001), in which the operators were inclined to interact 
with the robots through the provided cognitive queue in the 
Open-queue condition (as shown in Figure 10). Neither 
interactions nor reliability levels were found to be 
statistically significant.  

 
Figure 10.  Number of selections in the cognitive queue.  



As shown in Figure 11, the results showed significant 
differences in reliability conditions (F1,44=3.450, p=.070) 
and queuing displays (F1,44=4.307, p=.044), in which the 
results indicated that operators tended to interact with the 
robots via the camera panels under low reliability level and 
in the SJF-queue condition. A pair-wise T-test further 
identified decreased reliability in the Open-queue condition 
significantly increased the use of robot cameras (p=.043); 
however, this effect was not observed in the SJF-queue. 

 
Figure 11.  Number of selections in robot cameras.  

4.1.5. Perceived Workload  
The NASA-TLX instrument was used to evaluate an 

operator’s perceived workload in performing the USAR task. 
The results showed a significant interaction between the 
reliability levels and queue types (F1,44=3.879, p=.055), in 
which the highest workload was reported under high system 
reliability in the Open-queue condition, and the lowest 
workload score was reported under high reliability condition 
in the SJF-queue scheme (as shown in Figure 12). A pair-
wise T-test further revealed that under higher system 
reliability, operators perceived heavier workloads in the 
Open-queue than SJF-queue condition (p=.010). To 
investigate the influence related to the prescriptive aids in 
the SJF-queue scheme, the frustration scale was analyzed 
separately. The results showed that, under high reliability, 
higher frustration scores were reported in the Open-queue 
than SJF-queue situation (p=.062).   

The analysis above measured the participants’ overall 
performance while interacting with the cognitive queuing 
assistants to prioritize robots’ requests under various 
conditions. However, these measures failed to reveal the 
underlying factors affecting operators’ cognitive states and 
decision-making strategies while performing supervisory 
control over multiple robots in multitasking environments. 
The deficiency of cognitive resources has been a 
longstanding problem in multitasking conditions, in which 
the operators themselves may not be aware that insufficient 
resources increase the difficulty of reflecting on the problem. 
As a result, identifying the deficiency in provided cognitive 

queuing aids requires a fine-grained approach to further 
evaluate the interaction between human operators and 
cognitive assistants. Therefore, a machine learning approach, 
HMM, was adopted to examine the operators’ cognitive 
intentions.  

 
Figure 12.  Perceived Workload. 

4.2. Hidden Markov Model (HMM) Analysis 
A HMM requires a list of sequentially observed user 

interactions as input. The interactions used in this study 
were obtained through two test-bed systems, USARSim and 
MrCS, by recording users’ click actions. Based on users’ 
click actions, we sorted the logged actions into six 
categories, including status panel, camera, map, teleop, auto, 
and victim (details are included in Table III). An operator 
can select a robot to control from either its thumbnail 
(indicated as Camera in table III), its icon on the map 
window (Map), or its legend on the cognitive assistant 
(Queue). The victim detection task is completed by placing 
a mark on the map window (Victim). In the failure recovery 
task, an operator first selects a failed robot and manually 
controls the robot to the next predefined waypoint (Manual), 
then completes the task by returning the robot to the 
autonomous mode (Auto). 

TABLE III. USER INTERACTION CATEGORIZATION 

Interaction Description 

Queue 
A user checked the cognitive assistant (coined as 
status panel in Figure 2 and Figure 4) and 
selected a robot from the queue 

Camera A user clicked on a camera to select a robot  

Map A user selected a robot in the map window 

Manual A user manually controlled a robot to solve the 
robot failures or to locate a victim 

Auto A user clicked on the auto button to set a robot to 
the autonomous mode 

Victim A user added/deleted a victim mark on the map 



Probabilities and transitions among the retrieved hidden 
states reveal a great deal about an operator’s strategies and 
interactions with the system aids. For example, the 
probability of the use (or disuse) of the provided cognitive 
assistant (i.e., Queue) provides evidence for its role in 
influencing operators’ internal cognitive states, whereas the 
resulting transitions are likely to involve robot failures that 
have been resolved.  

4.2.1. Open-queue Model  
Four hidden states were identified in the high reliability 

condition and were labeled based on the emission 
probability, which represents the probability of the observed 
interactions from a cognitive state (Table IV, emission 
probabilities lower than 0.10 were omitted for legibility 
purposes). The first hidden state had a high probability (62%) 
of generating an interaction with Queue (defined in Table 
IV); we therefore named it HQ. Based on the same naming 
schema, we noted the rest of interactions as HC (Camera), 
HA (Auto), and HM (Manual). The results revealed that, in 
the Open-queue condition, operators tended to interact with 
robots through the camera or queue panels (HC and HQ 
states, respectively) rather than from the map window, 
leaving the Map state out of the model. Additionally, the 
Victim state was observed across HQ, HC, HA, and HM 
states, but never dominated in any of the conditions. 
Therefore, due to its low probability, the Victim state was 
not included in the model.  

TABLE IV. EMISSION PROBABILITIES IN OPEN-QUEUE under the High 
Reliability CONDITION 

OPEN 
HR QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HQ 0.62 0.12    0.17 

HC  0.75    0.18 

HA     0.79 0.20 

HM    0.94   

Transitions among these four hidden states were plotted in 
Figure 13 (transition probabilities lower than 0.10 were also 
omitted for legibility purposes). A pattern of high transition 
probability was observed in HQ→HM→HA, when an 
operator resolved a robot request from the queue (HQ) and 
manually drove the robot from the failure point to the next 
predefined waypoint (HM). Upon reaching the waypoint, 
the robot resumed the autonomous mode (HA); then the 
operator selected another robot from the queue to fulfill the 
robot’s requests (HA→HQ). 

 

Figure 13.  Transition probabilities of hidden states in Open-queue under 
the high reliability condition. 

Another four hidden states model was found in the low 
reliability condition (shown in Table V), which was similar 
to the retrieved structures in the high reliability condition. 
The HM, HA, HC, and HQ states significantly involved the 
interactions of Manual, Auto, Camera, and Queue, 
respectively.  

TABLE V. EMISSION PROBABILITIES IN OPEN-QUEUE under the Low 
Reliability CONDITION 

OPEN 
LR QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HM  0.05  0.79  0.14 

HA     0.72 0.23 

HC  0.84     

HQ 0.80  0.10    

The transition probabilities were visualized in Figure 14 
and the transition pattern (HQ→HM→HA) was again 
observed. However, while interacting with unreliable system 
aids, operators exhibited more complex behavioral patterns. 
When compared to the high reliability condition, decreasing 
system reliability generates more links (HM→HC: 21%; 
HA→HC: 30%) and transition pattern (HM→HA→HC) to 
the Camera state, which did not exist in the high reliability 
condition. 

To examine the potential differences in emission and 
transition probabilities between the high and low reliabilities 
in the Open-queue conditions, pair-wise T-tests were 
conducted. The results are summarized in Table VI. The 
comparisons in emission and transition probabilities 
indicated that operators relied more on the cameras than the 
provided cognitive queue under the low reliability condition. 



 
Figure 14.  Transition probabilities of hidden states in Open-queue under 

the low reliability condition. 

TABLE VI. T-TEST ANALYSIS IN EMISSION AND TRANSITION PROBABILITIES 
BETWEEN HIGH AND LOW RELIABILITY CONDITIONS IN OPEN-QUEUE 

Emission Probability 

States Post-hoc  

Queue (HQ) HR>LR, p=.050 

Camera (HC) LR>HR, p=.011 

Manual (HM) LR>HR, p=.035 

Transition Probability 

States Post-hoc  

HQ→HM HR>LR, p=.002 

HA→HQ HR>LR, p<.001 

HC→HM LR>HR, p<.001 

HA→HC LR>HR, p<.001 

HM→HC LR>HR, p<.001 

4.2.2. SJF-queue  
The emission probability matrices (table VII) revealed a 

four hidden states model in the SJF-queue under the high 
reliability condition. When compared to the SJF with Open 
conditions, the Queue state had low probability and was 
therefore excluded from the model. However, a Victim state 
was identified as a dominant state in the SJF condition, 
while it had little effect in the Open condition. The results 
revealed that operators were less likely to interact with the 
provided cognitive assistant (i.e., Queue) in the forced-
queue SJF condition.  

Two major patterns were observed in the transition 
probabilities in the SJF-queue condition (Figure 15), 
HM→HA→HC and HM→HV→HA→HC. These patterns 
indicated that operators allocated more attention to 
interacting with the cameras while performing the tasks. For 

TABLE VII. EMISSION PROBABILITIES IN SJF-QUEUE under the High 
Reliability condition  

SJF 
HR QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HC  0.79     

HM    0.88   

HV   0.11   0.87 

HA     0.93  

example, an operator may first manually drive the robot to 
(re)gain necessary awareness (HM) and then switch the 
robot back to autonomous mode (HA). From that point, the 
operator used the cameras (HC) to monitor overall statuses, 
including marking the location of victims and solving the 
robot failures. When a victim appeared on a robot camera, 
an operator manually controlled robots (HC→HM) to gain 
the victim’s location in order to increase the accuracy of a 
victim mark (HV). Once a mark had been placed, the robots 
were set to autonomous mode (HA) and the operator 
allocated her attention to the cameras (HC) to again perform 
supervisory control of the robot teams and maintain SA. If 
another victim appeared in a robot’s camera, the above 
procedures were repeated.   

 

 
Figure 15.  Transition probabilities of hidden states in SJF-queue under the 

high reliability condition. 

Identical models were retrieved from the emission 
probabilities matrices in SJF-queue under the low reliability 
condition. Table VIII includes emission distributions among 
the hidden states. As a result, the Map and Queue states 
were of little use and therefore are absent from the model.  

The identical transition patterns were found in the SJF-
queue under the low reliability condition (Figure 16). 
Further analyses (T-test) were conducted to identify the 
differences in emission and transition probabilities in SJF 
conditions with different reliability levels. However, no 
statistical difference was observed. 
 



TABLE VIII. EMISSION PROBABILITIES IN SJF-QUEUE under the Low 
Reliability CONDITION 

SJF 
LR QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HM    0.87   

HV  0.13    0.78 

HC  0.86     

HA     0.91  

 
Figure 16.  Transition probabilities of hidden states in SJF-queue under the 

low reliability condition. 

5. DISCUSSION 
Using limited cognitive resources effectively is critical in 

human multi-robot interaction, in which operators must 
efficiently allocate their attention to urgent events and 
simultaneously selectively filter out any unnecessary 
information (Kirlik, 1993). Prior studies (Chien et al., 2012b; 
Crandall et al., 2005; Kozima and Yano, 2004; Yan et al., 
2013) suggested that robot self-reflection can enhance the 
performance of human-robot teams, which allows operators 
to focus on important tasks rather than shifting attention to 
interact with robots sequentially in a round-robin fashion. 
This study further examines the effect of unreliable 
automation (high-90% vs. low-50%) in a human multi-robot 
control system along with two types of queuing principles 
(Open vs. SJF) for scheduling the operator’s attention. The 
Open-queue displays the current status for each robot so that 
an operator can choose which robots to assist in a self-paced 
fashion; while the SJF-queue only provides an alarm by 
following the shortest-job-first discipline to direct an 
operator to service the highest priority task. In terms of the 
reliability conditions, under low system reliability, only half 
of the robot failure requests are reported to the cognitive 
queuing aids and the other failures are excluded from the 
queue.  

5.1. System reliability in Queuing Aids  
Although the measures of the total number of detected 

victims favored the high reliability condition, victim missing 
rates were also increased under high reliability level. In 

other words, better performance in victim finding rates was 
found under the low system reliability. The result may be 
caused by an insufficient attention allocation strategy. Under 
the high system reliability, as most of the robots’ failures 
were accurately reported through the queuing aids, the 
operators were capable of maintaining adequate SA in 
robots’ statuses and efficiently allocating attention to fulfill 
robots’ requests. As a result, operators may spend more 
resources on assisting robots’ failures rather than devoting 
sufficient attention to monitoring victim appearances. This 
attentional strategy led to the robots having better chances to 
remain in the autonomous mode (rather than in the failed 
status and waiting for the operator’s assistance) to explore 
the environments and therefore have greater opportunities to 
detect potential victims; however, this attentional approach 
resulted in suboptimal performance in the primary task, 
locating and marking the victim appearances. Our results 
confirmed these assumptions. Participants resolved more 
robot failures and experienced higher victim missing rates in 
the high system reliability; whereas higher victim finding 
rates and fewer robot failures were accomplished under the 
low reliability condition. Since half of the robot failures 
were not detected under the low system reliability, 
participants could focus their attention on detecting the 
potential victims, which resulted in higher response rates for 
victim appearance (i.e., higher victim finding rates).  

In addition, the system’s reliability greatly influenced 
operators’ interactive behaviors with the robots. More 
camera selections were observed under low system 
reliability, indicating that the unreliable system led the 
operators to actively supervise robot statuses and system 
performance through the cameras, rather than passively 
received notifications from the provided cognitive queuing 
assistant. As the operators devoted more attentional 
resources to the cameras, the behavioral changes also 
increased opportunities for them to detect the victims’ 
appearances. The aforementioned results partially confirmed 
our first hypothesis, in which higher reliability levels 
increased the overall number of detected victims and area 
explored but did not necessarily contribute to better victim 
finding rates. 

5.2. Queuing mechanisms 
Significantly higher numbers of total detected victims and 

larger areas explored were found in the Open-queue than 
the SJF-queue condition. Our second hypothesis was based 
on Garey's (1976) findings that suggested the SJF scheme 
can effectively enhance task performance. However, our 
results showed that the SJF-queue scheme failed to 
outperform the Open-queue approach across all the 
experimental setups, which negated our second hypothesis. 
The Open-queue approach presented all robots’ conditions 
and used different colors to indicate robots’ current 
situations. The frequent updates of color cues seemed to 
drastically attract operators’ attention and encouraged them 
to respond robots’ requests in a timely manner. The situation 
was confirmed by the differences in the interactive 
behaviors between queuing aids and robot cameras. As 



shown in Figure 10 and Figure 11, in the SJF-queue 
approach, little attention was devoted to the provided 
cognitive assistant (i.e., queue) and operators tended to 
interact with robots through the cameras, whereas contrary 
results were found in the Open-queue condition (i.e., 
operators relied more on the queuing assistant in the Open-
queue). In the Open-queue condition, operators were not 
required to follow the system recommendation to interact 
with a specified robot request. However, under the self-
paced interactions, operators may devote additional 
resources to sort the high-priority robot requests, which 
reserved little attentional resources for monitoring victims’ 
appearances. Because of the ineffective scheduling strategy 
in the Open-queue condition, showing all robots statuses 
along with failure requests may distract an operator’s 
attention and lead the participant eager to solve the failed 
robots, instead of focusing on the victim detection task.  

5.3. System reliability x Queuing mechanisms 
As the insufficient attentional scheduling strategy was 

observed in the Open-queue scheme, increased system 
reliability led the operators to allocate even more attention 
to responding to the robots’ requests, which led to the poor 
performance in victim finding rates. Therefore, the effects of 
system reliability were not as expected. Since most of the 
robot failures were reported in the Open-queue condition 
under high reliability, the endless robots’ requests largely 
consumed operators’ attentional resources leading to lesser 
attention available for the victim detection tasks. In other 
words, with low system reliability in Open-queue, operators 
had more resources to focus on the primary task. These 
observations were supported as the higher number of failure 
resolved and increased victim missing rates were both under 
the high reliability condition in the Open-queue; however, 
the effects of system reliability were not found in the SJF-
queue. The differences in outcomes of victim 
finding/missing rates and failures resolved remained 
negligible between the reliability levels in the SJF 
conditions, which suggested that the SJF scheme can 
effectively help operators to achieve stable performance in 
the primary as well as secondary tasks regardless of the 
effects of unreliable system aids. Our third hypothesis 
surmised both queuing approaches would achieve better 
outcomes under the high system reliability. However, the 
measures of victim finding/missing rates favored the low 
reliability condition in the Open-queue, and little difference 
was observed between queuing reliability in the SJF-queue 
approach, which denied the third hypothesis. 

Although securing system reliability in the Open-queue 
condition enhanced the performance in the failures resolved 
task, it failed to contribute to a better outcome in the victim 
detection task. The adoption of the Open-queue scheduling 
approach allowed operators to freely choose a robot to serve. 
This is particularly helpful when an operator had difficulties 
in complying with unreliable system aids. As observed in 
the Open-queue, under the low reliability level, increasing 
numbers of robot selections were shifted from the queuing 
aids to robot cameras, which showed that the interactive 

behaviors in the Open-queue approach were adaptable when 
the system aids contributed less assistance.  

5.4. User perception of workload and frustration  
The use of cognitive assistance may decrease operators’ 

perceived workload in the supervisory control process. An 
interesting finding in the workload survey was that both the 
highest and lowest workload scores were reported in the 
high reliability conditions, where the Open-queue had the 
highest workload and the SJF-queue was judged as having 
the lowest. However, participants experienced similar 
workloads between the two queuing methods under low 
system reliability.  

Since the Open-queue approach showed all robots’ 
(normal and abnormal) conditions and continuously reported 
each robot’s status via the color aids, participants might feel 
more distracted by the changes in color cues. This effect 
was exacerbated with the endless updates under the high 
reliability condition, which resulted in a higher level of 
perceived workload. The SJF mechanism prioritized robot 
requests based on the task difficulty and clustered similar 
types of robot failures, which reduced the decision-making 
time and decreased the cognitive cost to switching between 
recovery procedures by sharing the similar cognitive 
strategies among various types of failures. In other words, 
operators may not only take advantage of decreasing the 
cost of regaining SA between robots’ requests, but also 
resolve more failures with no effort (e.g., camera failure), 
leading the differences of perceived workload. 

Additionally, a high frustration was reported in the Open-
queue condition, while the lowest score was reported in the 
SJF-queue method under the high reliability condition. The 
effects may be caused by reasons similar to those seen in the 
workload variances, where endless robot failure requests can 
generate a higher level of frustration. The above results 
partially confirmed the forth hypothesis, in which a lower 
workload and frustration were judged in the SJF-queue than 
the Open-queue conditions; however, this effect was only 
found under the high reliability condition, but it did not exist 
in the low reliability situation.  

5.5. Hidden Markov Model 
This paper applied HMM to examine human supervisory 

control processes in human multi-robot interactions. 
Although a similar four-state HMM structure was observed 
among the experimental conditions, the results reveled that 
HMM-based analysis was able to discover fundamental 
differences between the two experimental queuing 
mechanisms under two levels of system reliability, which 
were difficult to examine through the conventional 
performance analysis. For example, although the results of 
the primary task (victim finding/missing rates) and the 
secondary task (failures resolved) were similar in both the 
Open and SJF schemes, a Queue (HQ) state was observed in 
the Open-queue condition, whereas a Victim (HV) state was 
retrieved in the SJF-queue condition. The variances in 
cognitive states revealed the fundamental differences 
between the two queuing conditions, which suggested that 



HMM could provide deeper analysis and further 
differentiate users’ behavioral patterns as well as cognitive 
intentions.    

The notable differences between the retrieved cognitive 
states (HQ vs. HV) also reflected the transition probabilities 
and resulting patterns. While a Victim state was generated 
by the SJF method, this could be that operators devoted 
more cognitive resources to the victim detection tasks rather 
than accepting the suggestions from the queue. The identical 
HMM structure was therefore found in the SJF-queue 
condition in both high and low reliability levels. That 
suggests that the SJF scheme was more robust regardless of 
the system reliability conditions. In the Open-queue 
condition, the cognitive Queue (HQ) state and transition 
pattern (HQ→HM→HA) revealed that a considerable 
amount of attentional resources was devoted to the subtask 
of monitoring robots’ conditions and assisting robot failure 
requests, which enabled the robots to explore larger areas 
and detect more potential victims, leading better 
performance in the measure of total victims detected and 
area explored in the Open-queue.    

Allowing operators a self-initiated series of events 
increased the complexity of the supervisory control 
processes. As shown in the Open-queue method, most of the 
cognitive states included at least two interactions (except 
HM in high reliability). In addition, different transition 
patterns were identified between the reliability conditions in 
the Open-queue (Figure 13 & 14). The post-hoc 
comparisons (Table VI) further proved the differences, in 
which decreasing reliability led the operators to divert from 
the cognitive queue and allocate more attention to the robots’ 
cameras. As a result, the Queue (HQ) and Camera (HC) 
states were greatly influenced by the reliability conditions, 
in which fewer Queue transitions and more Camera 
transitions were found in the low reliability condition. In 
other words, with the decreased system reliability in the 
Open-queue, more transition patterns were linked to the 
Camera state. For example, in the Open-queue, a new 
transition pattern (HM→HA→HC) was only found under 
low reliability. This pattern was also found in the SJF-queue 
across the system reliability conditions. The transition 
differences revealed operators’ adaptive behaviors while 
interacting with the low reliability aids, and further 
explained the performance variances (e.g., victim 
finding/missing rates and number of failure resolved).  

As the identical HMM model was observed in the SJF 
condition and more complicated HMM structures were 
retrieved in the Open-queue method between the reliability 
levels, the results supported our last hypothesis, in which 
more sophisticated HMM patterns were found in the Open-
queue group. These findings suggested that HMM can 
provide a high-level abstraction of users’ intentions and 
identify the underlying behavioral patterns that are difficult 
to achieve through a conventional analysis. 

6. CONCLUSION 
Human multi-robot interaction is a complex process, in 

which human operators must continuously shift their 
attention between operating robotic agents and monitoring 
the system’s status among various tasks. Prior research 
concludes that human operators often fail to schedule their 
attention to the correct events on time, which leads to 
suboptimal task performance. To optimize attentional 
resources, this study investigated two different scheduling 
approaches under two levels of system reliabilities.  

The results confirmed that human attentional resources 
can be effectively scheduled and directed to emergent events 
rather than normal monitoring. The SJF-queue approach was 
capable of providing a balanced performance in both the 
primary and secondary tasks with a lower level of perceived 
workload, whereas the Open-queue scheme seemed less 
effective in the USAR context. However, it is unrealistic to 
decide which queuing mechanism is superior since different 
contexts require different cognitive assistance. For example, 
while monitoring multiple street-sweeping robots, the SJF-
queue can prioritize and suggest easier tasks (e.g., camera 
sensor failed) for operators; whereas when supervising a team 
of surveillance robots, the Open-queue can be a better 
choice to allow an operator to choose the tasks based on the 
context (e.g., daytime vs. nighttime). The results also 
suggested that simply increasing the system reliability may 
not necessarily contribute to better task performance. Thus, 
examining how human operators deploy their cognitive 
resources between cognitive assistance and task contexts 
will be critical to enhance the overall performance.  

The increased use of human-robot systems raises many 
societal challenges as well as research opportunities. As the 
modern robotic systems not only supplant the inherent task 
risks of human operators’ safety but also optimize the 
benefits of technological capabilities, the rapid growth in 
task complexity requires more flexible system designs to 
enhance competitiveness. However, under the multitasking 
conditions, human operators may have insufficient resources 
to monitor and interact with multi-agent teams 
simultaneously. The developed SJF queuing mechanism can 
efficiently schedule an operator’s limited cognitive 
resources to the needed events in a timely manner. In 
addition, investigating how human operators consume their 
attentional resources in the multitask settings is also critical 
to facilitate the processes of human-machine interaction. As 
the results demonstrated, the HMM analysis enables 
researchers to better understand an operator’s cognitive 
states and intentions as well as to predict potential behaviors 
by elaborating on strategies and biases that may be difficult 
to study through conventional approaches. The user 
interaction measured in the present HMM analysis was 
obtained from the logs of the clicked behaviors in our 
experimental system, with no customization of the context-
specific or system-specific interactive behaviors. Therefore, 
by following the standard process, the behavior 
categorization schemes and the procedures of performing a 
HMM are capable of being generalized to other HRI 
systems. Understanding the interactive process can provide 
researchers with useful suggestions to improve the design of 



cognitive assistance. We expect that the HMM approach 
could benefit researchers in further investigating users’ 
cognitive needs.  

Due to the experimental setup, this study only 
investigated the interaction between a single operator and 
multiple robot teams, in which only one type of the 
predesigned failures was injected to a robot at one time. 
Although the present research has been carefully conducted, 
it might always have some extreme situations in realistic 
that were excluded in this study (e.g., a complete failure of 
multiple sensors). In future works, we hope to examine a 
range of team structures (e.g., multiple operators controlling 
various number of intelligent agents) and system reliability 
(e.g., multiple sensor failures or false alarm prone vs. miss 
prone) combinations to develop a more robust cognitive 
assistant.  
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