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Abstract

The prevalence of e-learning systems and on-line courses has made educa-
tional material widely accessible to students of varying abilities and back-
grounds. There is thus a growing need to accommodate for individual dif-
ferences in e-learning systems. This paper presents an algorithm called Edu-
Rank for personalizing educational content to students that combines a col-
laborative filtering algorithm with voting methods. EduRank constructs a
difficulty ranking for each student by aggregating the rankings of similar
students using different aspects of their performance on common questions.
These aspects include grades, number of retries, and time spent solving ques-
tions. It infers a difficulty ranking directly over the questions for each stu-
dent, rather than ordering them according to the student’s predicted score.
The EduRank algorithm was tested on two data sets containing thousands
of students and a million records. It was able to outperform the state-of-
the-art ranking approaches as well as a domain expert. EduRank was used
by students in a classroom activity, where a prior model was incorporated to
predict the difficulty rankings of students with no prior history in the sys-
tem. It was shown to lead students to solve more difficult questions than an
ordering by a domain expert, without reducing their performance.
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1. Introduction

The prevalence of educational software in schools and the explosion of on-
line course opportunities have made educational content a common resource
that is accessible to student communities of varied backgrounds and learning
abilities. There is thus a growing need for personalizing educational content
to students in e-learning systems in a way that adapts to students’ individual
needs [1, 2, 3, 4, 5, 6].

Many educational applications present a sequence of questions to stu-
dents, ordered by increasing difficulty. The student is expected to first solve
easier questions in a given skill, and only after mastering the skill, move
to more difficult and challenging questions. As such, ordering questions by
difficulty is an important task in such applications.

This paper provides a novel approach for personalization of educational
content that directly creates a difficulty ranking over new questions allow-
ing us to order questions differently for different students. Our approach is
based on collaborative filtering [7], which is a commonly used technique in
recommendation systems for predicting the interests of a user by collecting
preferences from their online activities. The explosive growth of e-commerce
and online environments mean that users are becoming overloaded by op-
tions to consider and they may not have the time or knowledge to personally
evaluate these options. Recommender systems have proven to be a valuable
way for online users to cope with the information overload and have become
one of the most powerful and popular tools in electronic commerce [8].

This paper uses the collaborative filtering approach to generate a difficulty
ranking over a set of questions for a target student by aggregating the known
difficulty rankings over questions solved by other, similar students. The
similarity of other students to the target student is measured by their grades
on common past questions, the number of retries for each question, and other
features. Unlike other applications of collaborative filtering in education,
our approach directly generates a difficulty ranking over the test questions,
avoiding the need to predict the students’ performance directly on these
questions, which is prone to error. For example, in the KDD cup 2010, the
best performing grade prediction algorithms exhibited an error rate of about
28% [9]. We demonstrate the same problem over the datasets that we used
in our empirical analysis.

Our algorithm, called EduRank, weighs the contribution of these stu-
dents using measures from the information retrieval literature. It allows
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for partial overlap between the difficulty rankings of a neighboring student
and the target student, making it especially suitable for e-learning systems
where students differ on which questions they solve. The algorithm extends
a prior approach for ranking items in recommendation systems [10], which
was not evaluated on educational data, in two ways: First, by using voting
methods from social choice [11] to combine the difficulty rankings of simi-
lar students and produce a better difficulty ranking for the target student.
Second, EduRank penalizes disagreements in high positions in the difficulty
ranking more strongly than low positions, under the assumption that errors
made when ranking more difficult questions are more detrimental to students
than errors made when ranking easier questions. EduRank can support both
teachers and students by automatically tailoring problem sets or exams to
the abilities of individual students in the classroom, or by informing students
about topics which they need to strengthen.

We evaluated EduRank on two large data sets containing tens of thou-
sands of students and about a million records. We compared the performance
of EduRank to a variety of personalization methods from the literature, fo-
cusing on popular collaborative filtering approaches such as matrix factoriza-
tion and memory-based nearest neighbours. We also compared EduRank to
a (non-personalized) ranking created by a domain expert. EduRank was able
to outperform all other approaches when comparing the outputted difficulty
rankings to a gold standard.

EduRank was embedded in a real classroom and used to sequence math
questions to students by inferred order of difficulty. Its performance was
compared to an alternative sequencing approach that selected questions by
increasing order of difficulty, as determined by pedagogical experts. We
found that students using the EduRank algorithm solved harder questions
and spent more time in the system than the expert-based sequencing ap-
proach, without impeding their overall performance. This demonstrates the
potential of the EduRank approach to contribute to students’ learning in the
classroom.

The contributions of this paper are three-fold. First, it presents a novel
algorithm for personalization in e-learning according to the level of difficulty
by combining collaborative filtering with social choice. Second, it is shown
to outperform alternative ranking solutions from the literature on two real-
world data sets. Finally, it is shown to improve students’ performance in the
classroom when solving questions of different difficulty levels. This paper
extends prior work describing the EduRank algorithm [12] in several ways.
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First, we show there is low agreement in the difficulty rankings between stu-
dents over the same set of questions. This demonstrates that sequencing
questions to student in a “one-size-fits-all” approach cannot address these
individual differences among students. Second, we have extended the algo-
rithm to handle the “cold-start problem” in e-learning systems in which there
is a need to sequence material for new students with little or no history in
the system. Third, we deployed the algorithm in a real classroom, where it
was compared to an alternative sequencing approach that was designed by
pedagogical experts.

2. Background

In this section we briefly review relevant approaches and metrics in rec-
ommendation systems, social choice, and information retrieval.

2.1. Online Learning and Intelligent Tutoring Systems

Intelligent Tutoring Systems have been used for computer based instruc-
tion since the 1970s. Seeking to apply artificial intelligence techniques for
“intelligent” computer-based instruction, their goal is to engage students in
sustained reasoning activities and to interact with the student while under-
standing the student behavior and state. Graesser et. al [13] reviewed the
state of ITS and specifically the research on different classes of ITS. They
describe the computational mechanism of each type of ITS and the available
empirical assessments of the impact of these systems on learning gains.

In recent years we have seen a dramatic change in the education world
towards wide-adoption of online learning technologies (e-learning). The huge
amount of fine-grained data being collected, coupled with Big Data and
artificial-intelligence mechanisms, can be used to develop learning environ-
ments that can adapt to the needs of the individual learner. For example,
MOOCs have democratized the access to educational resources, making them
accessible to anyone with an internet connection [14, 15].

Due to the growing prevalence of online learning settings, how to sequence
educational content to students is an important research problem. Existing
work in this area focused on using graph search [16], neural networks [17],
and heuristic semantics [18] for learning path personalization, among other
methods.
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2.2. Recommendation Systems and Collaborative Filtering

Recommender systems actively help users in identifying items of interest.
The prediction of users’ ratings for items, and the identification of the top-N
relevant items to a user, are popular tasks in recommendation systems. For
example, a recommendation system for movies, may predict the rating that
a user may give to a newly released movie, or recommend a new movie for a
user given movies that the user liked in the past. A commonly used approach
for both tasks is collaborative filtering (CF), which uses data over other users,
such as their ratings, item preferences, or performance in order to compute
a recommendation for the active user.

There are two common collaborative filtering approaches [7]. In the
memory-based nearest neighbors approach, a similarity metric, such as the
Pearson correlation, is used to identify a set of neighboring users. The pre-
dicted rating for a target user and a given item can then be computed using
a weighted average of ratings of other users in the neighborhood. In the
model-based approach, a statistical model between users and items is cre-
ated from the input data. For example, the popular matrix factorization
approach [19, 20] computes a latent feature vector for each user and item,
such that the inner product of a user and item vectors is higher when the
item is more appropriate for the user.

While rating prediction and top-N recommendations are widely researched,
there are only a few attempts to use CF approaches to generate rankings.
Of these, most methods order items for target users according to their pre-
dicted ratings. In contrast, Liu et al. developed the EigenRank algorithm
[10] which is a CF approach that relies on the similarity between item rat-
ings of different users to directly compute the recommended ranking over
items. They show this method to outperform existing collaborative filtering
methods that are based on predicting users’ ratings. EigenRank computes
the similarity of users using the Kendall τ metric — a well known metric in
information retrieval for comparing two rankings which counts the number
of pairwise disagreements between the two lists — rather than by metrics
such as Pearson correlation which are popular in rating prediction. Matrix
factorization methods have also been suggested for ranking [21].

Using the ratings of similar users, EigenRank computes for each pair of
items in the query test set so-called potential scores for the possible orderings
of the pair. Afterward, EigenRank converts the pair-wise potentials into a
ranked list. EigenRank was applied to movie recommendation tasks, and was
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shown to order movies by ranking better than methods based on converting
rating predictions to a ranked list.

2.3. Social Choice

Social choice theory originated in economics and political science, and
is dealing with the design and formal analysis of methods for aggregating
preferences (or votes) of multiple agents [22]. Examples of such methods
include voting systems used to aggregate preferences of voters over a set of
alternatives to determine which alternative(s) wins the election, and systems
in which voters rank a complete set of alternatives using an ordinal scale.
One such approach which we use in this paper is Copeland’s method [23, 24]
ordering alternatives based on the number of pairwise defeats and victories
with other alternatives.

The Copeland score for an alternative qj is determined by taking the num-
ber of those alternatives that qj defeats and subtracting from this number
those alternatives that beat qj. A partial order over the items can then be
inferred from these scores. Two advantages of this method that make it es-
pecially amenable to e-learning systems with many users (e.g., students and
teachers), and large data sets, are that they are quick to compute and easy
to explain to users [25]. Pennock et al. [26] highlighted the relevance of so-
cial choice to CF, demonstrating that properties and limitations from Social
Choice theory apply in the context of CF. Following their work, we consider
weighted versions of voting mechanisms to CF algorithms and demonstrate
the effect of this approach to e-learning systems.

2.4. Metrics for Ranking Scoring

A common task in information retrieval is to order a list of results accord-
ing to their relevance to a given query [27]. Information retrieval methods
are typically evaluated by comparing their proposed ranking to that of a gold
standard, known as a reference ranking, which is provided by the user or by
a domain expert, or inferred from the data.

Before describing the comparison metrics and stating their relevance for e-
learning systems, we define the following notations: Given a set L of questions
of varying difficulties, let

(
L
2

)
denote the set of all non ordered pairs in L.

Let � be a partial order over the set of questions L. We define the reverse
order of � over L, denoted � as a partial order over L such that if qj � qk
then qk�qj. Let �1 and �2 be two partial orderings over a set of questions
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L, where �1 is the reference order and �2 is the system proposed order. We
define an agreement relation between the orderings �1 and �2 as follows:

• The orderings �1 and �2 agree on questions qj and qk if qj �1 qk and
qj �2 qk. That is, both �1 and �2 order the two questions in the same
order.

• The orderings �1 and �2 disagree on questions qj and qk if qj �1 qk
and qk �2 qj. That is, while in �1 qj is deemed more difficult than qk,
in �2 qj is considered to be easier than qk.

• The orderings �1 and �2 are compatible on questions qj and qk if qj �1

qk and neither qj �2 qk nor qk �2 qj. That is, �2 does not provide any
ordering of questions that are ordered in �1. This is not symetric — if
the reference order �1 does not provide any ordering over a pair, any
ordering provided by the system ordering �2 is acceptable.

Given a partial order � over questions Q, the restriction of � over L ⊆ Q
are all questions (qk, ql) such that qk � ql and qk, ql ∈ L. That is, we restrict
the order only to a subset of questions that are of interest to us, for example,
questions that a specific student has already answered.

2.4.1. Normalized Distance based Performance

The Normalized Distance based Performance Measure (NDPM) [28, 29]
is a commonly used metric for evaluating a proposed system ranking to a ref-
erence ranking. It differentiates between correct orderings of pairs, incorrect
orderings and ties. Formally, let δ�1,�2(qj, qk) be a distance function between
a reference ranking �1 and a proposed ranking �2 defined as follows:

δ�1,�2(qj, qk) =


0 if �1 and �2 agree on qjand qk,

1 if �1 and �2 are compatible on qjand qk,

2 if �1 and �2 disagree on qjand qk.

(1)

The total distance over all question pairs in L is defined as follows

β�1,�2(L) =
∑

(qj ,qk)∈(L
2)

δ�1,�2(qj, qk) (2)

Let m(�1) = arg max� β�1,�(L) be a normalization factor which is the
maximal distance that any ranking � can have from a reference ranking �1 .
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The NDPM score sND(L,�1,�2) comparing a proposed ranking of questions
�2 to a reference ranking �1 is defined as

sND(L,�1,�2) =
β�1,�2(L)

m(�1)
(3)

Intuitively, the NDPM measure will give a perfect score of 0 to difficulty
rankings over the set in L that completely agree with the reference ranking,
and a worst score of 1 to a ranking that completely disagrees with the refer-
ence ranking. If the proposed ranking does not contain a preference between
a pair of questions that are ranked in the reference ranking, it is penalized
by half as much as providing a contradicting preference.

The evaluated ranking is not penalized for containing preferences that
are not ordered in the reference ranking. This means that for any ques-
tion pair that were not ordered in the true difficulty ranking, any ordering
predicted by the ranking algorithm is acceptable. Not penalizing unordered
pairs is especially suitable for e-learning systems, as well as other collabo-
rative filtering applications, in which many questions for the target student
in L may not have been solved by other students and these questions may
remain unordered in the difficulty ranking.

2.4.2. AP Rank Correlation

A potential problem with the NDPM metric is that it does not consider
the location of disagreements in the reference ranking. In some cases it is
more important to appropriately order items that should appear closer to the
head of the ranked list, than items that are positioned near the bottom. For
example, when ranking movies, it may be more important to properly order
the movies that the user would enjoy, than to properly order the movies that
the user would not enjoy.

Similarly, we assume that the severity of errors in ranking questions de-
pends on their position in the ranked list. As we are interested in sequenc-
ing questions by order of difficulty, properly predicting how easy questions
should be ordered is not as important as avoiding the presentation of a dif-
ficult question too early, resulting in frustration and other negative effects
on the student learning process. Therefore, when evaluating a ranked list of
questions, it is often important to consider the position of the questions in
the ranked list. We would like to give different weights to errors depending
on their position in the list.
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To this end, we can use the AP correlation metric [30], which gives more
weight to errors over items that appear at higher positions in the reference
ranking. Formally, let �1 be the reference ranking and �2 be a proposed
ranking over a set of items. The AP measure compares the order between
each item in the proposed ranking �2 with all items that precede it with the
ranking in the reference ranking �1.

For each qk, qj ∈ L, k 6= j, let the set Zk(L,�2) denote all question pairs
(qk, qj) in L such that qj �2 qk. These are all the questions that are more
difficult to the student than question qk.

Zk(L,�2) = {(qj, qk) | ∀qj 6= qk s.t. qj �2 qk and qj, qk ∈ L} (4)

We define the indicator function IA(qj, qk,�1,�2) to equal 1 when �1 and
�2 agree on questions qj and qk.

Let Ak(L,�1,�2) be the normalized agreement score between �2 and the
reference ranking �1 for all questions qj such that qj �i qk.

Ak(L,�1,�2) =
1

k − 1

∑
(qj ,qk)∈Zk(L,�2)

IA(qj, qk,�1,�2) (5)

The AP score of a partial order �2 over L given partial order �1 is defined
as

sAP (L,�1,�2) =
1

|L| − 1

|L|∑
k=2

Ak(L,�1,�2) (6)

The sAP score gives a perfect score of 1 to systems where there is total
agreement between the system proposed difficulty ranking and the reference
ranking for every question pair above location i for all i ∈ {1, . . . , |L|}. The
worst score of 0 is given to systems were there is no agreement between the
two ranked lists.

3. Problem Definition and the EduRank Algorithm

The difficulty ranking problem is defined by a target student si, and a set
of questions Li, for which the algorithm must predict a difficulty ranking �̂i.
The predicted difficulty ranking �̂i is evaluated with respect to a difficulty
reference ranking �i over Li using a scoring function s(�̂i,�i, Li).

To solve this problem, we take a collaborative filtering approach, which
uses the difficulty rankings on Li of other students similar to si to construct a
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difficulty ranking over Li for student si. Specifically, the input to the problem
is:

1. A set of students S = {s1, s2, ..., sm}.
2. A set of questions Q = {q1, q2, ..., qn}.
3. For each student sj ∈ S, a partial difficulty ranking �j over a set of

questions Tj ⊆ Q.

4. For each student sj ∈ S, a subset of questions Lj ⊆ Q that must be
ordered.

For every student sj ∈ S we require two disjoint subsets Tj, Lj ∈ Q, where
the difficulty ranking of sj over Tj is known, and is a restriction of �j over
all the questions in Q. Intuitively, for a a target student si ∈ S, Ti represent
the set of questions that the target student si has already answered, while
Li is the set of questions for which a difficulty ranking needs to be predicted.
For example, Li may be a set of questions in a homework assignment, that
needs to be ordered for a particular student, while Ti may be the set of all
questions that the student has solved prior to this homework assignment.

The collaborative filtering task is to leverage the known rankings of all
students sj over Tj in order to compute the required difficulty ranking �̂i

over Li for student si.
We now present our EduRank algorithm for producing a personalized

difficulty ranking over a given set of questions Li for a target student si.
EduRank estimates how similar other students are to si, and then combines
the ranking of the similar students over Li to create a ranking for si. There
are two main procedures to the algorithm: computing the student similarity
metric, and creating a difficulty ranking based on the ranking of similar users.

For comparing the target student si to potential neighbors, we use the
sAP metric over questions in Ti. We prefer sAP to, e.g., NDPM, to encourage
greater similarity between students with high agreement in top positions
(more difficult questions) in their respective rankings.

For aggregating the different students’ rankings to create a difficulty rank-
ing for the target student, we use the Copeland method. We treat each ques-
tion as an alternative and look at the aggregated voting of neighbors based
on their similarity metric. In our aggregated voting calculation, alternative i
is preferred over alternative j if the similarity normalized number of wins of
i over j computed over all neighbors is higher than the similarity normalized
number of losses. The Copeland method then computes for each alternative
question the overall number of aggregated victories and aggregated defeats
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and ranks the alternatives accordingly. Let the win score γ(qk, ql,�) over
question pairs qk, ql given a difficulty ranking � as follows:

γ(qk, ql,�) =


1 if qk � ql

−1 if ql � qk

0 otherwise

(7)

The relative voting rv(qk, ql, S) of two questions qk, ql given the difficulty
rankings of a group of (neighboring) students S is

rv(qk, ql, S) = sign(
∑
j∈S\i

sAP (Ti,�i,�j) · γ(qk, ql,�j)) (8)

The Copeland score c(q, S, Li) of a question q given the difficulty rankings
of a set of students S and a subset of questions Li is

c(q, S, Li) =
∑

ql∈Li\q

rv(q, ql, S) (9)

The EduRank algorithm is shown in Figure 1. The input to the EduRank
algorithm is a set of students S = {s1, . . . , sn}, each with a known ranking
over a set of questions Tj, such that Q = T1 ∪ . . . ∪ Tn. In addition the
algorithm is given a target student si ∈ S, and a set of questions Li ⊆ Q
that needs to be ranked for si. The output of the algorithm is a ranking of
the questions in Li.

The algorithm computes a ranking score c(q) for each question q ∈ Li,
which is the Copeland score for that question, as defined above. The al-
gorithm returns a partial order for student si over the test set Li where
questions are ranked by decreasing Copeland score c(q).

Complexity: The bottleneck of the computational complexity of the algo-
rithm is computing the relative voting score in line 3 of Figure 1. As shown
in Equation 8 the relative voting of a question pair (qk, ql) for student si
combines the similarity score sAP with the ranking score γ. To compute the
similarity score between si and each student in S, all students in S are tra-
versed once, and for each student all pairs of questions in Li are traversed.
Thus, the similarity computation complexity is O(S · |Li|2). To compute the
ranking score all of si neighbors are traversed once, and for each neighbor
all question pairs are compared for each question location. This leads to a
ranking computation complexity bounded by O(S · |Li|4). This complexity is
polynomial in the number of questions in the test set of the target student.
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INPUT: Set of students S; Set of questions Q; For each student sj ∈ S, a
partial ranking �j over Tj ⊆ Q; Target student si ∈ S; Set of questions Li

to rank for si.
OUTPUT: a partial order �̂i over Li.

1: function EduRank(S,Q,�, i, Li)
2: for all q ∈ Li do
3: c(q) =

∑
ql∈Li\q rv(q, ql, S)

4: end for
5: �̂i ← {∀(qk, ql) ∈

(
Li

2

)
, qk�̂iql iff c(qk) > c(ql)}

6: return �̂i

7: end function

Figure 1: Psudeocode for the EduRank algorithm

4. Empirical Evaluation

We now describe a set of experiments comparing EduRank to other al-
gorithms on the difficulty ranking problem. We describe the datasets that
were used and our method for defining a difficulty ranking, then we discuss
the performance of the various algorithms.

4.1. Datasets

We conducted experiments on two real world educational datasets. The
first dataset was published in the KDD cup 2010 by the Pittsburgh Science
of Learning Center (PSLC) 1 [31]. We used the Algebra 1 dataset from the
competition, containing about 800,000 answering attempts by 575 students,
collected during 2005-2006. Data sparsity in this dataset (the amount of
empty cells in the student/question matrix) was 99.29%. We used the fol-
lowing features for each question: question ID, the number of retries needed
to solve the problem by the student, and the duration of time required by
the student to submit the answer. Other features in this dataset were not
used in the study. If the number of retries needed to solve the problem was
0, this means the students solved the problem on a first attempt (we refer to
this event as a correct first attempt).

The second dataset, which we call K12, is an unpublished dataset ob-
tained from an e-learning system installed in 120 schools and used by more

1https://pslcdatashop.web.cmu.edu/KDDCup
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than 10,000 students. The records in this dataset were anonymized and ap-
proved by the institutional review board of the Ben-Gurion university. This
dataset contains about 900,000 answering attempts in various topics includ-
ing mathematics, English as a second language, and social studies. The data
sparsity in this dataset was 98.24%. We used the following features for each
question: question ID, the answer provided by the student and the associated
grade for each attempt to solve the question. Unfortunately, this dataset does
not contain time stamps for each provided response, so we cannot compute
the duration of time until a question was answered.

4.2. Computing the Difficulty Ranking

EduRank assumes that each student has a personal difficulty ranking over
questions. In this section we show how we inferred this ranking from the
features in the dataset. An obvious candidate for the difficulty ranking are
the grades that the student got on each question. There are several reasons
however as to why grades are an insufficient measurement of difficulty. First,
in most questions in the PSLC dataset, the final grade is either 0 or 1.
There were a number of multiple choice questions (between 3 and 4 possible
answers) in the datasets, but the dichotomy between low and high grades was
also displayed here. To understand this dichotomy, note that students were
allowed to repeat the question until they succeeded. It is not surprising that
after several retries most students were able to identify the correct answer.
A zero grade for a question occurs most often when it was not attempted by
the student more than once.

Two alternative families of methods for estimating item difficulty are item
response theory (IRT) [32] and Bayesian knowledge tracing (BKT) [33]. The
IRT model assumes that many students have completed a test of dichotomous
items and assigns each student a proficiency parameter. It models variation
of student proficiency across different items. Bayesian Knowledge Tracing
captures dynamic changes in student capabilities over time. Both of these
models do not take into account the number of retries and response time or
reason about similarity between students.

We assumed that questions that were answered correctly on a first at-
tempt were easier for the student, while questions that required multiple
attempts were harder. We also assumed that questions that required more
solution time, as registered in the log, were more difficult to the students.
These two properties are not perfect indicators of question difficulty for the
student. Indeed, it may occur in multiple choice questions that a student
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guessed the correct answer on the first attempt, even though the question
was quite difficult. We also do not account for gaming the system strategies
that have been modeled in past Interactive Learning Environments work [34].
It may also be the case that the length of time reported by the system rep-
resents idle time for the student who was not even interacting with the e-
learning software, or simply taking a break. However, as we demonstrate
later in this section, using grades, number of attempts and response times
provide a reasonable approach towards ranking questions.

We describe the following method for identifying the difficulty ranking.
We begin by ranking questions by grades. In the PSLC dataset we use
“correct first attempt” for this, and in the K12 dataset we use the grade that
the student got on her first attempt. After ranking by grade, we break ties
by using the number of attempts that the student took before submitting
the correct answer. When the student did not achieve a correct answer we
use all the attempts that the student has made. Then, we break ties again
on the PSLC dataset using the elapsed time.

To demonstrate that, in general, these properties provide a reasonable
estimation for the difficulty of the question, Figure 2 shows a distribution
over students’ grades (top) and positions in the inferred difficulty ranking
which considered grades and retries (bottom). Note that the different values
for grades represent answers to multiple select questions. For example, a
grade of 0.9 will be achieved when 9/10 correct answers were selected by the
student. As can be clearly seen from the figure, there are substantially more
classes in the difficulty ranking when adding additional features.

To motivate the EduRank approach, we show that students exhibited
a wide degree of variance over difficulty rankings when solving questions.
We chose four math topics at random from the dataset, and compared the
rankings of all students that solved all questions for each topic using the AP
metric defined in Equation 6. In each topic, the AP metric is calculated by
choosing one student at random and comparing all other students’ rankings to
this student ranking. Table 1 presents the topics tested in the K12 datasets.
For each such topic we give the topic ID, the number of questions belonging
to this topic and the calculated AP metric. As can be seen from the rightmost
column in the table, all AP values are significantly lower than 1, which is
the value for perfect similarity between difficulty rankings. This means that
difficulty rankings with other students are not well correlated. It supports the
approach to sequence questions to students in a personal manner as opposed
to a “one size fits all” approach.
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(a) Grades

(b) Difficulty Ranking

Figure 2: Distribution over grades and difficulty ranking positions for K12 dataset

15



Topic Num. AP
questions

fractions 33 0.31
powers 48 0.36

rectangles 17 0.51
circles 61 0.34

Table 1: AP metric measuring students’ difficulty rankings for questions in different topics

4.3. Methods

We used the two ranking scoring metrics that we described earlier —
NDPM and AP. Many papers in information retrieval also report NDCG,
which is a ranking metric for datasets where each item has a score, and thus
measures the difference in scores when ranking errors occur. In our case,
where we do not have meaningful scores, only pure rankings, NDCG is less
appropriate [35].

We compared the performance of a number of alternative methods to
EduRank. First, we compared to the original EigenRank algorithm, which
differs from EduRank in that the similarity metric between users and aggre-
gation method is only based on grades. In the K12 dataset we also compared
to the default ranking method provided already used in the system. This
method (denoted CER) ranks questions according to increasing order of dif-
ficulty as determined by the domain experts. Second, we used two popular
collaborative filtering methods that rank by decreasing predicted scores —
a memory-based user-user KNN method using the Pearson correlation (de-
noted UBCF for user based collaborative filtering), and a matrix factorization
(MF) method using SVD (denoted SVD) to compute latent factors of items
and users [7, 36, 37]. In both cases we used the Mahout2 implementation of
the algorithms [38]. Finally, we implemented an approach that assigns ques-
tions based on a students’ average score over topics. This method follows
works that consider the student’s mastery level of a topic when predicting
performance [39]. We computed the average score that the student got for
all questions that belong to the same topic. We then rank the topics by
decreasing average score, and rank the questions by the topic they belong
to. We denote this method the topic-based ranker (TBR). This measure was

2https://mahout.apache.org/
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used only on the K12 dataset where we have available topic data.
The collaborative filtering algorithms described above all require an item

score as an input. We computed scores as follows: We began with the grade
(first attempt) that the user got on a question, normalized to the [0 − 1]
range. For each retry of the question we reduced this grade by 0.2 points in
accordance with guidelines from the K12 educational expert team. For the
PSLC dataset, we reduced the (normalized) elapsed time solving the question
(of each attempt) from the score. The elapsed time is normalized to the scale
[0− 1]. In both cases, any negative score is converted to zero.

4.4. Results

We ran the following experiment— for each student si we split her an-
swered questions into two sets of equal size: a training set Ti, which is given
as input to the various algorithms, and a test set Li that the algorithms
must rank. The split is performed according to the time stamp of the an-
swers. Earier answers are in the training set, while later answers are in the
test set. We then compare the result of each algorithm to the difficulty rank-
ing explained above using NDPM and AP. The AP metric is also used to
measure similarity between neighboring students in EduRank. We note that
(1) it is standard practice in ML to use the same metric in the algorithm
and the evaluation, and (2) the AP measure was computed over the training
set in the algorithm, but over the test set in the evaluation. Notice that
for NDPM, the lower the score, the better the ranking, while for AP, better
rankings result in higher scores. For all approaches, we ordered the questions
in Li by decreasing order of difficulty (harder questions were ranked higher
in the list).

As can be seen in Figure 3, EduRank is better than all other approaches
on both datasets using both metrics. The results are statistically signifi-
cant (p < 0.05, paired t-test between EduRank and the leading competing
algorithm).

Looking at the other collaborative filtering methods we can see that
EigenRank and UBCF present comparable performance. This is not very
surprising, because these 2 methods do not take as input a ranking, but an
item score, as we explain above. As the score is only a proxy to the actual
ranking, it is no surprise that these algorithms do not do as well in predicting
the true difficulty ranking.

Of the non-CF methods, TBR does relatively well. Our intuition is that
identifying the student mastery level in topics is an important factor in es-
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(a) AP score (higher is better)

(b) NDPM score (lower is better)

Figure 3: Performance Comparison (error bars represent the 95% confidence interval)
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tablishing the difficulty of a question for that particular student. It is hence
interesting to investigate in future research how EduRank can also benefit
from the information encapsulated in topics. Nonetheless TBR can be too
limiting in practice, because when a teacher wants to create a practice as-
signment in a particular topic, perhaps one that the student has not yet
mastered, then TBR cannot be used to rank questions within that topic.

The method that performed the worst is the content expert ranking
(CER). This is especially interesting as this is the only information that is
currently available to teachers using the K12 e-learning system for deciding
on the difficulty of questions. There can be two sources to this sub-optimal
performance. First, it may be that it is too hard, even for experts, to estimate
the difficulty of a question for students. Second, this may be an evidence that
personalizing the order of questions for a particular student is important for
this application.

Producing personalized difficulty rankings for students may be needed
many times when used in a classroom, both for multiple students, and for
different sessions of the same student. As such, it is critical to choose algo-
rithms that can operate within reasonable time constraints. Table 3 shows
the execution time of each algorithm for building the models and comput-
ing the recommended rankings. The dataset used is the K12 dataset with
918,792 answered questions. We report the overall time for computing a sin-
gle difficulty ranking for all students and per student. Our experiments were
conducted on a Mac Book Air 1.7GHz Intel Core i7 with 8GB RAM.

CER is obviously the fastest algorithm, as it requires no computation,
only the retrieval of the fixed question difficulty level from the database.
The memory-based algorithms are next, with UBCF being the fastest among
the remaining algorithms, followed by EduRank and EigenRank. The SVD
algorithm, requiring the construction of the matrix factorization model is the
slowest here. That being said, as the number of students and questions grow,
model-based approaches are expected to work faster than memory-based. In
that case, we can move some computations to an initialization phase. For
example, we can compute the similarity between students offline, and cache
the top k nearest neighbors, reducing the online computation time only to
the aggregation of the rankings of similar users.

4.5. Case Study

To demonstrate the behaviour of the various algorithms, we present the
results of the algorithms for a particular student from the K12 dataset. Ta-
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Gold Standard EduRank Ranking EigenRank Ranking UBCF Ranking SVD Ranking

KC True Rank KC True Rank KC True Rank KC True Rank KC True Rank
Order of Operations, choose options 1 Order of Operations, choose options 1 Order of Operations, Brackets 7 Multiply, Equals 54 12 Multiply, Big Numbers 4
Letters Order 1 Natural Numbers, Verbal Claims 3 Natural numbers, In between 12 Multiply, Choose Between 2 12 Multiply, Bigger than 10
Multiply, Equals 40 2 Add, Sub, Equals 30 10 Div, No Mod, Mod 1 11 Multiply, Bigger than 10 Order of Operations, Brackets 5
Natural Numbers, Verbal Claims 3 Letters Order 1 Div, Div and Mod 11 Div, No Mod, Mod 1 11 Order of Operations, Equals 5 6
Multiply, Big Numbers 4 Add, Sub, Verbal Claims 7 Multiply, Big Numbers 7 Div, No Mod, Mod 2 12 Natural Numbers, Verbal Claims 3
Order of Operations, Brackets 5 Order of Operations, Equals 5 6 Div, Exists? 8 Multiply, Big Numbers 4 Add, Sub, Equals 30 10
Zero, Equals Zero 5 Order of Operations, Brackets 5 Multiply, Equals 40 2 Natural Numbers, Verbal Claims 3 Order of Operations, Brackets 7
Order of Operations, Equals 5 6 Zero, Equals Zero 5 Div, Mod 2 12 Order of Operations, choose options 1 Div, Mod 2 12
Order of Operations, Brackets 7 Multiply, Big Numbers 4 Multiply, Choose between 2 12 Order of Operations, Equals 5 6 Add, Sub, Verbal Claims 7
Add, Sub, Verbal Claims 7 Div, Mod 2 12 Order of Operations, Which is bigger 11 Multiply, Choose between 2 12 Order of Operations, choose options 1
Multiply, Big Numbers 7 Div, No Mod, Mod 2 12 Order of Operations, Brackets 5 Multiply, Choose between 2 12 Multiply, Equals 54 12
Div, Exists? 8 Order of Operations, Brackets 7 Div, Mod 1 11 Order of Operations, Brackets 7 Div, Exists? 12
Substruction 9 Order of Operations, Which is bigger 11 Order of Operations, only %, / 11 Order of Operations, Brackets 5 Div, No Mod, Mod 2 12
Multiply, Bigger than 10 Order of Operations, only %, / 11 Polygon, Parallel sides 10 Letters Order 1 Multiply, Big Numbers 7
Add, Sub, Equals 30 10 Multiply, Big Numbers 7 Letters Order 1 Rectangle, Identify 12 Natural numbers, In between 12
Polygon, Parallel sides 10 Div, Exists? 12 Order of Operations, Equals 5 6 Multiply, Big Numbers 7 Zero, Equals Zero 5
Order of Operations, only +, - 11 Substruction 9 Substruction 9 Polygon, Identify 12 Order of Operations, Which is bigger 11
Order of Operations, only %, / 11 Polygon, Parallel sides 10 Add, Sub, Verbal Claims 7 Zero, Equals Zero 5 Div, Div and Mod 11
Order of Operations, Which is bigger 11 Order of Operations, only +, - 11 Multiply, Big Numbers 4 Order of Operations, only +, - 11 Letters Order 1
Div, Mod 1 11 Div, No Mod, Mod 1 11 Natural Numbers, Verbal Claims 3 Add, Sub, Equals 30 10 Angles, Find Bigger 12
Div, Div and Mod 11 Multiply, Bigger than 10 Add, Sub, Equals 30 10 Polygon, Parallel sides 10 Multiply, Choose between 2 12
Div, No Mod, Mod 1 11 Div, Exists? 8 Order of Operations, choose options 1 Add, Sub, Verbal Claims 7 Div, Mod 1 11
Natural numbers, In between 12 Div, Mod 1 11 Order of Operations, only +, - 11 Div, Mod 1 11 Multiply, Choose between 2 12
Multiply, Equals 54 12 Multiply, Equals 40 2 Zero, Equals Zero 5 Div, Mod 2 12 Div, No Mod, Mod 1 11
Multiply, Choose between 2 12 Div, Div and Mod 11 Div, No Mod, Mod 2 12 Div, Div and Mod 11 Polygon, Parallel sides 10
Multiply, Choose between 2 12 Multiply, Choose between 2 12 Div, Exists? 12 Order of Operations, only %, / 11 Div, Exists? 8
Div, Mod 2 12 Multiply, Choose Between 2 12 Multiply, Bigger than 10 Order of Operations, Which is bigger 11 Order of Operations, only %, / 11
Div, Exists? 12 Rectangle, Identify 12 Multiply, Choose Between 2 12 Div, Exists? 8 Substruction 9
Div, No Mod, Mod 2 12 Polygon, Identify 12 Rectangle, Identify 12 Div, Exists? 12 Order of Operations, only +, - 11
Angles, Find Bigger 12 Multiply, Equals 54 12 Multiply, Equals 54 12 Natural numbers, In between 12 Multiply, Equals 40 2
Angles, Find Bigger 12 Angles, Find Bigger 12 Angles, Find Bigger 12 Substruction 9 Angles, Find Bigger 12
Rectangle, Identify 12 Angles, Find Bigger 12 Angles, Find Bigger 12 Multiply, Equals 40 2 Multiply, Choose Between 2 12
Polygon, Identify 12 Natural numbers, In between 12 Multiply, Choose between 2 12 Angles, Find Bigger 12 Polygon, Identify 12
Multiply, Choose Between 2 12 Multiply, Choose between 2 12 Polygon, Identify 12 Angles, Find Bigger 12 Rectangle, Identify 12

Table 2: Rankings outputted by the different algorithms for a sample target student

Algorithm Run Time (Sec) Time per Student (millisec)
CER 197.6 19.2
UBCF 445.2 43.2
TBR 625.2 60.6
EduRank 631.8 61.2
EigenRank 795.9 77.2
SVD 1490 144.4

Table 3: Execution Time

ble 2 presents a list of 34 test questions for this student and the rankings
that were outputted by the different algorithms, in decreasing order of dif-
ficulty. The 15 most difficult questions appear in bold. Each question is
denoted by (1) its knowledge component (KC) which was determined by a
domain expert (this information was not in the database and the algorithms
did not use it), and (2) the position of the question in the true difficulty
ranking - the gold standard - of the student (as computed by the grade of
the student and her number of retries when solving the question). This gold
standard was used by the NDPM and AP metrics as a reference ranking to
judge the performance of all algorithms. As shown in the table, question
types involving “multiplication of big numbers” and “order of operations”
appear prominently in the 15-most difficulty list, while questions in topics of
geometry (“rectangles”, “polygons”) were easier for the student.

The other columns in the table show the suggested rankings by the vari-
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ous algorithms. For each algorithm, we present the ranking location of each
question, and the true ranking of this question as obtained from the gold
standard. As can be seen from the results, for this particular student, the
UBCF algorithm performed poorly, placing many easy questions for the stu-
dent at high positions in the ranking (e.g., “Multiply Eq 54” which appears
at the top of the list but is ranked 12th in the gold standard, and “div mod”
appears in 4th position in the list and ranked 11th in the gold standard). The
EigenRank and SVD algorithms demonstrated better results, but still failed
to place the most difficult question for the student (e.g., order of operations)
at the top of the ranked list. Only the EduRank algorithm was able to place
the questions with “multiplication of big numbers” and “order of operation”
type problems in the top 15 list, providing the best personalized difficulty
ranking for this student.

4.6. Addressing the Cold Start Problem

In a real classroom new students join the system on an ongoing basis.
At the onset, the system has little to no information on these students.
This is known as the cold start problem in the recommendation systems
literature [40]. To be able to use EduRank in a real classroom, we need to
overcome situations in which there are not enough questions completed by a
target student to search for similarities in the data set.

To tackle this problem, we incorporated a prior score pr(qk) for every
question qk in the training set by averaging over the scores of all students
that solved this question in the training set. The difference between the
prior score for a question pair (qk, ql) can be used as a proxy for the pair-
wise ranking between these two questions. We use a linear combination of
the prior score and the student similarity score. To this end we replace
Equation 8 used by the EduRank algorithm to compute the relative voting
rv(qk, ql, S) between the two questions qk and ql in the test set S given a
training set Ti of questions for the target student i by the following equation:

rv(qk, ql, S) =αk,l ∗ sign(
∑
j∈S\i

sAP (Ti,�i,�j) · γ(qk, ql,�j))+

(1.0− αk,l) ∗ sign(pr(qk)− pr(ql))
(10)

The value of αk,l is set to the number of available rankings of (qk, ql) in
the training set divided by the neighboring size used by the algorithm when
selecting similar students. That is, as the number of students that have solved
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Experiment Training Data Testing Data % New Students
1 Week 1 Week 41 99%
2 Weeks 1-2 Week 41 78%
3 Weeks 1-3 Week 41 71%
4 Weeks 1-4 Week 41 66%
5 Weeks 1-8 Week 41 43%
6 Weeks 1-40 Week 41 6%

Table 4: Training and Testing data for Cold-Start Experiments

both qk and ql increases, the weight of the prior is reduced. Hence, as the
amount of ranking information that is available in the training set increases,
we rely more on this information and less on the computed priors. We note
that our solution handles the cold start problem for new students, but not
the cold start problem for new questions that are added to the system.

We study the effect of the amount of data collected about students on the
prediction performance of EduRank, and the extended algorithm for handling
new students, denoted EduRank+Prior. Table 4 demonstrates the training
and testing methodology. We varied the training set to consist of the first
week, first two weeks, first three weeks, first four weeks, first eight weeks and
first 40 weeks of records in the system. The test set consists of the 41st week.
The table also denotes the percentage of new students in the testing set for
the corresponding training set. This setup was chosen to reflect the the use
of the EduRank system in a real classroom, in which data that is supplied
to the training algorithm from each student increases gradually.

Figure 4 shows the results of these experiments, comparing between the
algorithm without the prior component and the algorithm with the prior
component. We vary the amount of weeks worth of data in the training
set, and also show the percentage of students in the test set not seen in
the training set. The performance of both models are identical with only
1 week of training data. Then, the EduRank+Prior algorithm outperforms
the basic EduRank algorithm, showing significant difference as late as the
8th week of training. As more weeks of training data are available, the ratio
of new students drop, and EduRank increases the weight of the similarity
score over the prior. When both algorithms gain substantial amount of 40
weeks of record data, their performance is identical as it was in week 1 (no
statistically significant difference).

To show the benefit of using the EduRank+Prior algorithm when dealing
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Figure 4: AP for EduRank algorithm with and without prior component

with new students, we evaluate the algorithm performance on specific stu-
dents with low training data. For this test we randomly chose 50 students
and removed most of their training data when predicting their test rank-
ing. Specifically, in each such prediction step, 90% of training data of each
target student was removed, while the training data of other students was
retained and an overall prediction score for the target student was computed.
We then compared the performance of EduRank with and without the prior
component on this data set, averaging the results across all 50 random stu-
dents. Our results indicate that the EduRank+Prior algorithm obtained an
average AUC score of 0.72 while the EduRank algorithm (without the prior
component) obtained an average AUC score of 0.64 for the target students.

Both of the above results demonstrate that using a prior-based approach
is indeed beneficial for EduRank in cold start scenarios which are to be
expected in real world situations.

5. Deployment in the Classroom

The previous section evaluated the EduRank approach on offline data.
We now report on the deployment of EduRank in pedagogical context. The
experiment was conducted during a summer school mathematics session in
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Israel, from July 21, 2015 to August 15, 2015.3

The summer school is an elective school for strengthening Math and En-
glish as a second language capabilities conducted during the summer holiday.
The school is run by professional Math and English teachers. Between classes
the students were requested to practice using the K12 system, but this was
not mandatory. The teachers and students were unaware of the experiment.

5.1. Methods

We compared two methods for sequencing questions to students. The first
approach used the EduRank+Prior algorithm to order questions for students
by increasing order of difficulty, as inferred by the algorithm. The second
sequencing approach, denoted ASC, was based on pedagogical experts that
created predetermined difficulty level for each of the questions in the K12 data
set ranging from 1 (easiest) to 5 (most difficulty). The sequencing strategy
determined by the pedagogical experts included a set of questions randomly
sampled from the different level of difficulties as follows: 20% questions of
level 1 difficulty; 30% questions of level 2 difficulty; 40% questions of level 3
difficulty; 10% questions of level 4 difficulty. The pedagogical experts decided
not to include questions from the most difficult level. The questions were
sequenced to students in ascending order of difficulty. Both of the approaches
followed the mastery learning principle by which knowledge of simple skills
should be demonstrated before moving on to more difficult questions relating
to more complex skills [41] but they differed on how they selected questions
for students.

5.2. Procedure

We conducted the experiment in two of the summer school classes using
K12, one of which was randomly assigned to use the EduRank+Prior al-
gorithm (denoted EduRank), while the other classroom was assigned to the
ascending (ASC) algorithm. Each sequencing algorithm was used in real-time
to present questions to students as part of their coursework. After submitting
an answer, students received feedback from the system about their score for
each question. The number of consecutive retries allowed for each question
was limited to three. Students could also choose not to answer a question that
is given to them by the algorithm. Students were randomly assigned to the

3IRB approval was obtained from Ben-Gurion University.
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summer school classes and the questions presented by the system matched
the topics covered in the classroom. Additionally, the curriculum was identi-
cal for the two classes (conditions). The data for the EduRank algorithm was
updated each night after class to account for ongoing student learning. We
hypothesized that using the EduRank approach to sequence questions to stu-
dents would lead students to better performance on more difficult problems
without reducing their motivation in the e-learning system, as compared to
the alternative sequencing approach.

Both classes were administered a pre-test consisting of a single session
of 15 questions in mathematics that were sampled from different topics and
expert difficulty levels in mathematics. The questions for this preliminary
test were chosen by a domain expert. There was no statistically significant
difference between the two groups in each class in the average score on this
preliminary test (ASC condition mean score was 0.64, STD 16 and EduRank
condition mean score was 0.63, STD 18). Hence we asserted that students
in each group exhibited similar knowledge baselines of the material.

5.3. Results

In the analysis that follows we restricted our attention to sessions of
students who completed the preliminary session. We did not track individual
students’ progress during the study nor control any of the conditions in the
classroom beyond the use of the sequence algorithm. Students could use the
system with no supervision and practice as many questions as they wanted.
Inspecting the two classes in combination, students solved on average 152
questions (stdev 169) and 94% of students reached and solved questions of
levels 4 or 5. During the experiment no student ran out of problems to solve.

Table 5 shows the distribution of the number of students in each group,
the number of questions solved, the average grade (first attempt), and the
average time spent on each question (in seconds). As shown by the table,
the average grade obtained by students using the EduRank approach was
four points higher than the grade obtained by students using the sequencing
approach. This difference is statistically significance (Repeated Measures
ANOVA, F (1, 36361) = 18.55, p = 1.66 · 10−5). When comparing the two
approaches for each level of difficulty (Table 6), we can see that the students
using the EduRank approach achieved higher scores for all questions in each
of the levels. Specifically, for easy questions (level 1) the performance of
the EduRank and ASC approach was identical. However, for more difficult
questions (levels 2 and up) students using the EduRank approach achieved
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Approach Num. Num. Avg. Time
Students Questions Grade (Seconds)

EduRank 21 2027 93 27.0
ASC 17 1707 89 17.1

Table 5: Classroom Study Statistics

Num. Questions Avg. Grade Num. Students
Diff. Level EduRank Asc EduRank Asc p-value EduRank Asc

1 607 466 93.8 93.8 0.15 21 17
2 423 430 94.2 90.8 2.8 · 10−7 21 17
3 449 578 92.9 86.7 3.0 · 10−14 21 17
4 368 233 88.5 83.0 3.7 · 10−4 21 15
5 180 — 84.0 — — 18 –

Table 6: Performance comparison between the EduRank and ASC sequencing approaches
by level of difficulty (p-value: Repeated Measures ANOVA)

higher performance than students using the ASC approach. Note that the
ASC algorithm did not use questions from level 5.

Finally, Table 5 also shows that students using the EduRank approach
solved more questions and spent more time in the system than students using
the ASC approach. This implies that despite solving more difficult questions,
the students using EduRank were as motivated to use the e-learning system
as the students using the ASC algorithm.

6. Related Work

Our work relates to several areas of research in student modeling. Sev-
eral approaches within the educational data mining community have used
computational methods for sequencing students’ learning items. Pardos and
Heffernan [42] infer order over questions by predicting students’ skill levels
over action pairs using Bayesian knowledge tracing. They show the efficacy
of this approach on a test-set comprising random sequences of three questions
as well as simulated data. This approach explicitly considers each possible
order sequence and does not scale to handling a large number of sequences,
as in the student ranking problem we consider in this paper.

Champaign and Cohen [43] suggest a peer-based model for content se-
quencing in an intelligent tutoring system by computing the similarity be-
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tween different students and choosing questions that provide the best benefit
for similar students. They measure similarity by comparing between stu-
dents’ average performance on past questions and evaluate their approach
on simulated data. Our approach differs in several ways. First, we don’t use
an aggregate measure to compute similarity but compare between students’
difficulty rankings over questions. This way, we use the entire ranked list for
similarity computation, and do not lose information. Consider, e.g., student1
who has accrued grades 60 and 80 on questions (a) and (b) respectively; and
student2 who has accrued grades 80 and 60 on questions (a) and (b) respec-
tively. The average grade for both questions will be the same despite that
they clearly differ in difficulty level for the students (when ordered solely
based on grade). Second, we are using social choice to combine similar stu-
dents’ difficulty ranking over questions. Third, we evaluate our approach on
two real-world data sets. Li, Cohen and Koedinger [44] compared a blocked
order approach, in which all problems of one type are completed before the
student moves to the next problem type, to an interleaved approach, where
problems from two types are mixed and showed that the interleaved approach
yields more effective learning. Our own approach generates an order of the
different questions by reasoning about the student performance rather than
determining order a-priori.

Multiple researchers have used Bayesian knowledge tracing as a way to
infer students’ skill acquisition (i.e., mastery level) over time given their
performance levels on different question sequences [39]. These researchers
reason about students’ prior knowledge of skills and also account for slips
and guessing on test problems. The models are trained on large data sets
from multiple students using machine learning algorithms that account for
latent variables [45, 46]. We solve a different problem — using other stu-
dents’ performance to personalize ranking over test-questions. In addition,
these methods measure students’ performance dichotomously (i.e., success or
failure) whereas we reason about additional features such as students’ grade
and number of attempts to solve the question. We intend to infer students’
skill levels to improve the ranking prediction in future work.

Approaches based on recommendation systems are increasingly being
used in e-learning to predict students’ scores and to personalize educational
content. We mention a few examples below and refer the reader to the
surveys by Drachsler et al. [47] and Erdt et al. [48] for more details. Col-
laborative filtering (CF) was previously used in the educational domain for
predicting students’ performance. Toscher and Jahrer [9] use an ensemble of
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CF algorithms to predict performance for items in the KDD 2010 educational
challenge. Berger et. al [49] use a model-based approach for predicting ac-
curacy levels of students’ performance and skill levels on real and simulated
data sets. They also formalize a relationship between CF and Item Response
Theory methods and demonstrate this relationship empirically. Schatten et
al. [37] use matrix factorization for task sequencing in a large commercial
Intelligent Tutoring System, showing improved adaptivity compared to a
baseline sequencer. Finally, Loll and Pinkwart [50] use CF as a diagnostic
tool for knowledge test questions as well as more exploratory ill-defined tasks.
None of these approaches ranked questions according the personal difficulty
level of questions to specific students.

7. Discussion and Conclusion

This paper presented a novel approach to personalization of educational
content. The suggested algorithm, called EduRank, combines a nearest-
neighbor based collaborative filtering framework with a social choice method
for preference ranking. The algorithm constructs a difficulty ranking over
questions for a target student by aggregating the ranking of similar students.
It extends existing approaches for ranking of user items in two ways. First, by
inferring a difficulty ranking directly over the questions for a target student,
rather than ordering them according to predicted performance, which is prone
to error. Second, by penalizing disagreements between the difficulty rankings
of similar students and the target student more highly for harder questions
than for easy questions.

The algorithm was tested on two large real world data sets and its per-
formance was compared to a variety of personalization methods as well as a
non-personalized method that relied on a domain expert. The results showed
that EduRank outperformed existing state-of-the-art algorithms using two
metrics from the information retrieval literature. We extended EduRank
to predict the difficulty rankings of questions for students with little or no
prior history in the system, and deployed this extended version in a real
classroom. We show that sequencing questions using the EduRank approach
in the classroom led students to exhibit better performance on more diffi-
cult questions, when compared to a baseline sequencing approach that was
designed by domain experts.

Considering implementations in the wild, we note that EduRank was
tested on two datasets with high sparsity (> 98%) and showed good results.
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Additionally, EduRank’s exhibits polynomial computational complexity and
was shown to be adequate for implementations in the wild, consuming 61.2
milliseconds to compute a ranked list per student on a Mac Book air com-
puter.

We mention several limitations of the classroom experiment and sub-
sequent suggestions for future work. First, our classroom deployment was
conducted during an elective summer course in which the usage of the e-
learning system was not mandatory. As shown in Table 5 the response time
for students using EduRank was higher than that of the students using the
alternative ASC ranking approach. This may mean that students in this
group were more motivated to stay in the system. Hence we cannot directly
claim our results would necessarily carry over to actual classrooms where
students exhibit a variety of motivation levels. We are currently running ex-
periments with using EduRank in a real classroom context in which students
are assigned questions in increasing order of inferred difficulty that is out-
putted by EduRank. We are also combining EduRank with a multi-armed
bandit approach to sequence questions to students [51].

Second, EduRank assigned more difficult questions (levels 4 and 5) than
the alternative ASC algorithm (see Table 6), and may have adversely af-
fected student motivation. In future work we mean to combine EduRank
with cognitive models that directly account for skill acquisition and student
engagement for sequencing educational content in the classroom.

Third, EduRank requires to rerun the algorithm to account for student
learning over time. As students solves more questions, the change to their
“learning state” is reflected in the change to the set of students deemed
similar to them. Consequently, running EduRank again will output a new
difficulty ranking that is adapted to their learning state. EduRank can be
run every time it is necessary to account for effects of student learning on
the inferred difficulty ranking. The complexity of running EduRank is low
enough to enable EduRank to be run multiple times, depending on the needs
of the teacher or education researcher. Indeed, in our study we ran EduRank
the night after each class. The outputted set of questions for next class
accounted for the student learning that occurred in the previous class.
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